
Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

MMCODE: BENCHMARKING MULTIMODAL LARGE
LANGUAGE MODELS IN CODE GENERATION WITH VI-
SUALLY RICH PROGRAMMING PROBLEMS

Kaixin Li1 Yuchen Tian2 Qisheng Hu3 Ziyang Luo2 Zhiyong Huang1 Jing Ma2
1National University of Singapore 2Hong Kong Baptist University
3Nanyang Technological University
likaixin@u.nus.edu

ABSTRACT

Programming often involves converting detailed and complex specifications into
code, a process during which developers typically utilize visual aids to more ef-
fectively convey concepts. While recent developments in Large Multimodal Mod-
els have demonstrated remarkable abilities in visual reasoning and mathematical
tasks, there is little work on investigating whether these models can effectively in-
terpret visual elements for code generation. To this end, we present MMCode, the
first multi-modal coding dataset for evaluating algorithmic problem-solving skills
in visually rich contexts. MMCode contains 3,548 questions and 6,620 images
collected from real-world programming challenges harvested from 10 code com-
petition websites, presenting significant challenges due to the extreme demand for
reasoning abilities. Our experiment results show that current state-of-the-art mod-
els struggle to solve these problems. The results highlight the lack of powerful
vision-code models, and we hope MMCode can serve as an inspiration for future
works in this domain. The data and code are publicly available.

1 INTRODUCTION

Programming is primarily aimed at fulfilling requirements, frequently entailing the translation of
detailed and intricate specifications into executable code (Nuseibeh & Easterbrook, 2000). In this
endeavor, human developers regularly employ visual aids such as images and diagrams to facilitate
effective communication and a better understanding of concepts (Agarwal & Sinha, 2003).

Recently, automated code generation tools have attracted significant attention, largely attributing to
the substantial advance in Code Large Language Models (Code LLMs) (Chen et al., 2021; Nijkamp
et al., 2023; Roziere et al., 2023; Luo et al., 2023b; Li et al., 2023a; Guo et al., 2024). These models
demonstrated unprecedentedly remarkable coding abilities, potentially assist to enhance productiv-
ity, reduce human error and democratize coding skills. Nevertheless, these models are limited to
processing text-only inputs, lacking the ability to interpret rich information presented through im-
ages.

In a closely related development, the field has also observed the emergence of many powerful Large
Multimodal Models (LMMs), marked by GPT-4V (OpenAI, 2023b) and Gemini (Team Gemini
et al., 2023), representing a significant step forward in bridging the modality of text and images.
While there are multiple works evaluating these models in mathematical reasoning (Lu et al., 2023),
perception and reasoning (Liu et al., 2023) and instruction-following (Ye et al., 2023), there is a
notable gap in evaluating LMMs for code generation.

To this end, we present MMCode, the first multi-modal benchmark for rigorously evaluating the
code generation ability of Large Multimodal Models. It comprises 3,548 questions with 6,620 im-
ages collated from 10 programming-related websites encompassing a broad spectrum of subjects,
extending from fundamental coding concepts to the application of code for solving mathematical
problems. The generated code is rigorously checked by test cases. The overall framework is illus-
trated in Figure 1.

1

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Hidden Inputs and outputs

Input #2:
()[0]()
()[1000]()

Expected Output #2:
(()[2]())[5]()

Large
Multi-modal

Model

Evaluation

Compile & Execute

Code

Test Input #1:
(()[999](()[9]())
()[1]())[111]()

Expected Output #1:
()[1110]()

Output #1:
()[1110]()

Test Input #2:
()[0]()
()[1000]()

Expected Output #2:
(()[2]())[5]()

Output #2:
(()[3]()))

Test Case Checking

…

Sample Inputs and outputs
Input:
(()[1]())[111]()
()[999](()[9]())
Expected Output:
()[1110]()

The input is in the following format:
A
B

A and B are strings representing the information of the rooted binary
trees you bought, with lengths of 7 to 1000 …
Output the information of the new rooted binary tree resulting from
the composition of the two rooted binary trees on a single line…

You have realized that the birthday of your best friend, Misawa, is
approaching, and you've decided to present a rooted binary tree as
a gift. Here, a rooted binary tree is a graph structure as follows.
…

Failed

Case #1 Case #2 Case #3

Case #4 Case #5 Case #6

Test Result:

Figure 1: An illustration of an example question and the automatic testing pipeline of MMCode.
The tests in the judger are selected for display. The actual test cases are harder than the sample
inputs and outputs.

Our experiments revealed that current LMMs struggle significantly to solve the tasks in MMCode.
The most powerful LMMs, GPT-4V and Gemini, scored unsatisfactory pass rates as low as 19.4%
and 5.0%, potentially due to the requirement of intense reasoning on the text descriptions and im-
ages. Open-source LMMs (Liu et al., 2024a; Bai et al., 2023) yield negligible pass rates because
of their inability to understand the abstract meaning of the images. The findings reveal a signifi-
cant deficiency in current LMMs’ ability to interpret and utilize multimodal information for code
generation, highlighting an imperative need for further advancements in this area. We believe MM-
Code will serve as a pivotal benchmark for evaluating the forthcoming evolution of Code LMMs
and inspire research in this area.

2 RELATED WORKS

2.1 CODE LARGE LANGUAGE MODELS

Large Language Models (LLMs) have experienced significant advancements in recent years, demon-
strating remarkable progress in their capabilities and applications that were previously unattain-
able (Ouyang et al., 2022; Brown et al., 2020; OpenAI, 2022; 2023a; Touvron et al., 2023a;b;
Chowdhery et al., 2022; Anil et al., 2023; Hoffmann et al., 2022; Scao et al., 2022). Building
on their increasing proficiency at understanding and generating human-like text, a set of specialized
models known as Code LLMs have emerged, focusing specifically on programming code (Chen
et al., 2021; Nijkamp et al., 2023; Roziere et al., 2023; Li et al., 2023a; Luo et al., 2023b; Guo et al.,
2024). Trained on large corpora of code data, these models have acquired the capacity to compre-
hend programming contexts and generate syntactically correct and logically sound code snippets.
However, a significant limitation of these tools is their inability to process image inputs, restricting
their application to environments where interaction is solely text- or code-based. Such a deficiency
precludes their use in scenarios requiring the interpretation of visual data.

2.2 CODING BENCHMARKS

Accompanying the rapid development of Code Large Language Models, numerous benchmarks and
datasets have witnessed the astonishing advancements of Code LLMs. These benchmarks cover a
wide area of code-related tasks, such as code completion (Chen et al., 2021; Zheng et al., 2023;

2

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Tree Graph 2D 3D Chessboard Linear Data Structure

Math Pattern Table Map Others Pseudocode

Table 1: Examples of images from each category. Some images are cropped for better visualization.

Austin et al., 2021; Yan et al., 2023a), editing (Li et al., 2024; Tian et al., 2024) and translation (Yan
et al., 2023b). Most relevant to our work, APPS (Hendrycks et al., 2021) and CodeContests (Li
et al., 2022) leveraged coding problems from real-world practice and contest coding websites as
benchmarks. Recently, TACO (Li et al., 2023b) contributed a comprehensive collection of contest
problems. However, it aims to cluster the problems by the programming skills needed (e.g. Dynamic
Programming and Tree Algorithms), while MMCode focuses on image-augmented questions to
assess the question-solving skills of multi-modal language models.

2.3 REASONING-INTENSE VISUAL QUESTION ANSWERING

Several works have emerged to assess the reasoning capabilities of LMMs with visual contexts. Sci-
enceQA (Lu et al., 2022) consists of multimodal multiple-choice questions across scientific topics,
designed to measure the multi-hop reasoning ability. MMMU (Yue et al., 2023) features college-
level questions with multi-disciplinary subjects. MathVista (Lu et al., 2023) emphasizes mathemat-
ical problem-solving with multi-modal input, involving tasks that require diverse math reasoning
skills. OlympiadBench (He et al., 2024) offers a set of challenging Olympiad-level mathematics and
physics contest questions. PuzzleVQA (Chia et al., 2024) benchmarks LMMs on patterns in order to
evaluate if the models’ reasoning ability generalizes to abstract figures. Our work distinguishes itself
by necessitating the generation of solution code of complex problems, which benchmarks LMMs
for long-horizon reasoning.

3 MMCODE

In this section, we introduce the source and collection pipeline of MMCode. The collection pipeline
comprises four stages: 1) Raw data collection; 2) automatic filtering; 3) human filtering and 4)
annotation. This pipeline to be introduced in the following sections guarantees the quality and
diversity of the data collected for MMCode.

3.1 DATA SOURCES

The questions of MMCode are collected from 10 coding platforms, including AtCoder, Aizu,
CodeChef, CodeForces, CodeWars, Project Euler, Geeksforgeeks, HackerRank, Leetcode and Open
Kattis. More information can be found in Appendix A.

The data sources exhibit a wide range of characteristics and purposes, including competitions, job
interviews, and tutorials, etc. Notably, Project Euler is distinguished by its collection of challenges
that necessitate a combination of mathematical and computer programming skills to solve. As a
result, MMCode benefits from the diversity of these sources, offering programming problems with
varying difficulties, styles, and skill requirements.

3

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Question Length (characters)

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f Q
ue

st
io

ns

(a) The distribution of lengths of the question state-
ments, measured by the number of characters.

1 2 3 4 5 6 7 8 9 10+
Number of images

0

250

500

750

1000

1250

1500

1750

2000

Nu
m

be
r o

f p
ro

bl
em

s

(b) The distribution of numbers of images per ques-
tion. Questions with 10 or more images are combined
into the last bin “10+”.

Figure 2: Data statistics of the questions in MMCode.

3.2 DATA COLLECTION PIPELINE

Raw Data Collection. For each of the 10 platforms, distinct web crawlers were developed to
retrieve the problem statements. The HTML elements were then converted to plain texts following
unified rules to ensure cleanliness and readability. Furthermore, the metadata of these questions
was collected conditionally on availability, e.g. problem name, time limit, and memory limit. It is
noteworthy that we also included the raw HTML code in our dataset for further flexible use.

If there were images (tags) encapsulated within the statements, we saved them and converted
them to PNG format. The tags were replaced with markdown tags to insert them in the text (e.g.
![image](1.png)). It is essential to maintain the locations of the images in the text because a
question may encompass multiple images, and the images can be closely related to the text sections
around them. This practice ensures the cohesion and coherence of the contents, where visual and
textual elements are harmoniously integrated for better understanding.

