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ABSTRACT

A causal effect can be defined as a comparison of outcomes that result from two
or more alternative actions, with only one of the action-outcome pairs actually
being observed. The gold standard for causal effect measurements is Random-
ized Controlled Trials (RCTs), in which a target population is explicitly defined
and each study sample is randomly assigned to either the treatment or control co-
horts. The great potential to derive actionable insights from causal relationships
has led to a growing body of machine-learning research applying causal effect
estimators to Observational Data (OD) in the fields of healthcare, education, and
economics. The primary difference between causal effect studies utilizing OD
and RCTs is that for OD the study occurs after the treatment, and therefore we
don’t have control over the treatment assignment mechanism. This can lead to
massive differences in covariate distributions between control and treatment sam-
ples, making a comparison of causal effects confounded and unreliable. Classical
approaches have sought to solve this problem piecemeal, first by predicting treat-
ment assignment and then treatment effect separately. Recent work extended part
of these approaches to a new family of representation-learning based algorithms,
showing that the upper bound of the expected treatment effect estimation error
is determined by two factors: the outcome generalization-error of the representa-
tion and the distance between the treated and control distributions induced by the
representation. Here we argue that to achieve minimal dissimilarity in learning
such distributions, as RCTs are designed to do, a specific auto-balancing self-
supervised objective should be used. Experiments on real and benchmark datasets
revealed that our approach consistently produced less biased estimates than previ-
ously published state-of-art methods. We demonstrate that our reduction in error
can be directly attributed to the ability to learn representations that explicitly re-
duce such dissimilarity. Thus, by learning representations that induce distributions
analogous to RCTs, we provide empirical evidence to support the error bound dis-
similarity hypothesis as well as providing a new state-of-the-art model for causal
effect estimation.

1 INTRODUCTION

Causal effect estimation of a binary exposure on a continuous outcome from observational data is a
fundamental problem faced by many researchers and has a broad range of applications across diverse
disciplines. For example, in social economy, policy makers need to determine who would benefit
most from subsidized job training. In precision medicine, doctors need to decide which medication
will cause better outcomes for a specific patient affected by a disease, taking into account relevant
information such as age and pre-existing chronic conditions. The gold standard for estimating causal
relationships have been RCTs, which can be thought of as having three distinct stages: selection cri-
teria to ensure that all samples are effectively equivalent prior the study starts so that differences in
outcomes can be attributed to differences in treatments, randomization of each sample to a treatment
arm, and outcome comparison between the treatment arms. In particular, by controlling the assign-
ment mechanism, RCTs reduce the bias of treatment effect estimation due to factors that affect both
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treatment and outcome (confounders). However, RCTs are not always feasible due to logistical,
ethical, or financial considerations. Moreover, being based on restricted populations following strict
protocols that frequently do not match daily standards of care, the results from RCTs do not always
generalize to new patients in the real world (Munk NE, 2020; Klonoff, 2020). In the past decade,
the viability of OD to extend to RCTs to infer causal relationships has been explored due to the
increasingly available patient data captured in Electronic Health Records (EHRs), the remarkable
advances of machine learning techniques, and considerably reduced cost of such studies.

Classical works in causal inference addressed the problem of estimating average treatment effects
(ATE) from OD with covariate adjustment, also known as back-door adjustment (Belloni et al.,
2013; Athey et al., 2018; Chernozhukov et al., 2017), or weighting methods (Austin, 2011), where
an estimate of the probability of treatment, conditioned on covariates (propensity score), is used to
reweight the units in the OD to make the treated and control populations more comparable. Tar-
geted Learning (van der Laan & Rose, 2018) adjusts the estimation of an initial statistical model in
a step targeted toward making an optimal bias-variance tradeoff of the causal effect. All those ap-
proaches are not end-to-end, meaning that models are trained separately without sharing a common
representation. For example, in targeted learning the initial statistical model is trained separately
from the one that adjusts its estimation. Shalit et al. (2017b) extended part of those approaches to a
new family of representation-learning based algorithms (Bengio et al., 2013), and demonstrated that
the expected error in learning individual treatment effect is upper bounded by the error of learning
factual and counterfactual outcomes plus a term depending on the dissimilarity of the treated and
untreated distributions induced by the learned representation.

In this work, we proposed an end-to-end model that, in addition to factual losses, uses a self-
supervised auto-balancing objective specifically designed to minimize the dissimilarity of the
learned representations for treated and untreated cohorts. We call this method BCAUSS (Balancing
Covariates Automatically Using Self-Supervision). Adopting two widely used datasets in the casual
inference community, such as IHDP and Jobs (see Section 4.1), we found that BCAUSS produced
less biased estimates than previously published state-of-art methods. In particular, we compared
BCAUSS to Dragonnet (Shi et al., 2019), the current state of the art on IHDP. We show here that
BCAUSS produced less biased estimates than Dragonnet because of its ability to learn less dissimilar
treated and untreated distributions, consistently to how they should be in RCTs.

2 RELATED WORK

Classical causal modeling typically involves the concept of balancing score (Rosenbaum & Rubin,
1983). Back-door adjustment methods (Belloni et al., 2013; Athey et al., 2018; Chernozhukov et al.,
2017) and weighting methods (Austin, 2011) adopt a special balancing score, i.e. the propensity
score, to reweight the units in OD to make the treated and control populations more comparable.
Targeted Learning (van der Laan & Rose, 2018) adjusts the estimation of an initial statistical model
with a second model, making an optimal bias-variance tradeoff of the causal effect. Treatment effect
estimation has also been approached by designing treatment effect specific splitting criterions for
recursive partitioning (Su et al., 2009; Athey & Imbens, 2016; Zhang et al., 2017), adopting ensem-
ble algorithms and meta algorithms (Künzel et al., 2019; Wager & Athey, 2017). Other approaches
like Propensity Dropout (Alaa et al., 2017) and Perfect Matching (Schwab et al., 2019) combines
(pre-trained) propensity scores with neural networks.

