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Abstract

We revisit the contextual cascading bandit, where a learning agent recommends
an ordered list (cascade) of items, and a user scans the list sequentially, stopping
at the first attractive item. Although cascading bandits underpin various applica-
tions including recommender systems and search engines, the role of the cascade
length K in shaping regret has remained unclear. Contrary to prior results that
regret grows with K, we prove that regret actually decreases once K is large
enough. Leveraging this insight, we design a new upper-confidence-bound algo-
rithm built on online mirror descent that attains the sharpest known regret upper
bound, Õ

(
min{Kp̄K−1, 1}d

√
T
)

for contextual cascading bandits. To comple-
ment this new regret upper bound, we provide a nearly matching lower bound of
Ω
(
min{KpK−1, 1}d

√
T
)
, where 0 ≤ p ≤ p̄ < 1. Together, these results fully

characterize how regret truly scales with K, thereby closing the theoretical gap
for contextual cascading bandits. Finally, comprehensive experiments validate our
theoretical results and show the effectiveness of our proposed method.

1 Introduction

Cascading bandits have broad applications in online recommender systems, search engines, and
social media. In this model, at each round, the agent selects an ordered list (a cascade) of K
items from a ground set of N items. The user examines each item in order and decides whether
to click it or skip to the next. The round stops at the first click or when all K items have been
examined without any click. Therefore, the agent receives the partial click feedback only for the
observed items in the given cascade. Cascading bandits have been extensively studied from the
non-contextual multi-armed formulation [11, 12, 25] to contextual variants incorporating item (and
user) features [19, 18, 27, 7, 25, 20, 21], providing a widely used framework for modeling sequential
user interactions with multiple items.

In contextual cascading bandits, the effect of the cascade length K on the regret bound remains
theoretically unclear. While previous studies suggest that the regret either scales polynomially or
logarithmically with K (see Table 1), this contradicts the intuition that a longer cascade provides
more opportunities to collect feedback and may therefore reduce regret. The gap between theory and
intuition regarding how the cascade length affects the regret has been recognized [27, 7, 20, 21], and
recent studies [7, 21] have narrowed this gap, though it has yet to be fully resolved.

Li et al. [19] first introduced the contextual cascading bandits and derived a regret upper bound that
scales as Õ(

√
K) by exploiting the Lipschitz continuity of the expected reward. Recent studies have

further refined the dependence of regret on the cascade length by analyzing different click feedback
models. Liu et al. [20] considered the case where the click feedback follows a linear model, whereas
Choi et al. [7] and Liu et al. [21] focused on the logistic model. These three works investigated a
common structural property that the gradient of the expected reward function can be expressed as
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Table 1: Comparisons of algorithms for cascading bandit. N is the number of ground arms, K is
a cascade length, d is a dimension of context vectors and T is total rounds. Here, 0 ≤ p ≤ p̄ < 1
(See Definition 5.2) and κ ∈ (0, 1/4] (See Assumption 5.3).

Algorithm / Paper Model Bound Dependence on K

CascadeKL-UCB [11] (Non-contextual) O
(
(N −K)∆(1+log(1/∆))

DKL(p−∆||p) log T
)∗

Decreasing

Lower Bound [11] (Non-contextual) Ω
(
(N −K) ∆

DKL(p−∆||p) log T
)∗

Decreasing

C3-UCB [19] Linear O(d
√
KT log T ) Increasing

LinTS-Cascade [27] Linear O(d3/2K
√
T log T ) Increasing

CascadeWOFUL [25] Linear O(
√
d2T + dTK log(KT )) Increasing

VAC2-UCB [20] Linear O(d
√
T log(KT )) Increasing

UCB-CCA [7] Logistic O( 1
κ
d
√
T log(KT )) Increasing

UCB-CCA+ [7] Logistic O(d
√
T log(KT )) Increasing

CLogUCB [21] Logistic O(d
√

1
κ
KT log(KT )) Increasing

VA-CLogUCB [21] Logistic O(d
√
KT log(KT )) Increasing

EVA-CLogUCB [21] Logistic O(d
√
T log(KT )) Increasing

UCB-CLB (this work, Theorem 5.6) Logistic∗∗ O
(
min

{
Kp̄K−1, 1

}
d
√
T log(KT )

)
Decreasing for large K

Lower Bound (this work, Theorem 5.7) Logistic Ω
(
min

{
KpK−1, 1

}
d
√
T
)

Decreasing for large K

* These non-contextual results are gap-dependent regret bounds under a symmetric instance, where each optimal
item has a click probability p and each suboptimal item has p−∆ for some ∆ ∈ (0, p). DKL(p∥q) denotes the
Kullback–Leibler (KL) divergence between two Bernoulli distributions with means p and q.
** Although we present our main results for the logistic model—reflecting the binary “click” feedback observed
in practice—the analysis also carries over to the linear model, hence our results are comparable to existing linear
model results, as well as logistic model results.

a product of non-click probabilities. Specifically, Choi et al. [7] combined this property with the
optimistic exposure swapping technique, which places the most uncertain item first in the cascade,
while Liu et al. [20] and Liu et al. [21] leveraged the triggering probability equivalence technique,
which links the probability that an item is observed to the random event of that item being observed.
These approaches yielded tighter regret bounds of order O(d

√
T log(KT )), demonstrating that the

regret no longer grows polynomially with the cascade length but still grows logarithmically.

On the other hand, the non-contextual cascading bandit literature [11] provides a more explicit
characterization of how the cascade length affects regret. Kveton et al. [11] established gap-dependent
upper and lower bounds, explicitly scaling with the difference between total number of arms and
cascade length (N−K). Under a symmetric instance, where each optimal item has a click probability
p and each suboptimal item has p−∆ for some ∆ ∈ (0, p), O

(
(N −K)∆(1+log(1/∆))

DKL(p−∆∥p) log T
)

regret
upper bound is shown, along with a matching lower bound (up to logarithmic factors of ∆) of
Ω
(
(N −K) ∆

DKL(p−∆∥p) log T
)
. These results indicate that the regret decreases as K increases (i.e.,

as K approaches N ). Yet, a direct translation of these bounds to contextual cascading bandits is
unclear, since regret bounds typically exhibit no explicit dependence on N in contextual settings.

In this paper, we address this long-standing open question in the contextual cascading bandits:

What is the true impact of the cascade length on the regret bound?

We show that the regret bound of contextual cascading bandits shrinks to zero for sufficiently large
cascade length. Our analysis begins with the contextual logistic cascading bandits where the binary
click feedback follows a logistic model. Within this framework, we propose a new UCB algorithm
with an online mirror descent method effectively exploiting the cascading structure and integrating
the optimistic exposure swapping technique proposed by Choi et al. [7]. To establish its theoreti-
cal guarantee, we derive the tightest known regret upper bound for contextual cascading bandits,
Õ(min{Kp̄K−1, 1} d

√
T ), overcoming the technical challenges inherent to the cascade structure.

Unlike previous results [7, 21] that scale as Õ(d
√
T ), our bound introduces the multiplicative factor
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Kp̄K−1, revealing that the regret can decrease with larger cascade length. This result is further
supported by a matching problem-dependent regret lower bound, which confirms the correct K-
scalability of our upper bound. To the best of our knowledge, this is the first lower bound analysis for
contextual cascading bandits. Finally, the proposed analysis is directly applicable to the contextual
cascading linear bandits, where the regret bound Õ(min{Kp̄K−1, 1} d

√
T ) remains valid, demon-

strating that the Kp̄K−1 term captures an intrinsic property of the cascade structure rather than a
peculiarity of the feedback model.

Our main contributions are summarized as follows.

• We propose a UCB algorithm for cascading logistic bandits and establish the T -step regret
upper bound of Õ(min

{
Kp̄K−1, 1

}
d
√
T ) where 0 ≤ p̄ < 1 (Theorem 5.6).

• To our best knowledge, this regret upper bound is the tightest bound among all the existing
regret bounds for contextual cascading bandits. In contrast to previous studies that suggest
the bound increases with K, our finding demonstrates that the regret bound decreases with
sufficiently large K.

• By leveraging online mirror descent for parameter estimation in cascading logistic bandits,
our algorithm achieves constant per-round computational and storage costs, independent of
T , thereby ensuring computational efficiency.

• We also derive an N -independent lower bound on the regret in cascading logistic bandits
as Ω(min

{
KpK−1, 1

}
d
√
T ) (in Theorem 5.7), where 0 ≤ p ≤ p̄ < 1. To the best of our

knowledge, this is the first derivation of a lower bound in contextual cascading bandits.
• We show that the regret bound derived in the logistic setting also holds in the linear model

under mild assumptions, highlighting the generality of our theoretical results.

2 Inefficient Dependence on Cascade Length

In contextual cascading bandits, the true impact of cascade length on the regret bound still remains
unresolved to this day. As summarized in Table 1, all existing regret upper bounds for contextual
cascading bandits [19, 27, 25, 20, 7, 21] are either Õ(Kd

√
T ) or Õ(d

√
T )1. However, simple

experiments cast doubt on the implication of K dependence in these existing results. We conduct
experiments to observe how cumulative regret evolves with varying cascade length K. This experi-
ment is based on the MovieLens 100K dataset2, and we defer the experimental details to Section 6.
We gradually increase K, with all other conditions held constant across bandit instances. As shown
in Figure 1, our result presents a counterexample: cumulative regret decreases as K increases, not
only for our algorithm but also for existing methods. Hence, the previous theoretical claim that regret
either worsens or remains unaffected by increasing K is not supported by experimental results.
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Figure 1: Cumulative regret over time for UCB-CLB (ours), UCB-CCA [7] and C3-UCB [19] with
N = 1642, d = 25, and varying cascade lengths K ∈ {1, 2, 3, 4}. In all methods, increasing the
cascade length leads to a clear reduction in cumulative regret. Interestingly, this decreasing trend is
observed even for UCB-CCA and C3-UCB, despite prior works suggesting that regret increase with K.

Furthermore, the claim that regret grows with K is also counterintuitive. By definition, regret is the
difference between the expected reward of the optimal cascade and that of the cascade selected by the

1Still, these results retain a logarithmic dependency on K.
2Available at https://grouplens.org/datasets/movielens/100k/.
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agent. In cascading bandits, the expected reward of a cascade is generally defined as the probability
that at least one arm in the cascade yields positive feedback3. When all other conditions are kept
constant, increasing the cascade length provides the agent with more opportunities to receive positive
feedback. This leads the expected reward of the selected cascade to increase. For the same reason,
the expected reward of the optimal cascade also increases as the cascade length increases.

Our intuition and experiments suggest that prior claims about how cascade length affects regret are
incomplete and possibly loose. Surprisingly, explicit discussion of this issue is scarce in the literature.
We therefore establish a rigorous, refined regret bound that reveals how cascade length fundamentally
influences regret in cascading bandits.

3 Preliminaries

3.1 Notation

Define [n] as the set of positive integers from 1 to n. Let |·| be the length of a sequence or the
cardinality of a set. For a vector x ∈ Rd, we denote the ℓ2-norm of x as ∥x∥ and the V -weighted
norm of x for a positive-definite matrix V as ∥x∥V =

√
x⊤V x. The determinant and trace of a

matrix V are det(V ) and trace(V ), respectively. λmin(V ) denotes the minimum eigenvalue of a
matrix V . Id ∈ Rd×d is an identity matrix.

3.2 Problem Setting

We begin by outlining the core structure of the contextual cascading bandit, followed by an extension
that parameterizes the Bernoulli feedback using a logistic function.

The contextual cascading bandit framework models the interaction between a learning agent and
the environment as follows: given a set I that consists of total N arms, the agent offers a list of K
distinct arms to the environment, which we refer to as a cascade. The set of all possible cascades
is denoted by Π := {(i1, . . . , iK) : i1, . . . , iK ∈ I, ik ̸= im for any k ̸= m}. At each round t,
the environment reveals a contextual feature vector xt,i ∈ Rd for each arm i ∈ I, collectively
denoted by Xt := {xt,i}i∈I . Based on the history Ht and the revealed feature vectors Xt, the
agent selects a cascade Ct = (it1, it2, . . . , itK) ∈ Π, where itk is the k-th arm in Ct. For any
arm itk ∈ Ct, we define yt,itk ∈ {0, 1} as the binary feedback provided by the environment to
the agent, where 1 indicates positive feedback (i.e., click). Starting from the first arm it1, the
agent sequentially observes feedback for each arm in Ct. Upon receiving feedback yt,itk = 1,
the round immediately terminates, halting further observations for remaining arms it,k+1, . . . , itK .
Let kt := min ({m ∈ [K] : yt,itm = 1} ∪ {K + 1}), which denotes the position of the first clicked
item in round t, or K + 1 if no click occurs. We define the list of observed arms in round t as
Ot := (itk : 1 ≤ k ≤ min(kt,K)) .

The reward of agent who chooses cascade Ct in round t is defined as 1 if at least one arm in Ct yields
feedback of 1; otherwise, the reward is 0. Formally, this can be expressed as:

rt(Ct) = max
i∈Ct

yt,i = ∨
i∈Ct

yt,i = 1−
∏
i∈Ct

(1− yt,i).

