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Abstract

The widespread integration of Machine Learning systems in daily life, particularly in high-
stakes domains, has raised concerns about the fairness implications. While prior works have
investigated static fairness measures, recent studies reveal that automated decision-making
has long-term implications and that off-the-shelf fairness approaches may not serve the
purpose of achieving long-term fairness. Additionally, the existence of feedback loops and
the interaction between models and the environment introduces additional complexities that
may deviate from the initial fairness goals. In this survey, we review existing literature on
long-term fairness from different perspectives and present a taxonomy for long-term fairness
studies. We highlight key challenges and consider future research directions, analyzing both
current issues and potential further explorations.

1 Introduction

As Machine Learning (ML) algorithms assume increasingly influential roles in high-stake domains tradition-
ally steered by human judgments, an extensive body of research has brought attention to the challenges
of bias and discrimination against marginalized groups (Mehrabi et al., 2021; Cheng et al., 2021b). These
issues are pervasive and manifest in different settings, including finance, legal (e.g., pretrial bail decisions),
aviation, and healthcare practices, among others (Gohar et al., 2024; Barocas et al., 2023). The community
has led tremendous research efforts toward measuring and mitigating algorithmic unfairness (Mehrabi et al.,
2021). However, the majority of such fairness approaches quantify unfairness based on predefined statistical
or causal criteria, often assuming a constant environment and system, defined as static fairness. This myopic
conceptualization of fairness usually focuses on short-term outcomes and assesses only the instantaneous im-
pact of interventions at a single snapshot, overlooking system dynamics (dynamic fairness) and/or long-term
consequences over a time horizon (Zhang et al., 2020; Liu et al., 2018).

Recent works have brought attention to the misalignment of long-term fairness considerations with the
fairness objectives optimized in static settings and shown that imposing static fairness criteria often does not
guarantee long-term fairness and may even amplify discrimination (Hu et al., 2019; Liu et al., 2018). One way
static fairness approaches fall short is by failing to account for the future implications of current decisions
on individuals or groups, undermining their effectiveness. For example, in predictive policing, Ensign et al.
(2018) observed how an initial higher allocation of police in a specific area leads to more reported incidents,
perpetuating increased surveillance and exacerbating the marginalization of those communities over time.
To this end, a large body of work has proposed various methods to measure, mitigate, and evaluate different
aspects of fairness in the long-term setting rather than achieving fairness for a single time step.

Simply put, long-term fairness constitutes the settings outside of static fairness framework and short-term
outcomes by addressing fairness over extended periods rather than focusing solely on immediate outcomes.
Importantly, it represents a spectrum of temporal fairness, from single-step effects (non-static) to sequential
and multi-step fairness over extended periods, all of which are incorporated within our taxonomy (Figure 1)
to capture the rich complexity of real-world scenarios. While dynamic fairness aligns with this concept by
considering evolving dynamics over time Li et al. (2023), long-term fairness has a much broader scope. This
umbrella term has different facets, including sequential fairness (where sequential decisions impact fairness)
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Figure 1: A high-level taxonomy for long-term fairness, including notions, common modeling frameworks,
and fair learning.

and fairness over multiple time steps, among others (as depicted in Fig:1). In this work, we aim to unify
the different strands of literature on long-term fairness under a common framework. Through this effort, we
identify various dimensions and settings of long-term fairness and provide a rich review of existing research
to explore diverse approaches and considerations for achieving fair outcomes in dynamic and non-static
contexts.

Difference from existing surveys. Several extensive surveys on ML fairness have been conducted. A
subset of these surveys (Mehrabi et al., 2021; Gohar & Cheng, 2023; Pessach & Shmueli, 2022; Choulde-
chova & Roth, 2018; Finocchiaro et al., 2021) predominantly focus on static fairness or a specific vision
of fairness (e.g., intersectional techniques), with only brief and cursory discussions on long-term fairness in
some. Meanwhile, other works have incorporated some aspects of long-term fairness. Gajane et al. (2022)
reviewed fairness approaches in Reinforcement Learning (RL), with overlap limited to very brief coverage
of RL techniques for long-term fairness. Separately, Patro et al. (2022) critically examined the literature on
Fair Ranking, discussing the limitations of static settings and exploring modeling frameworks, like simula-
tions, within Ranking Systems only. The survey by Zhang & Liu (2021) focused only on sequential decision
algorithms, representing one facet of long-term fairness inquiries, without a critical comparative analysis of
definitions, methods, and frameworks. Finally, Tang et al. (2023b) reviewed the fairness concepts in ML,
drawing connections to moral and political philosophy. They provide overviews of modeling frameworks and
choices in dynamic settings without making them the primary focus. In comparison to these works, our
survey specifically concentrates on long-term fairness and offers a comprehensive and up-to-date overview
of the field, introducing the taxonomy encompassing long-term fairness notions, mitigation techniques, and
evaluation methods. Additionally, we critically examine existing techniques, highlighting key challenges and
open research questions. Our literature search methodology is detailed in Appendix A.1.

Contributions and Outline. Our main contributions are: (1) propose a taxonomy (Fig. 1) for long-term
fairness, including notions, problem settings, mitigation approaches, and modeling frameworks, (2) examine
long-term fair learning methods in multiple standard problem settings and evaluations, and (3) highlight key
challenges and future directions. The rest of the paper is organized as follows. Section 2.3 introduces long-
term fairness definition, problem settings, and modeling frameworks. Section 3 discusses fairness notions,
while Section 4 covers mitigation techniques in dynamic settings. Section 5 outlines application-specific
works, including Recommender Systems, and Section 6 explores alternative long-term fairness settings. Fi-
nally, Section 7 discusses open challenges and future directions.

2 Long-Term Fairness in ML: An Overview

In this section, we first attempt to define long-term fairness and then proceed to detail the different but
intricately woven aspects that form this concept.

2.1 What Is Long-Term Fairness?

Given the dynamic nature of real-world scenarios, long-term fairness emerges as a concept focused on achiev-
ing and maintaining fairness over a period of time rather than within isolated decisions or instances Hu &
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Zhang (2022). Long-term fairness has been described using various terms, often used interchangeably, in-
cluding temporal, sequential, non-static, and dynamic fairness. However, these encompass different aspects
of the overarching concept under complementary but orthogonal settings. Therefore, our first contribution is
to identify and define these problem settings within a unified high-level taxonomy (Figure 1) for understand-
ing the literature on long-term fairness. The taxonomy does not aim to enumerate or exhaust all possible
combinations across the three dimensions identified, but rather serves as a flexible organizational scaffold for
situating diverse approaches in the literature, with more specific interactions detailed in Figure 2 and Table
1

2.2 Problem Setting

Long-term fairness was first studied within pipelines, where multiple decisions are required. For instance,
a two-stage hiring model involves a candidate selection from the applicant pool, followed by hiring deci-
sions Dwork & Ilvento (2018); Bower et al. (2017). However, long-term fairness has since expanded into a
multifaceted concept, encompassing various problem settings. In Figure 1 (red box), we identify the four
key problem settings that underpin inquiries into long-term fairness. Dynamic Modeling is the primary
setting where the majority of the long-term fairness considerations have been explored. It addresses dynamic
factors in the environment to maintain fairness over time, including cases of sequential fairness where fairness
isn’t achieved over multiple decision rounds due to evolving system dynamics or the failure of static fairness
notions when used at each time step Yin et al. (2023); Chouldechova & Roth (2018); Cheng et al. (2021a;
2022). It explicitly represents the temporal evolution of a system, where the current state depends on both
past states and actions, as well as feedback from the environment or population. Another facet that cap-
tures the real-world dynamics is the Distribution Shift setting, where deployment (testing) environments
systematically differ from the training environment. This phenomenon can arise due to various factors, such
as data non-stationarity (Barrainkua et al., 2023).