Due to the difficulty of obtaining the automated test cases as a result of the changes in platforms’
designs and policies, we also reused the rich information from the TACO dataset (Li et al., 2023b)
where feasible. We matched the crawled questions with those existing in TACO by URLs1. Specif-
ically, we crawled all questions from the largest two data sources, CodeForces and Aizu, including
problem statements and test cases. Additionally, we included a new platform Project Euler that is
not present in previous datasets. For other platforms, we reused the data from TACO and fetched
the question statements to add the images.

An initial data analysis revealed that 18.8% of the obtained questions contained images, corroborat-
ing our motivation for creating a multi-modal coding benchmark.

Automated Filtering. In this phase, our initial step involved excluding questions that do not in-
clude associated images. Subsequently, we applied various post-processing steps to ensure the qual-
ity of the data. We filtered questions with images unable to load using the PILLOW library2. Addi-
tionally, we converted PNGs with alpha channels to pure RGB format by painting the background to
pure white, which is critical for discerning the texts on the images. This avoids distinct behaviors of
different models interpreting the transparent color. Finally, a strict 5-gram similarity is conducted on
every pair of question statements in the dataset to remove similar problems with a similarity score
greater than 0.80. This process eliminated 33 questions from the dataset.

Human Filtering. At this stage, a preliminary inspection of sampled questions was first conducted
to scope the quality of the collected data. The primary source of noise was found to be teaser
images that try to interest the readers but do not provide information or implications to help solve

1TACO comprises questions obtained from mixed sources including CodeContests, APPS, and by crawling
the websites. As a result, not all questions are provided with URLs. We abandoned the questions without URL
metadata to ensure the overall quality of our data.

2https://github.com/python-pillow/Pillow

4

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Graph

20.9%

Math

17.9%

2D Geometry 15.3%

Others

12.7%

Tree

9.9%

Chessboard

6.4%
Table

5.5% 3D Geometry

3.5% Patterns
3.1% Linear Data Structure
2.2% Map1.4% Pseudocode1.3%

(a) The distribution of lengths of the question state-
ments, measured by the number of characters.

0.0 0.2 0.4 0.6 0.8 1.0
Image Position (location percentage in the text)

0

200

400

600

800

1000

Nu
m

be
r o

f I
m

ag
es

(b) The distribution of the position of the images,
measured by the percentage of their placement in the
question statement.

Figure 3: Data statistics of the images in MMCode.

the questions. These images mostly originate from Open Kattis and CodeForces, consisting of
photographs about the background of the question, anime screenshots, etc. An example is presented
in Appendix D.10, where the question is about developers’ cooperation, but the image is a humorous
comic about the daily work of programmers. We also spotted some mixture of website logos and UI
elements in the images, probably due to mistakes of the question creators in typesetting.

To address this problem, a convenient solution is to employ large LMMs such as GPT-4V and
Gemini to determine if the image(s) are useful in addressing the question. Nonetheless, such a
method may potentially introduce bias into the data. Therefore, we decided to opt for human labor
to filter out these unrelated images. We manually examined every image in the dataset to remove
the noisy ones. Note that when an image was deemed irrelevant but was not the sole image in the
question, we exclusively removed this image and its corresponding markdown tag from the text. The
question itself is only eliminated if there are no images remaining after this process.

Annotation. In this stage, we annotate the images in MMCode into distinct categories in order
to facilitate a more detailed analysis of model performance across various types of images. The
images were examined and discussed by expert human coders who have rich experience in solving
coding contest problems. Following this deliberation, the images were meticulously categorized
into 12 types: Linear Data Structure, Tree, Graph, 2D Geometry, 3D Geometry,
Chessboard, Map, Patterns, Math, Table, Pseudocode, and Others. Gemini Pro Vi-
sion is leveraged to generate the coarse labels. Detailed descriptions of the categories are listed in
Appendix B.

This detailed categorization facilitates a focused analysis on how different types of visual informa-
tion are processed and interpreted by models, thereby potentially aiding in the identification and
improvement of their abilities in coding contexts.

3.3 DATA SPLITS

After performing the previous procedures, we acquired a dataset with 3,548 questions with 6,620
images. Considering the lengthy nature of the questions and additional tokens needed to represent
the images, evaluating on the full dataset can be expensive. Following MathVista (Lu et al., 2023),
a conscious decision was made to keep the test set small. As a result, we sampled 263 questions as
the test set, and applied careful human inspection to correct the image category labels.

3.4 TESTING PIPELINE

An execution-based testing pipeline is adopted in MMCode for rigorous answer checking, follow-
ing Hendrycks et al. (2021); Li et al. (2023b); Chen et al. (2021). As demonstrated in Figure 1,
the judger attempts to compile the code generated by models, followed by a timed execution in a
sandbox. The programs’ outputs are checked against the ground truth answers in the test cases, and
the solution is judged as correct only if it passes all hidden test cases.

5

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Model Task Type Average
Linear Tree Graph 2D 3D Chessboard Map Math Patterns Table Pseudocode Others

Language Only Inputs
LLaVA-1.5-7B 8.0 0.0 0.0 0.0 0.0 6.7 0.0 0.0 0.0 0.0 0.0 0.0 1.1
LLaVA-1.5-13B 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 0.0 10.0 0.0 1.5
QWEN-VL 4.0 0.0 0.0 0.0 0.0 6.7 0.0 0.0 0.0 0.0 10.0 0.0 1.1
CodeGemma-7b-Instruct 12.0 0.0 0.0 0.0 3.8 6.7 3.6 0.0 3.7 0.0 20.0 0.0 3.4
CodeLLaMA-7b-instruct 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 1.1
CodeLLaMA-13b-instruct 8.0 0.0 0.0 0.0 0.0 6.7 0.0 0.0 0.0 0.0 10.0 0.0 1.5
DeepSeekCoder-7b-instruct 16.0 0.0 4.3 3.3 3.8 20.0 3.6 0.0 3.7 7.1 10.0 3.8 5.7
DeepSeekCoder-33b-instruct 16.0 0.0 8.7 10.0 7.7 20.0 17.9 8.0 11.1 7.1 30.0 11.5 11.4
LLaMA3-instruct 12.0 0.0 4.3 6.7 3.8 0.0 3.6 0.0 3.7 14.3 0.0 0.0 4.2
MagiCoder-6.7b 20.0 0.0 8.7 0.0 0.0 6.7 7.1 0.0 7.4 7.1 20.0 0.0 5.7
StarCoder-15b-instruct 12.0 0.0 0.0 6.7 0.0 0.0 0.0 4.0 7.4 0.0 10.0 0.0 3.4
WizardCoder-15b 8.0 0.0 0.0 3.3 0.0 6.7 0.0 0.0 3.7 0.0 20.0 0.0 2.7
Gemini Pro 16.0 0.0 4.3 3.3 0.0 0.0 3.6 0.0 14.8 0.0 20.0 7.7 5.7
GPT-3.5 (gpt-3.5-turbo-1106) 28.0 6.9 4.3 6.7 7.7 13.3 10.7 4.0 18.5 14.3 20.0 7.7 11.0
GPT-4 (gpt-4-1106-preview) 28.0 6.9 13.0 10.0 7.7 13.3 17.9 16.0 29.6 21.4 40.0 26.9 17.9
GPT-4V (gpt-4-vision-preview) 40.0 10.3 17.4 10.0 7.7 26.7 7.1 12.0 22.2 21.4 50.0 23.1 18.3
GPT-4o (gpt-4o-2024-05-13) 32.0 6.9 8.7 3.3 11.5 20.0 10.7 16.0 18.5 7.1 40.0 15.4 14.8

Vision + Language Inputs
LLaVA-1.5-7B 12.0 0.0 0.0 0.0 0.0 6.7 0.0 0.0 0.0 0.0 0.0 0.0 1.5
LLaVA-1.5-13B 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 0.0 0.0 0.0 1.1
QWEN-VL 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8
Qwen2VL-2B 12.0 0.0 0.0 0.0 3.8 0.0 0.0 0.0 3.8 0.0 20.0 0.0 2.7
Qwen2VL-7B 16.0 3.4 0.0 6.7 0.0 13.3 3.6 0.0 3.8 0.0 30.0 3.8 5.8
Qwen2VL-72B 24.0 0.0 4.3 6.7 0.0 20.0 11.1 4.3 7.7 7.1 30.0 15.4 10.0
Gemini Pro Vision 12.5 0.0 4.3 0.0 3.8 6.7 7.1 0.0 7.4 0.0 30.0 0.0 5.0
GPT-4V (gpt-4-vision-preview) 40.0 6.9 13.0 13.8 3.8 21.4 24.0 9.5 25.9 21.4 40.0 20.8 19.4
GPT-4o (gpt-4o-2024-05-13) 36.0 6.9 8.7 3.4 7.7 21.4 24.0 14.3 25.9 14.3 50.0 8.3 17.0

Table 2: Pass@1 (%) results grouped by different image categories. The dashed lines separate open-
source models (above) and proprietary models (below).

4 DATA ANALYSIS

In this section, we undertake a comprehensive exploration of MMCode, introducing its and statistical
attributes to provide a nuanced understanding of MMCode.

Problem Length. The diversity of data sources incorporated into MMCode results in significant
variance in problem length, as can be seen in Figure 2a. The mean length of the questions reaches
2,256 characters, with the 25th, 50th, and 75th percentile at 1,516, 2,127, and 2,791. This can be
ascribed to the distinct style and difficulty of the questions presented in MMCode. Certain ques-
tions articulate the instructions succinctly and directly, whereas others elaborate on the contextual
background of the problem in detail.

Image Count per Problem. A notable characteristic that differentiates MMCode from previous
datasets is its inclusion of multiple images per question. On average, each question is associated with
1.87 images, with the 25th percentile having 1 image and the 75th percentile having 2 images. These
figures are interleaved with the text contents, and the understanding of them frequently depends on
their order, posing great difficulty to the models.

Image Position. As Figure 3b illustrates, the images in the problems of MMCode can appear
at any position in the text, but concentrate at the tail. This is because many images are drawn to
intuitively depict and explain sample inputs and outputs, which are mostly located at the end of the
text.