This type of reward structure is referred to as a disjunctive model [12, 19], in which the agent receives
a reward if any arm within the cascade provides positive feedback. This model is well suited to
recommender systems, where success is achieved if at least one recommended item satisfies the user.

Building on the framework described above, we study the cascading logistic bandit, which integrates
a logistic parametric model to account for the Bernoulli feedback. Since the logistic model is better
suited to handle binary feedback than the linear model, it has gained attention in recent cascading
bandit literature [7, 21]. Specifically, given the history Ht := (Xτ , Cτ , Oτ , Yτ )τ<t ∪(Xt, Ct), the
feedback yt,i for all i ∈ I are modeled as mutually independent Bernoulli random variables. Let
σ1(z) = exp(z)/(1 + exp(z)) and σ0(z) = 1 − σ1(z). The conditional expectation of yt,i is
parameterized using a logistic function E [yt,i|Ht] = σ1(x

⊤
t,iθ

∗), where θ∗ ∈ Rd is an unknown

3This is commonly referred to as cascading bandits with a disjunctive objective.
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time-invariant parameter. The expected reward of Ct is then given by:

E[rt(Ct) | Ht] = 1−
∏
i∈Ct

(1− σ1(x
⊤
t,iθ

∗)) =: ft(Ct, θ
∗). (1)

The optimal action C∗
t ∈ argmaxC∈Π ft(C, θ

∗) in round t is defined as the cascade that maximizes
the expected reward. The objective is to maximize the cumulative expected reward over T rounds by
efficiently learning the unknown parameter θ∗. To evaluate the performance of an online learning
bandit algorithm, the regret, defined as the gap between the expected cumulative reward of the optimal
cascade C∗

t and that achieved by the algorithm’s selection Ct over T rounds, is used. The formal
definition of regret is as follows:

R(T ) := E

[
T∑

t=1

rt(C
∗
t )− rt(Ct)

]
= E

[
T∑

t=1

ft(C
∗
t , θ

∗)− ft(Ct, θ
∗)

]
, (2)

where the last equality is from the law of total expectation and the definition of the expected reward.

4 Algorithm

In this section, we introduce our algorithm, Upper Confidence Bound for Cascading Logistic Bandits
(UCB-CLB), leveraging the widely used UCB technique [4, 1, 17] to find an optimistic action based on
a well-established confidence set. The pseudocode of UCB-CLB is presented in Algorithm 1. UCB-CLB
consists of three key components.

First, it constructs a confidence set using parameter estimates obtained via online mirror descent
(OMD), as detailed in Section 4.1. The use of OMD provides a computationally and memory-efficient
alternative to maximum likelihood estimation (MLE), which has been adopted in logistic bandits
[26, 15]. To the best of our knowledge, UCB-CLB is the first algorithm to incorporate OMD in the
cascading bandit setting. Second, Section 4.2 explains how UCB-CLB efficiently selects a cascade by
ensuring optimism through an exploration bonus. Rather than solving combinatorial optimization
over

(
N
K

)
arms to find the cascade that maximize the estimated rewards, UCB-CLB reduces this process

to a simpler top-K arm selection procedure. Finally, Section 4.3 discusses the incorporation of
optimistic exposure swapping, originally proposed by Choi et al. [7] adapted to our problem setting.
This technique aims to mitigate an issue arising from unobserved feedback, by strategically placing
arms with higher uncertainty in the cascade.

Our main design goal is to develop a cascading bandit algorithm whose regret decreases for sufficiently
large cascade length K. Since our setting assumes a logistic model, we leverage insights from prior
work [8, 2, 9] on contextual logistic bandits, where the leading term of the regret is known to be
independent of a problem-dependent factor κ, formally defined in Assumption 5.3. To achieve both
goals, our algorithm incorporates two key components: DO-SWAP for cascade restructuring and online
parameter estimation via OMD.

4.1 Efficient Online Parameter Estimation

In the existing literature on logistic and multinomial logistic bandits [8, 2, 10, 3, 15], the maximum
likelihood estimation (MLE) approach has been the common method for parameter estimation.
To reduce computational and memory overhead, recent studies [9, 26, 13] have proposed online
parameter estimation methods based on algorithms such as online Newton step and online mirror
descent (OMD). Building on these advances [26, 13, 14], we adopt an OMD-based estimator tailored
to the cascading bandit setting. This adaptation achieves constant computational complexity per
round, providing substantial computational efficiency over MLE-based approaches.

The parameter θ is updated for each observation itk ∈ Ot. Let θt,1 := θt and Ht,1 := Ht, where

Ht =

t−1∑
τ=1

∑
k∈|Oτ |

σ̇1(x
⊤
τ,iτk

θτ,k+1)xτ,iτk
x⊤
t,iτk

+ λId.

Then, for k ∈ [|Ot|], we update the parameter θt,k+1 using an online mirror descent [24] as follows:

θt,k+1= argmin
θ∈Θ

{
1

2η
∥θ − θt,k∥2H̃t,k

+ ⟨θ,∇ℓt,itk(θt,k)⟩
}
, Θ = {θ ∈ Rd : ∥θ∥2 ≤ 1}, (3)
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Algorithm 1 UCB-CLB
Input: penalty λ, radius βt, step size η.
Initialize θ1 ∈ Θ, H1 = λId.
for t = 1, . . . , T do

Compute {ut,i = x⊤
t,iθt + βt ∥xt,i∥H−1

t
}i∈I .

Select C ′
t ∈ argmaxC∈Π f̃t(C) by Eq.(5).

Ct ← DO-SWAP(C ′
t, θt, Ht).

Play Ct and receive feedback tuple (Ot, Yt).
θt,1 ← θt, Ht,1 ← Ht

for k = 1, . . . , |Ot| do
H̃t,k ← Ht,k + ησ̇1(x

⊤
t,itk

θt,k)xt,itkx
⊤
t,itk

Update θt,k+1 by Eq.(3)
Ht,k+1 ← Ht,k + σ̇1(x

⊤
t,itk

θt,k+1)xt,itkx
⊤
t,itk

.
end for
θt+1 ← θt,|Ot|+1, Ht+1 ← Ht,|Ot|+1

end for

Algorithm 2 DO-SWAP
Input: cascade Ct, parameter θt, gram ma-
trix Ht.
Find i(1)t and i(2)t by Eq.(6).
Swap the positions of it1 and i(1)t .
if i(1)t ̸= i(2)t then

Swap the positions of it2 and i(2)t .
end if
Output: swapped cascade (i(1)t , i(2)t , . . . ).

where H̃t,k = Ht,k + η∇σ(x⊤
t,itk

θt,k)xt,itkx
⊤
t,itk

. Here, for arm i in round t under parameter θ,
the loss is defined as ℓt,i(θ) := −

∑
y∈{0,1} I{yt,i = y} log σy(x

⊤
t,iθ), and its gradient is given by

∇ℓt,i(θ) =
(
σ1(x

⊤
t,iθ)− yt,i

)
xt,i.

To efficiently solve the optimization problem in Eq.(3), we perform a single projected gradient step.

θ′t,k+1 = θt,k − ηH̃−1
t,k∇ℓt,itk(θt,k), θt,k+1 ∈ argmin

θ∈Θ

∥∥θ − θ′t,k+1

∥∥
H̃t,k

.

Next, we update the gram matrix as follows:

Ht,k+1 = Ht,k + σ̇1(x
⊤
t,itk

θt,k+1)xt,itkx
⊤
t,itk

.

This process is repeated in every round, ensuring the parameters and gram matrices are consistently
updated for all observed arms.

The optimization problem in Eq.(3) requires a computational cost of only O(Kd3), which is com-
pletely independent of the round t. Since we update the parameter K times per round, the total
computational cost is O(K2d3). For storage costs, the estimator does not need to store all historical
data because both H̃t,k and Ht,k can be updated incrementally, requiring only O(d2) storage.

4.2 Efficient Optimistic Expected Reward

We leverage the UCB technique to compute an optimistic action based on estimates of each arm. We
compute our optimistic estimate ut,i for all t ∈ [T ] and i ∈ I as follows:

ut,i = x⊤
t,iθt + βt ∥xt,i∥H−1

t
. (4)

where βt ≥ 0 represents a confidence radius, with its specific value being provided in Section 5.2 to
ensure the necessary statistical guarantees. We define f̃t(C) to be the optimistic expected reward of
the cascade C in round t based on ut,i:

f̃t(C) := 1−
∏
i∈C

σ0(ut,i). (5)

Then, the agent identifies the cascade that maximizes f̃t in each round. As σ0(·) is a monotonically
decreasing function, maximizing f̃ t simplifies to selecting the top-K arms with the highest optimistic
estimates ut,i from i ∈ I.
Remark 1 (Comparison to Liu et al. [21]). We compare our method, UCB-CLB, with the UCB algo-
rithms introduced by Liu et al. [21], namely VA-CLogUCB and EVA-CLogUCB. Similar to our approach,
both algorithms adopt a bonus-based method to induce exploration. However, our algorithm offers key
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advantages in terms of computational efficiency beyond statistical efficiency. Unlike VA-CLogUCB
and EVA-CLogUCB, which rely on MLE, UCB-CLB leverages online parameter estimation, signifi-
cantly reducing computational and storage costs. Furthermore, VA-CLogUCB requires a non-convex
projection, which could be NP-hard, to ensure statistical guarantees. EVA-CLogUCB eliminates this
non-convex optimization process by introducing a burn-in stage of O(log T ) rounds to construct a
convex nonlinearity-restricted region. However, EVA-CLogUCB requires an additional assumption
that feature vectors remain time-invariant. Thus, our UCB-CLB applies to more general settings.

4.3 Doubly Optimistic Exposure Swapping

In this section, we introduce the doubly optimistic exposure swapping (DO-SWAP), which is a technique
that provides an alternative approach for handling unobserved feedback. We summarize the process
of DO-SWAP in Algorithm 2. In cascading bandits, there exists a critical challenge that the learning
agent cannot access feedback information for all arms in Ct, but only for the arms in Ot, i.e., the
observed arms. Consequently, the Gram matrix Ht is constructed solely from the feature information
of the observed arms—whose number may be strictly smaller than the cascade length—and is used
to construct the confidence set. As a result, there is an issue where the leftover sum (from |Ot| to
|Ct|) becomes out of control [19]. To address this issue, we exploit the doubly optimistic exposure
swapping technique first introduced in Choi et al. [7].

DO-SWAP follows the following process. After finding Ct ∈ argmaxC∈Π f̃t(C), the agent swaps it1
and it2, the first and second arms in Ct, with i(1)t and i(2)t , respectively, where

i(1)t = argmax
i∈Ct

σ̇1(x
⊤
t,iθt) ∥xt,i∥H−1

t
, i(2)t = argmax

i∈Ct

∥xt,i∥H−1
t

. (6)

As a side note, when i(1)t = i(2)t , it suffices for the agent to swap i(1)t with the first positioned arm
it,1 ∈ Ct. Since the arm in the first position is always observed (i(1)t ∈ Ot), the following inequality
holds and effectively avoids the aforementioned out-of-control issue:∑

i∈Ct

σ̇1(x
⊤
t,iθt) ∥xt,i∥H−1

t
= Kmax

i∈Ct

σ̇1(x
⊤
t,iθt) ∥xt,i∥H−1

t
= Kσ̇1(x

⊤
t,i

(1)
t

θt)
∥∥∥xt,i

(1)
t

∥∥∥
H−1

t

.

Additionally, considering that the arm with the largest ∥xt,i∥H−1
t

in Ct is placed in the second
position, the following equation holds:∑

i∈Ct

∥xt,i∥2H−1
t

= Kmax
i∈Ct

∥xt,i∥2H−1
t

= K
∥∥∥xt,i

(2)
t

∥∥∥2
H−1

t

.

A detailed discussion on how DO-SWAP affects the regret analysis is included in Appendix C.1.

5 Regret Analysis

5.1 Regularity Condition

Before presenting our main theoretical results, we first introduce the regularity assumptions.
Assumption 5.1. ∥xt,i∥ ≤ 1 for all round t and arms i ∈ I, and also ∥θ∗∥ ≤ 1.

Assumption 5.1 ensures that the regret bound is independent of the scale of the feature vector and
parameter, which is a standard assumption commonly adopted in the contextual bandit literature [1,
19, 22]. Under Assumption 5.1, we define the following constant related to the feedback probabilities:
Definition 5.2. Under Assumption 5.1, we define the following constants as:

p̄ := sup
x:∥x∥≤1

σ0(x
⊤θ∗), p := inf

x:∥x∥≤1
σ0(x

⊤θ∗).

These two constants play a critical role in expressing the true scaling of regret as the cascade length
K becomes sufficiently large. (See Theorem 5.6 and Theorem 5.7.)
Assumption 5.3. There exists κ > 0 such that minθ:∥θ∥≤1 σ1(x

⊤
t,iθ)σ0(x

⊤
t,iθ) ≥ κ, for every arm

i ∈ I and all round t.