Delayed impact is a special setting of long-term fairness where the impact of the decisions is not imme-
diately observable but manifests gradually or after a significant time lag Liu et al. (2018). It focuses on a
model of delayed outcomes, without which one cannot foresee the impact a fairness criterion would have if
enforced as a constraint on a classification system. This framework is distinct because it emphasizes the lag
between decisions and their eventual effects, typically without modeling ongoing or complex feedback from
the environment. Finally, Performative Prediction is a recently introduced framework that formalizes
scenarios involving the specific causal influence that predictions have on their intended targets (Hardt &
Mendler-Dünner, 2023). Unlike dynamic modeling, which models how predictions influence future states
over time, it abstracts away temporal dynamics and instead models the data distribution as a function of
the deployed model itself. The goal is to find a performative equilibrium, a model that remains optimal even
after influencing the data it observes. Perdomo et al. (2020) describe it as a form of distribution shift, but it
uniquely focuses on distribution shift resulting solely from model deployment. While the impact of decisions
on the environment has been explored in the dynamic modeling setting, performative prediction operates
as a distinct framework (see Section 6). Apart from distribution shift, all these settings intersect with
various techniques like bandits, reinforcement learning, performative prediction, and strategic classification,
and hence, are not clearly separable, making it challenging to write this survey and develop the taxonomy.
To address this complexity and capture these interactions, we identify common modeling frameworks that
accommodate these dynamics while offering flexibility in inquiry settings, as detailed below.

2.3 Dynamic Modeling For Long-Term Fairness

The study of long-term fairness dynamics in literature involves various approaches shaped by interactions
with the environment and feedback mechanisms. Typically, these works (1) propose a dynamics model
tailored to a specific domain, (2) expose unfairness from prolonged use of biased policies, and (3) suggest
a “fair” policy to mitigate biases. As such, modeling frameworks (Fig: 1 green box) play a pivotal role in
addressing the long-term fairness challenge. In this section, we outline commonly utilized frameworks for
modeling dynamics in long-term fairness.
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• Pólya Urn: The Pólya Urn (Mahmoud, 2008) model is a uniquely powerful framework for capturing
self-reinforcing dynamics. It simulates a stochastic process of drawing balls from an urn that increases
the probability of observing certain events. At each time step, a ball is drawn and replaced with
two of the same color, capturing the rich-get-richer dynamics Akpinar et al. (2022). Its strength lies
in modeling how small initial advantages can compound over time, while remaining mathematically
simple, analytically tractable Helfand (2013), and highly interpretable. As a result, the Pólya urn
is especially well-suited for studying cumulative advantage and preferential attachment in contexts
like resource allocation, social networks, and recommendation systems Barabási & Albert (1999).

• One-Step Feedback: It explores the impact of decision-making on the underlying population after
only a single step of feedback, distinct from works that capture feedback over multiple time steps. It
considers the dynamic response of the population at deployment, influencing fairness without model
updates. This single-step evaluation is driven by practical considerations, acknowledging that other
variables may dominate over extended periods in real-world scenarios Liu et al. (2018).

• Reinforcement Learning: Long-term fairness involves the model’s interaction with the (possibly
unknown) environment over time, a dynamic well-suited for RL (Liu et al., 2021). Previous works
have applied RL techniques within both the Bandit and Markov Decision Process (MDP) frameworks
to capture these dynamics. In both settings, the goal is to derive an optimal policy that maximizes
cumulative rewards while meeting fairness criteria like Demographic Parity (Calders et al., 2009).
This approach enables the exploration of complex scenarios, balancing the exploitation of existing
knowledge (e.g., hiring from a known population) with the exploration of sub-optimal solutions to
gather additional data (e.g., hiring from diverse backgrounds).

• Causal Modeling and Reasoning: Focusing on principled learning and reasoning about under-
lying data-generating processes, causality (Pearl, 2009; Guo et al., 2020) has been recognized as a
unique tool for better understanding and mitigating bias in different contexts. Previous works have
proposed to model and reason about causal relations among variables to characterize discrimination
in static settings (Kilbertus et al., 2017; Kusner et al., 2017; Nabi & Shpitser, 2018; Chiappa & Isaac,
2018). Going beyond static towards dynamic and long-term settings, causal modeling of dynamics
has also been explored in the literature to varying extents of detail (Creager et al., 2020; Zhang
et al., 2020; Tang et al., 2023a).

Other frameworks: Apart from these commonly used frameworks, the literature has explored several
less studied perspectives that capture different aspects of long-term fairness and its dynamics. A small but
notable number of works examine incentive effects and strategic behavior Hu et al. (2019), modeling how
individuals may adapt or manipulate their features in anticipation of how an algorithm will respond, often
using game-theoretic or best-response frameworks (e.g., Stackelberg games) Dong et al. (2018); Milli et al.
(2019); Zhang et al. (2022). Other less common frameworks include social settings (Heidari et al., 2019),
online learning (Bechavod et al., 2019) and algorithmic recourse Ustun et al. (2019); Von Kügelgen et al.
(2022). While they are not yet major themes in the long-term fairness literature, they offer useful insights
for understanding the broader dynamics and directions for future work.

3 Long-Term Fairness Notions

Static fairness notions often focus on immediate fairness, overlooking long-term equity risks, potentially
exacerbating bias over time (D’Amour et al., 2020; Liu et al., 2018). In contrast, in the long-term fairness
setting, the notions capture non-static, dynamic nuances of fairness over time. In this section, we present
various long-term fairness notions used in literature in different settings, as shown in Figure 2. Some of
these notions can still be used in static settings but have been adopted for long-term fairness using the
dynamic modeling frameworks discussed in the previous section to capture dynamics. A summary of the
main notations used in the paper is provided in the Appendix (Table 2).
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Figure 2: Taxonomy of fairness notions used in long-term settings. The dotted boxes denote the adopted
modeling frameworks

3.1 Effort-based Fairness

Static notions of fairness predominantly center on ensuring similar outcome probabilities across all pro-
tected groups. (Heidari et al., 2019; Mehrabi et al., 2021). However, these notions often operate under the
assumption of a static dataset, treating individuals as immutable entities within the given data context.
These approaches fail to consider that disadvantaged groups may need to exert more effort over time than
advantaged groups to achieve similar outcomes, contradicting the principle of Equal Opportunity Roemer
& Trannoy (2015); Von Kügelgen et al. (2022). This oversight persists because the distance to the decision
boundary is typically greater for disadvantaged groups. Inspired by this, Heidari et al. (2019) proposed
“effort unfairness”, which captures the disparity in average effort required by disadvantaged group members
compared to the advantaged groups. Crucially, effort-based fairness is inherently long-term and dynamic
since it explicitly acknowledges that individuals can adjust their qualifications or features over multiple de-
cision cycles, and that the effort required to reach a favorable outcome may accumulate over time. This
perspective allows the assessment of fairness as an ongoing process, capturing disparities that persist or
compound across repeated interactions with the system.

