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ABSTRACT

Coral reefs are rapidly declining due to anthropogenic pressures like climate change,
underscoring the urgent need for scalable, automated monitoring. We introduce
ReefNet, a large public coral reef image dataset with point-label annotations
mapped to the World Register of Marine Species (WoRMS). ReefNet aggregates
imagery from 76 curated CoralNet sources and an additional site from Al-Wajh
in the Red Sea, totaling ∼ 925K genus-level hard coral annotations with expert-
verified labels. Unlike prior datasets, often limited by size, geography, or coarse
labels and not ML-ready, ReefNet offers fine-grained, taxonomically mapped labels
at a global scale to WoRMS. We propose two evaluation settings: (i) a within-source
benchmark that partitions each source’s images for localized evaluation, and (ii) a
cross-source benchmark that withholds entire sources to test domain generalization.
We analyze both supervised and zero-shot classification performance on ReefNet,
and find that while supervised within-source performance is promising, supervised
performance drops sharply across domains, and performance is low across the board
for zero-shot models, especially for rare and visually similar genera, providing a
challenging benchmark intended to catalyze advances in domain generalization
and fine-grained coral classification. We will release our dataset, benchmarking
code, and pretrained models to advance robust, domain-adaptive, global coral reef
monitoring and conservation.

1 INTRODUCTION

Coral reefs are among the most biodiverse ecosystems on Earth, providing immense ecological
and economic value (Barbier et al., 2011; Spalding et al., 2017). Yet these vibrant habitats are
increasingly threatened by anthropogenic pressures, including climate change, overfishing, pollution,
and ocean acidification (Cooley et al., 2023; Bellwood et al., 2004; Hughes et al., 2017). As these
stressors intensify, coral cover and overall reef resilience decline, underscoring the need for effective
conservation and restoration (Brandl et al., 2019; Bellwood et al., 2004). A critical component of reef
conservation is habitat mapping and coverage analysis, which typically relies on expert taxonomists
to annotate in situ underwater images (Hill & Wilkinson, 2004; Beijbom et al., 2015). However,
this dependence on manual labeling severely limits the scale and speed of monitoring (Brandl et al.,
2019; Bellwood et al., 2004). Machine learning (ML) offers a path to automation, but progress is
impeded by two factors: (i) the scarcity of well-established, ML-ready datasets and benchmarks,
and (ii) persistent domain shift, whereby classifiers degrade on sites with different photographic
conditions, local assemblages, or label conventions (Belcher et al., 2023; Chen et al., 2021).

CoralNet (Beijbom et al., 2015; Chen et al., 2021), one of the leading annotation platforms, fine-tunes
a global model on user-defined “sources.” However, these source-specific classifiers frequently show
poor performance on unseen sites owing to variations in taxonomy, imaging protocols, and local reef
composition (Williams et al., 2019). ReefCloud.ai (AIMS, 2024) has improved label standardization
but remains inaccessible to public researchers. To address these data and accessibility gaps, we
introduce ReefNet as a complementary resource, providing a large-scale, publicly available coral reef
imagery dataset with point-label annotations taxonomically aligned to the World Register of Marine
Species (WoRMS) (Board, 2024). Figure 1 shows an overview of the dataset’s structure. ReefNet
unifies data from 76 carefully selected CoralNet sources and includes an additional 1.3K images
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that we collected and annotated from the Al-Wajh lagoon in the Red Sea, comprising 4,609 expert
annotations of Red Sea hard coral genera, offering a valuable contribution from an understudied
biogeographic region. In total, the dataset contains ∼ 925K genus-level scleractinian coral annotations
(Table 1). Rigorous manual verification by marine biologists was conducted on 8,962 annotations
spanning various sources and labels. This process yielded a high-confidence repository of hard coral
annotations across diverse biogeographic regions. In addition to point annotations, we enrich ReefNet
with textual descriptions for each genus generated from scanned books (Veron, 2000a;b; Wallace,
1999), enabling language-grounded classification and supporting the development of vision-language
models (VLMs).

Figure 1: Overview of the Hierarchical
Structure of ReefNet: a curated dataset of coral
reef annotations focused on hard corals
(Scleractinia), with textual descriptions for each
genus.