Image Type. Figure 3a illustrates the portion of the categories of images following the classifi-
cation criteria introduced in Section 3.2. Graph, Math and 2D Geometry form the majority
comprising more than half of the dataset, taking up 20.9% 17.9%, and 15.3% respectively. Miscel-
laneous images classified under Others account for roughly one-tenth of the dataset, representing
a high level of heterogeneity. Tree follows up with 9.9%. The remaining groups sum up to approx-
imately a quarter, demonstrating the diversity of MMCode.

6

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Model Task Type Average
Linear Tree Graph 2D 3D Chessboard Map Math Patterns Table Pseudocode Others

Gemini Pro 16.0 0.0 0.0 6.7 0.0 6.7 3.6 0.0 11.1 7.1 20.0 7.7 6.1
GPT-4 (gpt-4-vision-preview) 32.0 10.3 17.4 6.7 3.8 33.3 25.0 12.0 33.3 21.4 40.0 19.2 19.0

Table 3: The performance of closed-source models with Image Replacement. Results are measured
by Pass@1 (%).

Model Task Type Average
Linear Tree Graph 2D 3D Chessboard Map Math Patterns Table Pseudocode Others

Gemini Pro Vision 8.0 0.0 0.0 6.7 0.0 13.3 3.7 0.0 3.7 0.0 20.0 0.0 3.8
GPT-4V (gpt-4-vision-preview) 28.0 6.9 8.7 6.9 7.7 7.1 28.0 9.5 33.3 14.3 40.0 12.5 16.6

Table 4: The performance of closed-source models with Captioning Chain of Thought. Results are
measured by Pass@1 (%).

5 EXPERIMENTS

In this section, we benchmark several Language-Only models and Vision-Language models with
MMCode. A comparative analysis of the experimental results for these models is conducted, pro-
viding a thorough examination of their capabilities.

5.1 EXPERIMENTAL SETUP

We evaluate the models by prompting with fixed templates (see Appendix C) using greedy decoding
and extracting their generated codes, which are executed by the testing framework to check their
correctness. Pass@1 (Chen et al., 2021) is reported. The following three setups are compared:

Language-Only Models. We evaluate several powerful and Language-Only models, including
GPT-3.5 (OpenAI, 2022), GPT-4 OpenAI (2023a), and Gemini Pro Team Gemini et al. (2023). The
images in the problem statement are removed in this setup.

Large Multi-modal Models. Some popular LMMs are selected as testees on MMCode. This
includes proprietary models such as Gemini Pro Vision Team Gemini et al. (2023), GPT-4V OpenAI
(2023b). Additionally, open-source models such as the LLaVA series (Liu et al., 2024a), QWEN-
VL Bai et al. (2023) and Qwen2-VL (Wang et al., 2024) are assessed to track the advancements of
the more accessible LMMs. The first image in the problem is kept for models that are not trained
to support multiple-image inputs, i.e. the LLaVA series. For fairer comparison, text-only inputs
performance of these models are also reported whenever applicable.

Caption-augmented Models. We investigate whether the inclusion of captions can help the
model better understand the image contexts. In our early experiments, the open-source models
yielded inferior captions, frequently containing hallucinations and failing to interpret the abstract
meaning of the images. Thus, we only benchmark the proprietary models. We explored two methods
of leveraging the captions: (a) Image Replacement, where the image slots are replaced by the
captions. (b) Captioning Chain of Thought, where we explicitly prompt the models to generate
captions for the images first, and then work out the questions, resembling the Chain of Thought
prompting (Wei et al., 2022).

6 EVALUATION RESULTS

6.1 RESULTS AND FINDINGS

MMCode poses a great challenge to all models. As Table 2 depicts, all models except for the
GPT family scored a Pass@1 rate under 10%, whereas the best of the models tested, GPT-4V,
yielded a mere 19.4% when equipped with all image contexts. Test case pass rates, as a fine-grained

7

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 4: Error distribution of GPT-4V and LLaVA-13B on a sampled subset of 50 problems.

measure, show a similar trend in Tabel 7 in Appendix E.1. This renders MMCode a challenging
benchmark for the development of coding LMMs.

Proprietary models take a huge lead on MMCode. The GPTs yield superior results, leaving a
huge gap between other models. Gemini Pro, though underperforms the GPTs, beats all tested open-
source models. Many open-source models generally demonstrate the inability to solve the questions
with negligible pass rates of around 1% and a majority of zeros in many categories. Notably, Qwen2-
VL achieves 10%, but is still behind the GPT family. A plausible reason is that these open-source
LMMs are not trained on such reasoning-heavy code generation tasks nor to understand abstract
diagrams. The coding ability is only inherited from the base LLMs, but can be impaired due to
catastrophic forgetting (Luo et al., 2023a).

Visual context helps, but requires advanced comprehending capability. Interestingly, unlike
previous works such as OlympiadBench (He et al., 2024) where the text-only inputs beat multi-
modal inputs, the best performance of all experiments is produced by GPT-4V with vision contexts.
The observation confirms that the images contain critical information that can be mined to assist
problem-solving. However, Gemini Pro Vision often fails to leverage the hints from the images, and
the performance drops compared with the language-only Gemini Pro.

GPT-4V performs better than GPT-4 counterparts on less visually-cluttered image types.
Comparing GPT-4V with multi-modal input to text-only GPT-4 and GPT-4V on problems with dif-
ferent types of images, it is observed that improvements are achieved on simpler image types, e.g.
Linear Data Structure, Tree, 2D, and Map. On other visually cluttered categories such
as Graph, Chessboard and Patterns, the addition of images hurts the performance. GPT-4V
also produces worse results on Others, which consists of miscellaneous cases including complex
annotations, which are challenging for the model to interpret.

Image replacement with generated captions helps, but Captioning CoT does not. Table 3
and 4 lists the results with the two caption prompting strategies. The vision models can generate
informative captions (though often inaccurate; see case studies in Section 6.3.1), as the text-only
models all improve from their caption-free settings using the Image Replacement strategy. However,
interestingly, all LMMs prompted with Captioning Chain of Thought suffer a decline in the pass
rates. A possible explanation is that the captions lengthen the context, while the images still remain
in the context, causing trouble for the models to determine where to attend.

6.2 ERROR ANALYSIS

To facilitate the understanding of the models’ bottleneck in solving MMCode problems, an identical
subset of 50 questions are randomly selected from the failure cases of GPT-4V and LLaVA-13B and
reviewed. Figure 4 presents the results. The majority of errors arise in the wrong understanding
of the problems, where executable codes are generated but with wrong results. GPT-4V produces
fewer runtime errors than LLaVA-13B, including Access Errors (e.g. IndexError, KeyError), Type
Errors (e.g. calling non-existing methods of an object), and Math Errors (e.g. ZeroDivisionError).

8

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Notably, LLaVA-13B makes many elementary mistakes such as wrong Input Parsing and NameError
(e.g. usage of variables undefined or defined afterward). These errors prevent the programs from
producing outputs that can be checked, resulting in a decrease in Problem Understanding errors.

6.3 CASE STUDY

6.3.1 CAPTION QUALITY

Figures 5 to 16 in Appendix F showcase the captions generated by GPT-4V and Gemini Pro Vi-
sion of 12 images from different categories. Generally, GPT-4V generates more accurate and more
insightful captions than Gemini Pro Vision. However, both models can hallucinate the images, es-
pecially on visually complex elements such as Graph (Figure 10). On the easier image of a Tree
with fewer nodes and edges, both models produce correct explanations (Figure 9).

6.3.2 CODE QUALITY

We examined solutions generated by GPT-4V in section G in the Appendix. Apart from complex
logic errors and inefficient implementations (Section G.1, it still makes trivial mistakes, e.g. naming
variables after built-in functions (Section G.2), reading inputs when the problem does not ask it to
(Section G.3).

7 CONCLUSION

In this paper, we present MMCode, the first multi-modal coding dataset for evaluating algorithmic
problem-solving skills in image-text interwoven contexts. We benchmarked a range of state-of-
the-art LLMs and LMMs on MMCode and provide a detailed analysis. Despite their advanced
capabilities, these models demonstrate a significant challenge in leveraging visual contexts for code
generation. We believe that MMCode will catalyze further research and innovation, paving the way
for the creation of AI systems capable of handling sophisticated visual and textual reasoning in
programming and beyond.

REFERENCES

Ritu Agarwal and Atish P Sinha. Object-oriented modeling with uml: a study of developers’ per-
ceptions. Communications of the ACM, 46(9):248–256, 2003.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv preprint arXiv:2305.10403, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021. URL https://
arxiv.org/pdf/2107.03374.pdf.

Yew Ken Chia, Vernon Toh Yan Han, Deepanway Ghosal, Lidong Bing, and Soujanya Poria. Puz-
zlevqa: Diagnosing multimodal reasoning challenges of language models with abstract visual
patterns. arXiv preprint arXiv:2403.13315, 2024.

9

https://arxiv.org/pdf/2107.03374.pdf
https://arxiv.org/pdf/2107.03374.pdf

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022. URL
https://arxiv.org/pdf/2204.02311.pdf.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Kaixin Li, Qisheng Hu, James Zhao, Hui Chen, Yuxi Xie, Tiedong Liu, Michael Shieh, and Junxian
He. InstructCoder: Instruction tuning large language models for code editing. In Xiyan Fu and
Eve Fleisig (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 4: Student Research Workshop), pp. 50–70, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. URL https://aclanthology.org/2024.
acl-srw.6.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023a.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023b.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024a.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024b.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
player? arXiv preprint arXiv:2307.06281, 2023.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. Advances in Neural Information Processing Systems, 35:2507–2521,
2022.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study
of catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint
arXiv:2308.08747, 2023a.

10

https://arxiv.org/pdf/2204.02311.pdf
https://aclanthology.org/2024.acl-srw.6
https://aclanthology.org/2024.acl-srw.6

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023b.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=iaYcJKpY2B_.

Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a roadmap. In Proceedings of
the Conference on the Future of Software Engineering, pp. 35–46, 2000.

OpenAI. Introducing ChatGPT. https://openai.com/blog/chatgpt, 2022.

OpenAI. Gpt-4 technical report. https://arxiv.org/pdf/2303.08774, 2023a.

OpenAI. Gpt-4v(ision) system card. https://cdn.openai.com/papers/GPTV_System_
Card.pdf, 2023b. Accessed: 2024-02-03.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.
URL https://arxiv.org/pdf/2211.05100.pdf.

