
A Systematic Study of Performance Disparities in Multilingual
Task-Oriented Dialogue Systems

Songbo Hu1 Han Zhou1 Zhangdie Yuan2 Milan Gritta3

Guchun Zhang3 Ignacio Iacobacci3 Anna Korhonen1 Ivan Vulić1
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Abstract

Achieving robust language technologies that
can perform well across the world’s many lan-
guages is a central goal of multilingual NLP.
In this work, we take stock of and empirically
analyse task performance disparities that ex-
ist between multilingual task-oriented dialogue
(TOD) systems. We first define new quantita-
tive measures of absolute and relative equiv-
alence in system performance, capturing dis-
parities across languages and within individual
languages. Through a series of controlled ex-
periments, we demonstrate that performance
disparities depend on a number of factors: the
nature of the TOD task at hand, the underlying
pretrained language model, the target language,
and the amount of TOD annotated data. We em-
pirically prove the existence of the adaptation
bias and intrinsic biases in current TOD sys-
tems: e.g., TOD systems trained for Arabic or
Turkish using annotated TOD data fully paral-
lel to English TOD data still exhibit diminished
TOD task performance. Beyond providing a
series of insights into the performance dispari-
ties of TOD systems in different languages, our
analyses offer practical tips on how to approach
TOD data collection and system development
for new languages.

1 Introduction

The aim of task-oriented dialogue (TOD) (Gupta
et al., 2006; Tür et al., 2010; Young, 2010) is to
model the interaction between a human user and
a system agent with the goal of accomplishing
specific, well-defined tasks. To date, TOD tech-
nology has proven useful for many sectors, rang-
ing from the hospitality industry (Henderson et al.,
2014, 2019) to healthcare (Laranjo et al., 2018),
online shopping (Yan et al., 2017), banking (Alti-
nok, 2018), and travel (Raux et al., 2005; El Asri
et al., 2017), among others. These systems provide
users with access to state-of-the-art services and
they catalyse technological expansion.

The development of TOD systems requires large-
scale, in-domain datasets to exploit the potential of
deep learning-based components to effectively han-
dle complex dialogue patterns (Budzianowski et al.,
2018; Lin et al., 2021b; Hu et al., 2023). The cre-
ation of datasets for new domains and languages is
challenging (Shah et al., 2018; Larson and Leach,
2022): it requires expertise and substantial time
and financial investment that typically exceeds the
requirements of other NLP tasks (Casanueva et al.,
2022). Therefore, the progress in TOD is still
largely confined to a small number of high-resource
languages (Razumovskaia et al., 2022).

On the other hand, recent advances in multilin-
gual pretrained language models (mPLMs) (De-
vlin et al., 2019; Conneau et al., 2020a; Xue et al.,
2021a) have conceptually enabled cross-lingual
transfer between any two or more languages seen at
pretraining (Wu and Dredze, 2019; Conneau et al.,
2020b; Hu et al., 2020), or even to unseen lan-
guages (Ansell et al., 2021). These models offer a
promising basis for developing TOD systems for
previously unsupported languages, obviating the
need for expensive, language-specific data acqui-
sition. However, mPLMs do not equally benefit
all languages: previous studies focused on stan-
dard NLP tasks (Hu et al., 2020; Lauscher et al.,
2020) have revealed that they exhibit unequal per-
formance across languages, with particularly ad-
verse effects observed for low-resource languages.

The scarcity or complete absence of high-quality
in-domain TOD data (i.e., adaptation bias; Bom-
masani et al. 2021) and the compounding under-
representation of target languages inherent to
mPLMs (i.e., intrinsic bias; Bommasani et al. 2021)
are likely to collectively contribute to the exacer-
bation of performance disparities in multilingual
TOD systems. These disparities, specifically error
rate disparities (Barocas et al., 2019), may result in
extrinsic harms for downstream applications (Gal-
liers and Spärck Jones, 1993), affecting the utility,



experience, and satisfaction of system users. They
may also deprive non-English speakers of equal
opportunities, hampering their ability to benefit
from the rapid and ever-growing advancements in
language technology.

Aligned with the broader goal (Council of Eu-
ropean Union, 2018) of developing multilingually
inclusive NLP, this work offers a first systematic
analysis of the performance disparities exhibited
by multilingual TOD systems.1 In §3, we first
propose two measures for studying performance
disparity, namely the absolute and relative equiv-
alence in system performance. The former evalu-
ates the disparities in task performance across lan-
guages, while the latter measures the achieved per-
formance compared to its potential ‘upper bound’
performance within the same language.

We apply these measures to study performance
disparities in a recently developed MULTI3WOZ
resource (Hu et al., 2023), a large-scale multilin-
gual multi-domain multi-parallel TOD dataset.

In particular, relying on MULTI3WOZ, we in-
vestigate the following research questions:

(RQ1) Given the recent progress in mPLMs, Ma-
chine Translation, and cross-lingual transfer, is
language-specific data still necessary for the devel-
opment of a TOD system for a new language?
(RQ2) Given access to the same mPLMs, equivalent
amounts of high-quality in-language training data,
and a similar development approach as that used
to create an English TOD dataset, is it possible
to develop a TOD system for a new language that
achieves near-English performance?
(RQ3) How much training data is required in a new
language to achieve performance comparable to a
TOD system trained with an equivalent amount of
in-domain, in-language data as in English?
(RQ4) Which data collection strategy maximises
system performance across metrics while minimis-
ing the amount of annotation required? Such a
strategy could optimise the cost-efficiency of anno-
tation for a new language.2

Our empirical findings highlight performance

1In this study, we use the terms performance disparity and
error rate disparity interchangeably. We acknowledge that in
real-world production settings, there are various evaluation
dimensions to assess system performance, with error rate,
while critical, being only one of them.

2A related experimental study conducted by Debnath et al.
(2021) on multilingual QA systems emphasises taking the
most advantage of existing resources rather than expanding the
system to languages that have not been previously supported.

disparities between English and other languages
even when the development approaches are simi-
lar. Such disparities can be alleviated through in-
language data collection, with the necessary data
volume increases as the task complexity rises. Ad-
ditionally, we demonstrate the feasibility and bene-
fits of strategic annotation budget allocation in mul-
tilingual dialogue collection, showing how model
performance can be enhanced without additional
annotation costs.

We hope that the key findings of this study,
beyond empirically validating the current perfor-
mance disparities in multilingual TOD systems,
will also serve as practical guidelines for TOD sys-
tem developers, contributing to the long-term goal
of constructing robust and inclusive TOD systems
for a much larger number of languages, aligning
with the recent initiatives in MT (Siddhant et al.,
2022; NLLB Team et al., 2022) and other NLP
tasks (Søgaard, 2022; Ruder et al., 2023). Our data
and code are available at: https://github.com/
cambridgeltl/multi3woz/tree/analysis.

2 Related Work

Multilingual TOD Systems and Datasets. Previ-
ous work has shown that fine-tuning methods are
competitive or even outperform in-context learn-
ing with large language models (LLMs) for cross-
lingual transfer (Asai et al., 2023) and TOD sys-
tems (Hudeček and Dušek, 2023; Heck et al., 2023).
This applies even with smaller models and when
the number of training examples is limited. There-
fore, state-of-the-art multilingual TOD systems are
typically developed by fine-tuning mPLMs with
domain-specific datasets.

Developing TOD systems without the disadvan-
tage of data scarcity3 necessitates a dataset that
has the following properties (Hu et al., 2023): (i)
large-scale data, containing a sufficient volume of
(both training and test) data for in-depth compara-
tive cross-language analyses, (ii) comprehensive
task-specific annotations, supporting the training
of multiple TOD tasks, (iii) natural-sounding con-
versations, ensuring natural flow within the dia-
logues and avoiding artificial performance infla-
tion (Majewska et al., 2023), and (iv) wide lan-
guage coverage, enabling controlled experiments

3The term ‘disadvantage of data scarcity’ in this context
specifically refers to the limited quantity and/or quality of
in-domain in-language training data for multilingual TOD
systems. This data scarcity issue is a major source of the
adaptive bias mentioned earlier.

https://github.com/cambridgeltl/multi3woz/tree/analysis
https://github.com/cambridgeltl/multi3woz/tree/analysis


and comparison across a representative set of lan-
guages and in different linguistic contexts.

The majority of the existing TOD datasets fail to
simultaneously satisfy all the aforementioned prop-
erties. For example, most existing multilingual
TOD datasets (Upadhyay et al., 2018; Schuster
et al., 2019; Dao et al., 2021; Moghe et al., 2022;
Majewska et al., 2023, inter alia) have been de-
signed to support a single component within a TOD
system, typically Natural Language Understanding
(NLU), failing to fulfil property (ii). Recently, sev-
eral datasets have emerged that support multiple
dialogue tasks, but again none of these satisfy all
the properties mentioned above. For instance, some
datasets such as Multi2WOZ (Hung et al., 2022)
do not provide any training data at all, while others
like AllWOZ (Zuo et al., 2021) only provide a min-
imal training set of post-edited machine-translated
dialogues. Datasets such as GlobalWOZ (Ding
et al., 2022) rely solely on automatically created
machine-translated training data, failing to fulfil
properties (i) and (iii). BiToD (Lin et al., 2021b) is
reasonably large and features coherent dialogues,
but it spans only two, highest-resourced languages,
failing (iv).

Our study is enabled by a new multilingual TOD
dataset that overcomes the limitations of earlier
datasets: MULTI3WOZ– the first large-scale, mul-
tilingual multi-domain multi-parallel TOD dataset
that has all of the properties discussed above and
can, therefore, serve as a comprehensive bench-
mark and a departure point for our analysis. For
completeness, we provide a summary description
of MULTI3WOZ in §3.3.