Beyond dataset curation, ReefNet introduces
two benchmarking configurations designed to
reflect real-world deployment scenarios. (i)
Within-Source Benchmark (In-Distribution):
For each source, we split the dataset into train,
validation, and test sets at the image level, en-
suring no image appears in more than one split,
even though individual images contain multiple
sparse point annotations. This setup simulates
how practitioners might train and evaluate mod-
els using locally labeled data from the same reef
site. (ii) Cross-Source Benchmark (Out-of-
Distribution): The model is trained on data
from a subset of sources and evaluated on en-
tirely distinct sources, explicitly addressing the
domain shift challenge of applying models to un-
seen reef sites. Together, these complementary
benchmarks reveal the substantial performance
degradation under domain shift, as shown in our
empirical results (section 4). Models evaluated
in Table 3 consistently struggle with rare classes
and morphologically similar taxa, underscoring
persistent challenges related to class imbalance
and fine-grained discrimination. By releasing
the ReefNet benchmark, code, and pre-trained
models, we aim to catalyze the development of
more robust, domain-adaptive machine learning
solutions for urgent reef monitoring applications.
ReefNet’s global coverage, expert-curated labels, and flexible taxonomic structure provide a valuable
foundation for accelerating innovation in coral-reef conservation. In summary, the contributions of
this paper include: (i) ReefNet, a large-scale coral benchmark with WoRMS-aligned, standardized
point-label annotations across 76 CoralNet sources. (ii) Manual expert verification and quality
filtering for high-confidence benchmark splits. (iii) Two benchmark settings, within-source and
cross-source, capturing in-domain and domain-shift classification performance. (iv) A new Al-
Wajh Lagoon dataset covering an understudied Red Sea region. (v) Evaluation of fine-tuned and
zero-shot models on both benchmarks.

2 RELATED WORK

Several large-scale machine-learning datasets have recently emerged to facilitate biodiversity clas-
sification. One example is TreeOfLife-10M (Stevens et al., 2023c), which consolidates imagery
from iNat2021 (Horn et al., 2021), BIOSCAN-1M (Gharaee et al., 2024), and the Encyclopedia of
Life (eol.org), surpassing 10 million images of terrestrial and marine organisms. Despite its scope,
underwater taxa remain underrepresented in such general biodiversity repositories, largely because of
the substantial logistical challenges associated with acquiring and annotating in situ marine imagery.
To address this gap, BenthicNet (Lowe et al., 2024) was introduced, aggregating seafloor images
from multiple surveys, including the Seaview Survey Photo-quadrat (González-Rivero et al., 2019)
and Reef Life Survey (Edgar et al., 2020), among others (Friedman, 2020). BenthicNet constitutes
a major step toward comprehensive marine coverage, but it primarily supports broad-scale benthic
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Table 1: Comparison With Existing Coral Classification Datasets. *Image counts reflect availabil-
ity as of May 13, 2025. Hard coral/genus-level annotations are not specified for CoralNet, since its
labels are not standardized. †MosaicsUCSD includes 16 annotated orthomosaics, each from ∼1.5K
images. ‡CoralSCOP (Zheng et al., 2024) contains 330,144 binary coral/non-coral masks (not limited
to hard corals). CoralVOS (Ziqiang et al., 2023) likewise provides only binary coral masks, so a hard
coral count is N/A.

Number of annotations

Dataset Geographic
coverage

Annotation
type

Lowest
taxonomic level

Mapped to
WoRMS

Number of
images Hard corals Genus-level

annotations

CoralNet (Beijbom et al., 2015) World Sparse points Species No 4,524,792* N/A No
CoralSCOP (Zheng et al., 2024) World Masks Order No 41,297 330,144‡ No
CoralVOS (Ziqiang et al., 2023) 17 sites (South China Sea) Masks Order No 60,456 N/A No
MosaicsUCSD (Edwards et al., 2017) Palmyra Masks Species No 16† 44,008 Yes
Eilat (Raphael et al., 2020) Eilat Sparse points Genus No 212 ∼12,000 Yes

BenthicNet (Lowe et al., 2024) World Sparse points /
image label Species Yes 11,408,887 287,181 Yes

Coralscapes (Sauder et al., 2025) Red Sea (5 countries) Masks N/A No 2,075 N/A No
ReefNet (ours) World Sparse points Genus Yes 181,223 924,626 Yes

habitat labeling using the CATAMI classification scheme (Althaus et al., 2015), and it also supports
the WORMS (Board, 2024)taxonomy as it has 887533 annotations of which 287K are hard coral
(’Scleractinia’) annotations.(Table 1). Other coral-specific datasets have been proposed to support
tasks such as dense segmentation. For instance, CoralVOS and CoralSCOP (Ziqiang et al., 2023;
Zheng et al., 2024) offer pixel-level masks but generally categorize corals only at the order level
(Scleractinia). Consequently, their utility for fine-grained ecological studies is limited. In contrast,
MosaicsUCSD and Eilat (Edwards et al., 2017; Beijbom et al., 2016; Alonso et al., 2019) provide
annotations at genus or species levels but are geographically constrained to a single reef site, reducing
their ability to generalize across regions. Meanwhile, CoralNet (Beijbom et al., 2015) hosts a large
volume of benthic imagery with both human- and machine-generated labels, but does not typically
map them to an accurate, globally recognized taxonomy such as the WoRMS. Coralscapes (Sauder
et al., 2025) extends benthic classification to a sizeable Red Sea dataset with over 170K polygon
annotations, focusing on habitat cover types rather than genus- or species-level coral identification.
ReefNet builds on prior efforts while addressing several key limitations, providing one of the most
comprehensive collections of expert-verified coral annotations available. These annotations are
mapped to the genus level across a diverse, global set of reef sites, addressing challenges like limited
taxonomic resolution, geographic bias, and inconsistent labeling standards. By aligning its taxonomy
with the World Register of Marine Species (WoRMS), ReefNet ensures consistency and compatibility
with ongoing coral biodiversity research, supporting a broad spectrum of ecological and machine
learning tasks from habitat classification to genus-level analysis. We provide further clarification of
our advantages over CoralNet in appendix A.1.