Team Gemini, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai Lin, Zhiyuan Liu, and Maosong Sun.
Debugbench: Evaluating debugging capability of large language models. arXiv preprint
arXiv:2401.04621, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a. URL https:
//arxiv.org/pdf/2302.13971.pdf.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe Li, Qian Chen, Wen Wang, Tingyu Lin, Weishan
Zhao, Li Zhu, Shuiguang Deng, et al. Codescope: An execution-based multilingual multitask
multidimensional benchmark for evaluating llms on code understanding and generation. arXiv
preprint arXiv:2311.08588, 2023a.

11

https://openreview.net/forum?id=iaYcJKpY2B_
https://openai.com/blog/chatgpt
https://arxiv.org/pdf/2303.08774
https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://arxiv.org/pdf/2211.05100.pdf
https://arxiv.org/pdf/2302.13971.pdf
https://arxiv.org/pdf/2302.13971.pdf

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and Wen Wang. Codetransocean: A compre-
hensive multilingual benchmark for code translation. arXiv preprint arXiv:2310.04951, 2023b.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen
Hu, Pengcheng Shi, Yaya Shi, et al. mplug-owl: Modularization empowers large language models
with multimodality. arXiv preprint arXiv:2304.14178, 2023.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal
understanding and reasoning benchmark for expert agi. arXiv preprint arXiv:2311.16502, 2023.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan Wang,
Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with multilin-
gual benchmarking on humaneval-x. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 5673–5684, 2023.

A DATA SOURCES

The data in MMCode is collected from the following websites3:

• AtCoder: https://atcoder.jp

• Aizu: https://judge.u-aizu.ac.jp/onlinejudge/

• CodeChef: https://www.codechef.com

• CodeForces: https://codeforces.com4

• CodeWars: https://www.codewars.com

• Project Euler: https://projecteuler.net5

• GeeksForGeeks: https://www.geeksforgeeks.org

• HackerRank: https://www.hackerrank.com

• LeetCode: https://leetcode.com

• Open Kattis: https://open.kattis.com/

The statistical data of the quantity of questions and images retained from each platform can be
found in Table 5. In total, MMCode comprises 3548 programming questions. Among the sources,
CodeForces and Aizu contribute the most questions and images in MMCode.

Platform # Questions # Images
AtCoder 139 234
Aizu 694 1349
CodeChef 90 134
CodeForces 1941 3837
Project Euler 132 176
GeeksForGeeks 128 192
Open Kattis 145 195
HackerRank 169 316
CodeWars 33 46
LeetCode 77 141

Total 3548 6620

Table 5: The data sources of MMCode and the number of questions and images from each source.

3The license is Apache 2.0 from TACO unless specifically stated.
4No license found.
5CC BY-NC-SA 4.0.

12

https://atcoder.jp
https://judge.u-aizu.ac.jp/onlinejudge/
https://www.codechef.com
https://codeforces.com
https://www.codewars.com
https://projecteuler.net
https://www.geeksforgeeks.org
https://www.hackerrank.com
https://leetcode.com
https://open.kattis.com/

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

B DEFINITION OF IMAGE CATEGORIES

• Linear Data Structure: This category includes diagrams that illustrate sequential data
structures such as arrays, linked lists, and queues, where data elements are arranged in a
linear order.

• Tree: Dedicated to the data structure of trees, focusing on hierarchical representations.
• Graph: Includes visuals of graph data structures where nodes are connected by edges, e.g.,

directed and undirected graphs. If the problem description is about graphs but the image
depicts a tree (e.g. after pruning), it is still classified under this category.

• 2D Geometry: Focuses on two-dimensional geometric shapes and properties, including
points, lines, polygons, etc., emphasizing spatial relationships in a plane.

• 3D Geometry: Comprises images that depict three-dimensional objects and structures,
such as 3D coordinate systems, orthographic projections, and nets of cubes, showcasing
the complexity and characteristics of three-dimensional space.

• Chessboard: This category includes images showing a chessboard, where the model is
expected to solve a problem with respect to some rules of playing.

• Map: Pertains to images displaying maps that show positions. If the image features a graph
functioning as a map, it falls into this category.

• Patterns: Covers images that involve recognizing, generating, or solving puzzles and pat-
terns, which could be numerical, geometrical, or based on character arrangements.

• Table: Dedicated to tabular data presentations.
• Pseudocode: Includes images that contain pseudocode or simplified code, posing chal-

lenges to the dense OCR ability of the models.
• Others: Serves as a miscellaneous category for visual content that does not fit into other

categories, e.g. bar graphs, pie charts, and Venn diagrams.

C PROMPTS

All prompts used in this work are listed in Table 6.

13

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Type Prompt

Problem Solving

System Prompt (if applicable):
You are a professional programming contester trying to solve algorithmic
problems. The problems come with a description and some images, and
you should write a Python solution.

User Prompt:
You are required to solve a programming problem. Please enclose your
code inside a ```python``` block. Do not write a main() function. If a
Call-Based format is used, return the result in an appropriate place instead
of printing it.