They propose Bounded-Effort unfairness as a measure to quantify this disparity while constraining it within
a fixed level of effort. Given a data sample denoted by a tuple (x, y) where x ∈ X ⊆ Rd and y ∈ Y = {0, 1}
denote the input vector and ground-truth label, respectively. Formally1:

Definition 1 Bounded-Effort (Heidari et al., 2019). Given a constant δ > 0, a classifier f(x) satisfies effort
fairness with δ−effort if

P
(

max
µ(∆x)≤δ

f(x + ∆x) ≥ 0.5 , f(x) < 0.5 | g = g

)
= P

(
max

µ(∆x)≤δ
f(x + ∆x) ≥ 0.5 , f(x) < 0.5

)
(1)

holds ∀g ∈ G, ∆x represents the effort (change) required to improve the feature x to x′, µ : Rd → [0, ∞] a
norm which assigns a non-negative value to input vector, and µ(∆x) ≤ δ constraints effort to be small.

Recognize that the condition f(x) < 0.5 denotes an unfavorable outcome, signifying the individual’s un-
qualified status. In contrast, condition f(x + ∆x) ≥ 0.5 denotes a positive outcome, signifying successful
effort (∆x) to qualify the individual. For simplicity, the features are assumed to be numerical and monotone
Duivesteijn & Feelders (2008). The parameter δ constraints the maximum effort to ensure that individuals
or groups are not required to make disproportionately high efforts for improvement. In contrast to the
Bounded-Effort approach, Threshold-Reward unfairness Heidari et al. (2019) shifts the focus from limiting
effort to setting a lower bound on the reward. This perspective assesses how the minimum effort required
to surpass a defined reward threshold varies among protected groups. Intuitively, this notion captures the
idea that a disadvantaged group has to exert greater effort to get the same reward. Finally, Effort-Reward
Heidari et al. (2019) unfairness is defined as the difference in maximum utility (difference between reward
and effort) for each protected group after additional effort, avoiding reliance on specific thresholds to prevent
fairness gerrymandering Kearns et al. (2018) and reduce result variability.

1For ease of reading and comparison, we use notations defined in Guldogan et al. (2022) for all effort-based definitions.
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A closely related notion termed Equal Recourse quantifies the effort to attain desirable outcomes by measuring
the average distance of individuals in different groups from the classifier’s decision boundary Gupta et al.
(2019). Unlike bounded-effort unfairness, Equal Recourse aims to equalize average efforts across protected
groups without imposing limits on effort.

Definition 2 Equal-Recourse (Gupta et al., 2019). Given the distance (effort) ∆x, f(x) is said to achieve
equal recourse if ∀g ∈ G

E
[

min
f(x+∆x)≥0.5

µ(∆x) | f(x) < 0.5, g = g

]
= E

[
min

f(x+∆x)≥0.5
µ(∆x) | f(x) < 0.5

]
. (2)

One drawback of this definition is its vulnerability to outliers. Given that Equal Recourse computes the
minimum required efforts by taking an average across all samples, the presence of outliers can distort the
overall fairness measure. To address this, Guldogan et al. (2022) introduced Equal Improvability, akin
to bounded-effort fairness, aiming to equalize average rewards for each group with a constrained effort.
Formally:

Definition 3 Equal Improvability (Guldogan et al., 2022). Given a norm µ and a constant δ, f(x) achieves
equal-improvability fairness with δ-bounded-effort if ∀g ∈ G

P
(

max
µ(∆x)≤δ

f(x + ∆x) ≥ 0.5 | f(x) < 0.5, g = g

)
= P

(
max

µ(∆x)≤δ
f(x + ∆x) ≥ 0.5 | f(x) < 0.5

)
. (3)

However, equal improvability differs from bounded-effort fairness in the conditional part f(x) < 0.5, i.e., it
only focuses on equalizing the probability of rejected samples being qualified after applying a limited amount
of effort. Von Kügelgen et al. (2022) build on the effort-based notions by introducing a causal version of
Equal Recourse called Individual Fair Causal Recourse, focusing solely on rejected samples. They argue that
the efforts to attain favorable decisions capture causal relations among features (Karimi et al., 2020; 2021).

Definition 4 Fair Causal Recourse (Von Kügelgen et al., 2022). f(x) is fair if the following holds for all
latent variable u and groups g, g′

min
f(x′)≥0.5

µ(x′ − x(g, u)) = min
f(x′)≥0.5

µ(x′ − x(g′, u)). (4)

Finally, Huan et al. (2020) extends this framework to introduce a causal-based notion that enforces equality
of effort. However, it does not capture the dynamics of the environment and model.

3.2 Cumulative Group Fairness

Another line of work Chi et al. (2021); Wen et al. (2021); Yin et al. (2023) addressed the long-term nature of
fairness by formalizing surrogate fairness notions grounded in static fairness notions, mirroring approaches
found in other fairness aspects such as intersectionality Gohar & Cheng (2023). These studies define long-
term bias as the difference of the cumulative sum of group fairness (e.g., allocation rates) at each time
step between different protected groups. These works have operationalized most of these notions within
the MDP framework, leveraging RL techniques — a prevalent strategy for addressing long-term fairness
dynamics Zhang & Liu (2021). An MDP is defined by a tuple (S, A, ρ, T, r, γ), where S is the state space
(e.g., income levels), A is the action space (accept/reject), ρ is the initial state distribution, T : S×A → ∆(S)
is the state transition function, R : S ×A → R is the immediate reward function (e.g., bank’s earned profits),
and γ is the discount factor. The goal is to find a policy π : S → ∆(A) that maximizes cumulative reward
η(π) := Eπ [

∑∞
t=0 γtR(st, at)] , where s0 ∼ ρ, at ∼ π(·|st), st+1 ∼ T (·|st, at). Chi et al. (2021) propose

Return Parity, which stipulates that MDPs from distinct demographic groups, while sharing common state
and action spaces, should aim to attain roughly equivalent expected rewards under a policy. Formally:

Definition 5 Return Parity (Chi et al., 2021). Given distinct initial distributions ρ0 and ρ1 of two protected
groups, g ∈ {0, 1} denoting membership in the two groups with policies π0, π1 then two MDPs satisfy ϵ-return
parity if

η(π0) − η(π1) ≤ ϵ. (5)
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In other words, ϵ-return parity ensures that the difference in expected long-term rewards for two demographics
modeled using MDPs does not exceed a specified threshold of ϵ, indicating similar outcomes. The reward
function can be adapted to model various fairness notions. Similarly, Wen et al. (2021) extends other fairness
notions, such as Demographic Parity and Equal Opportunity, to this MDP setting of equalizing long-term
rewards for different protected groups. Finally, Yin et al. (2023) follows the same principle, but instead of
equalizing long-term reward, their approach focuses on minimizing the violation of the sum of static bias at
each time step.