The problem-dependent factor κ typically appears in the combinatorial logistic bandit literature [6,
22, 23] and is adapted from standard link-function conditions in the generalized linear contextual
bandit literature [17].. Note that a smaller κ indicates a larger deviation from the linear model.
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5.2 Confidence Set

In this section, we aim to establish a theoretically grounded confidence set for the parameter estimate
θt,k, which plays a crucial role in constructing the upper confidence bound in our algorithm. Since
we update the parameter θt,k and the hessian matrix Ht,k for every t and k ∈ [|Ot|], we can directly
apply the online confidence bounds previously studied in the recent work [26, 13, 14].
Proposition 5.4 (Online parameter confidence set, Zhang and Sugiyama 26, Lee and Oh 13, 14).
Let δ ∈ (0, 1], and denote the assortment size as M . Under Assumption 5.1, set the step size
η = 1

2 log 2 + 2 and penalty parameter λ = 84
√
2dη. For each update time t ∈ [T ], we define the

following confidence set with βt(δ) = O(
√
d log T ):

Ct(δ) := {θ ∈ Θ : ∥θt − θ∥Ht
≤ βt(δ)},

Then, we have P (∀t ≥ 1, θ∗ ∈ Ct(δ)) ≥ 1− δ.

Applying this result to our problem setting, each assortment in our case contains a single item (since
the agent receives binary feedback). Hence, our problem setting is a special case with M = 1. Up
to round t, the algorithm performs one parameter update per observation, resulting in a total of∑t

τ=1 |Oτ | updates. Hence, we obtain the following result:
Corollary 5.5. Under the same setting with Proposition 5.4, for all t ∈ [T ] and k ∈ [|Ot|], with
probability at least 1− δ, we have θ∗ ∈ CONt,k(δ), where

CONt,k(δ) :=
{
θ ∈ Θ : ∥θt,k − θ∥Ht,k

≤ βt,k(δ) = O(
√
d log(tK))

}
.

5.3 Regret Upper Bound

Theorem 5.6 (Regret of UCB-CLB). Set the step size η = 1
2 log 2 + 2 and penalty λ = 84

√
2dη. Let

δ ∈ (0, 1]. With probability at least 1− δ, and under Assumptions 5.1 and 5.3, UCB-CLB ensures

R(T ) = Õ
(
min

{
Kp̄K−1d

√
T +Kp̄K−1 d

2

κp
+Kp̄K−1 d

2

κ
, d
√
T +

d2

κ

})
.

Discussion of Theorem 5.6. This theorem highlights the interesting impact of cascade length K on
regret, providing new insights. The dominant term of the regret upper bound in Theorem 5.6 scales as
Õ
(
min{Kp̄K−1, 1} d

√
T
)
, which exhibits a plateau-then-decreasing behavior with respect to the

cascade length K. To interpret this behavior, consider the term Kp̄K−1. Since K is a positive integer,
Kp̄K−1 is monotonically decreasing in K when p̄ ≤ e−1. For larger values of p̄ (e.g., e−1 < p̄ < 1),
this term first increases from K = 1 and then eventually decreases, achieving its maximum at
K = 1

log(1/p̄) . However, the regret bound depends on the truncated quantity min{Kp̄K−1, 1}.
Because of this truncation, the overall regret bound is non-increasing in K: it remains flat for small
K and decreases once K becomes sufficiently large. This offers an intuitive understanding of how an
increasing cascade length positively affects regret performance under such conditions. The proof of
Theorem 5.6 is provided in Appendix C.1.
Remark 2 (Applicability to Linear Models). A regret bound of Õ(min{Kp̄K−1, 1}d

√
T ) can also

be derived for the cascading linear bandits. The full derivation is provided in Appendix E. Existing
cascading linear bandit algorithms [19, 18, 25, 20] can attain a regret bound of Õ(Kp̄K−1) when
combined with a swapping technique similar to DO-SWAP. In particular, the arm maximizing the
confidence width ∥xt,i∥V −1

t
where Vt =

∑t−1
τ=1

∑
i∈Oτ

xτ,ix
⊤
τ,i + λI is placed in the first position

of the cascade. Deriving this bound in the linear setting requires an assumption that p̄ < 1; that is,
the probability of receiving positive feedback is assumed to be less than 1. This is because in the
linear model, the feedback probability is defined as x⊤

t,iθ
∗ ∈ [0, 1] in [19, 25]. The assumption of p̄

being less than 1 is often considered mild in practice— that is, every arm considered as candidates
has at least a (even very) small positive probability of being clicked.

5.4 Regret Lower Bound

Theorem 5.7 (Regret lower bound of contextual cascading bandits). Let d be divisible by 4, and
suppose that Assumption 5.1 holds. Suppose T ≥ C · d4 for some constant C > 0. Then, for any
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policy π, there exists a problem instance such that the worst-case expected regret of π is lower
bounded as follows:

sup
θ

Eπ
θ [Rθ(T )] = Ω

(
min

{
KpK−1, 1

}
· d
√
T
)
.

The key observation is that the dominant term in our upper bound in Theorem 5.6 matches the lower
bound up to logarithmic factors, lower-order terms and a gap of p̄ and p, indicating that the UCB-CLB
achieves a near optimal regret upper bound. The proof of Theorem 5.7 is deferred to Appendix D.
Remark 3 (Comparison to Kveton et al. [11]). The lower bound for non-contextual cascading bandits
established by Kveton et al. [11] in Theorem 4 is Ω((N −K)pK−1), ignoring constant factors. In
the non-contextual setting, regret necessarily depends on the total number of arms N , whereas in the
contextual setting, both upper and lower bounds of regret scale with the feature dimension d, not N .
Hence, there is a need for an N -independent lower bound for contextual cascading bandits. To this
end, Theorem 5.7 provides the first N -independent lower bound for contextual cascading bandits.

6 Numerical Study

In this section, we empirically evaluate the performance of our proposed algorithm, UCB-CLB, and
compare it against three UCB-based baselines—C3-UCB [19], UCB-CCA [7], and CLogUCB [21]—in
the contextual cascading bandit setting. We conduct simulated experiments with a real-world dataset:
MovieLens 100K dataset. We transformed the dataset into a binary feedback setting, assigning a
label of 1 to ratings of 4 or 5, and 0 to ratings of 1 or 2. To construct feature representations, we
applied truncated SVD extracting 5-dimensional embeddings for 943 users and 1642 movies. For
each user t and movie i, we computed the feature vector xt,i ∈ R25 by taking the outer product
of their embeddings and vectorizing the result. We then estimated the unknown parameter θ∗ via
offline logistic regression and compared it with estimates obtained from our online experiments. In
the online setting, a user is sampled uniformly at random in each round t, and the agent selects an
optimal movie from all 1642 movies (N = 1642). Additional experimental details are provided
in Appendix G. To evaluate the effect of cascade length, we compare cumulative regret under two
settings, K = 5 and K = 10, with all other parameters held constant. The running time is reported
only for K = 10.
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Figure 2: Cumulative regret for varying cascade lengths (K = 5, 10) and cumulative running time for
K = 10 with N = 1642 and d = 25. Error bars indicate standard error, and all results are averaged
over 10 random seeds.

Cumulative Regret Comparison. Figure 2 (left two plots) presents cumulative regret curves for
different algorithms under K = 5 and K = 10. As expected, methods based on the logistic model
(CLogUCB, UCB-CCA, UCB-CLB (ours)) consistently outperform C3-UCB which uses a linear model.
Among the logistic methods, our UCB-CLB achieves the lowest regret across both settings. We attribute
this to the small κ (Assumption 5.3) in the simulated MovieLens environment, which weakens the
performance of 1

κ -dependent methods (CLogUCB, UCB-CCA), while our UCB-CLB remains robust.
Furthermore, as the cascade length K increases, all algorithms exhibit lower cumulative regret, which
is consistent with our theoretical findings.

Computational Efficiency. Unlike MLE-based methods (CLogUCB, UCB-CCA), which incur high per-
round computational costs due to solving complex optimization problems, our UCB-CLB avoids this
issue and is highly scalable in large-scale cascading bandit settings. As shown in the rightmost plot of
Figure 2, the running time of MLE-based methods grows exponentially with T . In contrast, UCB-CLB
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remains efficient, achieving a runtime comparable to C3-UCB, which benefits from closed-form
updates due to its linear model.

7 Conclusion

In this paper, we revisit the contextual cascading bandit problem and resolve the long-standing
question of how the cascade length K affects regret. We first empirically show that, unlike prior
theoretical results that regret grows with K, the regret actually decreases once K becomes sufficiently
large. Motivated by this observation, we propose UCB-CLB, an OMD-based UCB algorithm that
achieves the tightest known regret bound of Õ(min

{
Kp̄K−1, 1

}
d
√
T ), and a nearly matching lower

bound. Our findings provide new theoretical and empirical insights into how longer cascades can
enhance statistical efficiency in contextual cascading bandits.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state that the regret decreases when K
is sufficiently large. This claim is theoretically supported by Theorems 5.6 and 6.1, and
empirically validated by the experiments.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 5.3, we discuss the limitation that the linear model requires the
probability of positive feedback to be bounded away from zero. However, we argue that this
is a mild assumption in practice, as such events are rare in real-world scenarios.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theoretical results are stated with explicit assumptions. Complete proofs
are in the supplementary material, with intuitions provided in the main paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe all experimental settings in supplementary materials (See Ap-
pendix G) and provide code for full reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We use public data and provide anonymized code and instructions for repro-
ducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The main paper provides a summary of all experimental settings, and full
details including data processing and hyper-parameters are provided in the supplementary
material (See Appendix G).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars in all plots indicate the standard error (SE), as stated in the main
text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details about compute resources, including hardware specifications and run-
time, are provided in the supplementary material (See Appendix G).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We comply with the NeurIPS Code of Ethics and identify no ethical concerns
in our work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses potential benefits for personalization and risks such as
bias and privacy concerns, despite being primarily theoretical (See Appendix I).

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not involve any data or models that pose a risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used the MovieLens 100K dataset, which is publicly available for non-
commercial use. We have cited the dataset and its source appropriately in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release the full code with documentation to support reproducibility.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We did not use crowdsourcing or human subjects in this work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We did not involve human subjects or crowdsourced data in our research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We used LLMs only for writing and editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

18

https://neurips.cc/Conferences/2025/LLM


A Notations

We provide the notations used throughout the appendix. The total number of rounds is denoted by T ,
the total number of arms by N , the cascade length by K, and the dimension of the feature vectors by
d. The logistic function σ1(z) and its complement σ0(z) are defined as follows:

σ1(z) :=
exp(z)

1 + exp(z)
and σ0(z) :=

1

1 + exp(z)
= 1− σ1(z),

for any z ∈ R. The first and second derivatives of σ1(z) with respect to z are given by
σ̇1(z) := σ0(z)σ1(z),

σ̈1(z) := σ0(z)σ1(z)(1− 2σ1(z)).

Also, Vt =
∑t−1

τ=1

∑
i∈Oτ

xτ,ix
⊤
τ,i + λId.

Table 2 provides a summary of the symbols and their descriptions used throughout this section.

Table 2: Symbols

Symbol Description

I set of all N arms
Π set of all possible cascades
Ct cascade chosen by our algorithm in round t

Ot a list of observed arm in round t

itk k-th arm in Ct in round t

xt,i feature vector for arm i given at round t

yt,i feedback for arm i given at round t

ft(C, θ
∗) 1−

∏
i∈C σ0(x

⊤
t,iθ

∗), expected reward of the cascade C at round t

ℓt,i(θ) −
∑

y∈{0,1} I{yt,i = y} log σy(x
⊤
t,iθ), loss function at round t

∇ℓt,i(θ)
(
σ1(x

⊤
t,iθ
)
− yt,i)xt,i, the first derivatives of ℓt,i(θ) with respect to θ

∇2ℓt,i(θ) σ̇1(x
⊤
t,iθ)xt,ix

⊤
t,i, the second derivatives of ℓt,i(θ) with respect to θ

λ regularization parameter
η step size parameter

βt,k(δ) O
(√

d log(tK)
)

, confidence radius at round t (βt = βt,1)

ut,i x⊤
t,iθt + βt(δ)∥xt,i∥H−1

t
, optimistic estimate for arm i at round t,

f̃t(C) 1−
∏

i∈C σ0(ut,i), optimistic expected reward of the cascade C at round t

B Exploration Bonus

Lemma B.1. Let θt be the online estimate as defined in Equation (3). Let CONt (δ) be a confidence
set with a confidence radius βt(δ) in Corollary 5.5. Define ut,i := x⊤

t,iθt + βt(δ) ∥xt,i∥H−1
t

. Then,
under the event {∀t ≥ 1, θ∗ ∈ CONt (δ)}, for all t ∈ [T ] and i ∈ I, the following holds:

0 ≤ ut,i − x⊤
t,iθ

∗ ≤ 2βt(δ) ∥xt,i∥H−1
t

.