Shalit et al. (2017b) introduced a new family of representation-learning based algorithms (Bengio
et al., 2013), including TARNET. Shi et al. (2019) introduced Dragonnet extending TARNET in
different ways. First, changing the network architecture so that the same learned representation used
for learning factual and counterfactual outcomes is shared with the the propensity score estima-
tor. Second, adopting a targeted regularization objective to achieve optimal asymptotical properties.
BCAUSS adopts the same network architecture of Dragonnet with a specific auto-balancing self-
supervised objective to achieve minimal dissimilarity in learning treated and untreated distributions.
On the other hand, Belthangady & Norgeot (2021) adopted our objective on a single-task network
architecture for propensity score estimation only (instead of causal treatment effect estimation). Fur-
ther, such objective was adopted in conjunction with binary cross-entropy, which we show here is
sub-optimal. Other works applied deep generative models to casual inference. For example, CE-
VEA (Louizos et al., 2017c), GANITE (Yoon et al., 2018), and CMPGP (Alaa & van der Schaar,

2



Under review as a conference paper at ICLR 2022

2017) use VAEs, GANs, and multi-task gaussian processes, respectively, to estimate treatment ef-
fects. Zhang et al. (2021) proposed a variational inference approach to infer latent factors from the
observed variables. Our work does not aim to learn the joint probability distribution of covariates
and outcome, but the conditional probability distribution of the outcome given covariates.

3 APPROACH

We assume a population P , where the i-th individual has covariates xi ∈ X ⊆ Rd and is subject to
intervention ti ∈ {0, 1}, also known as treatment, where ti = 0 indicates the individual receives no
treatment, while ti = 1 indicates the individual receives the treatment. We use Y (i)

1 ∈ R to denote
the potential outcome of the individual, if treated, and Y (i)

0 ∈ R to denote the potential outcome,
if not treated. We assume

(
Y (i), ti,xi

)
are independent and identically distributed and we denote

with Pn our sample data of size n, i.e. Pn =
{
Y (i), ti,xi

}n
i=1

, while we denote with In the subset
of the input variables only, i.e. In = {ti,xi}ni=1. Moreover, we assume that the following three
fundamental assumptions for treatment effect estimations (Rosenbaum & Rubin, 1983) are satisfied.

Assumption 1. (SUTVA) The Stable Unit Treatment Value Assumption requires that the potential
outcomes for one individual are unaffected by the treatment of others.

Assumption 2. (Unconfoundedness) The distribution of treatment is conditional independent of
the potential outcomes, given covariates, i.e. (∀i)

(
ti ⊥⊥

(
Y

(i)
0 , Y

(i)
1

)
|xi
)

.

Assumption 3. (Positivity) Every individual has a non-zero probability to receive either treatment
or control, given covariates, i.e. (∀i) (0 < P (ti = 1 |xi ) < 1).

When the unconfoundedness and the positivity assumption hold, then the treatment assignment is
considered to be strongly ignorable (Rosenbaum & Rubin, 1983), implying that among people with
the same covariates, we can think of treatment as being randomly assigned. In the related causal
graph this means that any backdoor path from t to Y is blocked, among people with the same
covariates. Hence, the average treatment effect (ATE) ψ ∈ R is defined as:

ψ =E [Y1 − Y0] = E [Y1 |do (t = 1) ]− E [Y0 |do (t = 0) ]

, where do (t = 1) denotes a manipulation on t by removing all its incoming edges on the related
causal graph and setting t = 1, so that the effect of interest is causal (Pearl, 2009). To estimate
ψ, the concept of balancing score is crucial in the sense of Rosenbaum & Rubin (1983), i.e. a
function b (x) of the observed covariates x such that the conditional distribution of x given b (x) is
the same for treated and control units; that is, x ⊥⊥ t |b (x) . Indeed, in Rosenbaum & Rubin (1983)
the following theorem is proved.
Theorem 1. Suppose treatment assignment is strongly ignorable and b (x) is a balancing score.
Then the expected difference in observed responses to the two treatments at b (x) is equal to the
average treatment effect at b (x), that is

ψ =E [E [Yt |b(x), t = 1]− E [Yt |b (x) , t = 0]] = E [Y1 − Y0 |b(x) ] .

3.1 LEARNING REPRESENTATIONS FOR CAUSAL TREATMENT EFFECT ESTIMATION

Following Shalit et al. (2017b), we will employ the following results and notations.
Definition 2. Let Φ : X → R be a bijective representation function, where X is the space of
covariates and R is the representation space. Let Ψ be the inverse of Φ , i.e. for all x ∈ X we have
Ψ (Φ (x)) = x. Let h : R×{0, 1} → Y ⊆ R the hypothesis.
Definition 3. Let L : Y × Y → R+ a loss function so that the expected loss for the unit and
treatment pair (x, t) is lh,Φ (x, t) =

∫
Y L (y (t) , h (Φ (x) , t)) p (Yt |x) dYt), the expected factual

and counterfactual losses are:

εF (h, Φ) =

∫
X×{0,1}

lh,Φ (x, t) p (x, t) dxdt

εCF (h, Φ) =

∫
X×{0,1}

lh,Φ (x, t) p (x, 1− t) dxdt
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Figure 1: BCAUSS and Dragonnet network architecture.

, from which the expected factual treated and control losses are εt=1
F (h, Φ) =∫

X lh,Φ (x, t) pt=1 (x) dx and εt=0
F (h, Φ) =

∫
X lh,Φ (x, t) pt=0 (x) dx, where pt=1 := p (x |t = 1)

and pt=0 := p (x |t = 0), respectively.
Definition 4. Given that the individual-level treatment effect (ITE) for unit x is τ (x) :=
E [Y1 − Y0 |x)] and the treatment effect estimate of the hypothesis Q for unit x is τQ (x) :=
Q (x, 1) − Q (x, 0) , the expected Precision in Estimation of Heterogeneous Effect (PEHE) loss
is

εPEHE (Q) :=

∫
X

[τQ (x)− τ (x)]
2
p (x) dx.

Also, the expected variance of Yt with respect to a distribution p (x, t) is
σ2
Yt

(p (x, t)) =
∫
X×Y [Yt − E (Yt |x))] p (x, t) dYtdx, from which we define σ2

Yt
=

min
{
σ2
Yt

(p (x, t)) , σ2
Yt

(p (x, 1− t))
}

and σ2
Y = min

{
σ2
Y0
, σ2
Y1

}
.