{problem statement}

Caption Generation

Please describe and explain the images in the programming problem.
The readers will not be able to see the image, so make sure you include
all important information for solving the problem. Please enclose your
explanations inside ```plain``` blocks, one for each image. Your output
should look like:
Caption:
```plain
The image shows...```

{problem statement with only one image}

Table 6: The prompts used in this study.

D DATA SAMPLES

D.1 AN EXAMPLE OF A QUESTION WITH A PSEUDO CODE IMAGE

Bob is playing a game named ”Walk on Matrix”. In this game, player is given an n × m
matrix A = (ai,j), i.e. the element in the i-th row in the j-th column is ai,j . Initially, player
is located at position (1, 1) with score a1,1. To reach the goal, position (n,m), player can
move right or down, i.e. move from (x, y) to (x, y + 1) or (x + 1, y), as long as player
is still on the matrix. However, each move changes player’s score to the bitwise AND of
the current score and the value at the position he moves to. Bob can’t wait to find out the
maximum score he can get using the tool he recently learnt — dynamic programming. Here
is his algorithm for this problem:

However, he suddenly realizes that the algorithm above fails to output the maximum score
for some matrix A. Thus, for any given non-negative integer k, he wants to find out an n×m
matrix A = (ai,j) such that:

14



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

• 1 ≤ n,m ≤ 500 (as Bob hates large matrices);
• 0 ≤ ai,j ≤ 3 · 105 for all 1 ≤ i ≤ n, 1 ≤ j ≤ m (as Bob hates large numbers);
• the difference between the maximum score he can get and the output of his al-

gorithm is exactly k. It can be shown that for any given integer k such that
0 ≤ k ≤ 105, there exists a matrix satisfying the above constraints.

Input
The only line of the input contains one single integer k (0 ≤ k ≤ 105).
Output
Output two integers n, m (1 ≤ n,m ≤ 500) in the first line, representing the size of the
matrix. Then output n lines with m integers in each line, ai,j in the (i + 1)-th row, j-th
column.
Examples
Input
0

Output
1 1
300000

Input
1

Output
3 4
7 3 3 1
4 8 3 6
7 7 7 3

Note
In the first example, the maximum score Bob can achieve is 300000, while the output of his
algorithm is 300000.

D.2 AN EXAMPLE OF A QUESTION WITH A 2D GEOMETRY IMAGE

You have most definitely heard the legend of King Arthur and the Knights of the Round
Table. Almost all versions of this story proudly point out that the roundness of the Round
Table is closely related to Arthur’s belief of equality among the Knights. That is a lie! In
fact, Arthur’s choice of table is conditioned by his childhood traumas. In fact, Arthur was
forced to clean up quadratic tables from a young age after a tournament in pick-up sticks
had been played on them. After the tournament, typically there would be a bunch of sticks
on the table that do not touch each other. In the spirit of the game, the organizers issued
strict regulations for the table cleaners. More precisely, the sticks on the table need to be
removed one by one in a way that the cleaners pull them in the shortest way towards the edge
of the table closest to where they are currently sitting. They also mustn’t rotate or touch the
other sticks while doing this (not even in the edge points). In this task, we will represent the
table in the coordinate system with a square that has opposite points in the coordinates (0, 0)
and (10 000, 10 000), whereas the sticks will be represented with straight line segments that
lie within that square. We will assume that Arthur is sitting at the edge of the table lying
on the x-axis. Then the movement of the stick comes down to translating the line segment
along the shortest path towards the x-axis until the stick falls off the table (as shown in the
image). It is your task to help Arthur determine the order of stick movements that meets the
requirements from the previous paragraph.

15



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Input
The first line of input contains the integer N (1 ≤ N ≤ 5 000), the number of sticks
on the table. Each of the following N lines contains four integers x1, y1, x2, y2 (0 ≤
x1, y1, x2, y2 ≤ 10 000) that denote the edge points of a stick.
Output
The first and only line of output must contain space-separated stick labels in the order which
they need to be taken off the table. A stick’s label corresponds to its position in the input
sequence. If there are multiple possible solutions, output any of them.
Sample Input 1
4
1 3 2 2
1 1 3 2
2 4 7 3
3 3 5 3

Sample Output 1
2 4 1 3

Sample Input 2
4
0 0 1 1
1 2 0 3
2 2 3 3
4 0 3 1

Sample Output 2
4 3 1 2

Sample Input 3
3
4 6 5 5
2 1 15 1
3 2 8 7

Sample Output 3
2 3 1

16



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

D.3 AN EXAMPLE OF A QUESTION WITH A 3D GEOMETRY IMAGE

In AD 3456, the earth is too small for hundreds of billions of people to live in peace. In-
terstellar Colonization Project with Cubes (ICPC) is a project that tries to move people on
the earth to space colonies to ameliorate the problem. ICPC obtained funding from gov-
ernments and manufactured space colonies very quickly and at low cost using prefabricated
cubic blocks.
The largest colony looks like a Rubik’s cube. It consists of 3 × 3 × 3 cubic blocks (Figure
J.1A). Smaller colonies miss some of the blocks in the largest colony.
When we manufacture a colony with multiple cubic blocks, we begin with a single block.
Then we iteratively glue a next block to existing blocks in a way that faces of them match
exactly. Every pair of touched faces is glued.

Figure J.1: Largest colony
However, just before the first launch, we found a design flaw with the colonies. We need to
add a cable to connect two points on the surface of each colony, but we cannot change the
inside of the prefabricated blocks in a short time. Therefore we decided to attach a cable on
the surface of each colony. If a part of the cable is not on the surface, it would be sheared
off during the launch, so we have to put the whole cable on the surface. We would like to
minimize the lengths of the cables due to budget constraints. The dashed line in Figure J.1B
is such an example.
Input
The input contains a series of datasets. Each dataset describes a single colony and the pair
of the points for the colony in the following format.
x1y1z1x2y2z2
b0,0,0b1,0,0b2,0,0
b0,1,0b1,1,0b2,1,0
b0,2,0b1,2,0b2,2,0
b0,0,1b1,0,1b2,0,1
b0,1,1b1,1,1b2,1,1
b0,2,1b1,2,1b2,2,1
b0,0,2b1,0,2b2,0,2
b0,1,2b1,1,2b2,1,2
b0,2,2b1,2,2b2,2,2

(x1, y1, z1) and (x2, y2, z2) are the two distinct points on the surface of the colony, where
x1, x2, y1, y2, z1, z2 are integers that satisfy 0 ≤ x1, x2, y1, y2, z1, z2 ≤ 3. bi,j,k is ’#’ when
there is a cubic block whose two diagonal vertices are (i, j, k) and (i+ 1, j + 1, k+ 1), and
bi,j,k is ’.’ if there is no block. Figure J.1A corresponds to the first dataset in the sample
input, whereas Figure J.1B corresponds to the second. A cable can pass through a zero-width

17



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

gap between two blocks if they are touching only on their vertices or edges. In Figure J.2A,
which is the third dataset in the sample input, the shortest cable goes from the point A (0, 0,
2) to the point B (2, 2, 2), passing through (1, 1, 2), which is shared by six blocks. Similarly,
in Figure J.2B (the fourth dataset in the sample input), the shortest cable goes through the
gap between two blocks not glued directly. When two blocks share only a single vertex, you
can put a cable through the vertex (Figure J.2C; the fifth dataset in the sample input).
You can assume that there is no colony consisting of all 3× 3× 3 cubes but the center cube.
Six zeros terminate the input.

Figure J.2: Largest colony
Output
For each dataset, output a line containing the length of the shortest cable that connects the
two given points. We accept errors less than 0.0001. You can assume that given two points
can be connected by a cable.
Sample Input
0 0 0 3 3 3
###
###
###
###
###
###
###
###
###
3 3 0 0 0 3
#..
###
###
###
###
###
#.#
###
###
0 0 2 2 2 2
...
...
...
.#.
#..
...
##.
##.
...
0 1 2 2 1 1
...

18



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

...

...

.#.
#..
...
##.
##.
...
3 2 0 2 3 2
###
..#
...
..#
...
.#.
..#
..#
.##
0 0 0 0 0 0

Output for the Sample Input
6.70820393249936941515
6.47870866461907457534
2.82842712474619029095
2.23606797749978980505
2.82842712474619029095

D.4 AN EXAMPLE OF A QUESTION WITH A TREE IMAGE

Let’s define the Eulerian traversal of a tree (a connected undirected graph without cycles)
as follows: consider a depth-first search algorithm which traverses vertices of the tree and
enumerates them in the order of visiting (only the first visit of each vertex counts). This
function starts from the vertex number 1 and then recursively runs from all vertices which
are connected with an edge with the current vertex and are not yet visited in increasing
numbers order. Formally, you can describe this function using the following pseudocode:
next_id = 1
id = array of length n filled with -1
visited = array of length n filled with false

function dfs(v):
visited[v] = true
id[v] = next_id
next_id += 1
for to in neighbors of v in increasing order:

if not visited[to]:
dfs(to)

You are given a weighted tree, the vertices of which were enumerated with integers from 1
to n using the algorithm described above.
A leaf is a vertex of the tree which is connected with only one other vertex. In the tree given
to you, the vertex 1 is not a leaf. The distance between two vertices in the tree is the sum of
weights of the edges on the simple path between them.
You have to answer q queries of the following type: given integers v, l and r, find the shortest
distance from vertex v to one of the leaves with indices from l to r inclusive.
Input
The first line contains two integers n and q (3 ≤ n ≤ 500 000, 1 ≤ q ≤ 500 000) — the
number of vertices in the tree and the number of queries, respectively.

19



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

The (i − 1)-th of the following n − 1 lines contains two integers pi and wi (1 ≤ pi < i,
1 ≤ wi ≤ 109), denoting an edge between vertices pi and i with the weight wi.
It’s guaranteed that the given edges form a tree and the vertices are enumerated in the Eule-
rian traversal order and that the vertex with index 1 is not a leaf.
The next q lines describe the queries. Each of them contains three integers vi, li, ri (1 ≤
vi ≤ n, 1 ≤ li ≤ ri ≤ n), describing the parameters of the query. It is guaranteed that there
is at least one leaf with index x such that li ≤ x ≤ ri.
Output
Output q integers — the answers for the queries in the order they are given in the input.
Examples
Input
5 3
1 10
1 1
3 2
3 3
1 1 5
5 4 5
4 1 2

Output
3
0
13

Input
5 3
1 1000000000
2 1000000000
1 1000000000
1 1000000000
3 4 5
2 1 5
2 4 5

Output
3000000000
1000000000
2000000000

Input
11 8
1 7
2 1
1 20
1 2
5 6
6 2
6 3
5 1
9 10
9 11
5 1 11
1 1 4
9 4 8
6 1 4
9 7 11
9 10 11

20



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

8 1 11
11 4 5

Output
8
8
9
16
9
10
0
34

Note
In the first example, the tree looks like this:

In the first query, the nearest leaf for the vertex 1 is vertex 4 with distance 3. In the second
query, the nearest leaf for vertex 5 is vertex 5 with distance 0. In the third query, the nearest
leaf for vertex 4 is vertex 4; however, it is not inside interval [1, 2] of the query. The only
leaf in interval [1, 2] is vertex 2 with distance 13 from vertex 4.

D.5 AN EXAMPLE OF A QUESTION WITH A GRAPH IMAGE

Fox Ciel just designed a puzzle game called ”Polygon”! It is played using triangulations of