3 Methodology

3.1 Measuring Performance of TOD Systems

This study investigates the performance dispar-
ities observed in TOD systems across different
languages. Ideally, to be inclusive and widely
useful, multilingual TOD systems should attain
comparable performance for all the languages for
which NLP can be developed. The development of
strongly multilingual systems that can deal with di-
verse linguistic patterns is also important for robust-
ness of TOD systems. However, measuring the full
generality of system performance is challenging: it
requires a comprehensive procedure involving e.g.,
a large-scale user study and the apparatus of mea-
surement theory (Barocas et al., 2019). This is only
attainable via collaborative efforts of the research

community as it involves addressing long-standing
challenges in dialogue system evaluation (Mehri
et al., 2022). Our study focuses on a more realis-
tic task: measurement of performance disparities
using established automatic evaluation metrics as
proxies to measure users’ judgement of the system.
This approach aligns with similar methodologies
adopted in related works that assess system per-
formance on other NLP tasks (Blasi et al., 2022;
Khanuja et al., 2023, inter alia).

3.2 Notion of Equivalence in Performance

Preliminaries and Notation. The development of
a TOD system involves training a dialogue model,
denoted as P (·), using a task-specific dialogue
datasetD. The system’s performance is then eval-
uated using an automatic evaluation metric M(·).
In a multilingual setup, the dialogue model P (·)
is commonly implemented using an mPLM. The
training procedure involves cross-lingual transfer
training, utilising a datasetDSRC in a typically high-
resource source language, and a datasetDTGT in a
low-resource target language. The following dis-
cussion is made under an ideal assumption that
the datasets DSRC and DTGT are of equal size and
quality, and cover exactly the same conversational
flows and information types (which is provided
by MULTI3WOZ). We assume that the system de-
veloped in the target language is not affected by
in-domain data scarcity, domain shifts, or different
in-domain distributions.

Absolute θ-Equivalence. We train a system, de-
noted as P SRC(·), on the source language dataset
D

SRC and evaluate its performance using the met-
ric M(P SRC(·)). Similarly, we train a system for
the target language, denoted as P TGT(·), using the
target language dataset DTGT. Subsequently, we
assess the performance of the target language sys-
tem using the metric M(·). To quantify perfor-
mance disparities in systems development across
different languages, we introduce the concept of
absolute θ-equivalence. This concept represents
a performance threshold of a system developed
in the target language, which is compared against
the fully supervised system in the source language.
We define that two systems achieve absolute θ-
equivalence iff M(P TGT(·)) ≥ θ · M(P SRC(·)),
where θ ∈ [0, 1].4 For instance, the TOD system

4The relationship between evaluation metrics and the ac-
tual benefits experienced by users can be complex and non-
linear (Blasi et al., 2022). For instance, in the domain of



developed for French may demonstrate a perfor-
mance level of 0.95-equivalence, indicating a sub-
stantial degree of equivalence in comparison to the
system in the source language. However, it may not
achieve the performance levels of 0.99-equivalence
or perfect 1-equivalence. Unless noted otherwise,
we use a specific example θ value of 0.95 to facili-
tate the comparison in this study.

To ensure an equal performance in each lan-
guage, the ideal scenario would involve two sys-
tems achieving absolute 1-equivalence. However,
our experimental results in §4 (RQ2) will reveal a
significant disparity between systems developed for
English and other languages, even when trained on
an equal amount of dialogue data. This discrepancy
can be attributed to the inherent bias of the underly-
ing mPLM, which cannot be easily mitigated, espe-
cially when it comes to low-resource languages. To
gain deeper insights into performance disparities,
we also define relative θ-equivalence.

Relative θ-Equivalence. It is challenging to col-
lect a large in-domain, in-language training dataset
for TOD. Consequently, an in-language training
datasetDTGT

few is often considerably smaller in size
compared to DTGT and DSRC. Assuming that the
fullDTGT is available, we train a system, denoted
as P TGT(·), for the target language. Addition-
ally, we train another system, P TGT

few(·), using ei-
ther the limited target language dataset DTGT

few or
a combination of DSRC and DTGT

few through cross-
lingual training. To quantify the performance dis-
parities arising from the scarcity of in-language
training data for a target language, we employ the
term relative θ-equivalence. This concept repre-
sents a performance threshold for a system devel-
oped in the target language, which is compared
against the system trained with a full dataset in the
same target language. We define that the two sys-
tems achieve relative θ-equivalence iff the metric
M(P TGT

few(·)) ≥ θ ·M(P TGT(·)), where θ ∈ [0, 1].
Relative θ-equivalence threshold for higher θ

values might be achievable by enlarging the size
ofDTGT

few without changing the underlying mPLM.
By focusing on strategically expanding the target
language dataset, we can analyse the impact of
adaptive bias in TOD data without explicitly mod-
elling the compounding intrinsic bias of the model.

machine-assisted human translation, the correlation between
machine translation accuracy and productivity gain can ex-
hibit intricate patterns (Sanchez-Torron and Koehn, 2016). In
this study, we simplify the relationship between the chosen
evaluation metric and users’ judgement of the system.

3.3 MULTI3WOZ: A Quick Recap

MULTI3WOZ (Hu et al., 2023) is a new large-scale
multilingual, multi-domain, and multi-parallel
TOD dataset that, unlike previous datasets, fully
meets the criteria mentioned in §2 for our inves-
tigation: it provides training, development, and
test sets in both the source and target languages
(i.e.,DSRC andDTGT) that are not only of equal in
size and created using the same protocols by native
speakers of the respective languages, but also pos-
sess comparable quality through covering the same
conversation flows via multi-parallel dialogues.

This dataset D comprises a total of 36,640
(4×9,160) parallel yet linguistically and cultur-
ally adapted dialogues in four languages: Ara-
bic (DARA; Afro-Asiatic), English (DENG; Indo-
European), French (DFRA; Indo-European), and
Turkish (DTUR; Turkic), constructed by leveraging
the well-established multi-domain English Multi-
WoZ dataset (Budzianowski et al., 2018), partic-
ularly its cleaned version 2.3 (Han et al., 2021).
In this study, we consider the English dialogues
D

ENG as the source dataset DSRC. Additionally,
among other languages, each datasetDARA,DFRA,
andDTUR is treated as a target datasetDTGT. Each
target dataset is generated by adapting a recent
bottom-up outline-based approach introduced by
Majewska et al. (2023) to address the limitations of
translation-based design. For further technical de-
tails concerning MULTI3WOZ, we refer the reader
to the original work (Hu et al., 2023).

4 Experimental Setup

Our experiments involve three standard TOD tasks:
Natural Language Understanding (NLU), Dialogue
State Tracking (DST), and Natural Language Gen-
eration (NLG). We briefly recap each task along
with its experimental setup.5

NLU. This task is commonly decomposed into two
well-established subtasks: intent detection (ID) and
slot labeling (SL). In ID, the objective is to classify
the user’s utterance and to determine the presence
of a specific domain-intent pair from a predefined
set of intents in the ontology. It is treated as a multi-
class classification task. SL is a sequence tagging
task that identifies the presence of a value and its
corresponding slot within the utterance.6

5We elaborate on all the other details in Appendix A.
6For example, Restaurant-Inform is the domain-intent pair

for the utterance There will be 5 of us and 19:45 would be
great. The value 5 corresponds to the slot number_of_people,



We evaluate ID and SL methods implemented
atop XLM-Rbase and XLM-Rlarge (Conneau et al.,
2020a). The evaluation is conducted by measuring
the accuracy of correctly identifying the presence
of all domain-intent pairs, as well as its F1 score.
For SL, we employ the commonly used BIO la-
belling scheme to annotate each token in the user’s
utterance. The evaluation of SL is based on F1
score, precision, and recall in accurately identify-
ing each slot value within the utterance.

DST. Our DST models are based on T5DST (Lin
et al., 2021a), a strong DST baseline which trans-
forms DST into a QA task by incorporating slot
descriptions. For implementation, we utilise mul-
tiple multilingual sequence-to-sequence models,
including mT5small, mT5large (Xue et al., 2021b),
Flan-T5small, and Flan-T5large (Chung et al.,
2022). To evaluate our approach, we follow the
standard MultiWOZ preprocessing and evaluation
setups (Wu et al., 2019), excluding the ‘hospital’
and ‘police’ domains due to the absence of test
dialogues in these domains. We report Joint Goal
Accuracy (JGA), Turn Accuracy, and Joint F1.7

NLG. We approach the NLG task as a
sequence-to-sequence problem, again sup-
ported by mT5small, mT5large, Flan-T5small, and
Flan-T5large. Our approach involves taking
the concatenation of the two preceding his-
torical utterances and the linearised ‘oracle’
dialogue act (e.g., [inform][restaurant]([price
range][expensive],[area][center]) as input to
generate a system response. Following MultiWOZ
conventions, we evaluate with the corpus BLEU
score (Papineni et al., 2002). However, we
evaluate lexicalised utterances without performing
delexicalisation. We also report ROUGE-L (Lin,
2004) and METEOR (Banerjee and Lavie, 2005).

One More Thing... We emphasise the wide appli-
cability of our proposed notions of θ-equivalence,
as they are not restricted to any specific metric,
model, or dataset. They are task-agnostic notions
applicable to a diverse range of models beyond
those mentioned in TOD tasks. We propose using
them as a tool to measure performance dispari-

and the value 19:45 corresponds to the slot time_of_booking.
7The JGA measure represents the proportion of dialogue

turns in the dataset where all slots have been correctly filled
with their ground truth values. For assessing turn accuracy,
each (domain, slot, value) triplet is compared against its corre-
sponding ground truth label. Furthermore, the joint F1 score
is computed as the macro-averaged F1 score across all these
slots, considering all the turns present in the dataset.

ties across different domains and multilingual NLP
tasks, thereby promoting the development of inclu-
sive and linguistically robust systems.

5 Results and Discussion

Centred around the definitions of θ-equivalence,
our experiments are focused on answering research
questions from §1. Our primary objective is to
identify, quantify, and mitigate performance dispar-
ities within multilingual ToD systems. To solidify
our empirical findings, we present supplementary
experimental results in Appendix B; they offer ad-
ditional support to our main claims as well as aux-
iliary findings.

To answer RQ1, we conduct evaluations of
mPLMs in three standard scenarios: fully super-
vised, zero-shot cross-lingual transfer, and translate
train. Our empirical results highlight the necessi-
ties of language-specific data in the development
of a TOD system for a new language. In response
to RQ2, our subsequent analysis highlights per-
formance disparities among task-specific dialogue
models, even when trained with equivalent amounts
of data. We further examine model performances in
both few-shot and ‘many’-shot settings, shedding
light on the correlations between task complexity
and the required amount of data, thus addressing
RQ3. Finally, we investigate the advantages of col-
lecting a dataset that maximises lexical coverage,
achieving improved cost-efficiency of annotation,
answering RQ4.