For two probability density functions p, q defined over S ⊆ Rd and for a function family G of
functions g : S → R, we have that

IPMG (p, q) := sup
g∈G

∣∣∣∣∫
S
g (s) [p (s)− q (a)] ds

∣∣∣∣ .
Integral probability metrics are symmetric, obey the triangle inequality, IPMG (p, p) = 0 and, for
rich enough function families G, we have that IPMG (p, q) = 0 ⇒ p = q. Hence, IPM is a
metric over the corresponding set of probabilities. Examples of function families are the 1-Lipschitz
functions (Sriperumbudur, 2012) and the unit-ball of functions in a universal reproducing Hilbert
kernel space (Gretton et al., 2012). In Shalit et al. (2017b) the following theorem is proved.
Theorem 5. Under the above definitions and assuming the loss L is the squared loss, assuming
there exists a constant BΦ > 0, such that for fixed t ∈ {0, 1}, 1

BΦ
lh,Φ (Ψ (r) , t) ∈ G, we have

εPEHE (h,Φ) ≤2
(
εt=0
F (h, Φ) + εt=1

F (h, Φ) +BΦIPMG

(
pt=0

Φ , pt=1
Φ

)
− 2σ2

Y

)
.

Theorem 5 states that the expected error in learning ITEs is upper bounded by the error of learn-
ing Y0 and Y1 , plus the IPM term, which depends on the dissimilarity of the learned treated and
untreated distributions induced by the representation. The minimal upper bound for a model with
given factual treated and untreated losses, is the one obtained when the IPM term is 0, reducing the
causal treatment effect estimation problem to a standard regression problem.

3.2 BCAUSS

Fig. 1 depicts the three-task network architecture of BCAUSS, which is the same as Dragonnet
(Shi et al., 2019). For j ∈ {0, 1, 2, 3} and i ∈ {1, 2, . . . , n}, assuming a0,i = xi, we have zi,j =
Wjai,j−1 + bj and ai,j = ReLU (zi,j), where we use ReLU (·) to denote the ReLU activation
function (Nair & Hinton, 2010). Hence, g (xi) = σ (Wg

4ai,3 + bg4), where σ (·) is the sigmoid
function. For j ∈ {4, 5}, we have ztii,j = Wti

j ai,j−1 + bti
j and atii,j = ReLU

(
ztii,j
)
. Hence,

Q (ti,xi) = Wti
6 ai,5 + bti

6 . We adopt mean squared error for factual loss,i.e.
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L
(i)
REG (θ; yi, ti,xi) = [ti = 0]

(
Y

(i)
0 −Q (0,xi)

)2

+ [ti = 1]
(
Y

(i)
1 −Q (1,xi)

)2

(1)

but to train the balancing score estimator, instead of adopting the binary cross-entropy objective
assuming as label ti, as it happens in the whole literature including Shi et al. (2019), we adopt the
following auto-balancing self-supervised term

LBAL (θ; In) =
1

d

∑
1≤j≤d

(∑
1≤i≤n

ti
g(xi)

xi,j∑
1≤i≤n

ti
g(xi)

−
∑

1≤i≤n
1−ti

1−g(xi)xi,j∑
1≤i≤n

1−ti
1−g(xi)

)2

. (2)

Notice that such term does not come with a superscript, implying that to be computed the entire
trainset is required. Specifically, we called such term auto-balancing, as we’re imposing the con-
straint that the learned representation achieves balance. In practice this is obtained by minimizing
the squared deviation between a reweighed treated and untreated cohort, i.e. by minimizing such
term, g (x) is incentivized to act like a balancing score in the sense of Rosenbaum & Rubin (1983).
Also, we find such term self-supervised as it depends only on the decision of treatment ti and covari-
ates xi, which are input variables, and it does not depend on potential outcomes Y (i)

0 , Y
(i)
1 . Hence,

the optimization problem can be formulated as:

θ̂ = arg min
θ
J (θ;Pn) , (3)

J (θ;Pn) = λBALLBAL (θ; In) +
1

n

∑
1≤i≤n

L
(i)
REG (θ; yi, ti,xi) , (4)

where λBAL controls the relative importance of the two objective terms.

3.3 COMPARATOR: DRAGONNET

Dragonnet (Shi et al., 2019) is based on the same network architecture depicted in Fig. 1 but, while
mean squared error is adopted for factual loss (equation 1), to train the propensity score estimator
the binary cross-entropy objective is adopted, i.e.

L
(i)
BCE (θ; ti,xi) = ti log (g (xi)) + (1− ti) log (1− g (xi)) . (5)

Additionally, to achieve asymptotically robustness and efficiency, a further targeted regularization
term is used, i.e.

L
(i)
T−REG (θ; yi, ti,xi) =

[
Y

(i)
ti −Q (ti,xi) + ε

(
ti

g (xi)
+

1− ti
1− g (xi)

)]2

(6)

, where ε is a further hyperparameter. Notice that BCAUSS and Dragonnet not only are based on
the same architecture, but they have the same factual losses, hence the upper bound of the expected
error in learning ITEs of Theorem 5 will depend only on the IPM term, i.e. on the dissimilarity of
treated and untreated representations.

4 EXPERIMENTS

4.1 BENCHMARK AND REAL-WORLD DATASETS

The IHDP benchmark dataset The Infant Health and Development Program (IHDP) is a ran-
domized controlled study designed to evaluate the effect of home visit from specialist doctors on the
cognitive test scores of premature infants. The datasets is first used for benchmarking treatment ef-
fect estimation algorithms in Hill (2011), where selection bias is induced by removing non-random
subsets of the treated individuals to create an observational dataset, and the outcomes are generated
using the original covariates and treatments. It contains 747 subjects and 25 variables. Follow-
ing Shi et al. (2019); Shalit et al. (2017b), we use the simulated outcome implemented as setting
“A” and, in order to make our results reproducible, we adopted the one available for download at
https://www.fredjo.com/, which is composed by 1000 repetitions of the experiment. We
averaged over 1000 train/validation/test splits with ratios 70/20/10.
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The Jobs real-world dataset The study by LaLonde (1986) is a widely used benchmark in the
causal inference community, where the treatment is job training and the outcomes are income and
employment status after training. The study includes 8 covariates such as age and education, as well
as previous earnings. Our goal is to predict unemployment, using the feature set of Dehejia & Wahba
(2002). Following Shalit et al. (2017b), we use the LaLonde experimental sample (297 treated, 425
control) and the PSID comparison group (2490 control). We averaged over 10 train/validation/test
splits with ratios 62/18/20. The dataset is available for download at https://www.fredjo.
com/.