3 DATA COLLECTION AND LABEL MAPPING

ReefNet is the result of a multi-stage, expert-guided curation process applied to publicly available
benthic imagery and annotations from CoralNet. This section outlines the construction of the core
dataset, followed by the label standardization pipeline and manual verification process that underpin
its taxonomic reliability and ecological utility.

3.1 DATA COLLECTION METHODOLOGY

We started with 1,366 publicly available CoralNet sources and applied a series of semantic, ecological,
and technical filters to identify high-quality reef datasets with taxonomically meaningful annotations.
This involved removing test or incomplete sources, selecting only expert-verified labels, and retaining
sources with sufficient image and annotation counts. We then applied domain-specific criteria, such
as the presence of reef-building corals and shallow, in situ imagery, yielding 76 public sources with
approximately ∼920K genus-level coral annotations. The full source selection pipeline is detailed in
appendix A.2.1.

Al-Wajh Lagoon Data. We additionally contribute a new dataset from the Al-Wajh Lagoon in
the Red Sea (25.6°N, 36.8°E), comprising 1.3K high-resolution in situ images and 4,609 expert
annotations of hard corals. This dataset serves as a test set for the cross-source benchmark to evaluate
fine-grained classification and cross-region generalization. Data collection details are provided in
appendix A.2.6.
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Figure 2: Log-scale Distribution of Annotations Across Hard Coral Taxa. The plot includes 43
genera and one family-level class (Fungiidae).

3.2 LABEL STANDARDIZATION AND MAPPING

To ensure taxonomic traceability and biological consistency, we mapped annotation labels to the
World Register of Marine Species (WoRMS Board (2024)). This step was applied, where applicable,
to annotations from the 76 curated CoralNet sources and the Al-Wajh lagoon dataset. Hard coral labels
were manually aligned with canonical scientific names and corresponding AphiaIDs1. This mapping
enabled consistent aggregation of biological entities across sources and ensured compatibility with
other biodiversity databases. The initial mapping revealed ∼920k annotations at multiple taxonomic
levels, consolidated to genus-level hard corals. The dataset covers 44 reef-building hard coral (Order:
Scleractinia) genera spanning 20 families. However, this initial label space exhibited inconsistencies
in naming, taxonomic granularity, and semantic intent, necessitating further filtering and restructuring.

Label Filtering and Semantic Consolidation. To construct a benchmark dataset suitable for training
generalizable AI models, we applied a biologically informed filtering strategy targeting syntactic
variation (e.g., “Staghorn coral” vs. Acropora cervicornis) and taxonomic inconsistency (e.g., mixing
species-, genus-, and family-level labels). This step was motivated by the inherent difficulty of
fine-grained coral identification from imagery alone (Chen et al., 2021; Lowe et al., 2024), which
often results in community datasets with inconsistent or imprecise taxonomic labeling.

Labels were retained only if they referred to hard corals at the genus level, except for Fungiidae,
which was kept at the family level due to semantic similarity among its genera that makes genus-level
verification difficult. Retained labels also had to meet the following criteria: appear at least 100
times in the dataset, be present in at least three distinct CoralNet sources with a minimum of 10
annotations per source, exhibit consistent and distinguishable visual patterns, and be taxonomically
valid according to WoRMS. After filtering and consolidation, the ReefNet dataset used in our
experiments includes 44 unique labels, grouped primarily at the genus level. This curated, taxonomy-
aware structure enables hierarchical subsetting, scalable annotation, and custom label aggregation for
ecological and machine learning tasks. The structured design of ReefNet is illustrated in Figure 1.