While these notions are promising for modeling fairness beyond a single time step, Xu et al. (2023b) highlights
that they fail to capture the variation in temporal importance. To address this, the authors propose the
Equal Long-term Benefit Rate (ELBERT) Xu et al. (2023b) fairness notion, which considers long-term
fairness as the ratio of group supply and group demand. They adapt static fairness notion ratios, e.g., Equal
Opportunity, by formulating them as the ratio of group supply (qualified and accepted individuals) to group
demand (qualified individuals). Unlike previous adaptations of static notions, they first take the sum of
group supply and group demand separately before taking a ratio. They highlight multiple cases (lending,
medical treatment allocation) where temporal variations in group supply and demand lead to a false sense
of fairness.

Definition 6 Long-Term Benefit Rate (Xu et al., 2023b). Given distinct initial distributions ρ0 and ρ1 of
two protected groups, an MDP is said to have achieved a Long-Term Benefit Rate if

ηSg (π)
ηDg (π) (6)

is equalized across the protected groups.

Here, ηSg (π) and ηDg (π) represent the cumulative group supply and group demand, respectively, which are
analogous to the reward function (R) and serve as supply Sg(st, at) and demand functions Dg(st, at) to the
MDP at each time step.

3.3 Meritocratic Fairness

A body of research leverages bandit settings to model long-term fairness. Joseph et al. (2016) initially iden-
tified how no-regret algorithms (those avoiding negative feedback) in bandit settings may exhibit increasing
unfairness over time. In response, they introduced an individual notion of fairness called Meritocratic Fair-
ness, which posits that it is unjust to preferentially select one individual (e.g., for a loan) over another if the
former is less qualified than the latter Joseph et al. (2016), modeled in the contextual bandit setting.

In a typical bandit framework, an agent chooses an arm At from a set of K arms, denoted by k ∈ [K] at each
time step t, and receives a stochastic reward Rt. These rewards are assumed to be drawn from unknown
distributions specific to each arm. In a contextual setting, however, before making a decision at each time
step t, the learner observes contextual information xj

t associated with each arm j. In terms of fairness,
each arm is associated with a protected group, where xj

t provides information about an individual from a
protected group. Each population is associated with its own underlying function fj , mapping contexts to
expected payoffs. Formally:

Definition 7 Meritocratic Fairness (Joseph et al., 2016). For any pair of arms j, j0 at time t, if,

fj(xt
j) ≥ fj0(xt

j0
), (7)

the algorithm is considered discriminatory, i.e., if it preferentially chooses the lower quality arm j0. Con-
versely, the algorithm is fair if it ensures, with high probability over all rounds and for all pairs of arms j, j0,
that whenever fj(xt

j) ≥ fj0(xt
j0

), the algorithm chooses arm j with a probability at least as high as it chooses
arm j0.

Liu et al. (2017) complement the aforementioned work by Joseph et al. (2018; 2016) by incorporating a
smoothness constraint and protecting higher qualifications over lower qualifications in an on-average manner.
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Meritocratic Fairness assumes that k distinct groups, each with unique mapping from features to expected
rewards, are already known. Moreover, it assumes one group member is available and always selected in each
round, which is unrealistic(Joseph et al., 2018). To relax this assumption, Joseph et al. (2018) introduces the
notion of weakly-meritocratic fairness, which does not assume knowledge of protected group membership.

Definition 8 δ-Weakly Meritocratic Fairness (Joseph et al., 2018) A model is δ-fair if, for all sequences of
contexts x1, . . . , xt, with probability at least 1 − δ over the realization of the history h, for all rounds t ∈ [T ]
and all pairs of arms j, j0 ∈ [k],

πt
j|h > πt

j0|h only if fj(xt
j) > fj0(xt

j0
) (8)

These notions, however, define fairness with respect to one-step rewards. To capture the desired interaction
and evolution of the environment, Jabbari et al. (2017) extends Meritocratic Fairness to the MDP formu-
lation, where it requires that an algorithm never probabilistically favors an action with lower long-term
reward over an action with higher long-term rewards. Due to the exponential complexity of satisfying this,
they propose two relaxations of this notion: 1) Approximate-choice and 2) Approximate-action fairness.
Approximate-choice fairness prevents equally good actions from being chosen at very different rates, while
approximate-action fairness prevents substantially worse actions from being chosen over better ones. Grazzi
et al. (2022) build upon these works to propose the Group Meritocratic Fairness notion in the contextual
bandit setting. Specifically, they introduce the idea of highest relative rank, which evaluates the reward’s
quality relative to other candidates within the same group. This approach ensures that the chosen candi-
dates are not only selected based on their absolute rewards but also considering their position within their
group’s reward distribution. The aim is to address fairness disparities in scenarios with diverse group reward
distributions.

3.4 Causality-Motivated Long-Term Fairness Inquiry

Causal modeling of underlying dynamics in long-term settings has been recognized as beneficial for analyzing
social implications of automated decision-making (Creager et al., 2020; Zhang et al., 2020). To achieve long-
term fairness, understanding the interplay of various processes is crucial (Tang et al., 2023b). Tang et al.
(2023a) present a detailed causal model, in terms of a directly acyclic graph (DAG) for two key dynamics in
decision-distribution interplay: (1) the decision-making process based on data at each time step and (2) the
underlying data generating process influencing future distributions. Rather than enforcing fairness criteria
at each time step, they propose setting a goal of achieving long-term fairness and evaluating it alongside.

Definition 9 K-Step Tier Balancing (Tang et al., 2023a) A sequence of K decision-making strategies
DT :T +K−1 := {DT , . . . , DT +K−1} (empty set if K = 0) satisfies K-Step Tier Balancing if at the time
step T + K the following independence relation holds true (where “⊥⊥” denotes statistical independence, and
A denotes the protected feature):

HT +K ⊥⊥ AT +K , (9)

where HT +K is induced by K-step dynamics.

This notion extends beyond observed variables to include latent causal factors, i.e., “tiers”, that carry on the
influence of current decisions to future data distribution through the interplay between dynamics. Through
a detailed causal modeling of the dynamics and the corresponding analysis of their characteristics, Tang
et al. (2023a) formulate the one-step tier imbalance reduction (STIR) term and present possibility and
impossibility results to illustrate the feasibility of setting Tier Balancing as a long-term fairness goal.

