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Abstract

The Clinical Terminology Normalization aims
at finding standard terms from a given termbase
for mentions extracted from clinical texts. How-
ever, we found that extracted mentions suffer
from the multi-implication problem, especially
disease diagnoses. The reason for this is that
physicians often use abbreviations, conjunc-
tions, and juxtapositions when writing diag-
noses, and it is difficult to manually decom-
pose. To address this problem, we propose
a Terminology Component Recognition and
Reconstruction strategy that leverages the rea-
soning capability of large language models
(LLMs) to recognize the components of terms,
enabling automated decomposition and trans-
forming original mentions into multiple atomic
mentions. Furthermore, we adopt the main-
stream “Recall and Rank” framework to apply
the benefits of the above strategy to the task
flow. By leveraging the LLM incorporating
the advanced sampling strategies, we design a
sampling algorithm for atomic mentions and
train the recall model using contrastive learn-
ing. Besides the information about the compo-
nents is also used as knowledge to guide the
final term ranking and selection. The experi-
mental results show that our proposed strategy
effectively improves the performance of the ter-
minology normalization task and our proposed
approach achieves state-of-the-art on the exper-
imental dataset.

1 Introduction

Clinical Terminology Normalization (CTN) plays
an important role in clinical natural language pro-
cessing (Schulz et al., 2019). CTN aims at mapping
non-standard clinical mentions to standard terms
within the certain knowledge base (Bodenreider
et al., 2018) such as the International Classification
of Diseases and Related Health Problems 10-th Re-
vision (ICD-10), which provides the foundation
for downstream tasks in the clinical domain. Stan-
dardized clinical terms are applied in tasks such
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Figure 1: A comparative overview of our proposed ap-
proach as opposed to the traditional approach.

as medical research, data analysis, and healthcare
quality improvement that utilize electronic health
record information.

More specifically, in the Chinese medical do-
main, the CTN task faces the challenge of “multi-
implication” (Liang et al., 2021; Yan et al., 2020)
which means that one coupled clinical mention con-
tains multiple terms. The non-standardized writ-
ing habits such as abbreviation, hyphenation, and
juxtaposition lead to this issue and cause inconsis-
tent granularity problems, which affects the effec-
tiveness of traditional term normalization methods
based on the embedding model.

Previous work has primarily focused on situa-
tions where uni-implication mentions are in the
majority, such as the CHIP 2019 task that used the
International Statistical Classification of Diseases
and Related Health Problems 9-th Revision (ICD-
9) as the knowledge base (Yan et al., 2020). In
CHIP 2019, multi-implication mentions constituted
only 4% of the total. Their approaches to solving
such problems include two-stage methods involv-
ing the “Recall and Re-rank” framework as well as
the generative approach. However, previous studies
rarely researched the original mentions when fac-
ing datasets with the “multi-implication” problem
accounting for the majority. Multiple meanings
can lead to semantic ambiguity when compared
to uni-implication terms, and make it difficult to



train the model. If the intermediate results after
decomposition can be obtained, transforming the
original task into multiple normalization tasks with
uni-implications, the difficulty of the task will de-
crease. Figure 1 presents the difference between
our method and the traditional method.

Figure 2 representative multi-implication exam-
ples of Chinese clinical normalization task from
CHIP-CDN dataset. Case 1 shows the simplest sce-
nario: there are clear separation between different
atomic mentions. The multi-implication problem
in case 1 can be resolved using traditional word
segmentation methods or term recognition meth-
ods based on sequence labeling. Conversely, the
following two cases cannot be segmented or rec-
ognized using traditional methods. In case 2, the
original mention omitted the repeated occurrence
of the affected body part knee. Both word segmen-
tation and term recognition result in information
loss. The most challenging case, case 3 denotes
a semantic implication relation, which cannot be
accomplished by direct splitting.
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Figure 2: Three cases of different muli-implication ex-
amples.

After analysis, the samples without clear bound-
aries in CHIP-CDN account for a large number of
cases and cannot be ignored. The distribution of
the multi-implication samples in the train set and
validation set of CHIP-CDN are shown in Table 1.
It can be observed that multi-implication mentions
constitute more than half of the total, and for multi-
implication mentions, the inseparable cases make
up more than 70%. This result demonstrates the ne-
cessity of research on multi-implication problems.