3.3 DATASET STATISTICS

3.3.1 ANNOTATION DISTRIBUTION

The ReefNet dataset comprises 334,162 images, of which 181,223 contain hard coral annotations,
totaling 924,626 point annotations. These annotations span 26 marine ecoregions across the tropical
belt sensu (Spalding et al., 2007) (see appendix A.2.5 for details). The distribution is uneven:
the Hawaiian Ecoregion alone contributes over 221K annotations, followed by the Samoa Islands
(202K) and the Mariana Islands (108K). In contrast, regions such as the Southwestern Caribbean,

1An AphiaID is a unique identifier from the WoRMS database, linking each label to its corresponding entry
in the hierarchical taxonomy. As coral taxonomy evolves, AphiaIDs allow users to verify the current validity of
labels.
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Figure 3: Geographic Distribution of the Annotations. Sources located within two degrees of
Latitude and Longitude are grouped into a single point. One source did not contain any location data
and is displayed in Antarctica. Marine Ecoregions of the World are shown in light blue (Spalding
et al., 2007).

Floridian, and Eastern Brazil are sparsely represented, each with fewer than 8K samples. This
geographic imbalance reflects broader disparities in coral monitoring efforts and may influence model
generalization to underrepresented areas. Among all annotations, 921,351 are assigned to one of
44 classes, capturing a wide range of coral diversity. The most frequent genera, Porites, Montipora,
Acropora, and Pocillopora, dominate shallow reefs globally (Figure 2, Figure 4), while several genera
appear in less than 1K annotations, illustrating the dataset’s imbalanced distribution.

3.3.2 COVARIATE DIVERSITY

In addition to the biological breadth of ReefNet, it exhibits substantial covariate diversity across
environmental conditions, camera systems, and imaging protocols (Figure 3), leading to significant
variations in resolution, lighting, and water quality across the data. For specific target deployments, it
may be advantageous to only train on images from similar environmental conditions or acquisition
parameters. We provide detailed metadata on geographic context and camera setups for each CoralNet
source in appendix A.2.5, along with the metadata that will be publicly released, thereby enabling the
exploration of optimal subsets.

3.4 HARD CORALS DATA QUALITY CONTROL

To assess annotation reliability, we conducted an expert review on a stratified subset of 8,962 hard
coral samples. Each review involved evaluating images tied to specific source–genus pairs, with
labels categorized as Correct, Incorrect, Low Quality Image, or Hard to Decide. A micro-averaged
expert agreement percentage was calculated as the proportion of Correct labels among all reviewed
samples. To support this process, we built a custom web-based application that enabled structured
review of annotations across sources. Further details on the interface and the whole verification
pipeline are provided in the supplementary material. Based on this expert feedback, showing an
overall agreement rate of 73%, we performed targeted quality control, removing low-confidence
genera, sources, or genus–source pairs. This affected a total of 920,017 hard coral annotations in the
full dataset, guided by insights from the verified subset. These verification and filtering steps ensure
that downstream models are trained on biologically reliable annotations and support ecologically
valid interpretation of classification outcomes. Further details on the quality control are provided in
appendix A.2.2 and appendix A.2.3.
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Source and Genus Filtering. We first excluded any source where fewer than 50% of reviewed
samples were deemed correct. Similarly, coral genus with less than 50% expert agreement across all
verified sources were removed. This step retained 70 sources, with a post-filter expert agreement of
78%. After filtering, 860,463 annotations remained across 39 unique hard coral genera.

Source–Genus Filtering. We then applied a stricter filter at the source–genus level, retaining only
pairs with at least 70% expert agreement in their verified samples for each source-genus pair. This
resulted in a high-confidence subset with 92% expert agreement on the representative verification set.
After this step, 479,027 annotations were retained from 68 sources, while still preserving all 40 hard
coral genera. A summary of the filtering process and benchmark splits is presented in Table 2.

4 REEFNET BENCHMARKS

A key practical challenge for coral-reef AI is the domain gap encountered when models trained on
imagery from one dataset (a “source”) are applied to imagery collected by another dataset. Models
trained on datasets from specific locations frequently exhibit poor generalization to ecologically
or geographically distinct areas (Williams et al., 2019; Belcher et al., 2023; Wyatt et al., 2025).
Variations in camera setups, water clarity, depth, and annotation protocols, even for the same taxa,
can degrade performance. To systematically evaluate model robustness and practical applicability
in genus-level coral classification, we define two primary benchmarking scenarios: (i) Within-
source fine-tuning: Images from a single source (Source A) are partitioned into distinct training,
validation, and test subsets. Models are trained on a labeled subset and evaluated on the remainder.
Although used by platforms such as CoralNet and ReefCloud, this method requires site-specific
manual annotations, limiting scalability. (ii) Cross-source deployment: Models trained on all
available images from Source A are directly evaluated on a different source (Source B), without
further fine-tuning. This setting assesses generalization across domains, highlighting the model’s
ability to overcome domain shifts. ReefNet provides benchmarks for both settings with different
training and testing configurations. A quantitative overview of all the splits is in Table 2.