Proof of Lemma B.1. We begin by bounding the estimation error as follows:∣∣x⊤
t,iθt − x⊤

t,iθ
∗∣∣ = ∣∣x⊤

t,i(θt − θ∗)
∣∣

(i)

≤ ∥xt,i∥H−1
t
∥θt − θ∗∥Ht

(ii)

≤ βt(δ) ∥xt,i∥H−1
t

.
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where inequality (i) comes from Hölder’s inequality and inequality (ii) is obtained by applying
Corollary 5.5. Thus, the following inequality holds:

0 ≤ x⊤
t,iθt + βt(δ) ∥xt,i∥H−1

t
− x⊤

t,iθ
∗ = ut,i − x⊤

t,iθ
∗ ≤ 2βt(δ) ∥xt,i∥H−1

t
.

Lemma B.2. For any given C ∈ Π, the following holds:

ft(C, θ
∗) ≤ f̃t(C).

Proof of Lemma B.2. Recall that ft(C, θ∗) := 1 −
∏

i∈C σ0(x
⊤
t,iθ

∗) for any given C ∈ Π. Due to
the fact that σ0(z) is a monotonically decreasing function of z ∈ R and x⊤

t,iθ
∗ ≤ ut,i for all i ∈ C

by Lemma B.1, we directly obtain the desired result.

C Regret Upper Bound of UCB-CLB

C.1 Proof of Theorem 5.6

The proofs of all lemmas stated in this section to establish Theorem 5.6 are deferred to Appendix C.2.

Theorem 5.6. Set the step size η = 1
2 log 2 + 2 and penalty parameter λ = 84

√
2dη. Let δ ∈ (0, 1].

Then, under Assumption 5.1, UCB-CLB ensures

R(T ) = Õ
(
min

{
Kp̄K−1d

√
T +Kp̄K−1 d

2

κp
+Kp̄K−1 d

2

κ
, d
√
T +

d2

κ

})
.

with probability at least 1− δ.

Proof of Theorem 5.6. We provide the detailed proof of the regret upper bound stated in 5.6. To this
end, we separately analyze the two regimes that dominate the minimum term: (i) the K-dependent
regime leading to Õ(Kp̄K−1d

√
T +Kp̄K−1 d2

κp +Kp̄K−1 d2

κ ), and (ii) the K-independent regime

yielding Õ(d
√
T + d2

κ ). The combination of these results establishes the upper bound in Theorem 5.6.

In the following, we assume the good event Eδ := {∀t ∈ [T ] and ∀k ∈ [|Ot|], θ∗ ∈ CONt,k(δ)} to
hold, which happens with probability at least 1 − δ according to Corollary 5.5. Recall that the
optimistic expected reward for the cascade C = (i1, . . . , iK) in round t is defined as f̃t(C) :=
1 −

∏
i∈Ct

σ0(ut,i) where ut,i := x⊤
t,iθt + βt(δ) ∥xt,i∥H−1

t
for all i ∈ I. Also, recall that Ct =

(it1, . . . , itK) is the cascade selected by UCB-CLB in round t.

1. DerivingR(T ) = Õ(Kp̄K−1d
√
T +Kp̄K−1 d2

κp +Kp̄K−1 d2

κ ).

Now, we bound the regretR(T ) as follows:

R(T ) = E

[
T∑

t=1

ft(C
∗
t , θ

∗)− ft(Ct, θ
∗)

]
(i)

≤ E

[
T∑

t=1

f̃t(C
∗
t )− ft(Ct, θ

∗)

]
(ii)

≤ E

[
T∑

t=1

f̃t(Ct)− ft(Ct, θ
∗)

]
= E

[
T∑

t=1

∏
i∈Ct

σ0(x
⊤
t,iθ

∗)−
∏
i∈Ct

σ0(ut,i)

]

= E

[
T∑

t=1

∑
itk∈Ct

k−1∏
l=1

σ0(x
⊤
t,itl

θ∗)
(
σ1(ut,itk)− σ1(x

⊤
t,itk

θ∗)
) K∏
m=k+1

σ0(ut,itm)

]
(iii)

≤ E

 T∑
t=1

∑
i∈Ct

∏
j∈Ct\{i}

σ0(x
⊤
t,jθ

∗)
(
σ1(ut,i)− σ1(x

⊤
t,iθ

∗)
)

(iv)

≤ p̄K−1E

[
T∑

t=1

∑
i∈Ct

(
σ1(ut,i)− σ1(x

⊤
t,iθ

∗)
)]

(7)
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where inequality (i) is obtained by applying Lemma B.2, inequality (ii) holds due to the definition
of Ct := argmaxC∈Π f̃t(C), inequality (iii) follows from the fact that σ0(·) is a monotonically
decreasing function and Lemma B.1 which guarantees ut,i ≥ x⊤

t,iθ
∗ for all rounds t and arm i, and

inequality (iv) holds by the definition of p̄ in Definition 5.2. Notably, the product term in Equation (7)
plays a critical role in deriving the desired result, showing that the regret upper bound vanishes as the
cascade length K becomes sufficiently large.

Then, we decompose the prediction error in Equation (7) using a second-order Taylor expansion, a
standard technique widely employed in the logistic bandit literature [2]. This yields:

R(T )

= p̄K−1E

[
T∑

t=1

∑
i∈Ct

σ̇1(x
⊤
t,iθ

∗)
(
ut,i − x⊤

t,iθ
∗)+ σ̈1(zt,i)

2

(
ut,i − x⊤

t,iθ
∗)2]

(i)

≤ p̄K−1E

[
T∑

t=1

∑
i∈Ct

2βt(δ)σ̇1(x
⊤
t,iθ

∗) ∥xt,i∥H−1
t

+
β2
t (δ)

5
∥xt,i∥2H−1

t

]
(ii)

≤ 2p̄K−1βT (δ)E

[
T∑

t=1

∑
i∈Ct

σ̇1(x
⊤
t,iθ

∗) ∥xt,i∥H−1
t

]
+

p̄K−1β2
T (δ)

5
E

[
T∑

t=1

∑
i∈Ct

∥xt,i∥2H−1
t

]
(8)

where zt,i is a convex combination of ut,i and xt,i. The above inequality (i) is due to the fact that
σ̈(·) ≤ 0.1 and from Lemma B.1 which states ut,i − x⊤

t,iθ
∗ ≤ 2βt(δ) ∥xt,i∥H−1

t
for all t ∈ [T ] and

i ∈ I, and inequality (ii) holds since βt(δ) is monotonically increasing with respect to t.

To control the first term on the right-hand side of Equation (8), we decompose the first summation
term as follows:

T∑
t=1

∑
i∈Ct

σ̇1(x
⊤
t,iθ

∗) ∥xt,i∥H−1
t

=

T∑
t=1

∑
i∈Ct

σ̇1(x
⊤
t,iθt) ∥xt,i∥H−1

t
+

T∑
t=1

∑
i∈Ct

(
σ̇1(x

⊤
t,iθ

∗)− σ̇1(x
⊤
t,iθt)

)
∥xt,i∥H−1

t

(i)

≤
T∑

t=1

∑
i∈Ct

σ̇1(x
⊤
t,iθt) ∥xt,i∥H−1

t
+

T∑
t=1

∑
i∈Ct

1

4

∣∣x⊤
t,iθ

∗ − x⊤
t,iθt

∣∣ ∥xt,i∥H−1
t

(ii)

≤
T∑

t=1

∑
i∈Ct

σ̇1(x
⊤
t,iθt) ∥xt,i∥H−1

t
+

T∑
t=1

∑
i∈Ct

1

4
∥θ∗ − θt∥Ht

∥xt,i∥2H−1
t

(iii)

≤
T∑

t=1

∑
i∈Ct

σ̇1(x
⊤
t,iθt) ∥xt,i∥H−1

t
+

βT (δ)

4

T∑
t=1

∑
i∈Ct

∥xt,i∥2H−1
t

. (9)

where inequality (i) is obtained by applying Lemma C.2, inequality (ii) holds by applying Hölder’s
inequality, and inequality (iii) holds by applying Corollary 5.5 and the fact that βt(δ) is monotonic
increasing with respect to t.

Plugging Equation (9) into Equation (8) yields the following:

R(T ) ≤ 2p̄K−1βT (δ)E

[
T∑

t=1

∑
i∈Ct

σ̇1(x
⊤
t,iθt) ∥xt,i∥H−1

t

]

+
7

10
p̄K−1β2

T (δ)E

[
T∑

t=1

∑
i∈Ct

∥xt,i∥2H−1
t

]
. (10)

Before diving into bounding Equation (10), we first discuss the challenge in theoretical analysis
of contextual cascading bandits and the swapping technique to address it. The general strategy for
completing the proof is to utilize the elliptical potential lemma Abbasi-Yadkori et al. [1], a standard
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lemma in the contextual bandit literature. However, it is challenging to directly apply the existing
elliptical potential lemma in the contextual cascading bandit setting. As seen in Equation (10), we
need to bound the term that accumulates all arms in Ct, while the Gram matrix Ht only accumulates
the feature information of the observed arms. As a result, there is an issue in which the leftover sum
(from |Ot|+ 1 to |Ct|) becomes out of control [19]. This limitation arises from the fact that the agent
receives feedback only for the observed arms Ot, making it difficult to control the contribution of
unobserved arms in the regret analysis. To address this issue, we exploit the optimistic exposure
swapping technique first introduced in Choi et al. [7].

Let C ′
t ∈ argmaxC∈Π f̃t(C). The expected reward ft(C, θ

∗), as defined in Equation (1), is invariant
under permutations of the arms in the cascade. Exploiting this property, the doubly optimistic
exposure swapping technique rearranges the cascade C ′

t by placing the two selected arms at the top,
yielding a new cascade Ct without affecting the expected reward [7]. Let i(1)t and i(2)t be the arms
in C ′

t with the highest values of σ̇(x⊤
t,iθt) ∥xt,i∥H−1

t
and ∥xt,i∥H−1

t
, respectively. We construct the

cascade Ct by placing these arms in the first and second positions, followed by the remaining arms
in C ′

t: Ct := (i(1)t , i(2)t ) ∥
(
C ′

t \ {i
(1)

t , i(2)t }
)
, where A ∥ B denotes the concatenation of two lists A

and B. We denote the k-th arm in Ct as itk. As a side note, it is possible for the arm that should be
placed in the first position to be the same as the arm that should be placed in the second position. In
such cases, the arm is placed in the first position. This does not impact the regret upper bound derived
in this section. For ease of analysis, we henceforth assume that the two arms are distinct.

Since the arm in the first position is always observed (it1 ∈ Ot), the following inequality holds and
effectively avoids the aforementioned out-of-control issue:∑

i∈Ct

σ̇1(x
⊤
t,iθt) ∥xt,i∥H−1

t
= Kmax

i∈Ct

σ̇1(x
⊤
t,iθt) ∥xt,i∥H−1

t
= Kσ̇1(x

⊤
t,it1θt) ∥xt,it1∥H−1

t
. (11)

Additionally, considering that the arm with the largest ∥xt,i∥H−1
t

in Ct is placed in the second
position, the following equation holds:∑

i∈Ct

∥xt,i∥2H−1
t

= Kmax
i∈Ct

∥xt,i∥2H−1
t

= K ∥xt,it2∥
2
H−1

t
. (12)

Applying Equation (11) and Equation (12) to Equation (10), we obtain the following result:

R(T ) ≤ 2Kp̄K−1βT (δ)E

[
T∑

t=1

σ̇1(x
⊤
t,it1θt) ∥xt,it1∥H−1

t

]

+
7

10
Kp̄K−1β2

T (δ)E

[
T∑

t=1

∥xt,it2∥
2
H−1

t

]
. (13)

Now, we first focus on the first summation term on the right-hand side of Equation (13). Still, directly
applying the elliptical potential lemma [1] to the above equation is challenging due to a dependency
mismatch: the weight term σ̇1(x

⊤
t,it1

θt) depends on the parameter θt, while the Gram matrix H−1
t

is computed using the parameter {θτ,k+1}τ∈[t−1],k∈[1,|Oτ |]. To address this issue, we adopt the
decomposition technique inspired by Lee et al. [16] whose work focuses on generalized linear bandits,
and we adapt it to our cascading bandits. Specifically, we define an intermediary parameter θ̃t as:

θ̃t := argmin
θ∈CONt,2(δ)

σ̇1(x
⊤
t,it1θ).