(RQ1) Supervised, Translation, and Zero-shot.
To answer RQ1, we examine the performance
of individual modules in multilingual TOD sys-
tems under three scenarios: (1) the ideal situa-
tion, where a multi-parallel dataset in the target
languageDTGT is available in equal size and qual-
ity as English, (2) the real life situation for most
languages, where there is a complete absence of
in-domain in-language training data, and (3) the
standard translate-train situation for languages that
have a reliable machine translation (MT) system
but lack DTGT. In the latter case, we employ an
MT system to generate a datasetDTGT

mt in the target
language fromDENG.

In scenario (1), we adopt a fully supervised ap-
proach for training and evaluating individual lan-
guages separately. For example, we train and eval-
uate systems P ARA(·) exclusively on the Arabic
dataset DARA. In scenario (2), we perform zero-
shot cross-lingual transfer evaluation for each tar-



Intent Detection Slot Labelling Dialogue State Tracking Natural Language Generation
Language Accuracy F1 Precision Recall F1 JGA Turn Acc. F1 BLEU ROUGE METEOR

Fully Supervised

ENG 93.292.0 96.195.3 94.693.6 95.796.0 95.194.8 57.259.8 97.797.9 92.593.5 20.120.8 47.348.4 42.944.1
ARA 92.792.1 95.094.6 42.442.2 48.548.1 45.245.0 42.047.9 96.496.9 88.089.4 6.817.9 0.815.0 19.436.0
FRA 89.288.6 93.092.6 76.977.1 79.279.1 78.078.1 47.649.7 96.897.0 89.490.1 12.913.9 39.640.9 33.835.2
TUR 92.291.5 95.094.4 76.977.1 87.687.3 87.186.9 50.552.9 97.197.3 90.591.2 5.524.2 24.753.7 22.548.6

Zero-shot Cross-lingual Transfer

ARA 82.165.7 88.274.8 27.417.2 31.227.7 29.221.2 1.91.5 82.580.7 17.0 5.8 0.20.2 2.52.1 2.42.0
FRA 83.977.0 89.885.0 58.549.1 61.262.4 59.854.9 5.53.7 86.685.1 40.132.8 0.50.4 4.24.7 6.15.9
TUR 87.074.9 91.481.7 68.148.5 74.766.6 71.256.2 3.51.3 85.282.1 34.415.2 0.30.4 3.74.4 6.15.8

Translate Train

ARA 72.067.3 81.978.9 00 00 00 9.232.4 89.194.2 52.779.9 1.11.2 6.36.7 7.47.6
FRA 66.263.4 77.474.9 00 00 00 10.4 9.8 90.690.6 60.058.7 2.63.2 20.423.2 15.117.8
TUR 71.266.5 82.278.6 00 00 00 10.532.9 90.594.3 60.479.7 1.01.0 16.917.4 12.713.0

Table 1: (1) Fully supervised, (2) zero-shot cross-lingual transfer from EnglishDENG, and (3) translate train from
GlobalWOZ ‘F&E’ datasetDTGT

mt for ID, SL, DST, and NLG tasks on MULTI3WOZ. Performance evaluations were
conducted for two distinct model categories: large models, namely XLM-Rlarge and mT5large, and small models,
specifically XLM-Rbase and mT5small. The reported results follow the format of “large modelsmall model”. For example,
the entry 93.292.0 denotes XLM-Rlarge achieves 93.2 accuracy in English ID whereas XLM-Rbase achieves 92.0.

get language. To achieve this, we train an English
system P ENG(·) using the DENG dataset, and sub-
sequently assess its performance on the target lan-
guage datasets, namely DARA, DFRA, and DTUR.
Lastly, in scenario (3), we utilise the ‘F&E’ propor-
tion of the GlobalWOZ dataset (Ding et al., 2022)
asDTGT

mt . This dataset leverages a Google Translate
to convert English utterances into the target lan-
guage while maintaining the slot values associated
with entities in English.8

Table 1 presents the experimental results for the
three scenarios. Despite employing state-of-the-
art mPLMs, we observe a substantial cross-lingual
transfer gap (Hu et al., 2020) across all tasks, under-
scoring the significance of in-domain in-language
data for the development of TOD systems. More-
over, in zero-shot setups, larger models exhibit
better cross-lingual transferability for SL, ID, and
DST. However, this advantage diminishes when
full-sized training data becomes available.

For translate-train, we observe that the system
trained using the MT-ed dataset DTGT

mt underper-
forms the fully supervised systems P TGT(·). Inter-
estingly, the translate-train system performs worse
than the English system P ENG(·), even in the zero-
shot cross-lingual transfer setup, for ID and SL.9

8Instead of employing an MT system to translateDENG into
D

TGT
mt , we utilise the GlobalWOZ dataset as our translate-train

dataset. This dataset fulfils our objective by offering translated
dialogues using Google Translate and provides character-level
spans for slot values. We acknowledge that the quality of
D

TGT
mt are naturally influenced by the choice of the MT system.

9The poor performance of SL models trained on Glob-
alWOZ can be attributed to the presence of erroneous span
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Figure 1: A cross-language comparison for absolute
equivalence in performance for each supervised system
P TGT(·) with respect to the fully supervised English
system P ENG(·). The ID and SL models are based on
XLM-Rlarge, while the DST and NLG models are based
on mT5small. The performance is reported based on task-
metric pairs, such as evaluating ID with Accuracy. The
0.95-equivalence line requires a system to achieve 95%
of the P ENG(·) performance (see §3.2).

In sum, our empirical results highlight the cru-
cial role of acquiring high-quality in-domain in-
language training data when developing TOD sys-
tems for a new language.

(RQ2) Intrinsic Bias in mPLMs. In RQ2, we
quantitatively evaluate the observed performance
disparity across languages by measuring the ab-
solute θ-equivalence. Figure 1 illustrates the per-
formance ratio of each system in relation to the
English systems. This figure also highlights the ab-
solute 0.95-equivalence threshold, which signifies
the point at which a system achieves 95% of the

annotations within the GlobalWOZ dataset, demonstrating the
error-prone nature of MT-based multilingual TOD generation.
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Figure 2: Absolute equivalence in performance of dif-
ferent mPLMs for DST (JGA) and NLG (BLEU).

performance of the fully supervised English system.
For instance, the English ID system achieves an ac-
curacy of 93.2. Thus, a target system must attain at
least 88.5 accuracy to achieve 0.95-equivalence.

It is observed that the ID models in the target
languages meet the 0.95-equivalence performance
threshold. However, for the more complex tasks
of SL, DST, and NLG, the models generally fall
short of reaching the threshold, when evaluating
the models using the widely accepted metrics (e.g.,
JGA). An exception is the Turkish NLG model,
which surpasses the performance of the English
model by achieving a higher BLEU score. It is
important to note that the BLEU score is sensitive
to the specific linguistic properties of the language
being evaluated and may vary depending on the
language under consideration.

In addition, DST models for all languages
achieve the 0.95-equivalence performance thresh-
old when the metric M(·) is Turn Accuracy. How-
ever, when evaluating the models using JGA, the
target languages fail to reach the threshold. Addi-
tionally, we note that the Arabic NLG model out-
performs the French one in terms of BLEU score,
but falls behind in terms of ROUGE score. These
findings highlight the dependence of the equivalent
performance on the choice of evaluation metrics
and emphasise the importance of aligning evalua-
tion metrics with users’ judgement of the system.

The attainment of absolute equivalence in perfor-
mance across languages can also differ when em-
ploying different mPLMs. Figure 2 indicates that
each mPLM can have varying impacts on down-
stream applications. Moreover, it is worth noting
that the performance of mPLMs still lags behind
their monolingual counterparts. For instance, by
substituting the multilingual model with the mono-
lingual Arabic-BERTlarge model (Safaya et al.,
2020), we achieved a F1 score of 54.9 (↑ 9.7) for

Arabic SL.
Arabic SL serves as the bottleneck across the

benchmark, with a significant decrease in per-
formance compared to other language. In the
MULTI3WOZ dataset, the slot-value spans are an-
notated at the character level, and an exact match
is required for a span to be considered correctly
identified. On the other hand, Rust et al. (2021)
observed that the tokenisers used in multilingual
models may lead to sub-optimal performance for
downstream tasks. To delve further into the analy-
sis, we aligned the slot boundaries with the token
boundaries by defining the slot span as the min-
imal token span that covers the entire slot in the
utterance. Using this approach, the identical model
achieved an improved F1 score of 81.1 (↑35.9) for
Arabic SL, confirming that the sub-optimal tokeni-
sation of XLM-R was the primary factor contributing
to the performance degradation.

In sum, despite having access to the same models
and TOD data, TOD systems in target languages
have not yet reached performance levels on par
with English and have failed our goal of absolute
0.95-equivalence in performance. This limitation
can primarily be attributed to the intrinsic bias
inherent in state-of-the-art mPLMs.

(RQ3) Adaptive Bias in Few-shot Learning. Sub-
sequently, we investigate the impact of the scarcity
of in-domain, in-language training data on per-
formance disparities, recognising it as a primary
source of aforementioned adaptive bias. Here, our
objective is to collect a small-sized datasetDTGT

few in
the target language that enables the trained system
to achieve relative 0.95-equivalence in performance
(M(P TGT

few(·)) ≥ 0.95 ·M(P TGT(·)); see §3.2).
Figure 3(a) shows the relative equivalence, that

is, the performance ratio for a system trained on
increasing percentage of Arabic-only data (without
cross-lingual transfer) compared to fully supervised
systems P ARA(·) trained on the complete DARA.
The subsets of Arabic-only data are randomly sam-
pled from the full Arabic training dataset. As an-
ticipated, we find that simpler tasks like ID and SL
reach relative equivalence with less than 20% of
the training dataset. Beyond this point, increasing
the training data size leads to only marginal perfor-
mance gains. More complex tasks such as DST and
NLG require more data, with relative equivalence
being achieved at approximately 50% and 80% of
the training data, respectively. Similar trends are
observed for other languages, including English,
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Figure 3: Relative equivalence in performance for (a) ID, SL, DST, and NLG for system trained on increasing
percentage of randomly sampled Arabic-only training data with respect to systems P ARA(·) trained with full data
and (b) NLG for systems trained on increasing percentage of randomly sampled monolingual data, in relation to
systems trained on the full dataset. The ID and SL models are based on XLM-Rlarge and evaluated using Accuracy
and F1 scores. The DST and NLG models are based on mT5small, and evaluated on JGA and BLEU scores.

as shown in Figure 4 (appendix). Interestingly, the
English systems surpass the equivalence threshold
faster compared to other target languages.