To address the defect caused by the multi-

implication problem mentioned above, we propose
a “Terminology Component Recognition and Re-
construction” strategy based on LLM, which helps
identify the atomic mentions implied within a long
Chinese mention. This module primarily consists
of two main steps, First, we utilized prompt engi-
neering technology to recognize the specific types
of components by LLLM, the components include
such as affected body parts and disease content are
identified at a finer granularity. Then we manually
crafted specific rules to restructuring the compo-
nents obtained in the recognition step. The order of
components appeared in the original mention and
the type of components were taken into considera-
tion during reconstruction.

Datasets Separable  Inseparable . M.ult1j
implication

Train 946 2318 3264

Validation 288 741 1029

Table 1: The distribution of the multi-implication sam-
ples of CHIP-CDN. “Separable” means that there are
obvious separators in the original mention, such as semi-
colons “; .

Furthermore, we propose a new framework for
terminology normalization based on the Termi-
nology Component Recognition and Reconstruc-
tion (RR) strategy, named RR-Norm. In addition
to designing the “Mention Decomposition” mod-
ule, we apply the gains from “RR” to the “Recall
and Re-rank” process, implementing the “Atomic-
Sampling-based Contrastive Learning” module and
“Knowledge-Guided Term Selection” module to fin-
ish the CTN task.

Additionally, we constructed a new dataset
CHIP-CDN-RR primarily composed of uni-
implication mentions during the implementation
of the Atomic Sampling part, which aligns more
closely with traditional term normalization tasks
and effectively reduces the complexity of the orig-
inal task. We demonstrated its effectiveness by
applying this dataset to various baseline methods.

Overall, our contributions are as follows.

* We propose the “Terminology Component
Recognition and Reconstruction” strategy
based on the LLM. We use in-context learning
to let the LLM learn to recognize, split, and
group the components of the original mention,
and then through reconstruction, we obtain a
set of uni-implication atomic mentions.



* We propose a terminology normalization
framework based on the “Terminology Com-
ponent Recognition and Reconstruction” strat-
egy and achieve performance improvement in
the CTN task. Including the “Mention Decom-
position” module, the “Atomic Sampling” al-
gorithm, designed to obtain high-quality pos-
itive and negative samples and train more ef-
fective recall models using contrastive learn-
ing, and the “Knowledge-Guided Term Se-
lection” module that leverages the attention
mechanism to capture the knowledge in the
constituent information.

* We constructed an almost uni-implication
dataset CHIP-CDN-RR to map the annotated
answers in the original dataset to the reorga-
nized atomic mentions during the implemen-
tation of the atomic sampling stage, and the
final uni-implication ratio was improved by
37%.

2 Related Work

The most traditional method of clinical terminology
normalization is accomplished through retrieval
methods, such as BM25, and Edit Distance. With
the development of deep learning, the majority of
text similarity approaches are calculated by gener-
ating word vectors. Leal et al. (2015) employs a
similarity search based on Lucene’s implementa-
tion of Levenshtein and N-gram distances. Leaman
et al. (2013) proposed a linear pairwise model for
the representation of medical terms.

Many of the term normalization studies consider
the task of normalizing the terminology to involve a
multi-classification problem as well. Limsopatham
and Collier (2016) introduced the convolutional
and recurrent neural network architecture. Niu et al.
(2019) presented a multi-task character-level at-
tentional network that learned character structure
features. Methods based only on retrieval or clas-
sification are not very accurate, hence the recall
and re-rank method was introduced, which means
another model is trained to re-rank the candidate
terms obtained by the recall model. Ji et al. (2020)
first conducted the BM25 scores as the recall eval-
uation and proposed a term normalization architec-
ture by fine-tuning the existing BERT models. Xu
et al. (2020) proposed an architecture consisting of
a candidate generator and a list-wise ranker based
on BERT. (Liu et al., 2020) provided an ABTSBM
method for ICD-9 terminology standardization.

However, it has been found that there are multi-
implication issues in the field of Chinese health-
care. To solve this problem, Sui et al. (2022);
Zhang et al. (2023)have added several prediction
modules to the original normalization framework.
Among them, using multiple classification methods
inevitably encounters long tail problems. Yan et al.
(2020) suggested a sequence generative framework
to directly generate all the corresponding medical
procedure terms. The generative method achieves
this task well by avoiding number prediction, but
the method tends to be inefficient. Liang et al.
(2021) considered introducing a tagging task when
predicting the implication number. Inspired by this,
when considering introducing word segmentation
to solve problems, we found that the method based
on rule (Liu et al., 2012; Gai et al., 2014,?) is
difficult to cope with the complexity of Chinese
medical terminology (Ding et al., 2021). The se-
quence annotation method (Zhao et al., 2006) re-
lies on high-quality datasets and cannot address the
Ellipsis problem of Chinese medical terminology.