4.1 REEFNET WITHIN-SOURCE SPLIT

For the within-source setting, we consider two splits that share an identical label set but with
different expert agreement quality. In each split, each source is divided on the image level to prevent
information leakage using Multilabel Stratified Shuffle Split (Sechidis et al., 2011; Brady, 2017). The
two data-quality variants considered: (i) Train-S1 / Test-S1, with no source–genus filtration, of 81 %
expert agreement, 802,956 training annotations from 70 sources; 9,972 validation annotations from
64 sources; 40,881 test annotations from 69 sources. (ii) Train-S2 / Test-S2, with source–genus
filtration, of 92 % expert agreement percentage, 445,985 training annotations from 68 sources; 9,999
validation annotations from 63 sources; 40,881 test annotations from 66 sources.

4.2 REEFNET CROSS-SOURCE SPLIT

Source Allocation. Applying the quality control thresholds (> 50% expert agreement per source and
per genus, and > 70% per source–genus pair) yields 68 eligible sources. We assign 44 to training
(depending on the training variant), 17 to validation, and 7 to testing. Test sources are selected first to
prioritize high expert agreement and maximize class overlap with training; validation sources are
then chosen to maintain overlap with both training and test sets. The held-out test set Test-S3&S4
comprises ∼34k images from 7 unseen high-quality sources spanning the Atlantic and Indo-Pacific
regions (33 classes, 96% expert agreement). Additionally, we considered the Al-Wajh dataset as a
test source Test-W to further investigate cross-source generalizability on 12 Red Sea genera.

Training Variants. For cross-source experiments, we contrast two training partitions to illustrate the
quantity–quality trade-off: (1) Train-S3 (no source–genus filtration): 733,391 annotations, 39 classes,
45 sources, 80% expert agreement. (2) Train-S4 (with source–genus filtration): 406,552 annotations,
38 classes, 44 sources, 91% expert agreement.

Across all splits, the hard coral labels span 33–39 taxa, except in Test-W, where only 12 taxa are
evaluated. Overlap statistics in Table 2 confirm that both the validation and test sets of S3&S4 remain
taxonomically diverse despite their smaller size.
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Table 2: Summary of Dataset Splits Across Experimental Settings. "Annotations" and "Classes"
show the number of annotations and the corresponding number of unique labels. "Expert agreement
percentage" refers to the correct rate of the verified annotations. "∩ Train" shows overlapping class
counts with the training set. The same test sets are used for both cross-source training settings.

In/Cross Source-genus select. Split Annotations Classes # Sources % expert agreement ∩ Train

In ×
Train-S1 802,956 39 70 81 39
Val-S1 9,972 37 64 81 37
Test-S1 40,881 39 69 81 39

In ✓
Train-S2 445,985 39 68 92 39
Val-S2 9,999 38 63 92 38
Test-S2 23,043 39 66 92 39

Cross × Train-S3 733,391 39 45 80 39

Cross ✓
Train-S4 406,552 38 44 91 38
Val-S3&S4 37,473 33 17 92 33
Test-S3&S4 34,040 33 7 96 33

Cross Al-Wajh Test Set Test-W 4,606 12 1 100 12

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Evaluated Models. We evaluate three types of models across all benchmarks: (i) Large Scale
Pre-trained models fine-tuned on our dataset (Tan & Le, 2019; Chen et al., 2021; He et al., 2016;
Liu et al., 2022; Dosovitskiy et al., 2021; Bao et al., 2022; Liu et al., 2021; Touvron et al., 2021),
(ii) Vision-Language Models (VLMs) evaluated in a zero-shot setting (Ilharco et al., 2021; Radford
et al., 2021; Stevens et al., 2023a; Zhai et al., 2023), and (iii) Multimodal Large Language Models
(MLLMs) also evaluated in a zero-shot setting (Bai et al., 2025). Model performance is evaluated
using Macro Recall, sometimes referred to as the balanced accuracy score (Pedregosa et al., 2011).
Macro Recall is particularly suited for our task as the ReefNet data shows a high degree of class
imbalance 2. Additionally, for top-performing models, per-class recall, precision, and F1 scores
are provided in appendices( A.4.3- A.4.5). Additionally, we fine-tune BioCLIP on our hierarchical
dataset, down to the Genus level (referred to as BioCLIP-FT), to investigate its performance on hard
coral hierarchical classification, as it reported good performance on other datasets spanning plants,
animals, and fungi on TreeOfLife-10M (Stevens et al., 2023c). The details about the training setup
for all models have been included in the supplementary material.