Figure 3(b) shows the relative equivalence in
performance of NLG for systems trained on pro-
gressively larger proportions of monolingual train-
ing data across different languages. Notably, even
when employing the same mPLM, English out-
performs other target languages by achieving the
0.95-equivalence threshold with 40% of the train-
ing data. On the other hand, the remaining target
languages require more than 80% of the training
data to reach the threshold. Similar trends are ob-
served for SL and DST, as illustrated in Figure 5,
with the exception of ID models which all achieve
the threshold with less than 5% of the training data.

Furthermore, we note the following auxiliary
findings regarding the introduction of cross-lingual
transfer training: 1) We observe that cross-lingual
transfer learning results in obvious gains when
the amount of target language training data is lim-
ited (less than 30%). However, when evaluating
systems based on the relative 0.95-equivalence
threshold, this transfer learning strategy only leads
to marginal or negligible improvements. 2) The
mixed cross-lingual training strategy outperforms
its sequential training counterpart, which is consis-
tent with prior research (Schmidt et al., 2022).

In sum, the proportion of data required to
achieve a relative 0.95-equivalence in performance
varies depending on the complexity of the task. Sim-
pler tasks can reach this threshold with less than
20% of the in-language data. However, more com-
plex tasks such as DST and NLG often require a
larger proportion, typically exceeding 50%.

(RQ4) Cost-efficiency in Multilingual TOD Col-

lection. This research question considers the real
life challenge faced by developers who need to
create TOD systems in a new language without
any in-domain, in-language data available. The ob-
jective is to maximise system performance across
multiple metrics while minimising annotation cost
by annotating the minimum amount of data. Specif-
ically, we assume the availability of a large-scale
source datasetDSRC. Our objective is to effectively
leverage DSRC to create a target language dataset
D

TGT
few that covers a subset ofDTGT, aiming to train

a system that outperforms other possible subset
selections of the same size.

For simplicity, we assume that the annotation
costs for dialogues in all languages are identical.
We compare different strategies for creatingDSRC

few

fromDSRC and use it to create a multi-parallel tar-
get dataset DTGT

few, thus simulating the described
scenario. Specifically, we evaluate following strate-
gies. (i) Random Sampling: This is a baseline
strategy, where we randomly sample a subset of
D

SRC
few and create the correspondingDTGT

few in the tar-
get language. This strategy has been consistently
applied throughout our previous analysis. (ii) Max
N-gram: This strategy is to heuristically select dia-
logues that maximise the trigram diversity ofDSRC

few.
The objective is to enhance the diversity and cov-
erage of language patterns in DTGT

few. (iii) Equal
Domain: In this strategy, we sample an equivalent
number of dialogues for each domain. The goal is
to ensure a balanced representation of all domains
in DTGT

few. (iv) Equal Slot: This strategy focuses
on sampling a set of dialogues while maintaining a
balanced distribution of slot occurrences. (v) Max
Length: This strategy involves selecting a list of
dialogues with the longest length, i.e., the highest



ID SL DST NLG
Strategy

Accuracy F1 JGA BLEU

Random Sampling 87.9 65.2 20.7 10.4
Max N-gram 88.8 66.5 23.6 12.2
Equal Domain 87.2 65.3 21.1 10.1
Equal Slot 87.9 65.0 26.2 11.3
Max Length 88.3 66.4 26.7 11.5

Table 2: The average performance of the models for
each task across three target languages: Arabic, French,
and Turkish. Each model was trained using 5% of the
target language data, which was generated using each
data creation strategy introduced in RQ4. The sum-
marised results presented in this table are derived from
Table 10, Table 12, and Table 13 in the Appendix. The
ID and SL models are built upon XLM-Rlarge, while the
DST and NLG models are based on mT5small.

number of utterances.

Table 2 presents the averaged task performance
for the three target languages, considering a few-
shot setup where each model is trained on 5% of
the full datasetDTGT. The results indicate that the
Max N-gram and Max Length strategies consis-
tently outperform the baseline Random Sampling
strategy across all tasks. Notably, the Max N-gram
strategy achieves the highest performance for ID,
SL, and NLG tasks. These findings emphasise the
potential of strategic annotation budget allocation
in multilingual dialogue collection, which can lead
to enhanced model performance without incurring
additional annotation costs.

Furthermore, we present the following auxiliary
findings. 1) We found that there is a negligible per-
formance gain when collecting a full-sized (100%)
validation set compared to a smaller (e.g., 10%) val-
idation set. 2) When developing TOD systems for
multiple languages simultaneously, we observed
that collecting distinct (mutually exclusive) sets of
dialogues in each language, without overlapping
dialogue patterns, led to marginal enhancements
in NLU in a cross-lingual transfer setup. However,
this observed pattern did not extend to NLG.

In sum, our findings show the benefits of strategic
budget allocation in multilingual dialogue collec-
tion, which can enhance model performance with-
out additional costs. Particularly, the Max N-gram
strategy, which involves creating a target dataset
D

TGT
few from a subsetDSRC

few that maximises both tri-
gram and lexical coverage, leads to improved per-
formance compared to the random baseline.

6 Conclusion and Future Work

We presented a systematic analysis of performance
disparities in modern multilingual TOD systems,
utilising proposed quantitative measures of abso-
lute and relative equivalence in performance. By
addressing four key research questions, our empiri-
cal investigation revealed the presence of adapta-
tion and intrinsic biases in current TOD systems
and provided insights on how to best carry out
data collection and system development for new
languages. This study opens up new avenues for
future research, including mitigating biases, im-
proving system robustness, and expanding TOD
systems across languages and domains.

Limitations

The limitations of this work are primarily related to
the assumptions made during our analysis. Firstly,
in §3.1, we rely on established automatic evalua-
tion metrics and assume a strong correlation be-
tween these metrics and human judgement of sys-
tem performance. While this assumption has been
widely adopted in previous studies (Blasi et al.,
2022; Khanuja et al., 2023, inter alia), it is im-
portant to acknowledge the ongoing challenge in
dialogue system evaluation: Recent research (Yeh
et al., 2021; Mehri et al., 2022) has highlighted
that automatic evaluation metrics demonstrate only
moderate correlation with human judgement. This
indicates the need for further development of di-
alogue evaluation. On the other hand, it is worth
noting that our proposed notions of θ-equivalence
are not restricted to any specific metric but are gen-
erally applicable, including to further metrics.

Another limitation is the potential misinterpre-
tation of θ-equivalence as implying that P TGT(·) is
as θ-good as P SRC(·). It is important to note that
achieving θ-equivalence does not indicate that the
system in the target language, P TGT(·), possesses
‘θ-proportion’ of capability compared to the system
in the source language, P SRC(·). The concept of
equivalence in performance focuses on providing
an indicator of the performance disparities across
languages or within a target language, as well as
aims to minimise these disparities. Similar to eval-
uation metrics, as an example, a generation system
achieving a 20 BLEU score does not necessarily
imply that it is twice as good as a system obtaining
a 10 BLEU score. Our proposed measures should
be interpreted cautiously, considering the nuanced
nature of dialogue evaluation and the potential non-



linear relationship between metric scores and user
experience (Blasi et al., 2022).

Besides, in §5 (RQ4), we abstract away many
fine-grained details in a real-word data collection
project. For example, we assume that annotating
a dialogue for all languages incurs uniform costs.
While this assumption simplifies the analysis, it
may not accurately reflect the real-world scenario.
The actual cost of annotating dialogues can vary
across languages due to factors such as the avail-
ability of native or bilingual annotators. Further-
more, some strategies tested in our study, such as
the Max Length strategy, may result in increased
data collection time and subsequently higher costs.
We hope that our findings could inspire future work
to delve into more sophisticated annotation strate-
gies and conduct a more fine-grained analysis, con-
sidering these finer details of real-world data collec-
tion. Given the scope of this paper, we were unable
to delve into the intricacies of cost variations in
multilingual dialogue annotation.

The scope of languages analysed in this study
is limited by the availability of training data. As
mentioned earlier, the MULTI3WOZ dataset pro-
vides us with the opportunity to conduct this type
of study for the first time. Therefore, our analysis
is based on this single dataset, which includes four
languages: Arabic, English, French, and Turkish.
While these languages are representative of differ-
ent language families and feature a diverse range of
linguistic properties, we recognise that our findings
are derived from a small sample of world languages.
Future research might (and should) contribute more
resources, particularly for under-represented lan-
guages, and expand the analysis to a broader lin-
guistic landscape. Furthermore, a fully inclusive
dialogue system should consider not only text input
but also other modalities, such as spoken and sign
languages. We also acknowledge that the limita-
tions of training data have restricted the analysis
to text input only, thus discarding potential dispar-
ities stemming from other relevant tools such as
automatic speech recognition (Babu et al., 2022).