3 Methods

In this section, we will introduce the proposed
framework for Chinese terminology normalization
based on terminology component recognition and
reconstruction strategy, shown in Figure 3.

3.1 Mention Decomposition

The objective of this module is to decompose
an original multi-implication mention into atomic
mentions to reduce task complexity. For instance,
when presented with an original mention such as
Degeneration of the left knee with loose body, it
is expected to be segmented into two atomic men-
tions: Degeneration of left knee, and Loose body
in left knee. These two mentions can be separately
mapped to the standard terms: Osteoarthropathy
of the knee and Loose body in knee, which corre-
spond to the original mention. Echoing the goals
above, we design a mention decomposition module
that implements the segmentation of mentions by
the recognition and reconstruction of terminology
components.

3.1.1 Component Recognition

Given an input original mention m or a term, by
prompt engineering, ChatGPT is used to recog-
nize component sequence {cy, ¢, ...c, } and cor-
responding specific type sequence {t1, o, ..., tn},
where t; belongs to a predefined type set. The



Type Meaning Abbr.
Disease Content Possible symptoms, lesions, and conditions within the scope of onset  DC
Disease Scope Anatomical sites where lesions occur DS
Operation Content Treatment methods or examination methods oC

Words describing the degree and nature of the condition,

Modifi L L . o M
odihier or directional terms indicating the location within the scope of onset ©

Separator Word Separator word or delimiter SEP

Invalid Content Meaningless description IC

Table 2: The specific meanings of predefined components types, where “Abbr.” notes the abbreviation.

specific content and meanings of the type set can
be found in Table 2. From this step, we can get
the corresponding components tables, as shown
in the upper part of Figure 3, and this structured
and ordered knowledge will be used to reconstruct
the atomic mentions as well as to train the term
selection model.

The prompt for component recognition contains
basic task definitions, task output formats, and pre-
defined component types. While we use in-context
learning to enhance the understanding of LLLM of
the predefined types, we provide manually selected
demonstration examples and restrict the output for-
mat based on prompt engineering techniques. Ad-
ditionally, we have added an emphasis section to re-
iterate the task requirements. This step has proven
effective in enhancing the quality of results during
practical use. The specific prompt is available in
Appendix A. In addition, by requesting the Chat-
GPT output in JSON format, it is convenient to
perform further post-processing of the results to
avoid generating incorrect, missing, or redundant
components.

3.1.2 Atomic Mention Construction

Given a sequence of components c1, ca, ...c, and
corresponding type sequence ti,ts,...,1,, this
module will reconstruct components into atomic
mentions m1, msa, ..., m;. In this section, we will
introduce the detailed algorithm of each stage. The
overall approach consists of Knowledge Enhance-
ment, Rule-based Combination, and Fact-checking.

Knowledge Enhancement To reduce errors in
the recognition module and ensure the accuracy and
professionalism of the reconstruction, we intend to
introduce domain knowledge to enhance its capa-
bility. Firstly, we performed knowledge distillation
from ChatGPT by using prompt engineering to ob-

tain a list of synonyms and abbreviations for the
ICD-10 standard clinical terminology components.
The distillation prompt is shown in Appendix A.
We use these standard clinical terminology compo-
nents as a supplement to the component table if the
recognition module does not recognize the same
component, and the components whose content is
not specific enough or not professional enough will
be replaced.

Algorithm 1: Algorithm of Rule-based

Combination
Input: a sequence of components S,
specific type sequence S, rule base R
Output: atomic mentions set M

1 M=Set()

2 start=0

3 foreach ¢; in S, t; in Sy do

4 ift, == “DC” ort; == “OC” then
5 ¢; + findPreMo(start,i) + ¢;;
6 P <+ findPreDS(start,z);
7 foreach preys in P do
8 ‘ M.append(pregs + ¢;);
9 end
10 start + 1;
11 end
12 else if t; == “SEP” then
13 start < adjustStart(s — 1,i + 1);
14 end
15 end

Rule-based Combination In this stage, we will
enumerate all atomic mentions as comprehensively
as possible based on a specific set of rules and
the component tables, which contain component
sequences and type sequences, the detailed proce-
dure is illustrated in Algorithm 1.
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Figure 3: The workflow of our system. In addition to the original mention, standard terminology will also be
recognized through ChatGPT. This step is to perform special mask operations based on the composition category

during the selection stage.