4.2 EVALUATION CRITERIA

ATE For evaluating the performance of ATE estimation, the ground truth can be calculated by
averaging the differences of the outcomes in the treated and control groups. Then, comparing the
ground truth ATE ψ̃ATE with the related estimate obtained from a sample of the dataset, perfor-
mance can then be evaluated using the mean absolute error in ATE (Hill, 2011; Shalit et al., 2017c;
Louizos et al., 2017a; Yao et al., 2018), i.e. εATE =

∣∣∣ψ̃ATE − 1
n

∑
1≤i≤nQ (1,xi)−Q (0,xi)

∣∣∣.
ATT We adopted this metric on Jobs. Because all the treated subjects T were part of the original
randomized sample E, following Shalit et al. (2017b), we can compute the true average treatment
effect on the treated (ATT): ψ̃ATT = 1

|T |
∑

i∈T Y
(i) − 1

|C∩E|
∑

i∈C∩E Y
(i), where C is the control

group. Hence, εATT =
∣∣∣ψ̃ATT − 1

|T |
∑

i∈T [Q (1,xi)−Q (0,xi)]
∣∣∣.

IPMs To measure the dissimilarity between treated and untreated distributions, we adopt Max-
imum Mean Discrepancy (Gretton et al., 2012) and Wasserstein distance (Villani, 2008; Cuturi &
Doucet, 2014), which are IPMs used in Shalit et al. (2017b) (see Theorem 5). Additionally, we adopt
Kolmogorov-Smirnov (KS) statistic Kolmogorov (1933); Smirnov (1948) to show statistical signifi-
cance whether or not the two samples have different distribution, i.e. if p-value > 1% the difference
between the two samples is not significant enough to say that they have different distribution.

4.3 EXPERIMENTAL DETAILS

Unless otherwise specified (e.g. in the ablation study of Section 5.1), with regard to figure 1, W1 ∈
R200×d,b1 ∈ R200×1, for i ∈ {2, 3}, Wi ∈ R200×200,bi ∈ R200×1, while for i ∈ {4, 5} ∧ ti ∈
{0, 1}, Wti

i ∈ R100×100,bti
i ∈ R100×1. Experiments adopt learning rate 1e-5, batch size equal to

the train-set length, stochastic gradient descent with momentum (Robbins, 2007), λBAL = 1. The
ablation study 5.1 shows the importance of these settings to achieve superior performance. Models
were trained on the optimal number of epochs by adopting early stopping (Yao et al., 2007), using
22% of the train-set for cross-validation.

4.4 RESULTS

We compared BCAUSS with Dragonnet and the other methods considered in Shi et al. (2019) on
IHDP. BCAUSS had the best in-sample and out-sample performance (Table 1). The best perfor-
mance was achieved adopting the self-supervised auto-balancing term alone (eq. 2) to train the
balancing score estimator. Adding the Dragonnet targeted regularization term (eq. 6) with or with-
out binary cross-entropy is sub-optimal. On the other hand, adding only the binary cross-entropy
is also sub-optimal. In the supplementary Section A.2 we analyze the effect of back-propagating
the gradient with respect to our self-supervised auto-balancing objective compared to binary cross-
entropy (Section A.3), showing why if we adopt the former instead of the latter we have a lower
upper bound of the expected error in learning ITE (Theorem 5) in case the treated and untreated
covariate distributions are highly dissimilar, as unfortunately might happen for OD. Additionally,
on Jobs we compared BCAUSS with GANITE, which is the current state-of-the-art on this dataset,
including the other methods considered in Yoon et al. (2018). BCAUSS had the best out-sample
performance (Table 1).
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Method Variation IHDP
εtrATE εteATE

GANITE (Yoon et al., 2018) — 0.43±.05 0.49 ±.05
CEVAEs (Louizos et al., 2017b) — 0.34±.01 0.46±.02
AIPW — 0.13±.00 0.29±.01
BNN (Johansson et al., 2016) — 0.37±.03 0.42±.03
TARNET (Shalit et al., 2017b) — 0.26±.01 0.28±.01
CFR Wass (Shalit et al., 2017a) — 0.25±.01 0.27±.01
Dragonnet (Shi et al., 2019) — 0.14±.01 0.20±.01

baseline (Dragonnet) -T REG 0.13±.00 0.21±.01
— 0.15±.01 0.20±.01

BCAUSS

+T- REG 0.15±.00 0.19±.01
+BCE +T REG 0.16±.00 0.20±.01
+BCE 0.13±.00 0.17±.01
— 0.10±.00 0.15±.01

Method Jobs
εtrATT εteATT

OLS/LR-1 .01±.00 .08±.04
OLS/LR-2 .01±.01 .08±.03
BLR .01±.01 .08±.03
k-NN .21±.01 .13±.05
BART(Chipman et al., 2010) .02±.00 .08±.03
Rand. Forest .03±.01 .09±.04
Caus. Forest (Wager & Athey, 2018) .03±.01 .09±.04
AIPW .00±.01 .09±.02
BNN (Johansson et al., 2016) .04±.01 .09±.04
TARNET (Shalit et al., 2017b) .05±.02 .11±.04
CFR Wass (Shalit et al., 2017a) .04±.01 .09±.03
GANITE (Yoon et al., 2018) .01±.01 .06±.03
BCAUSS .02±.00 .05±.02

Table 1: Results on IHDP (left) and Jobs (right). Left: BCAUSS is state-of-the-art on the IHDP
benchmark dataset. “+BCE” and “+T REG” mean adding the binary cross-entropy of eq. 5 and
the targeted regularization term of eq. 6 to the overall objective. Similarly, “-T REG” means re-
moving the targeted regularization term of eq. 6 from the objective. AIPW adopts as propensity
score estimator (Belthangady & Norgeot, 2021) and two linear regressors (for control and treatment
respectively) with an L2 penalty. Right: Methods compared with BCAUSS are described in Shalit
et al. (2017b); Yoon et al. (2018). Lower is better.