Finally, we acknowledge that our experimental
results are derived from a single run, rather than
multiple runs with varying random seeds. In this
study, we have conducted a comprehensive set of
experiments including four different languages and
spanning across a range of tasks. These tasks in-
clude simpler tasks such as ID and SL, as well as
more complex tasks like DST and NLG. Conse-

quently, the cumulative computational budget of
these experiments exceeded 5,000 GPU hours on
state-of-the-art GPUs. Considering the importance
of conserving valuable computing resources and
minimising energy consumption, we did not to run
parallel experiments with different random seeds.
However, we would like to emphasise that, despite
based on a single run, all our main claims remain
consistent across all languages and tasks, thereby
affirming their reliability and generalisability.
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Pawel Budzianowski, Daniela Gerz, Sam Coope,
Georgios Spithourakis, Tsung-Hsien Wen, Nikola
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A Experimental Details

Experiments on ID. Our ID model is implemented
as a multi-class classifier. At each dialogue turn
t, an mPLM model encodes the concatenation of
the previous two historical utterances (ut−2 and
ut−1) along with the current utterance (ut) to pro-
vide embedding vectors at the sequence. For each
domain-intent pair d-i defined by the ontology, the
representation of the ‘<s>’ token is subsequently
projected down to two logits and passed through
a softmax layer to form a Bernoulli distribution
indicating if d-i appears in the ut. Unless oth-
erwise specified, all of our models, including ID
models, in this paper are implemented using the
HuggingFace repository (Wolf et al., 2020). All
ID experiments were run on a single A100 80 GiB
GPU and a 32-core vCPU.

Table 3 presents the selected hyper-parameters for
the conducted experimental study, including the ID
models.

Table 4 lists all the PLMs we used in this work,
along with their respective checkpoints in the Hug-
gingface repository.

Table 5 shows the time consumption of the mod-
els for all tasks in the experimental study, in-
cluding the ID models, The time consumption is
measured based on five independent runs on the
MULTI3WOZ dataset.

SL. Our SL model is implemented as a sequence
tagger. Precisely, at each dialog turn t, the model
encodes the concatenation of the previous two ut-
terances (ut−2 and ut−1) along with the current
utterance (ut) to provide embedding vectors at to-
ken levels. We adopt the widely-used BIO labelling
scheme to annotate each token in the user’s utter-
ance. Specifically, each token is labelled with either
B-d-i-s (e.g., B-Restaurant-Inform-Food), denot-
ing the beginning of a slot-value pair with the cor-
responding slot name, I-d-i-s indicating it is inside
the slot-value, or O indicating that the token is not
associated with any slot-value pair. The predic-
tion is performed through token classification.10

We implemented our SL model using the Hugging-
Face repository and conducted the experiments on
a single A100 80 GiB GPU and a 32-core vCPU.
The selected hyper-parameter, mPLMs used, and
the time consumption of our SL experiments are

10https://huggingface.co/tasks/
token-classification
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Hyper-parameter Value

ID: XLM-Rbase, XLM-Rlarge
batch size 128
learning rate 2e-5
weight decay 0.1
evaluation per steps 500
max training steps 20000
max context char length 150
early stopping patience 2

SL: XLM-Rbase, XLM-Rlarge
batch size 128
learning rate 2e-5
weight decay 0.1
evaluation per steps 500
max training steps 20000
max context char length 150
early stopping patience 2

DST: mT5small, Flan-T5small
batch size 8
learning rate 1e-5
max training epochs 5
early stopping patience 2

DST: mT5large, Flan-T5large
batch size 4
learning rate 1e-5
number of training epochs 1

NLG: mT5small, Flan-T5small
batch size 32
learning rate 1e-3
weight decay 0.01
evaluation per steps 2000
max training steps 40000
max context char length 200
early stopping patience 2

NLG: mT5large, Flan-T5large
batch size 16
learning rate 1e-3
weight decay 0.01
evaluation per steps 2000
max training steps 40000
max context char length 200
early stopping patience 2

Table 3: Model hyper-parameters for each task-model
pair. For example, ID: XLM-Rbase, XLM-Rlarge section
in this table shows the hyper-parameters for ID models
back-boned with XLM-Rbase and XLM-Rlarge. To select
the optimal model checkpoint, we employ early stop-
ping and select the one with the best validation perfor-
mance, measured by F1, F1, validation loss, and BLEU
for ID, SL, DST, and NLG, respectively. Unless explic-
itly specified, all other hyper-parameters are set to their
default values as defined in the HuggingFace Transform-
ers or T5DST repository.

summarised in Table 3, Table 4, and Table 5, re-
spectively.

DST. For detailed information about the DST

Model HuggingFace Checkpoint

XLM-Rbase xlm-roberta-base
XLM-Rlarge xlm-roberta-large
mT5small google/mt5-small
mT5large google/mt5-large
Flan-T5small google/flan-t5-small
Flan-T5large google/flan-t5-large
Arabic-BERTlarge asafaya/bert-large-arabic

Table 4: The employed mPLMs in our experimental
study and their Huggingface Checkpoints.

Setup Time Consumption

ID: XLM-Rbase
Training per 500 steps 3:26
Inference on full test 0:06

ID: XLM-Rlarge
Training per 500 steps 10:29
Inference on full test 0:20

SL: XLM-Rbase
Training per 500 steps 3:21
Inference on full test 0:45

SL: XLM-Rlarge
Training per 500 steps 10:36
Inference on full test 1:24

DST: mT5small
Training per epoch 3:56
Inference on full test 6:53

DST: mT5large
Training per epoch∗ 30:54:23
Inference on full test∗ 17:17

NLG: mT5small
Training per 2000 steps 7:12
Inference on full test 0:56

NLG: mT5large
Training per 2000 steps 37:02
Inference on full test 3:22

Table 5: Time consumption of models for each dialogue
task. It was computed as an average of 5 runs on a
machine with a single A100 80 GiB GPU and a 32-core
vCPU. (∗) For the DST experiments utilising mT5large
models, we conducted the experiments on a machine
equipped with two A100 80 GiB GPUs. We report
this run time based on a single run to account for its
significant time consumption.

model design and training methodology, we refer
readers to the original work by Lin et al. (2021a).
Our implementation is based on the official T5DST



GitHub Repository.11 For the DST experiments
utilising mT5small models, we run them on a single
A100 80 GiB GPU and a 32-core vCPU. Due to the
lack of support in the official code for evaluating
and saving models per training steps, we adopt a
specific training protocol. In the fully supervised
setup, we train DST models for a fixed number of
5 epochs. On the other hand, in the few-shot setup,
we train the models for approximately the same
number of epochs that corresponds to a similar
number of training steps as 5 epochs. For instance,
if we train models with 10% of the full training
data, we train them for a maximum of 50 epochs.
For the DST experiments utilising mT5large mod-
els, we conducted the experiments on a machine
equipped with two A100 80 GiB GPUs. However,
due to the significant time consumption, the models
were only trained for 1 epoch. We report the se-
lected hyper-parameter, mPLMs used, and the time
consumption of our DST experiments in Table 3,
Table 4, and Table 5, respectively.

NLG. The NLG model is implemented using the
HuggingFace repository. All NLG experiments
were run on a single A100 80 GiB GPU and a 32-
core vCPU. We report the selected hyper-parameter,
mPLMs used, and the time consumption of our
DST experiments in Table 3, Table 4, and Table 5,
respectively.

B Additional Results on MULTI3WOZ

To solidify the empirical findings of our paper, we
present supplementary experimental results that
provide additional support for our main claims, as
well as our auxiliary findings discussed in §5.

(RQ3) Adaptive Bias in Few-shot Learning.

Figure 4 visually presents the amount of in-
language training data necessary to attain relative
0.95-equivalence in performance for four tasks: ID,
SL, DST, and NLG across three languages: En-
glish, French, and Turkish. These results validate
our claim stated in §5, as also supported by Fig-
ure 3(a). They demonstrate that our claim extends
beyond the Arabic language and are applicable to
other languages as well.

Figure 5 shows the amount of in-language training
data necessary to attain relative 0.95-equivalence in
performance for each languages across three tasks:
ID, SL, and DST. These results validate our claim

11https://github.com/facebookresearch/
Zero-Shot-DST

stated in §5, as also supported by Figure 3(b). They
demonstrate that our claim extends beyond a single
NLG task and are applicable to other tasks as well.

Figure 6 demonstrates the benefits of incorporat-
ing cross-lingual transfer training in dialogue tasks.
We observe that the cross-lingual transfer learning
fromDENG yields substantial improvements when
the amount of target language training data is lim-
ited (less than 30%). However, when assessing sys-
tems based on the relative 0.95-equivalence thresh-
old, this transfer learning strategy only results in
marginal or negligible improvements. While sup-
port our supporting for our auxiliary finding 1),
these results once again emphasise the significance
of in-domain, in-language training data. They also
present an open research challenge to explore the
optimal utilisation of cross-lingual transfer learning
in conjunction with a larger quantity of in-language
training data.

Figure 7 compares the benefits of incorporating
two types of cross-lingual transfer training strate-
gies in dialogue tasks. In the figure, the term 10%
of training data denotes the mixed training strat-
egy using the complete DENG dataset combined
with 10% of theDARA dataset in the same training
epoch. This mixed training strategy outperforms its
sequential training counterpart, where the model is
initialised based onPENG, for ID and NLG tasks. In
addition, Figure 8 confirms that our findings holds
across languages. These findings align with pre-
vious results (Schmidt et al., 2022). These results
provide support for our auxiliary finding 2).

Table 6, Table 7, Table 8, and Table 9 present the
performance of ID, SL, DST, and NLG tasks across
different languages: Arabic, English, French, and
Turkish, respectively. These tables specifically
demonstrate the model’s performance in a few-shot
setup, where the proportion of available training
data increases progressively. The discussion and
analyses regarding the research question are de-
rived from the performance presented in these ta-
bles.

(RQ4) Cost-efficiency in Multilingual TOD Col-
lection.