The algorithm processes the component and type
sequence in order according to the original men-
tion. The algorithm maintains a starting position
start, which determines the starting position of
searching for prefix sequences. Whenever the al-
gorithm encounters a component of the category
“Disease Content (DC)”, it will form one or more
prefix sequences starting from the starting position.
The prefix sequence of “disease content (DC)” and
“operation content (OC)” follows two rules:

1. All “modifiers (Mo)” encountered will be
added to the prefix sequence.

2. Each encountered “disease scope (DS)” forms
a new prefix sequence.

Afterward, each prefix sequence will be concate-
nated with the current component and added to the
atomic mentions set. More specifically, when en-
countering “separators (SEP)”, the algorithm will
not add any atomic terms, but will adjust the start-
ing position based on the component types at both
ends of the “separator (SEP)”. Let us denote the
atomic mentions set as M.

Due to the complexity of Chinese expressions,
the correctness of atomic references is not consid-
ered at this stage. In general, for example, the ref-
erence “The left knee degeneration with loose body”

can be empirically recognized by medical experts
as “Left knee Degeneration” and “Left knee loose
body”. After parsing, we obtain the rule that the
subsequence “DS-DCI-SEP-DC2” should be con-
structed as “DS-DCI” and “DS-DC2”. However,
there are also some special cases, such as “Chest
pain and diabetes mellitus ”, that cannot be applied
to the previous rule. In this case, its subsequence
“DS-DCI-SEP-DC2” should be constructed as “DS-
DCI1” and “DC2”. Hence, strict rules cannot be
generalized as this may lead to semantic loss or er-
rors. When compared with strict rules and arbitrary
combinations, the loose rules we adopt can provide
reasonable combinations to a certain extent and
also ensure the number of combinations to prevent
semantic loss.

Fact-Checking In the end, we need to do fact-
checking for the constructed set of atomic men-
tions, removing irrational combinations. As illus-
trated in Algorithm 2, we perform a vector simi-
larity search in the standard terminology base T
for each atomic mention from M. For any atomic
mention, we focus on its highest score, denoted
Smax- We will consider that this atomic mention
theoretically does not exist and should be aban-
doned if sy 1s less than the set threshold 7, after



this step, we get the final atomic mention set M.

Algorithm 2: Algorithm of Fact-Checking
Input: atomic mention set M
standard terminology base 7', threshold 7
Output: the fact-checked atomic mention

set M

1 M = set()

2 foreach m in M do

3 calculateSim(m,T") — s € S

4 Smax = max(S,0);

5 if s,,.c > 7 then

6 ‘ M _.append(m);

7

8

end
end

3.2 Atomic-Sampling-based Contrastive
Learning

The goal of this module is to train an embedding-
based recall model using contrastive learning,
which is used to recall several candidate terms
for the input mentions from a large-scale standard
terminology base for the next term selection step.
The most important of these is the selection of
positive and negative samples, so we design an
atomic sampling algorithm using the LLM, based
on the atomic mentions obtained above and ad-
vanced online negative sampling techniques pro-
posed by (Liang et al., 2021).

A multi-implication sample in the existing
dataset would only provide the original mention
and its corresponding standard term, but after the
mention decomposition module we have decom-
pose the original mention into multiple atomic men-
tions, so to get the positive sample, we devised an
automatic annotation method to solve the mapping
between atomic mentions and standard terms to
obtain training data that does not require additional
manual annotation. For an original mention, we
provide its atomic mentions set and its standard
terms in order as input to ChatGPT and let it select
the best matching atomic mention for a standard
term. A specific prompt template is provided in the
appendix A. During the implementation, we con-
structed an almost uni-implication dataset based on
CHIP-CDN, named CHIP-CDN-RR, the relevant
details will be presented in 4.1.

For the negative samples, we use the online neg-
ative sampling strategy, i.e., before the start of each
training epoch, we use the current model to get the

vector set {v™}, m € M, and the vector set {v'},
e € T. We use the L2 distance between vectors
as a metric, for an atomic mention, terms that are
close but not standard answers as negative sam-
ples, plus the ground truth of the samples, and this
constructs the data for the updated one batch.