Note that σ̇1(x
⊤
t,it1

θ∗), σ̇1(x
⊤
t,it1

θt,2) ≥ σ̇1(x
⊤
t,it1

θ̃t) under the good event Eδ and by applying Corol-
lary 5.5. Using this intermediary parameter θ̃t, we decompose the summation term on the right-hand
side of Equation (13) as follows:

T∑
t=1

σ̇1(x
⊤
t,it1θt) ∥xt,it1∥H−1

t

=

T∑
t=1

σ̇1(x
⊤
t,it1 θ̃t) ∥xt,it1∥H−1

t
+

T∑
t=1

(
σ̇1(x

⊤
t,it1θt)− σ̇1(x

⊤
t,it1 θ̃t)

)
∥xt,it1∥H−1

t
. (14)
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For the second term on the right-hand side of Equation (14), the following result holds:
T∑

t=1

(
σ̇1(x

⊤
t,it1θt)− σ̇1(x

⊤
t,it1 θ̃t)

)
∥xt,it1∥H−1

t

(i)

≤
T∑

t=1

1

4

∣∣∣x⊤
t,it1(θt − θ̃t)

∣∣∣ ∥xt,it1∥H−1
t

(ii)

≤ 1

4

T∑
t=1

∥∥∥θt − θ̃t

∥∥∥
Ht

· ∥xt,it1∥
2
H−1

t

(iii)

≤ 1

4

T∑
t=1

(
∥θt − θ∗∥Ht

+ ∥θ∗ − θt,2∥Ht
+
∥∥∥θt,2 − θ̃t

∥∥∥
Ht

)
∥xt,it1∥

2
H−1

t

(iv)

≤ 1

4

T∑
t=1

(
∥θt − θ∗∥Ht

+ ∥θ∗ − θt,2∥Ht,2
+
∥∥∥θt,2 − θ̃t

∥∥∥
Ht,2

)
∥xt,it1∥

2
H−1

t

(v)

≤ 3βT,K(δ)

4

T∑
t=1

∥xt,it1∥
2
H−1

t

(vi)

≤ 3βT,K(δ)

4
κ−1

T∑
t=1

∥xt,it1∥
2
V −1
t

(vii)

≤ 3βT,K(δ)

4
κ−12d log

(
1 +

T

dλ

)
. (15)

where inequality (i) is obtained by applying Lemma C.2, inequality (ii) follows from Hölder’s
inequality, inequality (iii) is derived using the triangle inequality, inequality (iv) holds since Ht ⪯
Ht,2, inequality (v) follows from Corollary 5.5 along with the monotonicity of βt,k(δ) with respect
to t and k, inequality (vi) is valid due to Ht ⪰ κVt (Vt =

∑t−1
τ=1

∑
i∈Oτ

xτ,ix
⊤
τ,i + λId), and finally,

(vii) results from Lemma F.2 with the identification nt = |Ot|, zt,k = xt,itk , and Zt = Vt.

To handle the first term on the right-hand side of Equation (14), we establish the following bound:
T∑

t=1

σ̇1(x
⊤
t,it1 θ̃t) ∥xt,it1∥H−1

t

(i)

≤
T∑

t=1

√
σ̇1(x⊤

t,it1
θ∗)
√

σ̇1(x⊤
t,it1

θt,2) ∥xt,it1∥H−1
t

(ii)

≤

√√√√ T∑
t=1

σ̇1(x⊤
t,it1

θ∗)

√√√√ T∑
t=1

σ̇1(x⊤
t,it1

θt,2) ∥xt,it1∥
2
H−1

t

(iii)

≤
√

T

4

√√√√ T∑
t=1

σ̇1(x⊤
t,it1

θt,2) ∥xt,it1∥
2
H−1

t

≤
√

T

4

√√√√ T∑
t=1

∥∥∥√σ̇1(x⊤
t,it1

θt,2)xt,it1

∥∥∥2
H−1

t

(iv)

≤
√

T

4

√
2d log

(
1 +

T

dλ

)
(16)

where inequality (i) is valid due to σ̇1(x
⊤
t,it1

θ∗), σ̇1(x
⊤
t,it1

θt,2) ≥ σ̇1(x
⊤
t,it1

θ̃t), inequality (ii) results
from the Cauchy-Schwarz inequality, inequality (iii) is due to the fact that σ̇1(·) ≤ 1

4 , and inequality

(iv) follows from Lemma F.2 with nt = |Ot|, zt,k =
√
σ̇1(x⊤

t,itk
θt,k+1)xt,itk , and Zt = Ht.

Plugging Equation (15) and Equation (16) into Equation (14), we have:
T∑

t=1

σ̇1(x
⊤
t,it1θt) ∥xt,it1∥H−1

t
≤ 3βT,K(δ)

2
κ−1d log

(
1 +

T

dλ

)
+

√
dT

2
log

(
1 +

T

dλ

)
. (17)
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Substituting Equation (17) into Equation (13), this yields the following bound:

R(T ) ≤
√
2Kp̄K−1βT (δ)

√
dT log

(
1 +

T

dλ

)
+ 3Kp̄K−1κ−1βT (δ)βT,Kd log

(
1 +

T

dλ

)
+

7

10
Kp̄K−1β2

T (δ)E

[
T∑

t=1

∥xt,it2∥
2
H−1

t

]
. (18)

To complete the regret bound, it remains to bound the last term on the right-hand side of Equation (18),
which involves the cumulative weighted norm of the second-position features. Unlike the first position,
the arm in the second position is not always observed. To address this issue, we present the following
lemma. The proof of Lemma C.1 is deferred to Appendix C.2.1.

Lemma C.1. Recall from Definition 5.2 that p denotes the lower bound of σ0(x
⊤θ∗) for any x ∈ X .

Suppose Ct is constructed under the doubly optimistic swapping technique placing the arm with the
largest ∥xt,i∥H−1

t
in the second position of Ct Then, we have the following inequality:

E

[
T∑

t=1

∥xt,it2∥
2
H−1

t

]
≤ p−1E

[
T∑

t=1

1{|Ot| ≥ 2} · ∥xt,it2∥
2
H−1

t

]
.

Applying Lemma C.1 to Equation (18), we obtain the following bound:

E

[
T∑

t=1

∥xt,it2∥
2
H−1

t
.

]
(i)

≤ p−1E

[
T∑

t=1

1{|Ot| ≥ 2} · ∥xt,it2∥
2
H−1

t

]
(ii)

≤ (pκ)−1E

[
T∑

t=1

1{|Ot| ≥ 2} · ∥xt,it2∥
2
V −1
t

]
(iii)

≤ (pκ)−12d log

(
1 +

2T

dλ

)
. (19)

where inequality (i) is obtained by applying Lemma C.1, inequality (ii) holds since Ht ⪰ κVt, and
inequality (iii) follows from Lemma F.3 with the identification nt = |Ot|, zt,k = xt,itk , and Zt = Vt.

Finally, combining Equation (19) with Equation (18) yields the claimed result:

R(T ) ≤
√
2Kp̄K−1βT (δ)

√
dT log

(
1 +

T

dλ

)
+ 3Kp̄K−1κ−1βT (δ)βT,Kd log

(
1 +

T

dλ

)
+

7

5
Kp̄K−1(pκ)−1β2

T (δ)d log

(
1 +

2T

dλ

)
= Õ

(
Kp̄K−1d

√
T +Kp̄K−1 d

2

κp
+Kp̄K−1 d

2

κ

)
.

2. DerivingR(T ) = Õ(d
√
T + d2

κ ).

Now, we bound the regretR(T ) as follows:

R(T ) = E

[
T∑

t=1

ft(C
∗
t , θ

∗)− ft(Ct, θ
∗)

]
(i)

≤ E

[
T∑

t=1

f̃t(C
∗
t )− ft(Ct, θ

∗)

]
(ii)

≤ E

[
T∑

t=1

f̃t(Ct)− ft(Ct, θ
∗)

]
= E

[
T∑

t=1

∏
i∈Ct

σ0(x
⊤
t,iθ

∗)−
∏
i∈Ct

σ0(ut,i)

]

= E

[
T∑

t=1

∑
itk∈Ct

k−1∏
l=1

σ0(x
⊤
t,itl

θ∗)
(
σ1(ut,itk)− σ1(x

⊤
t,itk

θ∗)
) K∏
m=k+1

σ0(ut,itm)

]
(20)
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We define an intermediary parameter θ̃t,i as follows:

θ̃t,i := argmin
θ∈∪τ∈[t,T ],k∈[K]CONτ,k(δ)

σ̇1(x
⊤
t,iθ), ∀t ∈ [T ], i ∈ I

This ensures that the gram matrix Ht satisfies the following lower bound:

Ht ⪰
t−1∑
τ=1

∑
i∈Ot

σ̇1(x
⊤
τ,iθ̃τ,i)xτ,ix

⊤
τ,i + λId =: Lt.

The following inequality chain bound the deviation between the true gradient term σ̇1(x⊤
t,iθ

∗) and
σ̇1(x⊤

t,iθ̃t,i).

σ̇1(x
⊤
t,iθ

∗) = σ̇1(x
⊤
t,iθ̃t,i) +

(
σ̇1(x

⊤
t,iθ

∗)− σ̇1(x
⊤
t,iθ̃t,i)

)
(i)

≤ σ̇1(x
⊤
t,iθ̃t,i) +

1

4

∣∣∣x⊤
t,i(θ

∗ − θ̃t,i)
∣∣∣

(ii)

≤ σ̇1(x
⊤
t,iθ̃t,i) +

1

4
∥xt,i∥H−1

t
∥θ∗ − θ̃t,i∥Ht

≤ σ̇1(x
⊤
t,iθ̃t,i) +

βT,K(δ)

4
∥xt,i∥H−1

t
(21)

where inequality (i) is from Lemma C.2, inequality (ii) is obtained by applying the Cauchy-Schwarz
inequality, and inequality (iii) is due to Lemma B.1.

Building on the gradient-deviation bound above, we derive the following inequality to control the
difference between the UCB estimate and the true expected click probability as follows:

σ1(ut,i)− σ1(x
⊤
t,iθ

∗)

= σ̇1(x
⊤
t,iθ

∗)
(
ut,i − x⊤

t,iθ
∗)+ σ̈1(zt,i)

2

(
ut,i − x⊤

t,iθ
∗)2

(i)

≤ 2βt(δ)σ̇1(x
⊤
t,iθ

∗) ∥xt,i∥H−1
t

+
β2
t (δ)

5
∥xt,i∥2H−1

t

(ii)

≤ 2βT (δ)σ̇1(x
⊤
t,iθ̃t,i) ∥xt,i∥H−1

t
+

7β2
T,K(δ)

10
∥xt,i∥2H−1

t

≤ 2βT (δ)σ̇1(x
⊤
t,iθ̃t,i) ∥xt,i∥L−1

t
+

7β2
T,K(δ)

10
∥xt,i∥2H−1

t

where inequality (i) is obtained by applying Lemma B.1, inequality (ii) is by Equation (21).

Define ζt,i := 2βT (δ)σ̇1(x
⊤
t,iθ̃t,i) ∥xt,i∥L−1

t
and ξt,i :=

7β2
T,K(δ)

10 ∥xt,i∥2H−1
t

. Then, we can bound
Equation (20) as follows:

R(T ) ≤ E

[
T∑

t=1

∑
itk∈Ct

k−1∏
l=1

σ0(x
⊤
t,itl

θ∗) (ζt,itk + ξt,itk)

K∏
m=k+1

σ0(ut,itm)

]

≤ E

[
T∑

t=1

∑
itk∈Ct

k−1∏
l=1

σ0(x
⊤
t,itl

θ∗)ζt,itk

K∏
m=k+1

σ0(x
⊤
t,itmθ∗)

]
︸ ︷︷ ︸

Term 1

+ E

[
T∑

t=1

∑
itk∈Ct

k−1∏
l=1

σ0(x
⊤
t,itl

θ∗)ξt,itk

]
︸ ︷︷ ︸

Term 2
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We first bound the Term 1 as follows:

Term 1
(i)

≤ E

 T∑
t=1

∑
itk∈Ct

k−1∏
l=1

σ0(x
⊤
t,itl

θ∗)ζt,itk

√∏K
m=k+1 σ0(x⊤

t,itm
θ∗)σ1(x⊤

t,itk
θ∗)√

σ1(x⊤
t,itk

θ∗)σ0(x⊤
t,itk

θ∗)


(ii)

≤ E

 T∑
t=1

√√√√√ ∑
itk∈Ct

(∏k−1
l=1 σ0(x⊤

t,itl
θ∗)
)2

ζ2t,itk

σ1(x⊤
t,itk

θ∗)σ0(x⊤
t,itk

θ∗)

√√√√ ∑
itk∈Ct

K∏
m=k+1

σ0(x⊤
t,itm

θ∗)σ1(x⊤
t,itk

θ∗)


= E

 T∑
t=1

√√√√ ∑
itk∈Ct

∏k−1
l=1 σ0(x⊤

t,itl
θ∗)ζ2t,itk

σ1(x⊤
t,itk

θ∗)σ0(x⊤
t,itk

θ∗)

√
1−

∏
i∈Ct

σ0(x⊤
t,iθ

∗)


≤ E

 T∑
t=1

√√√√ ∑
itk∈Ct

∏k−1
l=1 σ0(x⊤

t,itl
θ∗)ζ2t,itk

σ1(x⊤
t,itk

θ∗)σ0(x⊤
t,itk

θ∗)


(iii)

≤
√
T ·

√√√√E

[
T∑

t=1

∑
itk∈Ct

∏k−1
l=1 σ0(x⊤

t,itl
θ∗)ζ2t,itk

σ1(x⊤
t,itk

θ∗)σ0(x⊤
t,itk

θ∗)