5.2 FINETUNING RESULTS

All models in Table 3 show substantial performance drops under cross-source evaluations, revealing
challenges in generalizing across sources with varying imaging conditions. Persistent issues include
poor recall on rare classes and confusion between morphologically similar genera, highlighting the
need for models that better handle domain shifts, class imbalance, and fine-grained visual distinctions.
While BioCLIP-FT achieves overall good performance in within-source evaluations, particularly
on the higher-quality split, and ViT (MAE-pretrained) shows the strongest generalization in cross-
source settings, the broader trend across Table 3 reveals a consistent struggle for all models to
maintain accuracy under domain shift, underscoring a persistent challenge in generalizing coral
classification models beyond their training distribution. This degradation is largely driven by the high
variability in imaging conditions across different reef survey collections. In addition, performance
remains especially poor on rare classes and visually similar genera. Many coral genera share subtle
morphological traits, such as meandroid or polygonal corallite structures, which are difficult to
distinguish in non-close-up survey images. Tackling these harder examples, as opposed to the easier,
more distinct ones, will require further development in both model design and data curation strategies.

Within-Source Splits: The two within-source benchmarks in Table 3 demonstrate higher Macro
Recall on the higher-quality split (Train-S2 / Test-S2) for all models except ViT (MAE-pretrained).
This trend does not necessarily suggest improved performance due to enhanced data quality, as direct
comparisons between Train-S1 and Train-S2 remain inconclusive due to the use of distinct test sets
(Test-S1 and Test-S2). Nevertheless, the overall relative performance ranking of models remained
consistent across both benchmarks. The stricter quality control applied to Test-S2 samples establishes

7
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Table 3: Hard Coral Classification Macro Recall Under Different Train/Test Settings. Best
scores are in bold; second best are underlined.

Model

Train/Test split
within-source

Train-S1 / Test-S1
within-source

Train-S2 / Test-S2
cross-source

Train-S3 / Test-S3 & S4
cross-source

Train-S4 / Test-S3 & S4
cross-source

Train-S3 / Test-W
cross-source

Train-S4 / Test-W

EfficientNet (Tan & Le, 2019) 78.36 82.41 48.01 41.78 69.29 64.59
ResNet (He et al., 2016) 63.91 64.49 37.96 28.49 64.14 51.22
ConvNext (Liu et al., 2022) 77.52 82.88 42.21 47.06 69.19 68.08
BEiT (Bao et al., 2022) 72.18 73.63 45.56 32.17 64.24 62.31
DeiT (Touvron et al., 2021) 74.36 77.40 45.46 40.94 63.19 66.67
Swin (Liu et al., 2021) 77.71 82.64 45.37 42.33 65.64 65.41
ViT-B (scratch) (Dosovitskiy et al., 2021) 75.23 81.86 39.62 45.08 66.18 66.12
ViT-B (Dosovitskiy et al., 2021) 75.47 79.00 50.49 44.83 69.71 66.18
ViT-B (MAE (He et al., 2022) pretrained) 79.97 77.72 56.21 47.07 71.77 61.40
BioCLIP-FT (Stevens et al., 2023b) 79.32 84.06 45.31 42.94 70.07 63.42

Number of test classes 39 39 33 33 12 12
Number of test samples 40,881 23,043 34,040 34,040 4,606 4,606

the (Train-S2 / Test-S2) split as a more reliable benchmark compared to (Train-S1 / Test-S1), as higher-
quality test data yields more statistically meaningful measures of performance. In these within-source
experiments, we found that BioCLIP-FT notably outperformed other models, performing best on
the (Train-S2 / Test-S2) split with 84.06%. This result highlights the potential benefits of leveraging
pretrained knowledge from large-scale taxonomic biological data in TreeOfLife-10M (Stevens et al.,
2023c).

Cross-Source Splits: To investigate the trade-off between training data quantity and quality, the
two cross-source benchmarks in Table 3 share a common test set (Test-S3&S4). Train-S3 contains
approximately 0.7 million training samples with an 80% expert agreement percentage, while Train-S4
comprises around 0.4 million samples with a 91% expert agreement percentage. Unlike the within-
source benchmarks, the two cross-source benchmarks do not exhibit consistent relative performance
rankings across models, nor do they reflect an overall ranking similarity with the within-source
splits. Nonetheless, macro recall scores for all models show substantial degradation in cross-source
evaluations, with drops up to 41% for BioCLIP-FT compared to the within-source benchmark (Train-
S2/Test-S2). This performance decline is expected, as the cross-source setup introduces domain
generalization challenges due to high variability across different reef surveys.

Notably, BioCLIP-FT fails to maintain its top performance in this setting, highlighting the difficulty of
cross-source generalization even when the model is aligned with the taxonomic structure of the dataset.
Interestingly, ViT (MAE-pretrained) demonstrates stronger generalization capabilities, achieving
56.21% macro recall on Test-S3&S4. This result demonstrates the advantage of self-supervised
pretraining on large datasets. Additionally, comparing the performance of ViT (MAE-pretrained)
trained on Train-S3 versus Train-S4 reveals the benefit of increased training data quantity, even when
the data quality is lower (80% vs. 91% expert agreement percentage). Testing on the Al-Wajh source
(Test-W, with 12 taxa) also showed improved performance with more training data. Its higher scores,
compared to other cross-source results, are due to most test classes being abundant in the training set.