We trained the recall model based on the
SBERT (Reimers and Gurevych, 2019) framework
and contrastive learning, with the atomic term serv-
ing as anchor a and the correct answer as positive p.
For any two inputs ¢ and j, either mentions or terms,
let D;j = ||v* — 7|, denote the L2 distance be-
tween them. Then we use the triplet loss, which is
shown in formula 1 for the training of the encoder,
where m is a manually set hyperparameter indi-
cating the margin in contrastive learning. During
the prediction phase, we will recall the k standard
terms with the closest distance as the candidate for
each atomic mention.

ﬁtrip. = max (Da,p - Da,n + m, 0) (D

3.3 Knowledge-guided Term Selection

Given an atomic mention m and corresponding can-
didates set C, we utilized a BERT-based classifica-
tion model with guidance on identical components
to select the term that matches the atomic mention.

For a given input pair (m,c), along with the
corresponding component sequences( Sy, S¢) of m
and ¢, we pre-process them to get four kinds of
inputs. The first one contains full content, where
the original m and c are tokenized by connecting
them with “[SEP]”. The remaining inputs focus on
the specific component types by masking out other
types of tokens, including disease content, disease
scope, and operation content.

As shown in Figure 3, for the first input, we
use the pooler output of BERT as the classification
feature, and the other three use the same BERT
Embedding Layer but connect different randomly
initialized transformer blocks to get different fea-
tures. Finally, we concatenate these four features
together as the input to the classification MLP layer.
The binary Cross-Entropy loss is used for the train-
ing of the classifier.

4 Experiment

4.1 Dataset

The CHIP-CDN dataset aims at normalizing the
terminologies from the final diagnoses of Chinese
electric medical records based on the International



Classification of Diseases (ICD-10), which was
first released in CHIP2020 and is collected in the
Chinese Biomedical Language Understanding Eval-
uation Benchmark (CBLUE)' (Zhang et al., 2021).
This is a typical dataset suffering from the “multi-
implication” problem that contains 6,000 training
samples, 2,000 validation samples, and 10,000 test
samples.

Datasets . Uni-. . Multi- Total
implication  implication

CDN¢rain 2736 3264 6000

CDN-RR¢rqin 7915 1672 9587

Table 3: Comparison of CHIP-CDN vs. CHIP-CDN-RR
for multi-implication problem on training data.

As mentioned in 3.2 above, We constructed the
CHIP-CDN-RR as our experimental dataset to val-
idate our ideas, which consists mainly of the uni-
implication training data we constructed. Table 3
shows the comparison between CHIP-CDN and
CHIP-CDN-RR on the training set.

4.2 Implement details

We implement our approach on 2 NVIDIA GeForce
3090 GPUs, saving the checkpoints that performed
best on the validation set. We use gpt-3.5-turbo-
1106 (OpenAl, 2023) as the basic LLM, the tem-
perature is set as 0, and the seed is set as 42.

Following the setting of (Zhang et al., 2023) we
adopt the “chinese-roberta-wwm-ext-base” (Cui
et al., 2019) as the backbone of the recall model
and adopt the “bert-base-chinese” as the backbone
of the term selection model. For both the recall
model and the term selection model, we use the
Adam optimizer, the initial learning rate is 2e-5,
batch size is set as 64, and the max length of input
tokens is 64. During the online negative sampling
stage of the recall model, the number of samples
for each atomic mention is 20.

4.3 Experimental setup and result analysis

For the recall part, we validate the effectiveness of
term component Recognition and Reconstruction
(RR) on three models, namely the traditional BM25
model, the fixed M3E (Wang Yuxin, 2023) embed-
ding model, the trained triplet SBERT (Reimers
and Gurevych, 2019) based on contrast learning
and the trained triplet SBERT with online nega-
tive sampling strategy (Liang et al., 2021). We use

"https://tianchi.aliyun.com/dataset/95414

“HR@num” as the evaluation metric, i.e., the hit
rate of recalled candidate terms that contain the
correct answer, and the “num” is the number of
recalled candidate terms.