Figure 9 illustrates the comparative performance
of SL models trained on different proportions of
data in Arabic, French, and Turkish, using data
created with two strategies: Random Sampling and
Max N-gram.

https://github.com/facebookresearch/Zero-Shot-DST
https://github.com/facebookresearch/Zero-Shot-DST


ID SL DST NLG% of
Training Data Accuracy F1 Precision Recall F1 JGA Turn Acc. F1 BLEU ROUGE METEOR

Arabic

1% 84.7 89.8 33.4 37.5 35.3 2.7 84.9 46.9 5.5 3.6 16.5
2% 85.9 90.6 34.0 40.4 36.9 8.7 89.3 62.7 7.5 3.9 20.4
3% 88.9 92.4 38.0 42.8 40.2 11.0 90.8 67.0 8.6 7.8 22.1
4% 89.1 92.7 38.1 43.7 40.7 13.9 91.7 69.9 9.9 6.2 24.4
5% 89.5 92.8 38.0 44.2 40.9 14.1 91.9 70.3 9.5 5.9 23.8
6% 88.3 92.0 38.1 44.5 41.0 26.1 94.3 78.9 10.3 7.9 25.2
7% 89.8 93.0 39.2 45.2 42.0 27.2 94.4 80.2 10.6 7.4 25.4
8% 89.6 93.0 40.5 44.8 42.5 28.3 94.6 80.5 11.8 9.2 27.4
9% 89.6 92.7 39.2 45.2 42.0 29.2 94.9 81.3 12.1 8.1 27.9
10% 89.2 92.8 39.8 45.0 42.2 32.0 95.2 82.5 12.4 8.4 28.1
20% 91.0 93.9 40.7 45.9 43.1 36.9 95.8 95.8 14.0 10.3 30.3
30% 91.4 94.1 40.9 46.4 43.5 41.9 96.3 87.2 14.8 11.3 31.6
40% 91.5 94.3 40.8 47.2 43.8 44.0 96.5 87.8 15.7 12.7 32.8
50% 92.3 94.7 41.5 47.4 44.3 45.6 96.6 88.2 16.0 13.4 33.4
60% 92.4 94.7 41.8 48.2 44.8 46.0 96.7 88.5 16.4 13.6 33.9
70% 92.6 95.0 41.9 47.6 44.6 46.8 96.8 89.0 16.9 13.8 34.7
80% 92.5 94.9 42.0 48.1 44.9 46.5 96.7 88.9 17.4 14.7 35.3
90% 92.5 94.9 43.4 48.4 45.8 47.7 96.9 89.4 17.6 15.4 35.4
100% 92.7 95.0 42.4 48.5 45.2 47.9 96.9 89.4 17.9 15.0 36.0

Table 6: The performance of ID, SL, DST, and NLU models trained on an increasing percentage of Arabic data.
The ID and SL models are built upon XLM-Rlarge, and the DST and NLG models are based on mT5small.

ID SL DST NLG% of
Training Data Accuracy F1 Precision Recall F1 JGA Turn Acc. F1 BLEU ROUGE METEOR

English

1% 81.6 88.3 86.3 88.3 87.3 17.0 91.1 71.5 8.4 29.7 26.9
2% 85.4 91.2 89.2 91.6 90.4 24.5 93.5 78.0 10.9 34.7 31.5
3% 85.7 91.1 89.5 93.2 91.3 30.5 94.6 80.9 12.0 36.3 33.0
4% 88.3 92.8 91.3 93.9 92.6 32.1 95.0 82.5 12.9 38.2 34.7
5% 88.8 93.4 91.2 94.0 92.6 39.8 96.1 86.1 14.8 41.2 37.5
6% 90.0 94.0 92.3 93.5 92.9 35.8 95.7 84.8 15.0 41.9 37.9
7% 90.0 94.0 91.9 93.9 92.9 40.4 96.2 86.7 14.9 40.9 36.4
8% 89.5 93.9 91.8 94.7 93.2 44.3 96.5 88.2 17.3 44.1 39.9
9% 88.7 93.5 92.1 95.3 93.7 42.2 96.4 87.8 15.7 41.7 38.0
10% 91.0 94.9 92.1 95.1 93.5 43.2 96.5 87.5 17.0 43.7 39.7
20% 91.1 94.9 93.1 95.2 94.1 47.0 96.8 89.5 18.7 46.2 42.3
30% 91.3 95.0 93.3 95.1 94.5 54.2 97.4 91.8 19.5 46.5 42.5
40% 92.4 95.7 93.6 94.8 94.2 55.2 97.5 92.1 20.3 47.4 43.1
50% 92.7 95.8 94.3 94.9 94.6 56.4 97.7 92.8 20.4 47.3 43.0
60% 92.4 95.6 93.9 95.7 94.8 56.6 97.7 92.9 20.2 47.4 43.6
70% 92.8 95.9 94.2 95.8 95.0 58.4 97.8 93.2 20.5 47.6 43.6
80% 93.0 96.0 94.6 95.9 95.2 58.7 97.8 93.5 20.5 47.7 43.2
90% 92.5 95.7 95.0 95.5 95.3 59.3 97.8 93.6 20.8 48.1 43.9
100% 93.2 96.1 94.6 95.7 95.1 59.8 97.9 93.5 20.8 48.4 44.1

Table 7: The performance of ID, SL, DST, and NLU models trained on an increasing percentage of English data.
The ID and SL models are built upon XLM-Rlarge, and the DST and NLG models are based on mT5small.



ID SL DST NLG% of
Training Data Accuracy F1 Precision Recall F1 JGA Turn Acc. F1 BLEU ROUGE METEOR

French

1% 79.5 86.5 64.4 64.8 64.6 3.0 83.9 46.3 4.2 21.4 16.9
2% 80.6 87.3 70.1 71.1 70.6 9.8 89.8 63.9 6.3 27.1 22.2
3% 85.8 90.2 72.4 71.9 72.1 14.9 91.9 70.0 7.3 29.7 24.6
4% 85.9 90.7 72.0 72.4 72.2 23.9 93.8 78.4 8.3 31.6 26.2
5% 85.7 90.6 71.9 72.4 72.1 20.7 93.3 76.0 8.1 30.5 25.7
6% 85.8 90.7 72.4 74.1 73.3 25.4 94.3 79.6 7.9 30.6 25.3
7% 85.3 90.6 73.4 75.2 74.3 30.4 94.8 81.3 9.4 33.3 27.8
8% 86.5 91.0 75.0 74.4 74.7 27.1 94.5 79.6 9.6 34.1 28.7
9% 86.0 90.8 73.3 74.1 73.7 33.0 95.3 83.3 9.1 33.6 28.1
10% 86.3 90.9 74.0 72.9 73.5 31.4 95.1 82.5 9.2 33.5 28.0
20% 87.2 91.7 75.5 77.3 76.4 38.2 95.9 85.9 11.1 36.9 31.3
30% 88.2 92.2 76.3 78.0 77.1 43.3 96.4 87.8 11.6 37.8 32.2
40% 89.0 92.8 77.1 77.0 77.1 44.7 96.6 88.4 12.2 37.6 32.2
50% 89.0 92.8 78.1 78.3 78.2 44.4 96.6 88.5 12.5 38.5 33.0
60% 88.5 92.6 76.3 78.6 77.4 46.4 96.7 88.9 12.9 39.1 33.4
70% 89.0 92.9 78.6 78.3 78.5 47.8 96.9 89.5 13.3 39.5 34.0
80% 89.2 93.0 77.8 78.8 78.3 46.4 96.8 89.3 13.4 39.9 34.4
90% 89.2 92.9 78.4 78.4 78.4 48.8 97.0 89.9 13.7 40.4 34.9
100% 89.2 93.0 76.9 79.2 78.0 49.7 97.0 90.1 13.9 40.9 35.2

Table 8: The performance of ID, SL, DST, and NLU models trained on an increasing percentage of French data.
The ID and SL models are built upon XLM-Rlarge, and the DST and NLG models are based on mT5small.

ID SL DST NLG% of
Training Data Accuracy F1 Precision Recall F1 JGA Turn Acc. F1 BLEU ROUGE METEOR

Turkish

1% 79.9 86.8 74.8 76.5 75.7 3.6 85.7 48.1 6.9 27.1 24.5
2% 84.9 90.2 81.1 82.0 81.6 11.7 90.4 68.4 10.2 32.9 29.6
3% 86.8 91.1 81.0 82.2 81.6 20.2 92.8 76.2 10.8 34.8 2 30.9
4% 87.4 91.7 82.5 83.7 83.1 27.3 94.5 81.0 13.5 38.5 34.4
5% 88.4 92.4 81.8 83.4 82.6 27.3 94.4 81.2 13.6 39.1 34.6
6% 88.7 92.9 82.9 83.7 83.3 32.9 95.3 83.5 14.9 40.9 36.7
7% 88.1 92.1 82.9 84.2 83.5 33.1 95.2 83.6 15.6 42.1 37.6
8% 88.7 92.7 83.7 85.0 84.3 32.1 95.2 84.1 16.3 43.0 38.6
9% 88.7 92.7 83.9 85.0 84.4 34.8 95.5 84.6 16.4 43.8 39.1
10% 88.3 92.2 84.6 84.9 84.7 35.9 95.6 85.1 17.2 44.6 39.9
20% 89.6 93.2 84.5 85.8 85.1 44.1 96.5 87.9 19.3 47.4 42.5
30% 90.7 94.1 84.3 84.6 84.4 46.3 96.7 89.0 20.3 48.9 43.9
40% 91.5 94.5 85.2 86.0 85.6 48.9 96.8 89.6 21.3 49.9 44.9
50% 91.4 94.5 87.1 85.6 86.4 48.2 96.9 89.7 21.8 50.6 45.7
60% 91.8 94.7 86.5 86.3 86.4 50.1 97.1 90.1 22.7 51.9 47.0
70% 91.7 94.6 85.7 87.1 86.4 50.8 97.1 90.5 23.4 52.5 47.4
80% 91.6 94.7 86.8 87.1 87.0 51.3 97.1 90.5 23.7 53.2 48,1
90% 92.0 94.9 86.6 86.8 86.7 52.1 98.1 90.5 23.7 53.2 48.2
100% 92.2 95.0 86.6 87.6 87.1 52.9 97.3 91.2 24.2 53.7 48.6

Table 9: The performance of ID, SL, DST, and NLU models trained on an increasing percentage of Turkish data.
The ID and SL models are built upon XLM-Rlarge, and the DST and NLG models are based on mT5small.
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(a) English
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10% 20% 30% 40% 50% 60% 70% 80% 90%100%0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
θ-