5 ANALYSIS

5.1 ABLATIONS

The models shown in Tab. 2 refer to the best models that we trained in our experiments described in
Section 3.2. These models adopt the experimental settings specified in Section 4.3 except the ones
explicitly indicated for each row of Table 2.

5.1.1 EFFECT OF OPTIMIZER AND BATCH SIZE

The effect of the optimizer can be analyzed by comparing row 5-8 (SGD) to row 9-12 (Adam)
in Table 2. Adopting SGD consistently improves ATE estimation compared to Adam by 0.05 in-
sample and 0.08 out-of-sample, except for the lowest batch size where the out-of-sample difference
is 0.07. The effect of batch size can be analyzed by comparing row 5 to row 6-8 (SGD) and row 9
to 10-12 (Adam) in Table 2. While for Adam we don’t observe any improvement with higher batch
sizes, for SGD we don’t observe any improvement for batch size equal or higher than

⌊
5
12 · n

⌋
, but

we observe a test performance degradation of 0.01 for lower values. In the supplementary A.2 we
discuss in detail why working with large batch-size and SGD is beneficial.

5.1.2 EFFECT OF ACTIVATION FUNCTION

The effect of activation function can be analyzed by comparing for each row in Table 2 the columns
ReLU/ELU/Tanh, corresponding to in-sample and out-of-sample performance of the activation func-
tions ReLUs, ELUs and Tanhs. We find that overall the best performance is observed with ReLUs.
Specifically, in case of SGD optimizer, ReLUs consistently outperform ELUs by 0.02 on trainset and
0.01 on test-set. In turn, ELUs outperform Tanhs by 0.01 on test-set. On the other hand, in case of
Adam optimizer, while in-sample performance is pretty homogeneous across the three, out-sample
performance of ELUs outperform Tanhs by 0.01 on test-set. In turn, Tanhs outperform ReLUs by
0.03 on test-set.
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Model Optimizer Batch Size λBCE λBAL λTAR
ReLU ELU Tanh

εtrATE εteATE εtrATE εteATE εtrATE εteATE

(0) SGD n 1 0 1 0.16±.01 0.20±.01 0.14±.01 0.18±.01 0.15±.01 0.19±.01
(1) SGD n 1 0 0 0.12±.00 0.16±.01 0.13±.00 0.17±.01 0.13±.00 0.18±.01
(2) SGD n 1 0.5 0 0.13±.00 0.16±.01 0.13±.00 0.17±.01 0.13±.00 0.18±.01
(3) SGD n 1 1 0 0.13±.00 0.16±.01 0.13±.01 0.17±.01 0.13±.00 0.18±.01
(4) SGD n 1 1.5 0 0.13±.00 0.17±.01 0.13±.01 0.17±.01 0.13±.00 0.18±.01

(5) SGD n 0 1 0 0.10±.00 0.15±.01 0.12±.00 0.16±.01 0.13±.00 0.17±.01
(6) SGD

⌊
n
2

⌋
0 1 0 0.10±.00 0.15±.01 0.12±.00 0.16±.01 0.12±.00 0.17±.01

(7) SGD
⌊

5
12 · n

⌋
0 1 0 0.10±.00 0.15±.01 0.12±.00 0.16±.01 0.12±.00 0.17±.01

(8) SGD
⌊
n
3

⌋
0 1 0 0.10±.00 0.16±.01 0.12±.00 0.16±.01 0.12±.00 0.17±.01

(9) Adam n 0 1 0 0.15±.00 0.23±.01 0.15±.00 0.19±.01 0.15±.00 0.20±.01
(10) Adam

⌊
n
2

⌋
0 1 0 0.15±.00 0.23±.01 0.15±.00 0.19±.01 0.15±.00 0.20±.01

(11) Adam
⌊

5
12 · n

⌋
0 1 0 0.15±.00 0.23±.01 0.15±.00 0.19±.01 0.15±.00 0.20±.01

(12) Adam
⌊
n
3

⌋
0 1 0 0.15±.00 0.23±.01 0.16±.00 0.20±.01 0.15±.00 0.20±.01

(13) SGD n 0 0.5 0 0.10±.00 0.15±.01 0.12±.00 0.16±.01 0.13±.00 0.17±.01
(14) SGD n 0 1.5 0 0.10±.00 0.15±.01 0.12±.00 0.16±.01 0.13±.00 0.17±.01

Table 2: Ablation results of the different variants described in Section 5.1 on IHDP dataset (n is
the total number of observations on train-set). λBAL = 1 corresponds to add to the objective the
self-supervised auto-balancing term of eq. 2, λBCE = 1 corresponds to add to the objective the
binary cross-entropy term of eq. 5, λTAR = 1 corresponds to add to the objective the targeted
regularization term of eq. 6. Row 5 with ReLU activation function corresponds to BCAUSS. Row
0 with ELU activation function corresponds to Dragonnet. Bold indicates the best performance
overall.

5.1.3 EFFECT OF SELF-SUPERVISED AUTO-BALANCING TERM, BINARY CROSS-ENTROPY
TERM AND TARGETED REGULARIZATION TERM

The effect of the self-supervised auto-balancing term can be analyzed by comparing row 0-4 to
row 5-14 in Table 2. We can see that optimal train and test performance can be achieved when
the network is regularized only with such term. Additionally, we can also see that same optimal
results can be achieved with different values of λBAL. The effect of the binary cross-entropy term
can be analyzed by comparing row 1-4 to row 5-12. We can see that for ReLUs not adopting the
binary cross-entropy improves the performance, at least, by 0.03 on trainset and 0.01 on test-set. The
effect of the targeted regularization term can be analyzed by comparing row 0 (Dragonnet) to row
1. We can see that adopting such term is less than optimal for all the activation functions. However,
our best test result for Dragonnet is better than the one reported in the original paper (Shi et al.,
2019), obtained with a lower batch-size. In the supplementary Section A.3 we discuss in detail why
working with large batch-size and SGD is beneficial for the binary cross-entropy objective.