Approach RR HR@10 HR@20 HR@40

X 42.00 49.95 57.80
BM25 4 44.15 53.05 61.40
X 40.40 48.90 57.00
M3E 4 51.30 59.80 67.35
X 74.45 82.30 88.10
SBERT v 76.25 83.80 89.75
X 82.25 87.15 91.00
.|.
SBERT 4 84.30 88.70 92.25

Table 4: Comparison of hit rates between with or with-
out “RR” on different recall models on the validation
set of CHIP-CDN. To keep it fair, if an original mention
contains k atomic mentions, we recall num/k candi-
date terms for each atomic mention separately, so that
for the same sample, with or without RR, the number of
recalled candidates is the same.

As shown in Table 4, we compared the hit rates
of different recall methods on the CHIP-CDN vali-
dation set since the test set is not public. Obviously,
in terms of performance, the trained model outper-
forms the fixed embedding model, which outper-
forms the traditional BM25 model. And the SBERT
which uses the advanced online sampling strategy
performs the best. What’s more, our proposed ter-
minology component recognition and reconstruc-
tion (RR) strategy brings a steady improvement
over all kinds of recall methods.

This phenomenon proves our conjecture that the
multi-implication problem causes the semantics of
mentions to be blurred by multiple meanings. This
leads to performance degradation when matching
with a uni-implication term, and clear semantics im-
prove performance when a multi-implication men-
tion is decomposed into multiple atomic mentions
recalled individually.

For the entire normalization task, we choose a
fixed “M3E” as the recall model and then connect
a ranking model as a baseline to study the impact
of different base models, we compare BERT (De-
vlin et al., 2018), Roberta (Liu et al., 2019) and
Ernie (Sun et al., 2021). Then we compare the im-
pact of “RR” in different task paradigms, and in ad-
dition to the “Recall and Re-rank” paradigm above,
we investigate the generative paradigm presented
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Approach Micro-F1  Precision Recall
M3E + BERT-rank 55.40 - -

M3E + RoBERTa-rank(Cui et al., 2019) 56.40 55.30 57.50
M3E + Ernie-rank(Sun et al., 2021) 59.28 62.27 56.57
RR + M3E + BERT-rank 57.97 55.03 61.25
RR + M3E + RoBERTa-rank 59.29 56.59 62.10
RR + M3E + Ernie-rank 62.05 58.15 66.52
ConstraintDecoding(Yan et al., 2020) 56.64 58.82 54.61
RR + ConstraintDecoding 58.92 57.59 60.32
DependencyTree + GNN + rank(Zhang et al., 2023) 63.10 61.80 64.60
Recall + BERT-rank 61.98 61.49 62.49
Recall’ + BERT-rank 63.21 61.58 64.93
RR + Recalll + BERT-rank 63.70 58.78 69.54
RR + Recall” + BERT-rank* 64.20 60.03  68.75

Table 5: “RR” represents the complete recognition and reconstruction module. “M3E”represents term recall based
on (Wang Yuxin, 2023). “Recall” represents term recall based on contrastive learning and online negative sampling.
“BERT-rank*” represents a BERT classification with guidance from component sequences.

by (Yan et al., 2020). Finally, we also compare
state-of-the-art approach (Zhang et al., 2023) on the
experimental dataset with our proposed approach
and validate the impact of each module. We used
the official indicators provided by CBLUE (Zhang
et al., 2021) to calculate the Micro-F1 score, Preci-
sion, and Recall as the evaluation metrics.

As shown in Table 5, it can be seen that every
setting improved in the Fl-score after using the
“RR” strategy. The baseline method of “Recall
and Re-rank” that showed considerable improve-
ment achieved an increase of about 3% in the F1
score regardless of which base pre-trained model
is used. Of the three pre-trained models, Ernie Sun
et al. (2021) benefited from its training in incorpo-
rating the medical knowledge graph and therefore
performed the best. The effect on the generative
paradigm is the same. Additionally, with the same
basic pre-trained model as the state-of-the-art nor-
malization approach, our proposed approach also
improves and achieves state-of-the-art.

Among all indicators, the improvement in recall
is the most significant. Analyzing each module
one by one, we find that both the online sampling
strategy and the RR strategy help to improve the
performance of recall, i.e., recalling as many terms
as possible that are similar to the mentions. How-
ever, this can lead to the final ranking model or
selection model having difficulty distinguishing be-
tween ground truth and hard negative, which is
why the precision metric decreases. However, even

if there may be a slight decrease in precision, it
can be compensated by the recall rate to achieve
the effect of improving the F1 score. Moreover,
we propose the knowledge-guided term selection
module that leverages the attention mechanism to
extract information about the components of both
mentions and terms, balancing precision and recall.