a regular n-edge polygon. The goal is to transform one triangulation to another by some
tricky rules.

Triangulation of an n-edge polygon is a set of n − 3 diagonals satisfying the condition that
no two diagonals share a common internal point.
For example, the initial state of the game may look like (a) in the figure. And your goal may
look like (c). In each step, you can choose a diagonal inside the polygon (but not one of the
edges of the polygon) and flip this diagonal.
Suppose you are going to flip a diagonal a − b. There always exist two triangles sharing
a − b as a side, let’s denote them as a − b − c and a − b − d. As a result of this operation,
the diagonal a− b is replaced by a diagonal c− d. It can be easily proven that after the flip
operation, the resulting set of diagonals is still a triangulation of the polygon.

21



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

So in order to solve the above case, you may first flip diagonal 6− 3, it will be replaced by
diagonal 2− 4. Then you flip diagonal 6− 4 and get figure (c) as a result.
Ciel just proved that for any starting and destination triangulations, this game has a solution.
She wants you to solve it in no more than 20, 000 steps for any puzzle satisfying n ≤ 1000.
Input
The first line contains an integer n (4 ≤ n ≤ 1000), the number of edges of the regular
polygon.
Then follows two groups of (n − 3) lines describing the original triangulation and goal
triangulation.
Description of each triangulation consists of (n − 3) lines. Each line contains 2 integers ai
and bi (1 ≤ ai, bi ≤ n), describing a diagonal ai − bi.
It is guaranteed that both original and goal triangulations are correct (i.e., no two diagonals
share a common internal point in both of these triangulations).
Output
First, output an integer k (0 ≤ k ≤ 20, 000): the number of steps.
Then output k lines, each containing 2 integers ai and bi: the endpoints of a diagonal you
are going to flip at step i. You may output ai and bi in any order.
If there are several possible solutions, output any of them.
Examples
Input
41 32 4

Output
11 3

Input
62 63 64 66 25 24 2

Output
26 36 4

Input
87 12 77 36 34 66 16 26 36 46 8

Output
37 37 27 1

Note
Sample test 2 is discussed above and shown on the picture.

D.6 AN EXAMPLE OF A QUESTION WITH AN UNRELATED IMAGE

Bash got tired on his journey to become the greatest Pokemon master. So he decides to take
a break and play with functions.
Bash defines a function f0(n), which denotes the number of ways of factoring n into two
factors p and q such that gcd(p, q) = 1. In other words, f0(n) is the number of ordered pairs
of positive integers (p, q) such that p · q = n and gcd(p, q) = 1.
But Bash felt that it was too easy to calculate this function. So he defined a series of func-
tions, where fr+1 is defined as:

Where (u, v) is any ordered pair of positive integers, they need not to be co-prime.
Now Bash wants to know the value of fr(n) for different r and n. Since the value could be
huge, he would like to know the value modulo 109 + 7. Help him!
Input

22



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

The first line contains an integer q (1 ≤ q ≤ 106) — the number of values Bash wants to
know.
Each of the next q lines contains two integers r and n (0 ≤ r ≤ 106, 1 ≤ n ≤ 106), which
denote Bash wants to know the value fr(n).
Output
Print q integers. For each pair of r and n given, print fr(n) modulo 109 + 7 on a separate
line.
Example
Input
50
301 253
652 54
48

Output
85254630

D.7 AN EXAMPLE OF A QUESTION WITH A TABLE IMAGE

At a regular competition, Vladik and Valera won a and b candies respectively. Vladik offered
1 his candy to Valera. After that, Valera gave Vladik 2 his candies, so that no one thought
that he was less generous. Vladik for the same reason gave 3 candies to Valera in the next
turn.
More formally, the guys take turns giving each other one candy more than they received in
the previous turn.
This continued until the moment when one of them couldn’t give the right amount of candy.
Candies, which guys got from each other, they don’t consider as their own. You need to
know who is the first who can’t give the right amount of candy.
Input
A single line of input data contains two space-separated integers a, b (1 ≤ a, b ≤ 109) —
the number of Vladik and Valera candies respectively.
Output
Print a single line ”Vladik” if Vladik is the first who can’t give the right amount of candy, or
”Valera” otherwise.
Examples
Input
1 1

Output
Valera

Input
7 6

Output
Vladik

Note
Illustration for the first test case:

Illustration for the second test case:

23



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

D.8 AN EXAMPLE OF A QUESTION WITH AN LINEAR DATA STRUCTURE IMAGE

Dima is a beginner programmer. During his working process, he regularly has to repeat the
following operation again and again: to remove every second element from the array. One
day he has been bored with easy solutions of this problem, and he has come up with the
following extravagant algorithm.
Let’s consider that initially, the array contains n numbers from 1 to n and the number i
is located in the cell with the index 2i − 1 (Indices are numbered starting from one) and
other cells of the array are empty. Each step Dima selects a non-empty array cell with the
maximum index and moves the number written in it to the nearest empty cell to the left of
the selected one. The process continues until all n numbers will appear in the first n cells of
the array. For example if n = 4, the array is changing as follows:

You have to write a program that allows you to determine what number will be in the cell
with index x (1 ≤ x ≤ n) after Dima’s algorithm finishes.
Input
The first line contains two integers n and q (1 ≤ n ≤ 1018, 1 ≤ q ≤ 200, 000), the number
of elements in the array and the number of queries for which it is needed to find the answer.
Next q lines contain integers xi (1 ≤ xi ≤ n), the indices of cells for which it is necessary
to output their content after Dima’s algorithm finishes.
Output
For each of q queries, output one integer number, the value that will appear in the corre-
sponding array cell after Dima’s algorithm finishes.
Examples
Input
4 3234

Output
324

Input
13 410548

Output

24



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

13389

Note
The first example is shown in the picture.
In the second example, the final array is [1, 12, 2, 8, 3, 11, 4, 9, 5, 13, 6, 10, 7].

D.9 AN EXAMPLE OF A QUESTION WITH AN OTHER IMAGE

Even polar bears feel cold when lying on the ice. Therefore, a polar bear Alice is going to
make a carpet. The carpet can be viewed as a grid with height h and width w. Then the
grid is divided into h× w squares. Alice is going to assign one of k different colors to each
square. The colors are numbered from 1 to k. She may choose not to use all of the colors.
However, there are some restrictions. For every two adjacent squares (squares that share an
edge) x and y, there is a color constraint in one of the forms:

• color(x) = color(y), or
• color(x) ̸= color(y).

Example of the color constraints:

Ideally, Alice wants to satisfy all color constraints. But again, life in the Arctic is hard. It is
not always possible to satisfy all color constraints. Fortunately, she will still be happy if at
least 3

4 of the color constraints are satisfied.
If she has 4 colors she can color the carpet in the following way:

25



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

And she is happy because 13
17 of the color constraints are satisfied, and 13

17 > 3
4 . Your task is

to help her color the carpet.
Input
The first line contains three integers h,w, k (2 ≤ h,w ≤ 1000, 1 ≤ k ≤ w · h). The next
2h − 1 lines describe the color constraints from top to bottom, left to right. They contain
w−1, w, w−1, w, . . . , w−1 characters respectively. Each color constraint is represented by
a character ”E” or ”N”, where ”E” means ” = ” and ”N” means ” ̸= ”. The color constraints
are listed in the order they are depicted in the picture.
Output
If there is a coloring that satisfies at least 3

4 of the color constraints, print ”YES” (without
quotes) on the first line. In each of the next h lines, print w integers describing the coloring.
Otherwise, print ”NO” (without quotes).
Examples
Input
3 4 4ENENNEENEEENENENN

Output
YES
1 1 2 2
3 4 1 1
3 3 2 4

D.10 AN EXAMPLE OF A QUESTION WITH AN UNRELATED IMAGE

It’s another day in the office, and you’re a master-
mind of not doing any work yourself. Instead, you’ll
go to your coworkers for “help,” but secretly have
them do all the work.

26



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

You’ve determined that the more one of your
coworkers helps you, the more annoyed they be-
come. You’ve also been able to determine how
much more annoyed a coworker gets every time you
ask them for help. At the beginning of the day, a
coworker is initially a annoyed at you. That’s their
annoyance level. Every time you ask them for help
though, they become d more annoyed at you – their
annoyance level a increases by a constant amount d
so that a = a+ d.
You want to complete a project of h tasks solely with
“help” from your coworkers, but you need to be careful not to annoy any of them too much.
What’s the best you can do?

27



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Model Linear Tree Graph 2D 3D Chess-
board Map Math Patterns Table Pseudo-

code Others Average

Language Only Inputs
LLaVA-1.5-7B (text-only) 8.1 2.1 1.3 0.6 0.1 6.7 0.0 0.2 2.9 1.8 0.0 2.7 2.2
LLaVA-1.5-13B (text-only) 9.8 0.4 3.9 0.4 0.6 0.1 0.1 4.2 4.0 1.8 11.1 1.7 2.9
QWEN-VL (text-only) 4.3 1.9 0.2 2.5 3.0 9.3 3.8 1.7 0.0 1.8 10.2 2.2 2.7
CodeGemma-7b-Instruct 20.5 7.1 4.8 6.6 10.3 14.3 10.8 7.5 18.1 8.3 20.0 7.5 11.1
CodeLLaMA-7b-instsruct 12.1 3.9 5.4 5.6 0.4 3.6 1.7 5.9 8.7 6.5 10.3 0.9 5.4
CodeLLaMA-13b-instruct 9.3 7.9 5.0 5.3 2.8 6.8 2.1 1.7 3.8 5.4 10.0 1.4 4.9
DeepSeekCoder-7b-instruct 27.4 10.8 13.8 6.4 9.8 38.0 20.9 17.4 15.7 12.7 12.4 12.7 16.5
DeepSeekCoder-33b-instruct 31.1 7.2 19.7 22.8 13.5 31.0 26.6 18.7 18.5 15.5 31.1 25.3 21.5
LLaMA3-instruct 17.8 4.2 10.9 10.4 7.3 11.1 11.6 7.7 7.9 22.8 1.2 6.0 9.9
MagiCoder 24.9 8.4 17.1 8.6 3.0 20.4 17.5 10.4 21.5 12.8 21.7 19.5 15.3
StarCoder-15b-instruct 16.3 5.0 4.9 12.6 4.4 2.5 3.6 7.2 10.3 5.7 10.7 2.9 7.5
WizardCoder 11.2 5.4 6.1 8.2 2.2 10.7 6.3 10.1 15.3 5.9 21.0 6.2 8.6
Gemini Pro 25.0 3.9 4.9 7.5 6.0 13.6 13.2 4.3 21.1 8.1 20.4 17.1 12.0
GPT-3.5-turbo-1106 38.3 18.6 17.9 17.1 14.6 25.4 20.8 16.8 26.9 19.0 21.9 18.6 21.0
GPT-4 40.3 22.0 20.9 19.5 17.7 29.6 25.3 24.7 48.4 24.1 33.8 37.2 28.0
GPT-4V (text-only) 52.4 17.9 23.1 20.0 17.4 37.9 23.5 20.3 34.4 30.4 44.9 39.6 28.5
GPT-4o (text-only) 40.8 10.1 15.8 18.3 14.6 31.5 16.2 28.7 30.8 8.8 45.1 29.2 23.3

Vision + Language Inputs
LLaVA-1.5-7B 12.6 4.5 0.6 3.4 2.7 6.7 0.8 0.1 0.2 2.6 0.0 0.4 3.2
LLaVA-1.5-13B 8.2 3.9 0.1 0.1 0.6 0.7 3.2 1.0 3.7 1.8 0.7 0.3 2.3
QWEN-VL 11.1 2.3 0.2 0.7 0.0 2.8 0.1 2.3 4.9 3.7 0.0 1.6 2.5
Gemini Pro Vision 20.6 4.9 5.9 7.1 6.9 10.8 15.0 5.0 16.2 7.9 31.2 7.5 10.7
GPT-4V 59.7 22.9 21.3 19.1 19.8 37.2 26.5 16.2 39.2 24.8 43.3 29.8 29.5
GPT-4o 44.7 12.8 20.0 13.0 15.9 34.9 34.2 31.6 37.3 15.2 50.0 25.5 27.0

Table 7: Test case average grouped by different image categories.

E MORE EXPERIMENTS

E.1 TEST CASE AVERAGE PASS RATES

We also report partial success metrics measured by the test case average following APPS[1], pre-
sented in Table 7. We observed that it aligns well with the pass@1 reported in Table 2.

E.2 IMAGE REPLACEMENT CAPTIONING

In this experiment, language-only models are prompted with Image Replacement captioning, but the
captions are generated by different models. The results are showcased in Table 8. GPT-4’s accuracy