Loss Function and Class Imbalance. Rare classes exhibit lower recall, an expected outcome given
the class imbalance in the training data (see per-class analysis in appendix A.4.3). To mitigate this,
we evaluated alternative loss functions. As presented in Table 4, training ViT-L with class-balanced
cross-entropy (Cui et al., 2019) did not yield improvements in any split. In contrast, focal loss (Lin
et al., 2017) consistently outperformed standard cross-entropy, with further gains observed when
using its class-balanced variant (Cui et al., 2019).

Acropora Acropora FaviaAcroporaPorites Stylophora

Montipora Acropora Acropora Montipora Favia Acropora

Montipora

Acropora 

Acropora 

Montipora

Figure 4: Qualitative examples. Ground truth is shown above and model prediction below; the
rightmost image illustrates the challenge of assigning a single label to patches with multiple corals.
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Table 4: Loss Function Ablations Using ViT-L-384 (macro recall).

Loss
within-source

Train-S1 / Test-S1
within-source

Train-S2 / Test-S2
cross-source

Train-S3 / Test-S3&S4
cross-source

Train-S4 / Test-S3&S4
CE 77.37 80.71 50.14 44.98
CB-CE (Cui et al., 2019) 76.58 76.23 46.96 42.32
Focal (Lin et al., 2017) 78.39 84.33 46.33 41.24
CB-Focal (Cui et al., 2019) 81.86 85.71 52.87 45.65

5.3 ZERO-SHOT RESULTS

From Table 5, it is evident that all models struggle with the zero-shot classification task, particularly
when compared to the fine-tuned models discussed in section 5.2. This performance gap is expected,
as most of the zero-shot models have likely encountered limited or no coral-specific data during
pretraining. However, BioCLIP (Stevens et al., 2023a), which achieves the best zero-shot performance,
has been pre-trained on the TreeOfLife-10M (Stevens et al., 2023c) dataset, which includes a wide
range of biological species, including corals. This pretraining provides BioCLIP with prior knowledge
of coral-related visual features. Therefore, the performance of VLMs is consistent with their training
data exposure.

We also evaluate Qwen2.5-VL (Bai et al., 2025) under different configurations. Directly prompting
Qwen2.5-VL to identify the coral genus from an image results in subpar performance. To improve
this, we provided additional context by generating coral genus descriptions using GPT-4.0; we refer
to this setup as Qwen-GPT. While this improved Qwen2.5-VL’s performance on the in-source split,
the performance on the cross-source split remained unchanged. Upon inspection, we found that the
GPT-generated descriptions contained repetitive and generic content, limiting their utility. To address
this issue, we curated high-quality textual sources by extracting coral-specific information from three
reference books (Veron, 2000a;b; Wallace, 1999). These excerpts were then summarized by GPT-4.0
into discriminative genus descriptions, which were provided as context to Qwen2.5-VL; we refer to
this setup as Qwen-Book. This approach improved Qwen2.5-VL’s performance on both in-source
and cross-source splits. Although Qwen2.5-VL still lags behind BioCLIP, these results highlight
the potential of using high-quality, domain-specific textual context to enhance coral recognition in
MLLMs. We believe that further refining the descriptions and retrieval strategies could significantly
close the gap.

Table 5: Zero-Shot Classification. Macro recall of open-source VLMs on hard corals classification.
Qwen-GPT uses GPT-4o-generated genus descriptions; Qwen-Book adds GPT-4o summaries of
domain-specific books (Veron, 2000a;b; Wallace, 1999).

CLIP SigLIP OpenCLIP BioCLIP Qwen2.5-VL
Qwen-GPT

(GPT-4o genus desc.)
Qwen-Book

(GPT-4o book summ.)

Within-source
Test-S2 2.50 3.31 3.94 9.92 2.98 4.15 6.04

Cross-source
Test-S3&S4 1.00 1.91 4.56 10.33 3.92 3.92 6.27

6 CONCLUSION

We introduced ReefNet, a globally curated benchmark comprising 925K genus-level hard coral
annotations mapped to the WoRMS taxonomy. Spanning diverse biogeographic regions and featuring
a standardized, expert-reviewed label set, ReefNet serves as a foundational resource for automated
coral monitoring. Our benchmarks show that models trained on within-source data achieve strong
performance, but significant drops under domain shift highlight challenges in generalizing to unseen
reef systems, especially for rare taxa. Notably, some common coral genera were detected with
over 90% accuracy across distinct test locations, demonstrating the potential for generalization to
widespread classes. ReefNet-trained models can also be leveraged to pre-label common genera,
streamlining expert annotation and enabling efficient local model adaptation. By releasing the ReefNet
benchmark, code, and models, we aim to support the development of scalable, domain-adaptive tools
for coral reef monitoring and conservation. Further details on the dataset, the verification process,
and additional experiments are provided in the supplementary material.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS

The primary goal of this research is to advance AI for a positive societal impact, specifically in the do-
main of biodiversity conservation and reef ecology. Our work introduces a new benchmark, ReefNet,
which is constructed from publicly available images and textual data sourced from encyclopedic
resources. All data used will be made publicly available, adhering to the licensing terms of its original
source. The dataset contains images of animal species, corals, and other marine life and does not
involve human subjects, thus presenting no personal data privacy concerns.