5 Conclusion

In this paper, to address the hindrance caused by
the multi-implication problem, we propose the Ter-
minology Component Recognition and Reconstruc-
tion (RR) strategy based on the LLM. Furthermore,
we propose a competitive terminology standardiza-
tion framework that uses the benefits of the strategy
and achieves state-of-the-art performance.

Specifically, we design the “Mention Decompo-
sition” module to leverage an LLM to decompose
a raw mention into multiple atomic mentions. The
“Atomic Sampling” algorithm for atomic mentions
is then designed, combining online negative sam-
pling and LLM reasoning to obtain positive and
negative samples of atomic mentions, and the recall
model is trained using contrastive learning. Finally,
use the term components as knowledge and use
the attention mechanism to train a “Knowledge-
Guided Term Selection” model. Experimentally
we verified that the “RR” strategy mitigates the
semantic ambiguity defects brought by the multi-
implication problem and improves the performance
of normalization.



6 Limitations

In this section, we focus on the limitations and risks
of our proposed strategy and framework. In our
Terminology Component Recognition and Recon-
struction strategy, the LLM is used to obtain the
composition of terms by inference. We eliminate
the effects of randomness by already setting a mini-
mum temperature as well as a fixed random number
seed but fully address the nuances introduced by
the ChatGPT system. Therefore we limit the re-
sults obtained from large model inference to the
scope of the CTN task through content and format
constraints to avoid harmful information and hal-
lucinations. Meanwhile, the component types we
predefined are specific to disease diagnosis terms
and do not apply to other terms. One possible idea
is to design more generalized types by referring to
syntactic structures in the clinical domain.

Another risk is that although we have designed
meticulous approaches to perform the reconstruc-
tion of atomic mentions and the annotation of the
positive samples of atomic mentions, the fact that
it is an automated method of annotation without
the intervention of an expert may lead to errors.
However, these are harmless to the overall task as
intermediate results.
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A The Specific Prompts

Here are the specific contents of the prompts used
in this paper, including the prompt for terminol-
ogy component recognition, the prompt for knowl-
edge enhancement from the standard termbase, and
the prompt for atomic positive sampling, they are
shown in Figure A1, Figure A2 and Figure A3.
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(a) Chinese version

r

\_

user:

UREE5E AR A SIS . URAIRLE IR “ WA “RATEH . CHRENET . R . “HuE
TR B,

DR A MRS B 2 L

RS RPN RN, B, K%, L “LWPR” . “BIILE” 4B gR £ 5.

R AR AL

BAEPE: BUT. TSI R, RARRESRETE.

BT A R A RIE, PEIR il s i R 77

Sl AR IET BB SRR

TR CAFET L R SRE OGS, SUREAR. MRS, RN, SRR, K

AN ZIZA R, R EITSON il , i
[

{nJEiﬁjn:n%,r/:kn’u%?]unzn,ﬂ%/ﬁﬁ ‘Lﬁjn},

R G S R,
{"JEiﬂ”:“a%”,“%%u“:“ﬁﬁ V‘]?ﬁ;""},

FRA IR A AR A,
{njﬁiﬁjn:n’ ,fi#n,n%%”n:nﬁ}.%gljiﬂn}’

R FRAT R R,
{"Eiﬁj":"mﬁﬁ‘ﬁj(","%%ﬂ":"?ﬁ5‘& I*J En}’

1

e AR R H A% 2 B LLISON list/E =W, ANEEAAMEIR, A EEH > R A ZERE AR 11 1 .
i \: {mention}

it

(b) English version

r

user:

You need to complete a Component Recognition task. Identify at the finest granularity according to "disease content", "disease scope",
"operation content", "modifier", “separator", and "invalid content".

The following are the meanings of each recognition category:

Disease content: Symptoms, lesions, and conditions that may exist within the scope of the disease, as well as fixed disease names such
as "heart disease" and "hypertension".

Disease scope: The site of dissection where the lesion occurs.

Operation content: Treatment methods such as radiotherapy and chemotherapy, or examination methods such as gastroscopy.
Modifier: a word that describes the degree and nature of the disease. Or directional words describing the scope of the disease.
Separator: "companion”, "union" and other segmentation words, separators.

Invalid content: meaningless descriptions such as "to be investigated" and "suspected", or non disease or examination content such as
examination results and causes, or the direction and area of the disease scope.