5.2 TREATED AND UNTREATED DISTRIBUTIONS INDUCED BY THE LEARNED
REPRESENTATION

To explain the superior performance of BCAUSS we show that the learned treated and untreated
distributions of BCAUSS are less dissimilar than the ones of Dragonnet which implies, thanks
to Theorem 5, a lower upper bound of the related expected error in learning ITEs. We per-
form such analysis on the IHDP dataset in this section. In the supplementary section A.1 the
same analysis is repeated on the Jobs dataset, showing, again, that BCAUSS learns less dis-
similar treated and untreated representations than Dragonnet. In Table 3, both on train-set and
test-set, for Dragonnet we have KS test with p-value < 1%, while for BCAUSS we don’t.
Wasserstein distance is one order of magnitude lower on train-set and two order of magni-
tudes lower on test-set for BCAUSS compared to Dragonnet. MMD measures are several or-
der of magnitudes lower for BCAUSS compared to Dragonnet, both on train-set and test-set.

8
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Dragonnet BCAUSS

Train Test
KS test 0.37 0.59
p-value 1.33E-13 0.0071
Wasserstein dist. 0.0826 0.1583
MMD (linear) 0.0068 0.0238
MMD (rbf) 0.0127 0.0453
MMD (poly) 0.0015 0.0062

Train Test
KS test 0.0851 0.2574
p-value 0.4026 0.6321
Wasserstein dist. 0.0016 0.0042
MMD (linear) 5.960E-07 3.541E-06
MMD (rbf) 1.123E-06 7.102E-06
MMD (poly) 5.584E-07 2.925E-06

Table 3: Comparison between the treated and untreated distributions induced by the learned repre-
sentation on Dragonnet and BCAUSS from one experiment of IHDP dataset. Prior covariate treated
and control groups have KS test with p-value < 1%, Wasserstein distance 0.1045, MMD(linear)
0.0108, MMD(rbf) 0.0203, MMD(poly) is 0.0023.

Dragonnet BCAUSS
Train Test Train Test

KS (p-value < 1%) 100% 20.5% 9.9% 1.7%
Wasserstein dist. 0.0940 0.0712 0.0020 0.0043
MMD (linear) 0.0090 0.0051 3.900E-06 1.584E-05
MMD (rbf) 0.0168 0.0097 7.795E-06 3.167E-05
MMD (poly) 0.0020 0.0011 3.809E-06 1.580E-05

Table 4: Comparison between the distributions of
treated vs. untreated induced by the learned rep-
resentation on Dragonnet and BCAUSS averaging
1,000 experiments of the IHDP dataset.

Furthermore, we can notice that the variance of
the distribution induced by the learned repre-
sentation of BCAUSS is one order of magni-
tude lower, consistently to how they should be
in RCTs. For example, on test-set for BCAUSS
the standard deviation on treated is 0.0128
vs. 0.0064 for untreated, while for Dragonnet,
the standard deviation on treated is 0.1137 vs.
0.1204 for untreated. Table 4 shows the same
comparison averaging 1,000 experiments of the
IHDP dataset, confirming that treated and un-
treated distributions learned by BCAUSS are
less dissimilar than the ones learned by Drag-
onnet. Hence, adopting the auto-balancing self-
supervised objective of eq. 2, the network learns representations that induce distributions analogous
to RCTs, where IPMG

(
pt=0

Φ , pt=1
Φ

)
≈ 0. As a consequence, the back-door path of the related

causal graph from treatment to outcome tends to be blocked, enabling unbiased estimate of causal
treatment effect.

6 CONCLUSION

We introduced BCAUSS, a multi-task deep neural network for causal treatment effect estimation
able to achieve minimal dissimilarity in learning treated and untreated distributions, thanks to
the adoption of an auto-balancing self-supervised objective. Experiments on real and benchmark
datasets show BCAUSS consistently produces less biased estimates than previously published state-
of-art methods. Empirical analysis shows that such a property is due to the representations learned
by the network, that is incentivized by our objective to learn less dissimilar treated and untreated
distributions, consistently to how they should be in RCTs.
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will report proper repository link. In Section 4.1 we report the links to download benchmarks and
real-world datasets for replicating experiments and we describe the data processing steps referencing
the original papers where such datasets were first introduced. Also, in Section 4.2 the evaluation
metrics for each dataset are defined explaining how to compute them.
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Fukumizu Kenji Gretton Arthur SchÂšolkopf Bernhard Lanckriet Gert RG et al. Sriperumbudur,
Bharath K. On the empirical estimation of integral probability metrics. In Electronic Journal of
Statistics, 2012. 3.1

Xiaogang Su, Chih-Ling Tsai, Hansheng Wang, David M. Nickerson, and Bogong Li. Subgroup
analysis via recursive partitioning. Journal of Machine Learning Research, 10(5):141–158, 2009.
URL http://jmlr.org/papers/v10/su09a.html. 2

Mark J. van der Laan and Sherri Rose. Targeted Learning in Data Science: Causal Inference for
Complex Longitudinal Studies. Springer Publishing Company, Incorporated, 1st edition, 2018.
ISBN 3319653032. 1, 2

C. Villani. Optimal transport: old and new, volume 338. Springer Science Business Media, 2008.
4.2

Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using
random forests, 2017. 2

Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using
random forests. Journal of the American Statistical Association, 113(523):1228–1242, 2018. doi:
10.1080/01621459.2017.1319839. 1b

Liuyi Yao, Sheng Li, Yaliang Li, Mengdi Huai, Jing Gao, and Aidong Zhang. Repre-
sentation learning for treatment effect estimation from observational data. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
a50abba8132a77191791390c3eb19fe7-Paper.pdf. 4.2

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learn-
ing. Constr. Approx, pp. 289–315, 2007. 4.3