]
(22)

where inequality (i) follows from the fact that σ(z) ≤
√
σ(z) for z ∈ (0, 1) and by mul-

tiplying and dividing each summand for it,k ∈ Ct with the corresponding
√
σ1(x⊤

t,itk
θ) and√

σ1(x⊤
t,itk

θ)σ0(x⊤
t,itk

θ∗), inequality (ii) is due to the Cauchy-Schwarz inequality, and inequal-
ity (iii) is obtained by applying the Cauchy-Schwarz inequality and Jensen’s inequality. Each term in
the summation of Equation (22) is bounded in the following inequality

ζ2t,itk
σ1(x⊤

t,itk
θ∗)σ0(x⊤

t,itk
θ∗)

=
4β2

T (δ)σ̇
2
1(x

⊤
t,itk

θ̃t,itk) ∥xt,itk∥
2
L−1

t

σ1(x⊤
t,itk

θ∗)σ0(x⊤
t,itk

θ∗)

(i)

≤
4β2

T (δ)σ̇1(x
⊤
t,itk

θ̃t,itk) ∥xt,itk∥
2
L−1

t

σ1(x⊤
t,itk

θ∗)σ0(x⊤
t,itk

θ∗)

= 4β2
T (δ)σ̇1(x

⊤
t,itk

θ∗)σ̇1(x
⊤
t,itk

θ̃t,itk) ∥xt,itk∥
2
L−1

t
(23)

where inequality (i) is due to the definition of the intermediary parameter θ̃t,itk . Substituting
Equation (23) into Equation (22) yields the following bound, and the remaining step is to apply the
triggering probability equivalence (TPE) technique of Liu et al. [20, 21]:

Term 1 ≤ 2βT (δ)
√
T ·

√√√√E

[
T∑

t=1

∑
itk∈Ct

k−1∏
l=1

σ0(x⊤
t,itl

θ∗)σ̇1(x⊤
t,itk

θ̃t,itk) ∥xt,itk∥
2
L−1

t

]

= 2βT (δ)
√
T ·

√√√√E

[
T∑

t=1

∑
itk∈Ct

E

[
k−1∏
l=1

σ0(x⊤
t,itl

θ∗) | Ht

]
σ̇1(x⊤

t,itk
θ̃t,itk) ∥xt,itk∥

2
L−1

t

]

= 2βT (δ)
√
T ·

√√√√E

[
T∑

t=1

∑
itk∈Ct

E [I{itk ∈ Ot} | Ht] σ̇1(x⊤
t,itk

θ̃t,itk) ∥xt,itk∥
2
L−1

t

]

= 2βT (δ)
√
T ·

√√√√E

[
T∑

t=1

∑
itk∈Ct

I{itk ∈ Ot}σ̇1(x⊤
t,itk

θ̃t,itk) ∥xt,itk∥
2
L−1

t

]

= 2βT (δ)
√
T ·

√√√√E

[
T∑

t=1

∑
i∈Ot

σ̇1(x⊤
t,iθ̃t,i) ∥xt,i∥2L−1

t

]
.
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Next, we bound the Term 2 as follows:

Term 2 = E

[
T∑

t=1

∑
itk∈Ct

k−1∏
l=1

σ0(x
⊤
t,itl

θ∗) (ξt,itk)

]

= E

[
T∑

t=1

∑
itk∈Ct

E

[
k−1∏
l=1

σ0(x
⊤
t,itl

θ∗) | Ht

]
ξt,itk

]

= E

[
T∑

t=1

∑
itk∈Ct

E [I{itk ∈ Ot} | Ht] ξt,itk

]

= E

[
T∑

t=1

∑
itk∈Ct

I{itk ∈ Ot}ξt,itk

]

= E

[
T∑

t=1

∑
i∈Ot

ξt,i

]

=
7β2

T,K(δ)

10
E

[
T∑

t=1

∑
i∈Ot

∥xt,i∥2H−1
t

]
.

Thus, we have:

R(T ) ≤ 2βT (δ)
√
T ·

√√√√E

[
T∑

t=1

∑
i∈Ot

σ̇1(x⊤
t,iθ̃t,i) ∥xt,i∥2L−1

t

]
+

7β2
T,K(δ)

10
E

[
T∑

t=1

∑
i∈Ot

∥xt,i∥2H−1
t

]

≤ 2βT (δ)
√
T ·

√
2d log

(
1 +

TK

dλ

)
+

7β2
T,K(δ)

10κ

(
2d log

(
1 +

TK

dλ

))
= Õ

(
d
√
T +

d2

κ

)
Combining the bounds for Term 1 and Term 2 yields the unified regret bound claimed in Theorem 5.6.

C.2 Proof of Lemmas for Theorem 5.6

C.2.1 Proof of Lemma C.1

Lemma C.1. Recall from Definition 5.2 that p denotes the lower bound of σ0(x
⊤θ∗) for any x ∈ X .

Suppose Ct is constructed under the doubly optimistic swapping technique placing the arm with the
largest ∥xt,itk∥H−1

t
in the second position of Ct. The following inequality holds:

E

[
T∑

t=1

∥xt,it2∥
2
H−1

t

]
≤ p−1E

[
T∑

t=1

1{|Ot| ≥ 2} · ∥xt,it2∥
2
H−1

t

]
.

Proof. By the law of total expectation, we have:

E

[
T∑

t=1

∥xt,it2∥
2
H−1

t

]
= E

[
T∑

t=1

E
[
∥xt,it2∥

2
H−1

t
|Ht

]]
.

Now we introduce some definitions related to the probability of observing a specific arm, which
is used exclusively in this proof. Let pt,Ct be the probability of the second-position arm of Ct

being observed in round t. Also, let p∗ = min1≤t≤T minC∈Π pt,Ct
. When Ct is fixed, pt,Ct

is the
probability that |Ot| ≥ 2, and thus

E
[

1

pt,Ct

1
{
|Ot| ≥ 2

∣∣ Ct

}]
= 1.
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Then we have:

E

[
T∑

t=1

E
[
∥xt,it2∥

2
H−1

t
|Ht

]]
= E

[
T∑

t=1

E
[
∥xt,it2∥

2
H−1

t
· E
[

1

pt,Ct

1 {|Ot| ≥ 2}
∣∣ Ct

] ∣∣∣ Ht

]]

= E

[
T∑

t=1

E
[
∥xt,it2∥

2
H−1

t
· 1

pt,Ct

1 {|Ot| ≥ 2}
∣∣∣ Ht

]]

≤ 1

p∗
E

[
T∑

t=1

E
[
1 {|Ot| ≥ 2} ∥xt,it2∥

2
H−1

t

∣∣∣ Ht

]]

=
1

p∗
E

[
T∑

t=1

1 {|Ot| ≥ 2} ∥xt,it2∥
2
H−1

t

]

=
1

p
E

[
T∑

t=1

1 {|Ot| ≥ 2} ∥xt,it2∥
2
H−1

t

]
where the last inequality follows from Definition 5.2.

C.2.2 Proof of Lemmas for Lemma C.2

Lemma C.2. Given x ∈ Rd, for any θ1, θ2 ∈ Rd,

σ̇1(x
⊤θ1)− σ̇1(x

⊤θ2) ≤
1

4
|x⊤(θ1 − θ2)|.

Proof. We start from Lemma E.3 of Lee et al. [16] (restated in Lemma F.4):

σ̇1(x
⊤θ1)− σ̇1(x

⊤θ2) ≤ |σ1(x
⊤θ1)− σ1(x

⊤θ2)|
≤ σ̇1(z)|x⊤(θ1 − θ2)|

≤ 1

4
|x⊤(θ1 − θ2)|.

D Regret Lower Bound

In this section, we provide the proof of Theorem 5.7. To begin with, we construct a hard instance,
inspired by Chen et al. [5], Lee and Oh [13].

D.1 Adversarial Construction and Bayes Risk

Let ϵ ∈ (0, 1/d
√
d) be a small positive constant, to be specified later. For each subset V ⊆ [d], we

define the parameter θV ∈ Rd as follows: [θV ]j = ϵ for all j ∈ V , and [θV ]j = 0 for all j /∈ V . Next,
we define the parameter set:

θ ∈ Θ := {θV : V ∈ Vd/4} := {θV : V ⊆ [d], |V | = d/4},

where Vk represents the collection of all subsets of [d] whose size is k. Let d be divisible by 4.

Let context vectors remain invariant across all rounds t. For each U ∈ Vd/4, we construct K identical
context vectors xU as follows:

[xU ]j = 1/
√
d for j ∈ U ; [xU ]j = 0 for j /∈ U.

Note that since there are K identical context vectors, the total number of arms is N = K ·
(

d
d/4

)
.

For any V,U ∈ Vd/4, the boundedness assumption (Assumption 5.1) is satisfied as follows:

∥θV ∥2 ≤
√
dϵ2 ≤ 1, ∥xU∥2 ≤

√
d · 1/d = 1.
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Moreover, the worst-case expected regret of any policy π can be lower bounded by the “average”
regret over a uniform prior over Θ as follows:

sup
θ

Eπ
θ [Rθ(T )] = sup

θ
Eπ
θ

T∑
t=1

f(C∗, θ)− f(Ct, θ)

≥ max
θV

Eπ
θV

T∑
t=1

f(C∗, θV )− f(Ct, θV )

≥ 1

|Vd/4|
∑

V ∈Vd/4

Eπ
θV

T∑
t=1

f(C∗, θV )− f(Ct, θV ). (24)

This simplifies the problem of lower bounding the worst-case regret of any policy to the task of lower
bounding the Bayes risk for the constructed parameter set.

D.2 Main Proof of Theorem 5.7

Proof of Theorem 5.7. For any sequence of cascades {Ct}Tt=1 produced by policy π, we denote an
alternative sequence {C̃t}Tt=1 that results in lower regret under the parameterization.

Let xUt1 , . . . , xUtK
be the distinct feature vectors contained in cascades Ct, where Ut1, . . . , UtK ∈

Vd/4. Denote U∗
t = argmaxU∈{Ut1,...,UtK} x

⊤
UθV , where θV is the underlying parameter.

Then, leveraging the properties of the cascading structure and the non-decreasing nature of the
sigmoid function σ1, we make the following observation:

Proposition D.1. For all V ∈ Vd/4, we have

Eπ
θV

T∑
t=1

f(C∗, θV )− f(Ct, θV ) ≥ min
{
KpK−1, 1

}
· Eπ

θV

T∑
t=1

(
σ1(x

⊤
V θV )− σ1(x

⊤
U∗

t
θV )
)

︸ ︷︷ ︸
regret for logistic bandits

Proof of Proposition D.1.

Eπ
θV

T∑
t=1

f(C∗, θV )− f(Ct, θV )

= Eπ
θV

T∑
t=1

(
1−

K∏
k=1

σ0(x
⊤
V θV )

)
−

(
1−

K∏
k=1

σ0(x
⊤
Utk

θV )

)

= Eπ
θV

T∑
t=1

K∑
k=1

(
k−1∏
l=1

σ0(x
⊤
Utl

θV )

)(
σ1(x

⊤
V θV )− σ1(x

⊤
Utk

θV )
) (

σ0(x
⊤
V θV )

)K−k

≥ pK−1Eπ
θV

T∑
t=1

K∑
k=1

(
σ1(x

⊤
V θV )− σ1(x

⊤
Utk

θV )
)

(p = infx σ0

(
x⊤θV

)
)

≥ KpK−1Eπ
θV

T∑
t=1

(
σ1(x

⊤
V θV )− σ1(x

⊤
U∗

t
θV )
)
. (σ1(x

⊤
U∗

t
θV ) ≥ σ1(x

⊤
Utk

θV ))

Note that, by definition, we have

p = inf
x

σ0

(
x⊤θV

)
=

1

1 + ex
⊤
V θV

=
1

1 + eϵ
√
d/4
≤ 1

2
. (ϵ > 0)

This directly implies that KpK−1 ≤ 1 for all K ≥ 1. Therefore, we can conclude that

Eπ
θV

T∑
t=1

f(C∗, θV )− f(Ct, θV ) ≥ min
{
KpK−1, 1

}
· Eπ

θV

T∑
t=1

(
σ1(x

⊤
V θV )− σ1(x

⊤
U∗

t
θV )
)
.

This completes the proof.
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Hence, it is sufficient to establish a lower bound on the regret for logistic bandits. To this end, we
introduce the following proposition.

Proposition D.2 (Regret lower bound for MNL bandits, an intermediate result of Theorem in Lee
and Oh 13). Denote M as the maximum assortment size in MNL bandits. Let d be divisible by 4.
Suppose T ≥ C · d4(1 +M)/M for some constant C > 0. Then, in the uniform reward setting, for
any policy π, there exists a worst-case problem instance with N = Θ(M · 2d) items such that the
worst-case expected regret of π is lower bounded as follows:

1

|Vd/4|
∑

V ∈Vd/4

Eπ
θV

[
RMNL

θV (T )
]
= Ω

( √
M

M + 1
· d
√
T

)
.