3.5 Discussion

Existing long-term fairness notions differ based on the modeling framework used and what aspect (e.g.,
effort, merit) of fairness they capture dynamically. Cumulative fairness, for instance, extends previous static
fairness notions to the long-term context by aggregating fairness measures at each time step using RL.
However, recurrent RL policy deployments that enforce static fairness notions at each time step may not
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Example Works Metric of Interest Modeling Time Horizon Dynamics Application
Liu et al. (2018) demographic parity - single-step not impacted lending practice
Joseph et al. (2016) meritocratic fairness bandit sequential not impacted -
Heidari & Krause (2018); Bechavod et al. (2020) individual fairness online learning sequential not impacted -
Hashimoto et al. (2018) risk disparity online learning sequential not impacted -
Gillen et al. (2018) individual fairness bandit sequential not impacted -
Patil et al. (2021) return parity bandit sequential not impacted -
Jabbari et al. (2017) meritocratic fairness reinforcement learning sequential impacted -
Yin et al. (2023); Wen et al. (2021) demographic parity reinforcement learning sequential impacted -
Puranik et al. (2022) return parity reinforcement learning sequential impacted -
Siddique et al. (2020) Gini social welfare function reinforcement learning sequential impacted -
Liu et al. (2021) proportional fairness reinforcement learning sequential impacted ranking, allocation
Tang et al. (2020) delayed impact bandit sequential not impacted -
Weber et al. (2022) delayed impact reinforcement learning single-step not impacted -

Table 1: A comparative view of long-term fairness learning methods.

be universally suitable for real-world scenarios Henderson et al. (2018), necessitating the development of
lightweight techniques. Recourse and effort-based notions, adapted from static settings, are only one-step
analyses of long-term fairness applied iteratively to address equality of effort. One limitation is that they
measure the anticipated effort in response to algorithmic decisions, neglecting the legal (e.g., affirmative
action) and philosophical emphasis on actual historical effort. To bridge this gap, future work could focus
on ensuring parity in outcomes based on the effort already put in and developing algorithms and datasets
to capture it in long-term settings. Notably, while effort-based notions consider how individuals respond
to incentives, they generally assume straightforward improvements and do not capture complex strategic
adaptation, where behavior may change in unexpected or adversarial ways to influence outcomes (Zhang
et al., 2022). Incorporating this strategic dimension is an important direction for future research. Moreover,
some notions, like meritocratic and effort fairness, are only applicable in specific applications, such as hiring,
limiting their use. While Tier Balancing is a step towards a generalized natural notion from the dynamic
and long-term perspective through causal dynamic modeling, it’s imperative that such notions find support
in effective and efficient learning algorithms. Additionally, current notions often fail to support multiple
protected groups, which fails to fully capture the nuances of fairness (Gohar & Cheng, 2023). Incorporating
multiple dimensions of intersecting identities is an important challenge to solve. Finally, these notions are
strictly limited to tabular data, and developing long-term notions in other domains (e.g., image, video, and
language) is a promising direction.

4 Improving Long-Term Fairness in Dynamic Setting

Several approaches have emerged to address bias in dynamic settings, leveraging interactions with the en-
vironment to maintain fairness during learning. Table 1 outlines the representative mitigation methods.
Broadly, these approaches are categorized based on whether the decision-making influences the environment
and, consequently, future actions. Most mitigation methods consider the dynamics in a multi-step sequen-
tial learning framework. In this setting, the system’s evolution over time is explicitly modeled, with each
state depending on past states, actions, and feedback from the environment. This framework captures both
immediate and delayed effects, rich feedback loops, and complex interactions, and is the primary setting for
mitigation methods.

4.1 Decisions Decoupled from Environment

In this setting, decision-making does not impact the dynamics of the environment, and most of the works
assume an online learning setting where the data arrives sequentially and the model learns the dynamics on
the go Bechavod et al. (2019). The seminal work of Joseph et al. (2016) proposed a no-regret algorithm,
based on chained confidence intervals, for dynamic fairness in the stochastic and contextual bandits problem
for the meritocratic fairness notion. They prove that the task of learning a provably fair contextual bandit
algorithm can be transformed into a “Knows What It Knows” (KWIK) learning algorithm Li et al. (2008)
and propose an efficient learning algorithm. Utilizing the MAB framework, Liu et al. (2017) propose a
Thompson-Sampling-based algorithm to achieve calibrated fairness where each arm is selected with the
probability equal to that of its reward being the largest while satisfying the smoothness constraint for each
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round (See Sec 3.3), with a reward distribution in Bernoulli. Wang et al. (2021) further extends their work
to propose a more efficient Thompson-Sampling-based algorithm by enforcing merit fairness across rounds
instead of for each round and an arbitrary reward function. Heidari & Krause (2018) model the sequential
individual fairness in an online learning setting. They propose a Consistently Follow the Leader algorithm
that always picks the outcome label closest to the prediction among the labels satisfying the consistency
constraint. The labels generated in such schema are proved to follow the optimal hypothesis in bounded time
steps. Also targeting individual fairness in online learning, Bechavod et al. (2020) reduces the constrained
learning into the standard online batch classification problem. Thus, the common Follow-The-Perturbed-
Leader algorithm can be applied oracle-efficiently to achieve sublinear Lagrangian regret. Similarly, Gillen
et al. (2018) proposes an algorithm where the learner aims to satisfy a fairness constraint defined using an
unknown distance metric in an online linear contextual bandit setting. They assume access to only weak
feedback where a regulator can flag unfairness but cannot quantify it across individuals. Finally, Patil et al.
(2021) proposes a meta-algorithm, which can be applied to any MAB algorithm (e.g., UCB1) to satisfy a
fairness constraint that each arm is pulled at least some pre-specified fraction of the times.

Beyond the bandit setting, Hashimoto et al. (2018) presents a distributionally robust optimization (DRO)
procedure to mitigate the disparity amplification over time. The core idea is to constrain the group-wise
worst-case loss in each iteration; thus, the data examples with high risk are up-weighted. Specifically, let
P denote the distribution of data examples and B(P, r) denote the chi-squared ball around P of radius r,
measured by a certain f -divergence. The DRO loss parameterized by θ around all possible perturbation
with the maximal radius r around P is RDRO(θ; r) = supQ∈B(P,r) EQℓ(θ). There are two solutions to the
above DRO risk. The first solution assumes the χ2-divergence and solves the dual form of the DRO risk
in the following form θ̂λ = minθ EP [ℓ(θ) − λ]2+., where λ is a dual parameter. The other solution assumes
that one can compute the worst case probability distribution Q∗(θ) ∈ arg maxQ∈B(P,r) EQℓ(θ) for a given
parameter θ through projected gradient ascent and alternate the optimal θ∗(Q) ∈ arg minθ EQℓ(θ). The final
solution θ∗ and Q∗ will be given by the saddle point of the optimization problem. Moreover, the authors
demonstrate that utilizing a one-step minimizer during each iteration, reduces the online learning problem
into the standard learning problem. Similarly, Hu & Zhang (2022) proposed a repeated risk minimization
framework to sequentially mitigate long-term fairness on post-intervention data samples.