Eq
ui

va
le

nc
e

0.95

ID-ACCURACY

SL-F1
DST-JGA
NLG-BLEU

(c) Turkish
Figure 4: Relative equivalence in performance for ID,
SL, DST, and NLG for system trained on increasing
percentage of (a) English-only, (b) French-only, and (c)
Turkish-only training data with respect to fully super-
vised systems, namely P ENG(·), P FRA(·), and P TUR(·),
trained on full sized monolingual in-language data. The
ID and SL models are based on XLM-Rlarge, while the
DST and NLG models are based on mT5small.
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(c) DST
Figure 5: The relative equivalence in performance of
different tasks: (a) ID, (b) SL, and (c) DST, is evalu-
ated for systems trained on an increasing percentage of
monolingual training data, in relation to fully supervised
systems trained on the full monolingual dataset. The ID
and SL models are based on XLM-Rlarge, while the NLG
models are based on mT5small.
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Figure 6: The comparative performance of Arabic SL
and NLG systems is evaluated by training them on in-
creasing percentage of Arabic-only training data, with
(transfer) and without (supervised) cross-lingual trans-
fer training from DENG. The evaluation is conducted
with respect to fully supervised systems P ARA(·) trained
on the completeDARA dataset.
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Figure 7: The performance of Arabic SL and NLG
systems is compared by training them on increasing
percentages of Arabic-only training data and fullDENG.
Two cross-lingual transfer training strategies, namely
sequential and mixed, are employed and compared. The
evaluation is conducted by comparing the systems’ per-
formance to that of fully supervised systems P ARA(·)
trained on the complete Arabic training dataset DARA.
ID is evaluated using Accuracy, while NLG is evaluated
using BLEU. The ID model is based on XLM-Rbase, and
the NLG model is based on mT5small.
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(b) French
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Figure 8: Relative equivalence in performance for ID for
system trained on increasing percentage of in-language
data for (a) Arabic, (b) French, and (c) Turkish, with
respect to fully supervised systems, namely P ENG(·),
P FRA(·), and P TUR(·), trained on full sized monolingual
in-language data. Two cross-lingual transfer training
strategies, namely sequential and mixed, are employed
and compared. The ID models are based on XLM-Rbase
and evaluated with Accuracy.

Figure 10 illustrates the comparative performance
of SL and DST models trained on different propor-
tions of Arabic data, using data created with two
strategies: Random Sampling and Max N-gram.

Table 10, Table 11, Table 12, and Table 13 dis-
play the relative performance of all tasks in Arabic,
English, French, and Turkish, respectively, when
considering the aforementioned strategies. These
results support for our main claim in §5.

Figure 11 illustrates a compression between two
strategies for creating the validation set: propor-
tional and full. In the few-shot setup, the propor-
tional strategy constructs a validation set that is
proportionate to the training set (compared to the
full training set). For example, we train a model
using 10% of the original training set and an equiv-
alent 10% of the original validation set. Conversely,
the full strategy involves consistently training the
system with a complete validation set, such as 10%
of the training set and the entire validation set. The
experimental results demonstrate that the inclusion
of a full validation set yields only marginal or neg-
ligible improvements in system performance. Con-
sequently, it is recommended that future system de-
velopers allocate their efforts towards the collection
of high-quality in-language datasets, as opposed to
focusing on acquiring a full validation set, which
has traditionally been done in existing literature.
These results support our auxiliary finding 1) in §5.

Figure 12 illustrates a comparison between two
strategies for creating the training set in a hypothet-
ical setup aimed at developing dialogue systems
in multiple languages simultaneously. The Same
strategy involves training a system using the same
set of dialogue patterns in all four languages, utilis-
ing a multi-parallel dataset. On the other hand, the
Different strategy employs different training sets
with mutually exclusive dialogue patterns for train-
ing the system. For instance, a system trained with
20% of the training data using the Different strat-
egy will encounter 80% of the dialogue patterns.
The results demonstrate that the Different strate-
gies outperform the Same strategies in terms of the
NLU task. Specifically, covering diverse dialogue
patterns yields marginally better performance for
NLU. However, this pattern does not hold true for
NLG. These results support our auxiliary finding
2) in §5.



ID SL DST NLG% of
Training Data Accuracy F1 Precision Recall F1 JGA Turn Acc. F1 BLEU ROUGE METEOR

Random Sampling

1% 84.7 89.8 33.4 37.5 35.3 2.7 84.9 46.9 5.5 3.6 16.5
5% 89.5 92.7 38.3 44.2 40.9 14.1 91.9 70.3 9.5 5.9 23.8
10% 89.2 92.8 39.8 45.0 42.3 32.0 95.2 82.5 12.4 8.4 28.1
50% 92.4 94.7 41.5 47.4 44.3 45.6 96.6 88.2 16.0 13.4 33.4
100% 92.7 95.0 42.4 48.5 45.2 47.9 96.9 89.4 17.9 15.0 36.0

Max N-gram

1% 86.5 91.0 33.5 38.1 35.6 6.6 87.7 58.0 6.7 5.0 18.8
5% 90.4 93.6 39.9 45.8 42.6 23.9 94.1 78.8 10.5 10.0 24.7
10% 91.1 94.0 40.4 46.4 43.2 33.8 95.4 83.8 11.9 11.9 27.7
50% 92.1 94.6 43.1 48.4 45.6 46.7 96.7 88.7 16.9 14.1 34.4
100% 92.7 95.0 42.4 48.5 45.2 47.9 96.9 89.4 17.9 15.0 36.0

Equal Domain

1% 85.1 90.3 32.8 36.7 34.7 2.9 82.7 40.5 4.9 5.1 17.3
5% 89.0 92.5 37.0 43.3 39.9 16.3 92.6 73.4 9.1 7.1 24.9
10% 89.9 93.1 39.2 44.5 41.7 26.4 94.5 80.1 11.5 7.1 27.7
50% 92.1 94.6 41.5 47.2 44.2 44.9 96.6 88.4 16.0 13.3 35.2
100% 92.7 95.0 42.4 48.5 45.2 47.9 96.9 89.4 17.9 15.0 36.0

Equal Slot

1% 85.1 89.6 34.1 38.9 36.4 9.5 89.7 62.3 6.0 4.1 17.4
5% 88.6 92.1 37.5 42.8 40.0 24.2 93.9 78.1 10.5 8.6 24.7
10% 90.0 93.3 36.0 43.5 39.4 31.6 95.2 82.5 12.3 10.4 27.2
50% 92.4 94.9 41.3 45.9 43.6 45.2 96.6 88.1 16.2 13.6 33.3
100% 92.7 95.0 42.4 48.5 45.2 47.9 96.9 89.4 17.9 15.0 36.0

Max Length

1% 86.9 91.2 32.9 37.3 35.0 6.3 88.0 57.1 5.8 4.7 17.3
5% 89.6 93.2 38.7 43.8 41.1 23.7 94.1 79.4 10.2 9.0 24.9
10% 90.7 93.8 40.2 45.8 43.8 34.0 95.6 84.1 12.0 11.0 27.7
50% 92.5 95.0 42.6 47,2 44.8 45.5 96.6 88.4 17.2 15.0 35.2
100% 92.7 95.0 42.4 48.5 45.2 47.9 96.9 89.4 17.9 15.0 36.0

Table 10: The performance of ID, SL, DST, and NLU models trained on an increasing percentage of Arabic data,
generated using data creation strategies in §5 (RQ4). The ID and SL models are built upon XLM-Rlarge, and the DST
and NLG models are based on mT5small.



ID SL DST NLG% of
Training Data Accuracy F1 Precision Recall F1 JGA Turn Acc. F1 BLEU ROUGE METEOR

Random Sampling

1% 81.6 88.3 86.3 88.3 87.3 17.0 91.1 71.5 8.4 29.7 26.9
5% 88.8 93.4 91.2 94.2 92.6 39.8 96.1 86.1 14.8 41.2 37.5
10% 91.0 94.9 92.1 95.1 93.5 43.2 96.5 87.5 17.0 43.7 39.7
50% 92.7 95.8 94.3 94.9 94.6 56.4 97.7 92.8 20.4 47.3 43.0
100% 93.2 96.1 94.6 95.7 95.1 59.8 97.9 93.5 20.8 48.4 44.1

Max N-gram

1% 84.8 90.6 87.6 89.8 88.7 17.3 92.4 73.2 11.2 35.1 31.8
5% 89.2 93.5 92.1 93.5 92.8 41.2 96.3 87.0 16.8 43.4 39.6
10% 90.4 94.0 92.8 94.6 93.7 47.5 96.9 89.6 18.6 45.4 41.5
50% 92.6 94.6 94.2 94.8 94.5 57.6 97.8 93.0 20.4 47.7 43.4
100% 93.2 96.1 94.6 95.7 95.1 59.8 97.9 93.5 20.8 48.4 44.1

Equal Domain

1% 82.4 89.2 85.1 88.1 86.6 12.7 91.0 68.0 9.2 31.6 31.2
5% 88.5 93.1 91.9 94.0 92.9 34.5 95.6 84.2 15.0 41.1 39.7
10% 89.4 93.9 92.2 94.2 93.2 45.7 96.7 88.9 16.1 42.5 42.4
50% 92.3 95.7 94.0 95.4 94.7 57.1 97.7 93.1 20.2 47.3 42.9
100% 93.2 96.1 94.6 95.7 95.1 59.8 97.9 93.5 20.8 48.4 44.1

Equal Slot

1% 83.2 89.3 93.9 95.8 94.8 19.2 92.3 73.3 10.0 32.8 29.4
5% 3.9 0 93.9 95.8 94.8 37.9 95.8 85.3 15.7 42.3 38.3
10% 90.3 94.4 94.6 95.7 95.2 44.0 96.5 88.2 17.2 44.2 39.8
50% 92.4 95.7 94.6 95.7 95.1 56.5 97.7 93.0 20.1 47.6 43.4
100% 93.2 96.1 94.6 95.7 95.1 59.8 97.9 93.5 20.8 48.4 44.1

Max Length

1% 84.5 90.0 88.0 91.7 89.8 15.4 91.6 71.0 10.8 34.2 31.2
5% 89.5 93.8 92.2 93.8 93.0 38.6 96.0 86.0 16.9 43.9 39.7
10% 90.4 93.8 92.6 93.6 93.1 49.3 97.1 90.3 18.5 46.5 42.4
50% 92.5 95.0 94.4 95.2 94.8 57.3 97.7 93.0 20.1 47.4 42.9
100% 93.2 96.1 94.6 95.7 95.1 59.8 97.9 93.5 20.8 48.4 44.1

Table 11: The performance of ID, SL, DST, and NLU models trained on an increasing percentage of English data,
generated using data creation strategies in §5 (RQ4). The ID and SL models are built upon XLM-Rlarge, and the DST
and NLG models are based on mT5small.