Identify each input one by one and output only in JSON format, for example
[
{"Original word": "malignant", "Category": "modifier"},
{"Original word": "Ovary", "Category": "Scope of incidence"},
{"Original word": "cancer", "category": "incidence content"},
{"Original word": "After chemotherapy", "Category": "Operation content"},
{"Original word": ", companion", "Category": "Segmented word"},
{"Original word": "Urinary frequency", "Category": "Disease content"},
{"Original word": "Possibility is high", "Category": "Invalid content"}
]
Attention: It is necessary to output in the format of the example and only in the form of a JSON list, without additional descriptions,
missing original words, or adding additional words.
Input: {mention}
Output:

Figure A1: The specific prompt for terminology component recognition.
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(a) Chinese version

( )
user:
TEARSE IR AN R SCRIMUN TAE . AR-AEERA IR — IR AARTE, NUHISONKS A4 BB & 5o . AL R R SGRB AR 3¢
AR .

PR RBRIZIE AR ARTE (AL 95 BR300 AR BB N 2 25 A7 2 U 9Nl
AL IR ARTE AR IFIAL, A5 A AAAE I Y Null\n
TR R ARTE AR ETBE R, 25 A7 72 9 Null\n"

it :

BN A R
i L

{

"ETEERIA": {
"name":" %P iR,
"synonyms":["f{E", "],
"abbreviation": "MT"},

AR
"name":"fii",
"synonyms":["fili ", " "],
"abbreviation": None},

"% [H": None

}
EE: AU S ISONMRIEE IR, AN AR i 2
""name" 2R BT I R ARIE HH 1 —#B43,  "synonyms"[I{E LR Listi A, "abbreviation"4: Hi % # L1145 S 5 Null.

e {q)
\ y,
(b) English version
e A
user:

Please complete a synonym mapping task. Based on a clinical term I gave you, provide synonyms and abbreviations for the "Diseases
included", "Location", and "Etiology" in JSON format only.
Diseases included: Remove the remaining disease content from the clinical terminology, including the location, etiology, etc. If it does
not exist, it is null
Location: The site of onset of this clinical term, if it does not exist, it is null
Etiology: The clinical term refers to the cause of the disease, which is null if it does not exist
For example:
Input: Lung Malignant Tumor
Output
{
" Diseases included ":{
"Name": "Malignant tumor",
"Synonyms": ["tumor", "cancer"],
"Abbreviation": "MT"},
Location: {
"Name": "Lung",
"Synonyms": ["lungs", "upper lungs"],
"Abbreviation": None},
"Etiology": None
}
Note: Only output results in JSON format and do not include any other descriptive content.
"Name" must be a part of the given clinical terminology, the value of "synonyms" must be of type List, and "abbreviation" provides the
most common abbreviation or null.
Input: {q}

\L J/

Figure A2: The specific prompt for knowledge enhancement to get synonyms and abbreviations of standard
components.
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(a) Chinese version

r

user:

TBIRFERR— AR G IE TAE. &% /R— P mention, BA & —4~JSON listi% 2\ fficandidatesF1| 3R . 1R 75 E27E candidates 51| 3% (175
FElN, #EF—ANEd Armentionf)— M EEEZ AN E XA .

St A —ANISON list, HHEEIE M) — B2 candidate HEH, {EARRENZ\

il

mention: P& XTI

candidate_list:

"R AR RAT PR AR,

" Rl S AR [T A U S A
I8
i

[

" IR AR AR AT AR

]

TER: AU HHHISONMR SRR 4 R, AN BEHEAd R 2 o
i HH ¥ Bl 5 i fE candidates P, REEAE LIS

mention: {mention}
candidates: {candidate list}

\_

(b) English version

r

user:
Please complete a synonym selection task. I will give you a mention and a list of candidates in JSON list format. You need to select one
or more synonyms that are most suitable for the Mention within the scope of the Candidates list.
The output format is a JSON list, with the most suitable candidate or candidates as values, and the values cannot be empty
Example:
mention: Knee osteoarthritis
candidate_list:
[
"Left knee degeneration [degenerative disease]",
" Left knee free body [intra-articular free body]",
Output
[

]

Note: Only output results in JSON format and do not include any other descriptive content.
The output range must be within candidates and cannot be modified

“Left knee degeneration [degenerative disease]”

Mention: {mention}
Candidates: {candidate_list}

Figure A3: The specific prompt for atomic positive sampling.
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