By applying Proposition D.2 with the assortment size set to 1, i.e., M = 1, we obtain

sup
θ

Eπ
θ [Rθ(T )] = Ω

(
min

{
KpK−1, 1

}
· d
√
T
)
,

which concludes the proof of Theorem 5.7.

E Tighter Regret Analysis for Cascading Linear Bandits

E.1 Problem Formulation

Apart from the linear feedback model described below, the overall problem formulation remains
identical to the cascading logistic bandits setting presented in Section 3. Each arm i ∈ I has
an associated Bernoulli feedback yt,i ∈ {0, 1} at round t. Given history Ht, we assume that the
feedbacks {yt,i}i∈I are conditionally independent and satisfy the linear model:

E[yt,i | Ht] = x⊤
t,iθ

∗

where θ∗ ∈ Rd is an unknown time-invariant parameter under the assumption that ∥xt,i∥ ≤ 1,∀t ∈
[T ], i ∈ I and ∥θ∗∥2 ≤ 1, as stated in Assumption 5.1.

We further assume that the expected feedback is strictly positive for all t and i , i.e., x⊤
t,iθ

∗ > 0,
which excludes the case where the probability of receiving positive feedback is exactly zero. This
condition excludes only those context vectors lying on the hyperplane orthogonal to θ∗, which forms
a measure-zero subset in Rd. This is a mild assumption that holds almost surely when the contexts
are drawn from any continuous or non-degenerate distribution. In practical recommendation settings,
each item typically has a non-zero probability of receiving positive feedback from users. Hence, the
assumption is commonly satisfied in real-world applications, as every item in the recommendation
pool is expected to have at least minimal relevance to some users.

In Appendix E, we overload the notation σ1(z) to denote the identity function, i.e., σ1(z) := z. Also,
we reuse σ0(z) := 1− σ1(z) for consistency. Additionally, we overload the notations p̄ and p from
Definition 5.2, while noting that their interpretation differs under the linear model. Specifically, since
σ0(z) = 1− z, and thus p̄ = sup∥x∥≤1(1− x⊤θ∗) and p = inf∥x∥≤1(1− x⊤θ∗). Under the linear
model (σ1(z) = z), the expected reward is defined as follows:

ft(Ct, θ
∗) := 1−

∏
i∈Ct

(1− σ1(x
⊤
t,iθ

∗)) = 1−
∏
i∈Ct

(1− x⊤
t,iθ

∗). (25)
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E.2 Algorithm for Cascading Linear Bandits

Algorithm 3 UCB-CLinB
Input: penalty λ, radius γt.
Initialize θ1 ∈ Θ, V1 = λId.
for t = 1, . . . , T do

Compute {u(L)

t,i = x⊤
t,iθ̂t + γt ∥xt,i∥V −1

t
}i∈I .

Select C ′
t ∈ argmaxC∈Π f̃t(C) by (5).

Ct ← DO-SWAP(C ′
t, θt, Ht).

Play Ct and receive feedback tuple (Ot, Yt).
Update θ̂t by Equation (26)
Vt+1 ← Vt +

∑
i∈Ot

xt,ix
⊤
t,i.

end for

Algorithm 4 OE-SWAP-L
Input: cascade C = {i1, . . . , iK}, gram
matrix Vt.
Find i(1)t ∈ argmaxi∈C ∥xt,i∥V −1

t
.

Swap the positions of i1 and i(1)t .
Output: swapped cascade (i(1)t , . . . ).

In this section, we present the UCB-type algorithm for Cascading Linear Bandits (UCB-CLinB),
which combines UCB-type exploration with a linear reward model and optimistic exposure swapping
technique introduced by Choi et al. [7]. The pseudocode is shown in Algorithm 3 and consists of
three core steps.

First, it estimates the unknown parameter θ∗ using ℓ2-regularized least-squares regression based on
observed arm–feedback pairs, constructing a confidence set based on the confidence ellipsoid result
from Abbasi-Yadkori et al. [1]. (See Appendix E.2.1) Second, using this estimate and confidence
set, we defines an upper confidence bound on the expected feedback of each arm and selects a
cascade that maximizes the optimistic expected reward (See Appendix E.2.2). Finally, we apply
the optimistic exposure swapping technique (See Appendix E.2.3), originally introduced by Choi
et al. [7] to deal with the partial feedback in cascading bandits. This strategy promotes the arm with
highest uncertainty to the top position in the cascade. While conceptually similar to DO-SWAP used
in cascading logistic bandits, this technique differs in the criterion for selecting which arm to swap,
reflecting the structure of the linear reward model.

E.2.1 Parameter Estimation & Confidence Set for Cascading Linear Bandits

To estimate the unknown parameter θ∗, we use ridge regression on data collected at each round t,
{(xτ,i, yτ,i)}i∈[Oτ ],τ∈[t−1] . Leveraging the collected data, we obtain an ℓ2-regularized least squares
estimate of θ∗ with regularization parameter λ > 0:

θ̂t =
(
X⊤

t Xt + λI
)−1

X⊤
t Yt, (26)

where Xt is the (
∑t−1

τ=1 |Oτ |)× d matrix whose rows are x⊤
τ,i, and Yt is a column vector with entries

yτ,i, for i ∈ [Oτ ], τ ∈ [t− 1]. Let

Vt =

t−1∑
τ=1

∑
i∈Oτ

xτ,ix
⊤
τ,i + λI. (27)

Note that Vt ∈ Rd×d is a symmetric positive definite matrix. We apply Lemma F.1 to the confidence
ellipsoid result in Theorem 2 of Abbasi-Yadkori et al. [1], which provides a confidence bound for the
ℓ2-regularized least squares estimate in the linear model. This yields Corollary E.1, which establishes
that the true parameter θ∗ lies in the confidence set C(L)

t (δ) with high probability under the cascading
linear bandit setting.

Corollary E.1. For all t ∈ [T ], with probability at least 1− δ, we have θ∗ ∈ C(L)

t (δ), where

C(L)

t (δ) := {θ ∈ Θ : ∥θ̂t − θ∥Vt
≤ γt(δ)}.

Here, γt(δ) = O(
√
d log(tK)).
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E.2.2 Optimistic Expected Reward for Cascading Linear Bandits

Now, we define an upper confidence bound for the expected feedback of any arm i ∈ I as

u(L)

t,i = min
{
x⊤
t,iθ̂t + γt(δ) ∥xt,i∥V −1

t
, 1
}
. (28)

Then, we define f̃ (L)

t (C) to be the optimistic expected reward of the cascade C in round t based on
u(L)

t,i :

f̃ (L)

t (C) := 1−
∏
i∈C

σ0(u
(L)

t,i ). (29)

Then, the agent identifies the cascade that maximizes f̃ (L)

t in each round. To ensure that the above
exploration bonus approach remains effective, it is crucial to guarantee that f̃ (L)

t (C) is indeed
optimistic relative to the true expected reward ft(C, θ∗). This requirement is addressed and formalized
in Lemma E.2 and Lemma E.3, demonstrating that UCB-CLinB maintains the necessary optimism to
effectively explore.

Lemma E.2. Let θ̂t be the ℓ2-regularized least squares estimate as defined in Equation (26).
Let C(L)

t (δ) be a confidence set with a confidence radius γt(δ) in Corollary E.1. Define u(L)

t,i =

min{x⊤
t,iθ̂t + γt(δ) ∥xt,i∥V −1

t
, 1} for t ∈ [T ] and i ∈ I. Then, under the event {∀t ≥ 1, θ∗ ∈

C(L)

t (δ)}, the following holds for all t ∈ [T ] and i ∈ I:

0 ≤ u(L)

t,i − x⊤
t,iθ

∗ ≤ 2γt(δ)∥xt,i∥V −1
t

.

Proof of Lemma E.2. We begin by bounding the estimation error as follows:∣∣∣x⊤
t,iθ̂t − x⊤

t,iθ
∗
∣∣∣ = ∣∣∣x⊤

t,i(θ̂t − θ∗)
∣∣∣

(i)

≤ ∥xt,i∥V −1
t

∥∥∥θ̂t − θ∗
∥∥∥
Vt

(ii)

≤ γt(δ) ∥xt,i∥V −1
t

.

where inequality (i) follows from Hölder’s inequality and inequality (ii) is obtained by applying
Corollary E.1. Since 1− x⊤

t,iθ
∗ ≥ 0, the following inequality holds:

0 ≤ x⊤
t,iθ̂t + γt(δ) ∥xt,i∥V −1

t
− x⊤

t,iθ
∗ = u(L)

t,i − x⊤
t,iθ

∗ ≤ 2γt(δ) ∥xt,i∥V −1
t

.

Lemma E.3. For any given C ∈ Π, the following holds:

ft(C, θ
∗) ≤ f̃ (L)

t (C).

Proof of Lemma E.3. Due to the fact that σ0(z) = 1− z is a monotonically decreasing function of
z ∈ R and x⊤

t,iθ
∗ ≤ u(L)

t,i for t ∈ [T ], i ∈ C by Lemma E.2, we directly obtain the desired result.

E.2.3 Optimistic Exposure Swapping for Cascading Linear Bandits

We describe Optimistic Exposure SWAPping for cascading Linear bandits (OE-SWAP-L) which is a
technique handling unobserved feedback in cascading linear bandits and first introduced by Choi et al.
[7]. The overall procedure of OE-SWAP-L is summarized in Algorithm 4. At each round t, the agent
employing OE-SWAP-L identifies a single arm i(1)t ∈ argmaxi∈C ∥xt,i∥V −1

t
from the given cascade

C, and swaps it with the first-position arm in C.
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E.3 Proof of Theorem E.4

Theorem E.4 provides the regret upper bound for UCB-CLinB. It demonstrates that UCB-CLinB
achieves a regret of order Õ(Kp̄K−1d

√
T ). Notably, this bound exhibits the same dependence on the

cascade length K and the constant p̄ as in the logistic setting, This highlights that the factor Kp̄K−1,
originally derived in the analysis of cascading logistic bandits, also naturally arises in the linear case.
Theorem E.4. Set the penalty parameter λ ≥ 1. Let δ ∈ (0, 1]. Then, under Assumption 5.1, with
probability at least 1− δ, UCB-CLinB ensures

R(T ) = Õ
(
min

{
Kp̄K−1, 1

}
d
√
T
)
.

Proof. In the following, we assume the good event {∀t ∈ [T ] and , θ∗ ∈ C(L)

t (δ)} to hold, which
occurs with probability at least 1− δ according to Corollary E.1.

1. DerivingR(T ) = Õ(Kp̄K−1d
√
T ).

The derivation of the regret upper bound up to Equation (7) in Appendix C.1 remains identical for
both logistic and linear reward models. We then bound the cumulative regretR(T ) as follows:

R(T ) = E

[
T∑

t=1

ft(C
∗
t , θ

∗)− ft(Ct, θ
∗)

]
(i)

≤ E

[
T∑

t=1

f̃ (L)

t (C∗
t )− ft(Ct, θ

∗)

]

≤ E

[
T∑

t=1

f̃ (L)

t (Ct)− ft(Ct, θ
∗)

]
= E

[
T∑

t=1

∏
i∈Ct

σ0(x
⊤
t,iθ

∗)−
∏
i∈Ct

σ0(u
(L)

t,i )

]

= E

[
T∑

t=1

∑
itk∈Ct

k−1∏
l=1

σ0(x
⊤
t,itl

θ∗)
(
σ1(u

(L)

t,itk
)− σ1(x

⊤
t,itk

θ∗)
) K∏
m=k+1

σ0(u
(L)

t,itm
)

]

≤ E

 T∑
t=1

∑
i∈Ct

∏
j∈Ct\{i}

σ0(x
⊤
t,jθ

∗)
(
σ1(u

(L)

t,i )− σ1(x
⊤
t,iθ

∗)
) (30)

≤ p̄K−1E

[
T∑

t=1

∑
i∈Ct

(
σ1(u

(L)

t,i )− σ1(x
⊤
t,iθ

∗)
)]

where inequality is obtained by applying Lemma E.3. This is because the steps rely only on the
structure of the expected reward in the cascade model and do not yet involve any assumptions specific
to the nonlinearity of the logistic model. Since σ1(z) = z in this section, we have:

R(T ) ≤ p̄K−1E

[
T∑

t=1

∑
i∈Ct

(
u(L)

t,i − x⊤
t,iθ

∗)]

(i)
= 2p̄K−1E

[
T∑

t=1

∑
i∈Ct

γt(δ) ∥xt,i∥V −1
t

]
(ii)

≤ 2p̄K−1γT (δ)E

[
T∑

t=1

∑
i∈Ct

∥xt,i∥V −1
t

]
(iii)

≤ 2Kp̄K−1γT (δ)E

[
T∑

t=1

∥xt,it1∥V −1
t

]

(iv)

≤ 2Kp̄K−1γT (δ)E

√T
√√√√ T∑

t=1

∥xt,it1∥
2
V −1
t


(iv)

≤ 2Kp̄K−1γT (δ)

√
2dT log

(
1 +

T

dλ

)
= Õ(Kp̄K−1d

√
T )
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where inequality (i) is derived by Lemma E.2, inequality (ii) is due to the fact that γt(δ) is mono-
tonically increasing with respect to t, inequality (iii) comes from OE-SWAP-L, inequality (iv) results
from the Cauchy-Schwarz inequality, and inequality (iv) is obtained by applying Lemma F.2 with the
identification nt = |Ot|, zt,k = xt,itk , and Zt = Vt.