drops when using Gemini Pro Vision’s captions, while Gemini Pro yields identical results.

Model Caption Model Linear Tree Graph 2D 3D Chess-
board Map Math Patterns Table Pseudo-

code Others Average

Gemini Pro Gemini Pro Vision 16.0 0.0 0.0 6.7 0.0 6.7 3.6 0.0 11.1 7.1 20.0 7.7 6.1
Gemini Pro GPT-4V (gpt-4-1106-preview) 16.0 0.0 0.0 6.7 0.0 6.7 3.6 0.0 11.1 7.1 20.0 7.7 6.1
GPT-4 (gpt-4-1106-preview) Gemini Pro Vision 32.0 3.4 17.4 6.7 7.7 33.3 25.0 12.0 25.9 21.4 40.0 19.2 18.6
GPT-4 (gpt-4-1106-preview) GPT-4V (gpt-4-1106-preview) 32.0 10.3 17.4 6.7 3.8 33.3 25.0 12.0 33.3 21.4 40.0 19.2 19.0

Table 8: Image Replacement captioning performance measured by Pass@1 (%) of models with
different caption sources.

E.3 IMAGE POSITIONS

Since the problems are typically long, it is uncertain if the images receive sufficient attention of the
model. Motivated by the findings of Liu et al. (2024b), we explored whether the position of the
images affects the performance.

The results in Table 9 illustrate the impact of image positioning in the problem statements. Specif-
ically, for Gemini Pro Vision, maintaining images in their original positions results in the highest
pass rates. Grouping the images at either the beginning or the end of the texts hurt performance. No-

28



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

tably, GPT-4V demonstrates significant robustness, with its overall accuracy remaining unaffected.

Model Image position Linear Tree Graph 2D 3D Chess-
board Map Math Patterns Table Pseudo-

code Others Total

Gemini Pro Vision
in-place 12.5 0.0 4.3 0.0 3.8 6.7 7.1 0.0 7.4 0.0 30.0 0.0 5.0

front 8.7 0.0 0.0 0.0 0.0 0.0 7.1 0.0 3.7 0.0 30.0 3.8 3.4
end 16.0 0.0 0.0 0.0 3.8 0.0 3.6 0.0 7.4 0.0 30.0 3.8 4.6

GPT-4V (gpt-4-1106-preview)

in-place 40.0 6.9 13.0 13.8 3.8 21.4 24.0 9.5 25.9 21.4 40.0 20.8 19.4
front 36.0 6.9 8.7 6.9 7.7 50.0 24.0 0.0 33.3 14.3 40.0 20.8 19.4
end 40.0 6.9 13.0 10.3 7.7 21.4 36.0 14.3 18.5 14.3 40.0 20.8 19.4

Table 9: The impact of image positioning. “in-place” refers to images interspersed within the text,
while “front” and “end” indicate images grouped at the start or end of the problem statement.

29



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

F CASE STUDY: CAPTIONS

Linear Data Structure

Gemini Vision Pro

The image shows an array of 4 elements, with indices ranging from 1 to 7. The
elements are arranged as follows:
[1, 2, 3, 4, , , ]

GPT-4V

The image shows a sequence of four diagrams labeled I. to IV., representing the
steps of Dima’s algorithm applied to an array with n = 4 elements. Each diagram
depicts an array with seven cells, numbered from 1 to 7 at the bottom. Initially, the
numbers 1 to 4 are placed in cells 1, 3, 5, and 7, respectively. The diagrams illustrate
the process of moving the numbers to the left into the nearest empty cells until all
numbers are in the first four cells of the array. Arrows indicate the movement of
numbers from one cell to another.

Figure 5: An example of a Linear Data Structure image. Gemini Pro Vision only sees one
subfigure, and generates unusable captions. GPT-4V’s caption is correct, but the details of step II,
III and IV are not included.

30



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Pseudocode

Gemini Vision Pro

The image shows Bob’s dynamic programming algorithm. It takes a matrix A as
input and outputs the maximum score S after reaching the goal. The algorithm ini-
tializes a 2D array dp with all zeros, except for dp[0, 0] which is set to A[1, 1]. Then,
for each row i from 1 to n, the algorithm iterates through each column j from 1 to m
and updates dp[i, j] to the maximum of dp[i - 1, j] & A[i, j], dp[i, j - 1] & A[i, j], and
dp[i - 1, j - 1] & A[i, j]. Finally, the algorithm returns dp[n, m].

GPT-4V

The image shows a text box with the title ”Algorithm 1 Bob’s Dynamic Program-
ming Algorithm” and contains pseudocode for a dynamic programming approach to
solve a problem related to a game named ”Walk on Matrix”. The algorithm takes as
input an n by m matrix A with elements ai,j and outputs the maximum score S after
reaching the goal. The pseudocode outlines the steps of initializing a 2D array dp
with zeros, except for dp[0,1] which is set to a1,1. It then iterates through the matrix,
updating the dp array with the maximum of two bitwise AND operations involving
the current element and its adjacent elements to the left and above. The final score S
is set to the value of dp[n,m].

Figure 6: An example of a Pseudocode image. Gemini Pro Vision makes a mistake in the array
index and hallucinates, while GPT-4V’s caption is correct.

31



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

2D Geometry

Gemini Vision Pro

The image shows a square representing the table with four sticks on it. The sticks
are represented by line segments. The first stick is a diagonal line from (1, 3) to (2,
2). The second stick is a horizontal line from (1, 1) to (3, 2). The third stick is a
diagonal line from (2, 4) to (7, 3). The fourth stick is a vertical line from (3, 3) to
(5, 3). The red dotted lines show the shortest paths for removing the sticks. The first
stick is removed by moving it down to the x-axis. The second stick is removed by
moving it left to the x-axis. The third stick is removed by moving it down to the
x-axis. The fourth stick is removed by moving it left to the x-axis.

GPT-4V

The image shows a Cartesian coordinate system with a grid and three line segments
representing sticks on a table. The x-axis is labeled from -1 to 7, and the y-axis is
labeled from -1 to 4. There are three sticks: one is almost horizontal at y=3, another
is slanted and crosses the y-axis at y=1, and the third is vertical at x=3. Red dashed
arrows indicate the direction in which the sticks should be moved towards the x-
axis. The vertical stick has an arrow pointing directly downward, while the slanted
stick has an arrow pointing diagonally down to the nearest point on the x-axis. The
horizontal stick does not have an arrow, but it is implied that it would move straight
down as well. This illustrates the rule that sticks must be moved towards the x-axis
along the shortest path without rotation or touching other sticks.

Figure 7: An example of a 2D Geometry image. Both models struggle to discern the segments
and extract their attributes.

32



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

3D Geometry

Gemini Vision Pro

Figure J.1A shows the largest colony, which consists of 3 × 3 × 3 cubic blocks.
Figure J.1B shows a smaller colony with some blocks missing. The dashed line in
Figure J.1B is an example of a cable connecting two points on the surface of the
colony.

GPT-4V

The image contains two parts labeled as Figure J.1A and Figure J.1B, illustrating
examples of space colonies made up of cubic blocks. Both parts show a three-
dimensional coordinate system with axes labeled x, y, and z.

Figure J.1A depicts a large colony that resembles a Rubik’s cube, consisting
of 3× 3× 3 cubic blocks, forming a perfect cube.

Figure J.1B shows a smaller colony with some cubic blocks missing. The
colony is irregularly shaped due to the missing blocks. There are dashed lines
indicating the shortest path for a cable on the surface of the colony, connecting two
points labeled as Point A (3,3,0) and Point B (0,0,3). The path of the cable wraps
around the surface of the blocks, illustrating the requirement that the cable must
remain on the surface.

Figure 8: An example of a 3D image. Gemini Vision Pro only saw one of the segmented lines (called
“cables” in the problem). GPT-4V interprets the image correctly.

33



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Tree

Gemini Vision Pro

The image shows a tree with 5 vertices and 4 edges. The vertices are numbered from
1 to 5. The edges are: (1, 2) with weight 10, (1, 3) with weight 1, (3, 4) with weight
2, and (3, 5) with weight 3.

GPT-4V

The image shows a tree graph with 5 vertices labeled 1 through 5. Vertex 1 is con-
nected to vertex 2 with an edge weight of 10 and to vertex 3 with an edge weight
of 1. Vertex 3 is further connected to vertices 4 and 5 with edge weights of 2 and
3, respectively. The graph is drawn with vertices represented as circles containing
their labels, and the edges are lines connecting these circles with the weights written
alongside.

Figure 9: An example of a Tree image. Both models generate correct captions.

34



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Graph

Gemini Vision Pro

The image shows a regular hexagon with 6 vertices labeled 1 through 6. There are 3
diagonals drawn in the hexagon, forming a triangulation.

GPT-4V

The image shows three figures labeled (a), (b), and (c), each representing a different
triangulation of a hexagon (a six-edged polygon). Each vertex of the hexagon is
numbered from 1 to 6 in a clockwise direction. The figures illustrate the process of
transforming one triangulation into another by flipping diagonals.

Figure (a) shows the initial triangulation with diagonals connecting vertices
1-4, 1-5, and 5-3.
Figure (b) shows an intermediate step after flipping the diagonal 6-3 to 2-4.
Figure (c) shows the goal triangulation with diagonals connecting vertices 1-4, 2-4,
and 2-3.

Figure 10: An example of a Graph image. Gemini Vision Pro fails to recognize all three hexagons
and the caption is vague, missing key information of how the hexagons are constructed. GPT-4V
summarizes all subfigures but hallucinates on the vertices connected.

35



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table

Gemini Vision Pro

The image shows a 2x3 table with the following values:

step — Vladik — Valera
——-———–———–
0 — 7 — 6
1 — 6 — 7
2 — 5 — 8
3 — 4 — 9
4 — 3 — 10
5 — 2 — 11
6 — 1 — 12
7 — 0 — 13

GPT-4V

The image shows a table with three columns and three rows. The columns are labeled
”step”, ”Vladik”, and ”Valera”. The rows represent the steps of the candy exchange
process. At step 0, Vladik has 1 candy, and Valera also has 1 candy. At step 1, after
Vladik gives 1 candy to Valera, Vladik has 0 candies left, and Valera has 2 candies.

Figure 11: An example of a Table. Surprisingly, neither of the models were able to transcript the
table correctly.

36



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Map

Gemini Vision Pro

The image shows a 3x3 grid with a character called Kenus at square (1, 1). The
squares are painted black or white. Kenus can move up, down, left or right by one
square. The game is completed when Kenus reaches square (3, 3) passing only white
squares. Snuke can change the color of some of the white squares to black before
the beginning of the game. However, he cannot change the color of square (1, 1) and
(3, 3).

GPT-4V

The image shows a 3x3 grid with a stick figure representing Kenus at the top left
corner (square 1,1). The grid has black and white squares, with the black squares
represented by a solid fill and the white squares by an absence of fill. The left side
of the image shows the initial state of the grid, with the top right square (1,3) and the
middle left square (2,1) being black. The right side of the image shows the same grid
after two white squares have been changed to black, specifically the middle square
(2,2) and the bottom middle square (3,2). Arrows indicate the path Kenus can take to
reach the bottom right corner (3,3), moving right, down, down, and right, avoiding
black squares.

Figure 12: An example of a Map image. Gemini Pro Vision’s caption is correct overall, but important
details about the path is missing. GPT-4V recognizes the switched squares, but grounds them to
wrong positions.

37



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Chessboard

Gemini Vision Pro