4.2 Decision Impacts Environment Dynamics

A series of works Yin et al. (2023); Chi et al. (2021) model the long-term fairness issue in the context of
RL. These works typically focus on how the deployment of the decision policy influences the environment
and future rewards. In this context, Jabbari et al. (2017) propose a fair polynomial time algorithm using
the MDP framework to enforce the notion of approximate meritocratic fairness. Here, the distribution of
individuals is considered as the state s of the environment, and the decision model f is considered as the
action a. The decision model is evaluated by the risk ℓ(s, a) and the fairness violation G(s, a) on the data
observation. The utility function for the RL agent is the negative of risk and fairness violation subject to the
observed state and the selected decision policy, i.e., r(s, a) = 1−ℓ(s, a) and g(s, a) = 1−G(s, a), respectively.
The authors assume an unknown state transition probability such that st+1 ∼ P (st, at). In the RL context,
the goal of long-term fairness can be viewed as maximizing the cumulative reward maxπ E[

∑T
t=0 r(st, at) | s0]

while preserving the fairness violation over time E[
∑T

t=0 g(st, at) | s0] ≥ c.

Yin et al. (2023) show that a modified variant of the Upper-Confidence Bound algorithm can address the long-
term fairness with continuous state and action spaces. In particular, the solution is built on the assumption
that the Q-function can be parameterized as a linear form with respect to some weight vector w so that w can
be precisely solved by a least square problem instead. Wen et al. (2021) proposed a slightly different MDP for
modeling long-term fairness. Instead of using a shared reward function for the policymaker, they assumed an
additional reward function for individuals. Then, the fairness is measured as the difference of the expected
individual reward between groups with the deployed model policy π. To mitigate fairness, Wen et al. (2021)
propose prioritizing the policies closer to holding the fairness constraints and ranking the candidates in terms
of their rewards. The sampled policies are then used to further update the decision model’s parameters. The
algorithm is proven to be near optimal while enforcing the static fairness constraints. On the other hand,
Puranik et al. (2022) propose maximizing applicants’ accumulated qualification scores with policy learning.
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Lastly, Siddique et al. (2020) enforces the fairness constraint that maximizes the utility of the worst of
individuals by formulating it as the generalized Gini social welfare function Weymark (1981). Instead of
MDP, they adopt multi-objective MDPs, where rewards take the form of vector instead of scalar, to impose
the specific notion of fairness.

4.3 Discussion

Compared with the standard static fairness interventions, the summarized mitigation methods mainly con-
tribute to formulating the dynamics of human-model interactions and establishing the corresponding so-
lutions based on the group utility shifts. Long-term fairness under unknown dynamics and/or without
leveraging demographic information remains largely unexplored but promising, especially considering pri-
vacy laws (Chen et al., 2019a) that limit access to such data. From the perspective of temporal learning,
it is positive that long-term fairness is focused on the multi-step sequential learning setting. However, the
current research typically only focuses on optimizing the model learner at each time step. Understanding
the tensions between ensuring fairness at each time step and cumulatively at the final step needs more in-
vestigation. Finally, while RL methods are flexible and learn the dynamics of the environment well, they are
data-intensive (Dulac-Arnold et al., 2021; Henderson et al., 2018) and often unsuitable for real-world scenar-
ios. Hence, developing techniques that can efficiently estimate the dynamics is crucial. Notably, the recent
advance in performative prediction Perdomo et al. (2020) provides a new perspective on off-policy learning
for modeling the interplay between the model policy and agents. Finally, most current approaches do not
account for individuals or groups strategically adapting their behavior in response to deployed algorithms
(Estornell et al., 2023). Developing mitigation strategies that are robust to such strategic behavior remains
an open challenge and is key to ensuring that fairness interventions remain effective over time.

5 Evaluation of Long-Term Fairness

Practical applications offer a unique context for long-term fairness considerations, depending on which one
would expect context-dependent interpretations of technical findings. Therefore in this section, we present
application-specific fairness inquiries motivated by empirical scenarios.

5.1 Application-Specific Studies

Credit Application. Liu et al. (2018) focus on lending practices to quantify delayed impacts of decisions
(selections) made by institutes (e.g., the bank) on different groups. They represent each group through a
score distribution, where higher scores indicate a greater likelihood of positive outcomes. Assuming access
to a function that provides the expected score change for individuals, they introduce a one-step feedback
model and construct outcome curves, which describe the relation between the expected difference in the
mean score after the one-step feedback and the natural parameter regimes (e.g., selection rate of the policy).
They found that both Demographic Parity and Equal Opportunity can lead to all possible outcomes, i.e.,
long-term improvement, stagnation, and decline, in the natural parameter regimes. This study emphasizes
the impossibility of foreseeing a fairness criterion’s impact without carefully modeling the delayed outcome.

Labor Market. The seminal work of (Hu & Chen, 2018) considers a two-stage dynamic reputational
labor market model to capture the long-term and reinforcing nature of disparate outcomes. They propose
imposing demographic parity within a temporary labor market to achieve long-term equilibrium in the
permanent reputational labor market based on affirmative action. Separately, Celis et al. (2021) investigate
the long-term impact of the Rooney Rule (Collins, 2007), a hiring policy aimed at mitigating implicit bias by
mandating decision-makers to include at least one candidate from an underrepresented group. They employ a
mathematical model of implicit bias, featuring two candidate groups, one of which is underrepresented. Each
candidate possesses both a true, latent utility and an observed utility, subject to bias by a multiplicative
factor. Candidates are then shortlisted by a selection panel based on observed utility. Their findings
demonstrate that the rule progressively enhances minority hiring while maintaining overall utility.

Predictive Policing Ensign et al. (2018) explore resource allocation in predictive policing (Mohler et al.,
2015), which deploys patrol officers based on historical crime data. They identify a feedback phenomenon
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present in similar algorithms across contexts like recidivism prediction and lending, where prediction out-
comes heavily influence algorithm feedback. Using the Pólya urn model, they explain this feedback occurrence
and propose black-box solutions, such as reweighing input incidents. Elzayn et al. (2019), go one step further
by proposing an algorithm which, under simplification assumptions, converges to an optimally fair resource
allocation, even in the absence of known stationary ground-truth crime rates, avoiding the runaway feedback
loop effect.

5.2 Long-Term Fairness in Recommender Systems

Long-term fairness considerations naturally align with Recommender Systems due to evolving user interac-
tions and item popularity, impacting system performance Liu et al. (2021). Consequently, the RL framework
is favored for its ability to model interactive dynamics. The works mostly focus on 1) user-side fairness,
addressing equitable treatment for users, and 2) item-side fairness, ensuring unbiased item recommendation
stemming from popularity bias due to disproportionate exposure Chen et al. (2023).