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GANITE: estimation of individualized
treatment effects using generative adversarial nets. In 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/forum?id=
ByKWUeWA-. 2, 4.4, 1a, 1b, 1

Weijia Zhang, Thuc Duy Le, Lin Liu, Zhi-Hua Zhou, and Jiuyong Li. Mining heterogeneous causal
effects for personalized cancer treatment. Bioinformatics, 33(15):2372–2378, 2017. doi: 10.
1093/bioinformatics/btx174. 2

Weijia Zhang, Lin Liu, and Jiuyong Li. Treatment effect estimation with disentangled latent factors,
2021. 2

12

http://proceedings.mlr.press/v70/shalit17a.html
http://proceedings.mlr.press/v70/shalit17a.html
http://dblp.uni-trier.de/db/conf/nips/nips2019.html##ShiBV19
http://dblp.uni-trier.de/db/conf/nips/nips2019.html##ShiBV19
http://jmlr.org/papers/v10/su09a.html
https://proceedings.neurips.cc/paper/2018/file/a50abba8132a77191791390c3eb19fe7-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a50abba8132a77191791390c3eb19fe7-Paper.pdf
https://openreview.net/forum?id=ByKWUeWA-
https://openreview.net/forum?id=ByKWUeWA-


Under review as a conference paper at ICLR 2022

Dragonnet BCAUSS

Train Test
Wasserstein dist. 0.0192 0.0217
MMD (linear) 0.0003 0.0004
MMD (rbf) 0.0007 0.0009
MMD (poly) 1.839E-06 2.715E-06

Train Test
Wasserstein dist. 0.0035 0.0030
MMD (linear) 1.223E-05 7.134E-06
MMD (rbf) 2.446E-05 1.425E-05
MMD (poly) 1.150E-06 6.787E-06

Table 5: Comparison between the distributions of treated vs. untreated induced by the learned
representation on Dragonnet and BCAUSS from one experiment of Jobs dataset.

A APPENDIX

We start providing further empirical evidence that adopting our auto-balancing self-supervised ob-
jective the network learns representations analogous to RCTs (Section A.1). Then, in the Section
A.2 we analyze the effect of back-propagating the gradient with respect to our self-supervised auto-
balancing objective compared to binary cross-entropy (Section A.3).

A.1 COMPARISON BETWEEN LEARNED TREATED AND UNTREATED DISTRIBUTIONS ON JOBS

Tab. 5 shows the comparison between the distributions of treated vs. untreated induced by the
learned representation on Dragonnet and BCAUSS from one experiment of Jobs dataset, where
we find confirmation of what already observed on the IHDP dataset, i.e. treated and untreated
distributions learned by BCAUSS are more similar than the ones learned by Dragonnet. Specifically,
Wasserstein distance is one order of magnitude lower on train-set and two order of magnitudes lower
on test-set compared to Dragonnet. MMD with the considered kernels are one order of magnitude
lower for BCAUSS compared to Dragonnet, both on train-set and test-set, except for the polynomial
kernel where they are the same order of magnitude.

A.2 THE EFFECT OF BACK-PROPAGATING THE GRADIENT WITH RESPECT TO THE
AUTO-BALANCING OBJECTIVE

The parameters of the network of fig. 1 are updated at each iteration to minimize J (θ;Pn), which
in case of batch gradient descent means

θ(i+1) :=θ(i) − α∂J
∂θ

= θ(i) − α

λBAL ∂LBAL
∂θ

+
1

n

∑
1≤j≤n

∂LREG
∂θ

(j)

 (7)

, where α is the learning rate. Hence, regarding the factual and counterfactual losses, using chain
rule for partial derivatives1, we have

1If f : R → R is a differentiable function applied element-wise to a vector x, i.e. z = f (x) =

[f (x1) , f (x2) , . . . , f (xd)]
T , then it is possible to show that the Jacobian ∂z

∂x
= diag (f ′ (x)) =

13



Under review as a conference paper at ICLR 2022
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where H (·) is the Heaviside step function. In order to compute, for example, ∂LREG∂W1

(j)
, we have

δ1,j =
∂LREG
∂zj,1

(j)

(13)

∂LREG
∂W1

(j)

=
∂LREG
∂zj,1

(j) ∂zj,1
∂W1

= δT1,jx
T
j (14)

In eq. 14 it has been used the practice (in a slight abuse of notation) of making the Jacobian ∂LREG
∂W1

(j)

of the same shape as W1. This is a well consolidated practice in deep learning literature, since this
matrix has the same shape as W1 we could just subtract it (times the learning rate) from W1 when
doing gradient descent. Relationships for other matrices and bias terms can be derived with similar
reasoning. In the same way, regarding the auto-balancing loss, applying the product rule and the
chain rule, we have

∂LBAL
∂W1

=
2

d

∑
1≤j≤d

fj (g, In)
∑

1≤i≤n

∂fj
∂gi

∂gi
∂zgi

∂zgi
∂zi,3

∂zi,3
∂zi,2

∂zi,2
∂zi,1

∂zi,1
∂W1

 (15)

=
2

d

∑
1≤j≤d

fj (g, In)
∑

1≤i≤n

∂fj
∂gi

σ (zgi ) [1− σ (zgi )] [W q
4 �H (zi,3)W3 �H (zi,2)W2 �H (zi,1)]

T
xT
i


(16)

where fj (g, In) =

(∑
1≤i≤n

ti
g(xi)

xi,j∑
1≤i≤n

ti
g(xi)

−
∑

1≤i≤n
1−ti

1−g(xi)
xi,j∑

1≤i≤n
1−ti

1−g(xi)

)
and it is used the derivative of the

sigmoid function, i.e. ∂σ(a)
∂a = σ (a) [1− σ (a)] . Relationships for other matrices and bias terms

can be derived with similar reasoning. When we plug eq. 14 and 16 into 7 for each matrix and bias
term of the network, we can understand how back-propagation works on BCAUSS. First, the term
of eq. 8 is a standard regression term depending on the difference between observed and predicted
outcome. This term is the same for networks like Dragonnet and TARNET. The term of eq. 16 is our
adjustment due to the dissimilarity between learned treated and untreated distributions. Specifically,
if there is no dissimilarity between learned treated and untreated distributions, then this term is zero
and the causal problem degenerates into a standard regression problem, as it should be. In this case,