The image shows a 7x7 chessboard with 7 green knights placed on it. The green
knights are placed in the following cells: (1, 2), (2, 1), (4, 1), (5, 2), (5, 7), (6, 6),
and (7, 6). There is a red knight in cell (3, 3), and a blue knight in cell (4, 5).

GPT-4V

The image shows a 7x7 section of an infinite chessboard with rows labeled 1 to 7
from bottom to top and columns labeled 1 to 7 from left to right. There are five cells
marked with green zeroes, representing the initial knights’ positions. These cells are
located at coordinates (1,2), (2,1), (2,6), (5,2), and (5,7). There is one cell marked
with a red one at coordinates (3,3), indicating a knight placed during the process
because it is under attack by at least four knights. Another cell is marked with a blue
two at coordinates (4,5), showing that it will also have a knight placed in it after the
knight in the red cell is added, as it will then be under attack by four knights. The
rest of the cells are empty.

Figure 13: An example of a Chessboard image. The descriptions are mostly correct, but both
models fail to list all green squares.

38



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Math

Gemini Vision Pro

The image shows a screenshot of a programming problem. The problem statement
is as follows:
...(Repeats the problem statement) fr+1 is defined as:

fr+1(n) =
∑

u2−v2=n

fr(u) + fr(v)

2

...(The rest of the problem statement)

GPT-4V

The image shows a mathematical function definition for fr+1(n) which is equal to
the sum over all ordered pairs (u, v) such that u ∗ v = n of the average of fr(u) and
fr(v). The function fr is defined recursively, and the base function f0(n) counts the
number of ways of factoring n into two co-prime factors p and q. The image is a part
of a programming problem statement that involves calculating the value of fr(n) for
given values of r and n, modulo 109 + 7.

Figure 14: An example of a Math image. Gemini Pro Vision’s output contains unnecessary parts,
and the subscript of the recognized equation is wrong. GPT-4V’s caption is accurate.

39



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Pattern

Gemini Vision Pro

The image shows a 2x2 grid with 4 pipe segments. The segments are numbered 1,
2, 3, and 4.
Segment 1 is a horizontal segment at the top of the grid.
Segment 2 is a vertical segment at the left side of the grid.
Segment 3 is a horizontal segment at the bottom of the grid.
Segment 4 is a vertical segment at the right side of the grid.

GPT-4V

The image shows four types of pipe segments, each represented by a square with
two arrows indicating the ends of the pipe. Segment 1 has ends at the top and left,
segment 2 has ends at the bottom and left, segment 3 has ends at the top and right,
and segment 4 has ends at the bottom and right.

Figure 15: An example of a Pattern image. GPT-4V succeeds in describing two of the four
blocks, whereas Gemini Vision Pro fails to interpret any.

40



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Others

Gemini Vision Pro

The image shows a round cake cut into 16 equal fan-shaped pieces.
The pieces are arranged in a circle, and each piece is labeled with a number from 1
to 16.
The colors of the pieces alternate between red and blue.

GPT-4V

The image shows a round cake cut into 16 equal fan-shaped pieces. The pieces are
alternately colored in red and blue to represent the pieces taken by E869120 and
square1001, respectively. There are 5 red pieces and 4 blue pieces, with no two
adjacent pieces of the same color, indicating that the instruction in the note has been
followed.

Figure 16: An example of a Others image. Both models are correct.

41



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

G CASE STUDY: CODE ANALYSIS

In this section, some samples of machine-generated solution code are presented and studied. Incor-
rect segments are colored in red and bolded in the code listed.

G.1 INCORRECT AND INEFFICIENT SOLUTION

Sometimes GPT-4V can generate inefficient code that takes too long to finish execution, leading to
a time-out. An demonstration is given in Figure 17 and Figure 18. Moreover, it implements a wrong
method of calculating the required quantity.

The problem statement is listed in Figure 17. It asks to find the number of faces in a minimum
3D shape made of unit cubes that cover all integer coordinates within a sphere of radius

√
n. In

Figure 18, GPT-4V’s solution loops over all integer points inside −
√
n ≤ x, y, z ≤

√
n. A cleverer

method is to leverage the symmetry and only count the faces perpendicular to an axis, reducing the
operations to 1

6 of the original. Moreover, the algorithm for calculating the connected faces in the
code is incorrect.

G.2 TYPEERROR CAUSED BY NAMING CONFLICT

As mentioned in Section 6.3.2, despite the advance in understanding complex questions and gener-
ating syntactically correct solutions, GPT-4V still makes basic errors. In this example code shown
in Figure 19, GPT-4V assigns the name len to a local variable, which conflicts with and overrides
the Python built-in len() function. Consequently, when the code attempts to obtain the length of
a list on line 14, it raises a TypeError. This is because len now refers to the variable, not the
function it originally intended to use.

42



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Problem

Let J(n) be a three-dimensional body that:
• is a union of unit cubes whose all vertices lie on integer coordinates,
• contains all points that are closer than the distance of

√
n to the origin, and

• is the smallest of all such bodies.
Figure 1 below shows how J(1), J(2), and J(3) look.

Your task is to calculate how many faces J(n) have. Here, we define two squares belong to
the same face if they are parallel and share an edge, but don’t if they share just a vertex.
Input
The input consists of multiple data sets, each of which comes with a single line containing
an integer n (1 ≤ n ≤ 1000000). The end of input is indicated by n = 0.
Output
For each data set, print the number of faces J(n) have.
Sample Input
1
2
3
4
0

Output for the Sample Input
6
30
30
6

Figure 17: The description of the problem of the case study.

43



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

1 import math
2

3 def count_faces(n):
4 # Calculate the radius of the sphere
5 r = math.sqrt(n)
6

7 # Calculate the range for x, y, z
8 limit = math.ceil(r)
9

10 # Initialize the count of faces
11 faces = 0
12

13 # Iterate through all possible cubes and count the
faces↪→

14 for x in range(-limit, limit + 1):
15 for y in range(-limit, limit + 1):
16 for z in range(-limit, limit + 1):
17 # Check if the cube is on the surface of

J(n)↪→

18 if r - 1 < math.sqrt(x**2 + y**2 + z**2) <=
r:↪→

19 # Check each face of the cube
20 for dx, dy, dz in [(1, 0, 0), (0, 1,

0), (0, 0, 1)]:↪→

21 # If the neighboring cube is not
part of J(n), count the face↪→

22 if math.sqrt((x+dx)**2 + (y+dy)**2
+ (z+dz)**2) > r:↪→

23 faces += 1
24

25 return faces
26

27 # Read input and process each case
28 while True:
29 n = int(input())
30 if n == 0:
31 break
32 print(count_faces(n))

Figure 18: An inefficient and incorrect solution generated by GPT-4V.

44



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

GPT-4V’s solution

1 def calculate_optimal_sum(n, len, a, k):
2 # Helper function to calculate the sum of a subarray
3 def subarray_sum(i):
4 return sum(a[i:i+len])
5
6 # Calculate the initial optimal sum without any

operations↪→

7 optimal_sum = max(subarray_sum(i) for i in range(n -
len + 1))↪→

8
9 # Sort the array elements by their absolute values in

descending order↪→

10 # This will help us to choose which elements to flip to
maximize the sum↪→

11 negative_elements = sorted((x for x in a if x < 0),
key=abs, reverse=True)↪→

12
13 # Perform up to k operations, flipping the most

negative elements↪→

14 for i in range(min(k, len(negative_elements))):
15 # Flip the negative element to positive
16 negative_elements[i] *= -1
17 # Update the array with the flipped element
18 a[a.index(negative_elements[i] * -1)] =

negative_elements[i]↪→

19
20 # Calculate the new optimal sum after performing the

operations↪→

21 optimal_sum = max(optimal_sum, max(subarray_sum(i) for
i in range(n - len + 1)))↪→

22
23 return optimal_sum
24
25 # Read input
26 n, len = map(int, input().split())
27 a = list(map(int, input().split()))
28 k = int(input())
29
30 # Calculate and print the result
31 print(calculate_optimal_sum(n, \textbf{len}, a, k))

Figure 19: A sample of GPT-4V’s wrong solution caused by a name conflict.

45



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

G.3 INPUT PARSING ERROR

The problem shown in Figure 20 asks the summation of a certain function with input from 3 to 107.
However, GPT-4V tries to read the upper limit from user input in line 24 in Figure 21, raising an
EOFError (End of File Error) because the input is empty.

Problem

A snowflake of order n is formed by overlaying an equilateral triangle (rotated by 180 de-
grees) onto each equilateral triangle of the same size in a snowflake of order n − 1. A
snowflake of order 1 is a single equilateral triangle.

Some areas of the snowflake are overlaid repeatedly. In the above picture, blue represents
the areas that are one layer thick, red two layers thick, yellow three layers thick, and so on.
For an order n snowflake, let A(n) be the number of triangles that are one layer thick,
and let B(n) be the number of triangles that are three layers thick. Define G(n) =
gcd(A(n), B(n)).
E.g. A(3) = 30, B(3) = 6, G(3) = 6.
A(11) = 3027630, B(11) = 19862070, G(11) = 30.
Further, G(500) = 186 and

∑500
n=3 G(n) = 5124.

Find
107∑
n=3

G(n).

Figure 20: The description of the problem that causes an input parsing error.

46



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

1 from math import gcd
2
3 def calculate_snowflake_layers(n):
4 # Base values for A(3) and B(3)
5 A = 30
6 B = 6
7 G = gcd(A, B)
8
9 # Calculate A(n) and B(n) using the recursive

relationship↪→

10 for i in range(4, n + 1):
11 A = A * 3 + 12 * (i - 2)
12 B = B * 3 + 6 * (i - 2)
13 G = gcd(A, B)
14
15 return G
16
17 def sum_of_gcds(n):
18 total_sum = 0
19 for i in range(3, n + 1):
20 total_sum += calculate_snowflake_layers(i)
21 return total_sum
22
23 # Read the upper limit from standard input
24 upper limit = int(input())
25
26 # Calculate and print the sum of GCDs
27 print(sum_of_gcds(upper_limit))

Figure 21: GPT-4V tries to read the upper limit from user input but it should be hardcoded 107.

47


	Introduction
	Related Works
	Code Large Language Models
	Coding Benchmarks
	Reasoning-Intense Visual Question Answering

	[width=0.5cm]figures/logo.png MMCode
	Data Sources
	Data Collection Pipeline
	Data Splits
	Testing Pipeline

	Data Analysis
	Experiments
	Experimental Setup

	Evaluation Results
	Results and Findings
	Error Analysis
	Case Study
	Caption Quality
	Code Quality


	Conclusion
	Data Sources
	Definition of Image Categories
	Prompts
	Data Samples
	An example of a question with a pseudo code image
	An example of a question with a 2D geometry image
	An example of a question with a 3D geometry image
	An example of a question with a tree image
	An example of a question with a graph image
	An example of a question with an unrelated image
	An example of a question with a table image
	An example of a question with an linear data structure image
	An example of a question with an other image
	An example of a question with an unrelated image

	More experiments
	Test Case Average Pass Rates
	Image Replacement Captioning
	Image Positions

	Case Study: Captions
	Case Study: Code Analysis
	Incorrect and Inefficient solution
	TypeError caused by naming conflict
	Input Parsing Error