ID SL DST NLG% of
Training Data Accuracy F1 Precision Recall F1 JGA Turn Acc. F1 BLEU ROUGE METEOR

Random Sampling

1% 79.5 86.5 64.4 64.8 64.6 3.0 83.9 46.3 4.2 21.4 16.9
5% 85.7 90.6 71.9 72.4 72.1 20.7 94.4 81.2 8.1 30.5 25.7
10% 86.3 90.9 74.0 72.9 73.5 31.4 95.1 82.5 9.2 33.5 28.0
50% 89.0 92.8 78.1 78.3 78.2 44.4 96.6 88.5 12.5 38.5 33.0
100% 89.2 93.0 76.9 79.2 78.0 49.7 97.0 91.2 13.9 40.9 35.2

Max N-gram

1% 82.3 88.4 66.7 69.1 67.9 9.7 90.3 63.6 6.0 27.2 22.0
5% 86.8 91.2 71.4 73.6 72.5 24.2 94.4 79.5 9.5 34.5 28.7
10% 87.1 91.6 73.6 76.7 75.1 33.5 95.5 83.6 10.4 35.6 30.0
50% 89.1 92.8 77.6 78.5 78.1 45.9 96.7 88.9 13.4 40.1 34.4
100% 89.2 93.0 76.9 79.2 78.0 49.7 97.0 91.2 13.9 40.9 35.2

Equal Domain

1% 78.9 86.5 63.3 67.2 65.2 5.3 86.9 52.7 4.8 24.2 22.4
5% 85.7 90.6 72.8 72.9 72.8 21.4 93.4 76.3 6.6 28.4 27.2
10% 86.8 91.5 75.0 74.8 74.9 31.9 95.1 82.5 8.6 32.1 30.0
50% 88.5 92.7 77.7 78.9 78.3 45.7 96.6 88.7 12.8 38.8 34.2
100% 89.2 93.0 76.9 79.2 78.0 49.7 97.0 91.2 13.9 40.9 35.2

Equal Slot

1% 83.2 88.0 68.8 69.5 69.2 7.2 88.0 58.2 5.3 24.8 20.1
5% 86.4 90.9 73.9 70.4 71.6 23.4 93.9 77.9 9.0 33.4 28.0
10% 86.5 91.1 74.1 74.6 74.3 36.1 95.6 84.1 9.3 33.7 28.2
50% 88.6 92.5 77.7 78.1 77.9 44.8 96.6 88.3 12.8 39.4 33.7
100% 89.2 93.0 76.9 79.2 78.0 49.7 97.0 91.2 13.9 40.9 35.2

Max Length

1% 82.4 88.0 69.3 70.0 89.8 6.9 89.1 60.2 6.1 27.5 22.4
5% 86.2 90.8 73.7 74.5 93.0 26.0 94.2 79.7 8.6 32.4 27.2
10% 87.5 91.8 75.8 76.3 93.1 37.6 95.7 84.6 10.2 35.6 30.0
50% 88.9 92.8 77.1 78.8 94.8 45.7 96.7 88.6 13.2 40.0 34.2
100% 89.2 93.0 76.9 79.2 78.0 49.7 97.0 91.2 13.9 40.9 35.2

Table 12: The performance of ID, SL, DST, and NLU models trained on an increasing percentage of French data,
generated using data creation strategies in §5 (RQ4). The ID and SL models are built upon XLM-Rlarge, and the DST
and NLG models are based on mT5small.



ID SL DST NLG% of
Training Data Accuracy F1 Precision Recall F1 JGA Turn Acc. F1 BLEU ROUGE METEOR

Random Sampling

1% 79.9 86.8 74.8 76.5 75.7 3.6 85.7 48.1 7.0 27.1 24.5
5% 88.4 92.4 81.8 83.4 82.6 27.3 94.4 81.2 13.6 39.1 34.6
10% 88.3 92.2 84.6 84.9 84.7 35.9 95.6 85.1 17.2 44.6 39.9
50% 91.4 94.5 87.2 85.6 86.4 48.2 96.9 89.7 21.8 50.6 45.7
100% 92.2 95.0 86.6 87.6 87.1 52.9 97.3 91.2 24.2 53.7 48.6

Max N-gram

1% 85.0 89.9 77.9 79.4 78.6 9.5 90.2 66.1 10.6 33.8 30.2
5% 89.1 92.9 83.4 85.1 84.3 22.8 94.2 79.1 16.4 43.6 38.5
10% 89.8 93.4 84.9 85.3 85.1 37.4 95.9 85.9 19.0 46.7 41.9
50% 91.8 94.7 86.4 87.2 86.6 50.5 97.1 90.2 22.9 52.1 46.9
100% 92.2 95.0 86.6 87.6 87.1 52.9 97.3 91.2 24.2 53.7 48.6

Equal Domain

1% 82.7 89.0 77.9 77.3 77.6 3.8 86.4 53.6 7.8 27.7 30.5
5% 86.9 91.6 83.5 82.6 83.0 25.6 94.0 79.8 14.6 40.5 37.8
10% 89.8 93.4 83.5 85.0 84.2 37.5 95.7 84.9 16.0 42.8 42.2
50% 91.5 94.5 86.0 86.4 86.2 47.7 96.9 89.7 22.5 51.5 47.4
100% 92.2 95.0 86.6 87.6 87.1 52.9 97.3 91.2 24.2 53.7 48.6

Equal Slot

1% 83.4 89.2 80.5 80.9 80.7 7.6 89.8 62.9 8.4 29.7 26.6
5% 88.7 92.4 83.1 83.6 83.3 30.9 95.0 82.7 14.5 41.6 36.9
10% 89.6 93.4 83.5 84.4 84.0 36.2 95.6 85.2 17.4 45.2 40.5
50% 91.6 94.6 86.0 86.8 86.4 49.1 97.0 89.8 22.6 51.6 46.5
100% 92.2 95.0 86.6 87.6 87.1 52.9 97.3 91.2 24.2 53.7 48.6

Max Length

1% 85.8 90.5 76.5 77.0 76.8 10.5 89.8 64.2 10.2 34.2 30.5
5% 89.0 92.7 83.6 84.2 83.9 30.4 95.1 83.1 15.8 42.5 37.8
10% 89.9 93.6 84.8 84.9 84.9 39.7 96.2 86.6 18.8 46.9 42.2
50% 91.9 94.9 85.1 86.7 85.9 50.2 97.0 90.0 23.4 52.5 47.4
100% 92.2 95.0 86.6 87.6 87.1 52.9 97.3 91.2 24.2 53.7 48.6

Table 13: The performance of ID, SL, DST, and NLU models trained on an increasing percentage of Turkish data,
generated using data creation strategies in §5 (RQ4). The ID and SL models are built upon XLM-Rlarge, and the DST
and NLG models are based on mT5small.
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Figure 9: The relative equivalence in performance of
SL models trained on an increasing percentage of data
in Arabic, French, and Turkish, generated using both
the Random Sampling and Max N-gram strategies.
The SL models are built upon XLM-Rlarge and evaluated
using the F1 metric.
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Figure 10: The relative performance of SL and DST
models trained on an increasing percentage of Ara-
bic data, generated using both the Random Sampling
and Max N-gram strategies, in comparison to the per-
formance of P ARA(·). The SL models are built upon
XLM-Rlarge and evaluated using the F1 metric, while the
DST models are based on mT5small and evaluated using
the JGA metric. In addition, we observed performance
gains for ID, although the improvements were marginal
and not visually represented in the figure.
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(c) Turkish

10% 20% 30% 40% 50% 60% 70% 80% 90%100%0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
θ-

Eq
ui

va
le

nc
e

ID-PROPORTIONAL

SL-PROPORTIONAL

NLG-PROPORTIONAL

ID-FULL

SL-FULL

NLG-FULL

(d) Turkish
Figure 11: Relative performance for ID, SL, and NLG
for system trained on increasing percentage of in-
language data for (a) Arabic, (b) English, (c) French,
and (d) Turkish, with respect to fully supervised sys-
tems, namely P ARA(·), P ENG(·), P FRA(·), and P TUR(·),
trained on full sized monolingual in-language data. We
compared two strategies for creating the validation set:
proportional and full. In the few-shot setup, the propor-
tional strategy constructs a validation set that is propor-
tionate to the training set (compared to the full training
set). For example, we train a model using 10% of the
original training set and an equivalent 10% of the origi-
nal validation set. Conversely, the full strategy involves
consistently training the system with a complete valida-
tion set, such as 10% of the training set and the entire
validation set. The ID and SL models are built upon
XLM-Rbase and evaluated with Accuracy and F1. The
NLG models are based on mT5small and evaluated with
BLEU. Due to the significant computational demand,
we did not measure the performance of the DST models
in these experiments.
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(a) Arabic
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(b) French
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Figure 12: The relative performance of ID, SL, and
NLG for systems trained on increasing percentages of
multilingual data. Specifically, a system trained on 10%
of the training data implies that this system is trained
using 10% of the training data for all four languages, si-
multaneously. We evaluated the trained systems on three
languages: (a) Arabic, (b) French, and (c) Turkish, with
respect to fully supervised systems, namely P ARA(·),
P FRA(·), and P TUR(·), trained on full sized monolingual
in-language data. We compare two strategies for cre-
ating the training set. Firstly, the Same strategy refers
to training a system with the same set of dialogue pat-
terns in the four languages. In other words, we use the
multi-parallel dataset to train the system. Secondly, the
Different strategy utilises different training sets with
mutually exclusive dialogue patterns to train the system.
For example, a system trained with 20% of the training
data using the Different strategy will encounter 80% of
the dialogue patterns. The ID and SL models are built
upon XLM-Rlarge and evaluated with Accuracy and F1.
The NLG models are based on mT5small and evaluated
with BLEU. Due to the significant computational de-
mand, we did not measure the performance of the DST
models in these experiments.