∂f(x1)
∂x1

0 · · · 0

0 ∂f(x2)
∂x2

· · · 0
0 0 · · · 0

0 0 · · · ∂f(xd)
∂xd

. Since multiplication by a diagonal matrix is the same as doing

element-wise multiplication by the diagonal, we could also write �f ′ (x) when applying the chain rule.
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because the learned representation of the network is able to re-create the same conditions of RCTs,
there is no need of adjustments and the original causal problem defined on the covariates space
becomes a standard regression problem on the learned representation space. On the other hand,
if there is dissimilarity between learned treated and untreated distributions, i.e. ∃j ∈ {1, ..., d}
so that fj (g, In) 6= 0, then the updates of the network parameters are adjusted with the term of
eq. 16, which depends on fj (g, In) and the derivative of fj (g, In) with respect to the predicted
propensity scores of each observation. Now, we can understand why batch-gradient descent or SGD
with large batch-size works better than SGD with small batch-size and even Adam. For example,
if for Adam for a given j we have that fj (g, In) = 0 but fj (g, Ik) 6= 0, where k is the batch-size
(k < n), we update our parameters with the exponentially weighted average of the terms of eq. 16
and the exponentially weighted average of the (element-wise) squares of the magnitudes of same
terms. These updates are compensated with the updates of the following batches not in a linear
way, but in a exponentially weighted averaging way leading, in general, to sub-optimal states of the
network. Further, if the batch size is too small, we can observe numerical problem for SGD due to
specific values of fj (g, Ik), which are smoothed for Adam. The same reasoning holds for Adam
if fj (g, In) 6= 0 on the whole train-set, i.e. the network is updated with a “bias estimate” between
learned treated and untreated distributions which is not the actual one. We might wonder what is
the causal interpretation of fj (g, In) for j ∈ {1, ..., d} and why it is so important. Such term is the
difference of the g-weighted means of j-th covariate for the treatment and control groups. Hence, by
minimizing such term for each j ∈ {1, ..., d}, g (x) is incentivized to act like a balancing score, in the
sense of Rosenbaum & Rubin (1983). And, if g (x) is a balancing score in the sense of Rosenbaum
& Rubin (1983), at any value of x ∈ X , the difference between the treatment and control predicted
outcome is an unbiased estimate of the treatment effect at that value of the balancing score.

A.3 COMPARISON WITH THE BINARY CROSS-ENTROPY OBJECTIVE

A different objective used in literature to train the propensity score estimator is the binary cross-
entropy objective of eq. 5. Even Rosenbaum & Rubin (1983) claim that the propensity score “may
be estimated from observed data, perhaps using a model such as a logit model”. We find very illu-
minating such use of “perhaps” in the previous sentence. Maybe, what the authors mean is that for
estimating the propensity score adopting a logit model, we need a train-sample very representative
of the underlying covariate distribution. With this in mind let analyze the effect of back-propagating
the gradient with respect to the binary cross-entropy objective. The parameters of the network are
updated at each iteration according to the following optimization step

θ(i+1) :=θ(i) − α∂J
∂θ

= θ(i) − α

n

 ∑
1≤j≤n

(
∂LREG
∂θ

(j)

+ λBCE
∂LBCE
∂θ

(j)
) (17)

, where α is the learning rate. The components ∂LREG
∂θ can be derived like in Section A.2, while for

components ∂LBCE
∂θ we have

∂LBCE
∂W1

(j)

= {[g (xj)− tj ]Wg
4 �H (zj,3)W3 �H (zj,2)W2 �H (zj,1)}T xT

j (18)

Relationships for other matrices and bias terms can be derived with similar reasoning. The term of
eq. 18 is the adjustment (times λBCE) for the gradient update ∂LREG

∂θ

(j)
depending on the differ-

ence of the decision of treatment of the j-th observation and the related predicted propensity score.
Hence, we can understand why working with large batch-size and SGD is beneficial also for the
binary cross-entropy objective, as recalled already in (Shi et al., 2019). For example, if the true
propensity score for a given xj ∈ X is 1/3 but in the current batch there is only one observation be-
longing to the treated group having covariate xj, then we update the parameters of the network with
a component {[g (xj)− tj ]Wg

4 �H (zj,3)W3 �H (zj,2)W2 �H (zj,1)}T xT
j which can be zero,

in general, only in case g (xj) = 1, which is the wrong value for g (xj) to converge. On the other
hand, adopting SGD such component can be hopefully compensated in the following batches with
two observations like {g (xj)W

g
4 �H (zj,3)W3 �H (zj,2)W2 �H (zj,1)}T xT

j , if the train-set is
representative of the underlying covariate distribution. On the other hand, assuming the network
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was already able to estimate g (xj) as 1/3, instead of having no components for all the observations
having covariates xj, we have the three ones mentioned above, hopefully compensating each other
(this is not guaranteed as they belong to different batches, with the network having different ini-
tial states). Ideally, at each optimization step, we need a batch-size large enough to represent the
underlying covariate distribution. Indeed, in our experiments we noticed improvements in models
adopting the binary cross-entropy objective with large batch-sizes. As final step, let assume we
adopt the maximum possible batch-size and let ask what are the implications for the network if we
adopt the the binary cross-entropy objective. The network should learn an internal representation so
that g (x) ≈ p (t = 1 |x ) which, in general, highly depends on prior treated an control distributions,
e.g. logit (p (t = 1 |x )) = logit (p (x |t = 1)) + logit (p (t = 1)). In particular, if such prior dis-
tributions are highly dissimilar, as unfortunately might happen in observational datasets, the related
learned distributions are affected as well, and Theorem 5 states that in this case the upper bound of
the related expected error in learning individual treatment effect increases. On the contrary, if we
adopt an objective explicitly designed to learn internal representations that re-create the same (or
very similar) conditions of RCTs, where treated and untreated distributions are by design the same,
we end up with a lower upper bound.
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