Item-side fairness. Long-term fairness efforts in recommendation systems primarily target item-side fair-
ness, addressing the challenge by modeling the sequential interactions between consumers and recommender
systems using an MDP framework. A few works in this direction adopt an Actor-Critic RL algorithm
leveraging the policy-based method (actor) with the value-based approach (critic) to learn the policy and
value-function simultaneously Grondman et al. (2012). In this setup, the actor learns an optimal policy
through environment exploration, while the critic evaluates actions to determine long-term rewards Liu
et al. (2021). Utilizing this, Liu et al. (2021) propose FairRec that dynamically maintains accuracy and
user fairness in the long term by jointly representing the user preferences (at the item and group level) as
the states in an MDP model. They use the Weighted-Proportional Fairness concept, allocating resources
(recommendations) proportionally to diverse entities’ demands using a weighting factor. This dual-reward
system strategically optimizes both accuracy and fairness in the long term. Separately, Ge et al. (2021)
study the long-term fairness of item exposure, focusing on group item labels. They address the challenge of
items categorized into groups based on popularity, which dynamically change with user interaction over time,
leading to shifting group labels. Using a Demographic Parity-based fairness-constrained policy optimization
method, the authors propose an MDP recommendation model based on the actor-critic architecture. How-
ever, they introduce an additional critic designed for the demographic parity fairness constraint. On a related
note, Morik et al. (2020) explored the rich-get-richer phenomenon in dynamic Learning-to-Rank approaches
Yang & Ai (2021). Their solution, FairCo, ensures meritocratic fairness by allocating exposure to items
proportional to their average relevance. FairCo integrates user feedback and dynamically adjusts its ranking
based on the fairness constraint, employing a P-Controller approach for modeling, a popular feedback control
mechanism (Bequette, 2003). In another work, Saito et al. (2020) tackles self-selection bias (Chen et al.,
2023), where popular items tend to receive more clicks regardless of actual interest. They propose an ideal
loss function optimized for relevance rather than the highest click probability. Similarly, Xu et al. (2023a)
proposes an online ranking model based on the Max-Min notion of fairness in the batched bandit settings.
It balances the fairness-accuracy trade-off by adding a fairness constraint by utilizing the Upper Confidence
Bound (UCB) algorithm. In this regard, uniform data has also been proven to be an effective approach
Akpinar et al. (2022). This method involves randomly selecting items and ranking them using a uniform
distribution. Chen et al. (2023) (Section 4.8) summarizes the various methods that use this approach. Lastly,
Ferraro et al. (2021) investigates gender fairness in collaborative filtering, revealing disparities in exposure
between female and male artists. They introduce an iterative re-ranking method that simulates feedback
loops and penalizes male artists, resulting in adjusted rankings without significant performance impact.

User-Side Fairness. Relatively fewer works have focused on long-term user-side fairness. Akpinar et al.
(2022) employ a simulation framework and Pólya urns to study the long-term impacts of fairness interventions
in social network connection recommendations. They argue that static fairness notions fail to maintain equity
in network sizes and utility across different protected groups in dynamic settings.
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5.3 Discussion

The majority of the long-term fairness evaluations have either been context-specific (e.g., hiring) or in recom-
mendation systems. In recommendation systems, RL methods are favored for modeling dynamics. However,
a notable drawback of RL methods is their vulnerability to user tampering (Kasirzadeh & Evans, 2023),
where recommender systems manipulate user opinions and preferences to boost long-term user engagement
through its recommendations. Furthermore, assessing long-term fairness in a multi-stakeholder (Abdollah-
pouri & Burke, 2019) setting characterized by competing interests remains largely unexplored. Some other
promising applications include text, where the advent of Large Language Models (LLMs) has facilitated dy-
namic conversations in various settings like chatbots and healthcare assistants (Gilbert et al., 2023). Studies
have indicated that model outputs can be influenced through iterative feedback (Zamfirescu-Pereira et al.,
2023; Logan IV et al., 2021), raising fairness concerns. This, coupled with contextual interactions (Zhang
et al., 2021), underscores the need to develop evaluation methods capable of assessing long-term fairness to
capture these evolving dynamics. For instance, incorporating long-term fairness in Reinforcement Learning
from Human Feedback (RLHF), a popular LLM optimization method, or prompt engineering to debias and
capture diverse group preferences is an interesting direction.

6 Long-Term Fairness Beyond Dynamic Modeling

Besides addressing long-term fairness in dynamic modeling contexts, various problem settings that require
distinct consideration have also tackled the problem. This section provides a brief overview of these alter-
native settings.

6.1 Performative Prediction

Performative prediction is a recently formalized framework that captures how deploying a predictive model
can causally alter the environment or population it operates on, resulting in a model-induced distribution
shift (Hardt & Mendler-Dünner, 2023). A key distinction of performative prediction is that it is often
formulated as stateless: the environment’s response at each step depends directly on the model’s current
action, without explicit dependence on the sequence of past states. This contrasts with dynamic modeling,
which explicitly tracks how the state of a system evolves over time based on both past actions and feedback
loops. At its core is the concept of a distribution map D : Θ → P(X × Y ), which captures the dependence
of data-generating distribution on the model parameters θ ∈ Θ, ignoring other reasons for distribution
shift (Mishler & Dalmasso, 2022). This abstraction enables modeling a wide range of mechanisms behind
distribution shifts induced by model deployment. Miller et al. (2021) propose a two-stage approach where the
learner first estimates a model of the distribution map to capture the unknown parameters of the performative
effects and then uses the estimated model to construct the proxy of perturbed performative loss. Next,
Mendler-Dünner et al. (2020) categorize the stochastic optimization in performative prediction into greedy
deploy and lazy deploy. Greedy deployment involves a sequential program that continually updates model
parameters based on current data observations and deploys the updated model. In contrast, lazy deployment
progressively approximates repeated risk minimization, collecting multiple rounds of observations to update
the model between deployments. The abstract nature of the performative prediction framework also readily
lends itself to supporting settings like strategic classification (Perdomo et al., 2020). The survey by Hardt &
Mendler-Dünner (2023) offers a review of approaches, which can be extended in future work to encompass
long-term fairness settings.

6.2 Delayed Impact

Delayed impact describes scenarios where the effects of a model or intervention appear over time, not
immediately, which can turn short-term gains like bank loan approvals into long-term harms for some groups
(Liu et al., 2018). It can be seen as a case of performative prediction without adopting the formal framework
(Hardt & Mendler-Dünner, 2023). Importantly, delayed impact differs from performative prediction and
dynamic modeling in both scope and modeling assumptions. It typically relies on simpler feedback models
like one-step transitions and does not require the ongoing, high-dimensional feedback loops that characterize

13



Under review as submission to TMLR

the other frameworks, which further simplifies both theoretical and empirical analysis. A couple of works
have been brought up to mitigate the delayed impact in the context of multi-armed bandits Tang et al.
(2020) and RL Weber et al. (2022). The proposed algorithms include two common steps to mitigate the
delayed impact. In the first step, the model learns from the historical data through UCB or optimization
as a classification problem. In the second step, the delayed impact will be estimated through importance
sampling on the realized future data. The estimated delayed impact will be used as a reward signal that can
be further used to select the arms or determine the classifier. Delayed impact is best suited for evaluating
the downstream consequences of a single intervention or a limited set of interventions in relatively stable
environments like college admissions and the labor market, as discussed in Section 5.1

6.3 Distribution Shift

An alternative research avenue explores dynamic learning environments where data distributions evolve
over time. For instance, the profile of loan applicants may shift due to macroeconomic trends or changes
in self-selection criteria. This dynamic necessitates continuous fairness maintenance rather than a one-
time requirement. A representative work Almuzaini et al. (2022) proposes a dynamic learning method
that proactively corrects the classifier, estimating future data properties and retraining accordingly without
direct model-environment interaction. Within this framework, two approaches emerge 1) Adaptive, adapting
the classifier to a known target environment, and 2) Robust, training classifiers to ensure fairness under
perturbations when no target environment information is available (Barrainkua et al., 2023). This problem
setting differs from other works due to the absence of direct environmental feedback. For an in-depth review
of works in this area, we refer readers to the survey on fairness under domain shift Barrainkua et al. (2023).