2. DerivingR(T ) = Õ(d
√
T ).

Starting from Equation (30), we rederive the regret bound as follows:

R(T ) ≤ E

 T∑
t=1

∑
i∈Ct

∏
j∈Ct\{i}

σ0(x
⊤
t,jθ

∗)
(
u(L)

t,i − x⊤
t,iθ

∗)
≤ E

[
T∑

t=1

∑
itk∈Ct

k−1∏
l=1

σ0(x
⊤
t,itl

θ∗)
(
u(L)

t,itk
− x⊤

t,itk
θ∗
)]

= E

[
T∑

t=1

∑
itk∈Ct

E

[
k−1∏
l=1

σ0(x
⊤
t,itl

θ∗) | Ht

] (
u(L)

t,itk
− x⊤

t,itk
θ∗
)]

= E

[
T∑

t=1

∑
itk∈Ct

E [I{itk ∈ Ot} | Ht]
(
u(L)

t,itk
− x⊤

t,itk
θ∗
)]

= E

[
T∑

t=1

∑
itk∈Ct

I{itk ∈ Ot}
(
u(L)

t,itk
− σ1(x

⊤
t,itk

θ∗
)]

= E

[
T∑

t=1

∑
itk∈Ot

(
u(L)

t,itk
− x⊤

t,itk
θ∗
)]

≤ 2γT (δ)

√
2dT log

(
1 +

T

dλ

)
= Õ(d

√
T )

where the equalities employ the TPE technique introduced by Liu et al. [20, 21], and the final
inequality follows from Lemma E.2, the monotonicity of γt(δ), and the application of Lemma F.2.

F Auxiliary Lemmas

Lemma F.1. For any 1 ≤ τ ≤ t and 1 ≤ k ≤ nτ ≤ K, ∥zτ,k∥2 ≤ 1. For some λ > 0, let
Zt =

∑t−1
τ=1

∑nτ

k=1 zτ,kz
⊤
τ,k + λId. Then,

det(Zt) ≤

(
λ+

∑t−1
τ=1 nτ

d

)d

.

In particular, since nτ ≤ K for all τ ∈ [t], we have the simplified bound

det(Zt) ≤
(
λ+

(t− 1)K

d

)d

.

Proof. We observe that Zt =
∑t−1

τ=1

∑nτ

k=1 zτ,kz
⊤
τ,k + λId can be rewritten in a form analogous to∑

s xsx
⊤
s + λId as stated in Lemma 10 of Abbasi-Yadkori et al. [1] (restated in Lemma F.6) by

interpreting the index s as ranging over
∑t−1

τ=1 |nτ | instances. Hence, Lemma 10 of Abbasi-Yadkori
et al. [1] can be directly applied by treating each pair (τ, k) as an independent index.

Lemma F.2. Suppose nt ∈ [K] for all t. Let {zt,k}t≤∞,k∈[nt] be a sequence in Rd such that
∥zt,k∥2 ≤ 1 and define Zt :=

∑t−1
τ=1

∑nτ

k=1 zτ,kz
⊤
τ,k + λId where λ ≥ 1. Then, we have that

T∑
t=1

∥zt,1∥2Z−1
t
≤ 2d log

(
1 +

T

dλ

)
.
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Proof. We follow the proof of Lemma 11 of Abbasi-Yadkori et al. [1]. Since λ ≥ 1 and ∥zt,k∥2 ≤ 1
for all t and k, the following holds:

∥zt,k∥2Z−1
t
≤
∥zt,k∥22
λmin(Zt)

≤
∥zt,k∥22

λmin(λId)
≤
∥zt,k∥22

λ
≤ 1.

Using that z ≤ 2 log(1 + z) for any z ∈ [0, 1], we have:

T∑
t=1

∥zt,1∥2Z−1
t
≤

T∑
t=1

log
(
1 + ∥zt,1∥2Z−1

t

)
≤ log

T∏
t=1

(
1 + ∥zt,1∥2Z−1

t

)
≤ log

T∏
t=1

(
1 + ∥zt,1∥2Z̄−1

t

)
, (31)

where Z̄t :=
∑t−1

τ=1 zτ,1z
⊤
τ,1 + λId ⪯ Zt. Also, the following holds:

det(Z̄t) = det
(
Z̄t−1 + zt,1z

⊤
t,1

)
(i)
= det(Z̄t−1) · det

(
Id + (Z̄

−1/2
t−1 zt,1)(Z̄

−1/2
t−1 zt,1)

⊤
)

(ii)

≥ det(Z̄t−1)
(
1 + ∥zt,1∥2Z̄−1

t−1

)
(iii)

≥ det(λId)

t−1∏
τ=1

(
1 + ∥zτ,1∥2Z̄−1

τ

)
. (32)

where inequality (i) is by the fact that V + U = V 1/2(I + V −1/2UV −1/2)V 1/2 for a symmetric
positive definite matrix V , inequality (ii) is due to Lemma F.5, and inequality (iii) is by repeatedly
applying inequality (ii). Then, by applying Equation (32) to Equation (31), we have:

T∑
t=1

∥zt,1∥2Z−1
t
≤ log

det(Z̄T+1)

det(λId)

(i)

≤ 2d log

(
1 +

T

dλ

)
where inequality (i) is obtained by applying Lemma F.6.

Lemma F.3. Suppose nt ∈ [K] for all t. Let {zt,k}t≤∞,k∈[nt] be a sequence in Rd such that
∥zt,k∥2 ≤ 1, and define Zt :=

∑t−1
τ=1

∑nτ

k=1 zτ,kz
⊤
τ,k + λId where λ ≥ 1. Then, we obtain

T∑
t=1

1{nt ≥ 2} ∥zt,2∥2Z−1
t
≤ 2d log

(
1 +

2T

dλ

)
.

Proof. We follow the proof of Lemma 11 of Abbasi-Yadkori et al. [1]. Since λ ≥ 1 and ∥zt,k∥2 ≤ 1
for all t and k, the following holds:

∥zt,k∥2Z−1
t
≤
∥zt,k∥22
λmin(Zt)

≤
∥zt,k∥22

λmin(λId)
≤
∥zt,k∥22

λ
≤ 1.
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Let T := {t ∈ [T ] : kt ≥ 2}. Using that z ≤ 2 log(1 + z) for any z ∈ [0, 1], we have:

T∑
t=1

1{nt ≥ 2} ∥zt,2∥2Z−1
t
≤

T∑
t=1

log
(
1 + 1{nt ≥ 2} ∥zt,2∥2Z−1

t

)
≤
∑
t∈T

log
(
1 + ∥zt,2∥2Z−1

t

)
≤ log

∏
t∈T

(
1 + ∥zt,2∥2Z−1

t

)
≤ log

∏
t∈T

(
1 + ∥zt,2∥2Z̃−1

t

)
, (33)

where Z̃t :=
∑

τ∈T ,
τ<t

zτ,2z
⊤
τ,2 + λId ⪯ Zt. Also, the following holds:

det(Z̃t) ≥ det(λId)
∏
τ∈T ,
τ<t

(
1 + ∥zτ,1∥2Z̄−1

τ

)
, (34)

where Equation (34) follows from applying the same determinant update steps as in Equation (32).
Then, by substituting Equation (34) into Equation (33), we have:

T∑
t=1

1{nt ≥ 2} ∥zt,2∥2Z−1
t
≤ log

det(Z̄T+1)

det(λId)

(i)

≤ 2d log

(
1 +

T

dλ

)
where inequality (i) is obtained by applying Lemma F.6.

Lemma F.4 (Lemma E.3 from Lee et al. [16]). Given x ∈ Rd, for any θ1, θ2 ∈ Rd,

|σ̇1(x
⊤θ1)− σ̇1(x

⊤θ2)| ≤ |σ1(x
⊤θ1)− σ1(x

⊤θ2)|.

Lemma F.5 (Lemma A.3 from Li et al. [19]). Let xi ∈ Rd×1, 1 ≤ i ≤ n. Then we have

det

(
I +

n∑
i=1

xix
⊤
i

)
≥ 1 +

n∑
i=1

∥xi∥22.

Lemma F.6 (Lemma 10 from Abbasi-Yadkori et al. [1]). Suppose x1, x2, . . . , xn ∈ Rd and for any
1 ≤ i ≤ n, ∥xi∥2 ≤ 1. Let

V̄n =

n∑
i=1

xnx
⊤
n + λI for some λ > 0.

Then, we have

det(V̄n) ≤
(
λ+

n

d

)d
.

G Numerical Study Details

G.2 Experiments on Simulated Data with MovieLens 100K

Dataset. We use the MovieLens 100K dataset, which contains 100, 000 ratings (on a 1–5 scale) from
943 users for 1, 682 movies. Since the ratings are not binary, we convert them into binary labels by
assigning feedback 1 for ratings ≥ 4 and 0 for ratings ≤ 2, while discarding ratings equal to 3. After
preprocessing, the dataset contains 72,855 interactions across 943 users and 1,642 movies.

Feature extraction. Let M ∈ R943×1642 denote the user–movie rating matrix after binarization. We
apply truncated SVD with rank r = 5 to obtain M ≈ UΣV ⊤. We treat UΣ ∈ R943×5 as the user
feature matrix and V ⊤ ∈ R5×1642 as the movie feature matrix. Let ut ∈ R5 denote the t-th row
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vector of UΣ, and vi ∈ R5 denote the i-th column vector of V ⊤. For each user–movie pair (t, i), we
construct the 25-dimensional context vector xt,i = vec(ut ⊗ vi), where ⊗ denotes the outer product.

Offline logistic regression. We estimate the ground-truth parameter θ∗ ∈ R25 via logistic regression
on the entire processed dataset using the constructed features and binary labels.

Online evaluation. We empirically evaluate the performance of our proposed algorithm, UCB-CLB,
and compare it with three baselines: C3-UCB [19], UCB-CCA [7], and CLogUCB [21]. At each round
t ∈ [T ], we sample a user uniformly at random from the 943 users, and the agent selects a movie from
a pool of N = 1642 candidates. Because the norm of θ∗ is large (e.g., ∥θ∗∥2 > 18), the condition
number κ is small. Thus, we set the parameter B = 20 in our implementation, which controls the
scale of non-linearity in the algorithm. To evaluate the effect of the cascade length K, we report the
cumulative regret under two settings, K = 5 and K = 10, while keeping all other parameters fixed.
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Figure 3: Cumulative running time for varying cascade lengths (K = 5, 10) with N = 1642 and
d = 25. Error bars indicate standard error, and all results are averaged over over 10 random seeds.

We evaluate the computational efficiency of the algorithms by plotting the cumulative running time
(in seconds) over 5000 rounds for two cascade lengths, K = 5 and K = 10, with N = 1642 and
d = 25. As shown in the figures, UCB-CLB consistently maintains a significantly lower computational
cost compared to CLogUCB and UCB-CCA across different values of K. This efficiency reflects the
algorithmic design of UCB-CLB, which avoids costly recomputation by leveraging the linear reward
structure and an efficient swapping strategy, and employs OMD updates with a per-round cost
independent of t. In contrast, CLogUCB and UCB-CCA rely on MLE updates, whose computational
cost increases with each round. Overall, the results demonstrate that UCB-CLB achieves strong
computational efficiency without sacrificing performance.

Computational resources. All experiments were conducted on a server equipped with an Intel®

Xeon® Gold 6526R CPU (16 cores, 2.8GHz, 37.5MB cache, 3UPI, 195W).

H Limitations

While our work revisits contextual cascading bandits under both logistic and linear reward models,
these modeling choices come with certain limitations. First, we assume that the feedback for each arm
follows either a logistic or linear function of its context. More flexible models could be explored in
future work. Second, we adopt the assumption that the feedback from different arms within a cascade
is independent, which may not always hold in practice. Finally, in the linear feedback setting, we
additionally assume that the expected feedback is strictly greater than zero for all arms and rounds, to
ensure that the regret decreases for sufficiently large cascade lengths. While this assumption is mild
in practice, it may not always be satisfied. Nevertheless, we believe that this work offers significant
contributions by revisiting the contextual cascading bandit framework and providing improved regret
analysis with carefully designed algorithms.

I Broader Impacts

This work revisits contextual cascading bandits with improved theoretical guarantees under logistic
and linear models, which can directly support real-world applications such as personalized recommen-
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dation, content ranking, and interactive decision-making. In these real-world applications, users are
often exposed to long sequences of items—sometimes tens or hundreds—before making a decision.
Our algorithms are designed to remain robust and practically effective even in long-sequence settings
with partial feedback, which are common in real-world recommendation scenarios. Nevertheless,
such systems should be deployed with care, as they may reinforce biases or reduce content diversity.
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