7 Open Challenges and Future Works

Drawing on the limitations of prior work, we conclude by outlining several important research gaps and
future avenues that are yet to be explored.

Evaluating long-term and short-term fairness tension. Evaluating the tension and developing tech-
niques for achieving fairness immediately and maintaining it over an extended period presents a significant
challenge. Additionally, while the fairness-utility trade-off has been thoroughly examined in fairness lit-
erature (Mehrabi et al., 2021), assessing this long-term trade-off and establishing benchmarks to evaluate
different methods remain important directions.

Complexity of real-world dynamics. As we have seen in Sections 2.3 and 5, long-term fairness necessi-
tates modeling and characterization of dynamics. However, the complexity of real-world scenarios, including
limited access to demographic data, presents significant challenges for practitioners to fully understand the
interplay of various dynamics and effectively address the discrimination involved. Translating insights from
studies focused on specific applications to broader contexts and bridging the gap between empirical fair-
ness evaluations (Gohar et al., 2023) and theoretical guarantees (Tang & Zhang, 2022) are important and
ongoing challenges in the field. The different implications of positive (negative) decisions or outcomes on
benefits (burdens) received by different groups or individuals should also be factored into long-term fairness
discussions in a more explicit way.

Intersectional identities. Current long-term fairness research has primarily concentrated on single-
attribute group identities, such as gender or age. However, numerous studies reveal that bias is a nuanced
phenomenon that spans multiple protected groups and intersecting identities Gohar & Cheng (2023). This
complexity poses unique challenges, notably the exponential number of subgroups. Future endeavors should
focus on developing methodologies and frameworks that capture and mitigate bias at the intersection of
various attributes in long-term settings.

Explainability over time. Explanability in AI has gained tremendous attention due to the need for
transparency, which significantly affects acceptance within the broader community Gross (2007); Shin (2021).
Long-term fairness notions, such as effort-based fairness, necessitate using explainable methods. It is vital
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to empower the impacted population to understand how decisions are made and determine strategies to
enhance their qualifications in subsequent instances. Furthermore, incorporating explainability methods in
dynamic fairness-aware recommendation environments is another direction Chen et al. (2019b).

Long-term dynamics in other AI domains. Studies have shown that prompt engineering and fine-
tuning in LLMs directly influence the model toward generating the desired outputs Zamfirescu-Pereira et al.
(2023); Logan IV et al. (2021). In real-world scenarios, user interactions are dynamic and may even be
strategic, guiding the LLMs in tailoring responses to their needs through repeated feedback. An important
research direction is developing evaluation methods that capture these dynamics and assess bias and fairness
in LLM (and other large models) outputs. This, coupled with the interaction context, significantly influences
LLM’s output Zhang et al. (2021). On the other hand, it is also crucial to steer the response of LLMs to
consistently align with human values represented by different demographics and cultures (Solaiman et al.,
2023) in multi-round dialogues.

Alignment with policy and regulatory framework in the long run. Trustworthy AI has drawn
increasing attention from policy and regulatory efforts. For example, the European Commission High-Level
Expert Group on AI presented the Ethical Guidelines (European Commission, 2019) that put forward a set
of 7 key requirements an AI system should meet to be deemed trustworthy. The Organisation for Economic
Cooperation and Development also proposed a framework to compare implementation tools for promoting
Trustworthy AI (Organisation for Economic Co-operation and Development (OECD), 2020). Consequently,
it is important to consider long-term fairness together with other aspects of Trustworthy AI.

8 Conclusion

Recent research highlights the inadequacy of static one-shot fairness approaches in capturing unfairness
over extended periods. To offer researchers an understanding of the field, we present a unifying review of
long-term fairness in multiple problem settings and frameworks. First, we provide readers with a high-level
overview of the conceptual frameworks employed to model long-term fairness problems. Next, we propose
the first taxonomy on long-term fairness, wherein we explored long-term fairness definitions, mitigation
methods, and representative evaluation techniques across various applications. We also discuss briefly other
problem settings that tackle this issue. Finally, we discuss open challenges and opportunities of long-term
fairness research. Ultimately, we hope our survey serves as a foundational resource for those new to the field,
fostering an understanding of the complexities associated with long-term fairness and drawing attention to
the potential societal consequences that may arise without effective long-term fairness measures.
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A Appendix

A.1 Survey Methodology

We employed several established approaches to conduct a comprehensive search for relevant papers under the
umbrella of long-term fairness. Initially, we curated a set of seed papers that have discussed and evaluated
long-term fairness problems (Zhang & Liu, 2021; Liu et al., 2018; Hu & Chen, 2018; D’Amour et al., 2020;
Zhang & Liu, 2021; Zhang et al., 2020). Following common practice (Desolda et al., 2021; Snyder, 2019),
we used these papers and domain knowledge to identify and develop a set of keywords to search for relevant
work: “long-term fairness," “dynamic fairness," “(non-)static fairness," and “sequential fairness." Primarily,
we sear‘ched proceedings of relevant conferences and journals that were likely to publish work that fit the
definition of long-term fairness. These included but were not limited to FAccT, NeurIPS, AAAI, ICML,
AIES, ICLR, and IJCAI. We also followed citation trails to and from these widely cited papers and querying
across Google Scholar and Arxiv to identify additional related work.
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Framework Symbols Description

Classification

f A decision model parameterized by a vector θ ∈ Θ
x x ∈ X ⊆ Rd input features
y y ∈ Y = {0, 1} ground truth label
g g ∈ G sensitive groups
∆x Effort (change) required to improve the feature x to x′

MDP

S State Space (e.g., income levels)
A Action space (e.g., accept/reject)
R R : S × A → R reward function (e.g., bank’s profits)
ρ Initial state distribution
T T : S × A → ∆(S) State transition function
γ Discount factor
π π : S → ∆(A) is policy
η(π) Cumulative Reward

MAB

K Set of arms
t Time step
At At ∈ K action (arm) selected at time t
Rt Stochastic reward at time t.

Table 2: Table of Notations
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