We acknowledge that all large-scale datasets are susceptible to inherent biases. Our benchmark may
reflect geographic and taxonomic biases present in the publicly available data it is derived from.
Similarly, the language models used for generating and distilling descriptions (e.g., GPT-4o) may
carry their own latent biases. We have sought to mitigate this by involving reef ecologists in our
data curation process. We believe the potential for misuse of this technology is low, as its primary
application is intended for scientific research and environmental monitoring.

8 REPRODUCIBILITY

We ensure reproducibility of our work. Our dataset will be made publicly available under appropriate
licenses. For evaluation, we specify hyperparameters, architectures, and training details in the main
text and supplementary material. Our codebase, including data loaders, evaluation scripts, and
fine-tuning implementations, will be released on GitHub. Random seeds are fixed in all experiments,
and we report results across multiple runs where applicable. Together, these steps ensure that our
results can be independently verified and extended by the community.
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A APPENDIX

All CoralNet sources (1,366) After removing test/trial (1,310)

After classifier & confirmed images (775)

After ≥500 confirmed images (125)

After domain manual review (100)

Unique, public, verifiable (88)

After removing calibration sources (85)

Final ReefNet dataset (76)

Excluded test/trial (56)

Excluded: no classifier/confirmed (535)

Excluded: <500 confirmed images (650)

Excluded: domain criteria (25)

Excluded: duplicates/private (12)
Excluded: calibration (3)

Excluded: label criteria (9)

ReefNet Data Curation Pipeline

Figure 5: ReefNet Curation Pipeline. The diagram illustrates the sequential filtering and exclusion
steps applied to 1,366 CoralNet image sources to arrive at the final ReefNet dataset of 76 sources.
Sources were excluded due to insufficient number of human-verified annotations, ecological or
privacy concerns, and calibration-related issues.

A.1 REEFNET IN RELATION TO CORALNET

Despite CoralNet’s (Beijbom et al., 2015) wide adoption as a platform for coral annotations and
publishing datasets, it presents several challenges that limit its usability for ML practitioners to train
and evaluate ML models in a straightforward way, unlike other biological fields where the community
has built well-established ML-ready datasets(e.g., CUB-200-2011, NABirds, iNaturalist, IP102) (Wah
et al., 2011; Van Horn et al., 2015; 2018; Wu et al., 2019). ReefNet addresses these shortcomings,
making it a more reliable resource for scientific exploration and algorithmic development. The key
limitations of CoralNet are:

- Lack of a unified label set across sources. CoralNet aggregates data with heterogeneous and often
incompatible label sets, making large-scale integration infeasible.

- Absence of taxonomically verified hard coral labels. Many sources use outdated, ambiguous, or
generic labels instead of scientifically recognized names (e.g., those in the World Register of Marine
Species).

- No standardized quality control. Without systematic quality checks, it is difficult to identify
reliable samples, which is critical for both training and evaluation.

- No large-scale benchmark framework. CoralNet does not provide a standardized evaluation
setting for consistent model comparison.

To address these challenges, we propose ReefNet with the following key contributions:

- World Register of Marine Species (WoRMS) (Board, 2024)-based unified taxonomic labeling:
ReefNet adopts a unified labeling scheme grounded in WoRMS to integrate heterogeneous sources.
This harmonization also enabled the inclusion of a Red Sea–focused dataset. We anticipate that this
taxonomy will encourage future work to adopt scientifically sound annotation practices.

- Rigorous re-verification: CoralNet sources were annotated by distinct groups with variable
expertise, leading to inconsistencies in label provenance. While acceptable within individual sources,
these inconsistencies hinder multi-source integration. ReefNet mitigates this issue by introducing a
centralized verification step: a dedicated review team, composed of individuals with complementary
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backgrounds, re-evaluated all included sources. This ensures a consistent, cross-source quality
standard unattainable through direct dataset merging.

- Standardized benchmarks: ReefNet establishes reproducible benchmarks with clearly defined
splits, including: i) Within-source split: Evaluates performance when training and testing distribu-
tions are closely aligned, ii) Cross-source split: Assesses robustness to domain shifts arising from
differences in imaging tools, weather, depth, and other capture conditions, iii) Expert agreement
splits: Enable controlled comparisons between training with larger, noisier datasets and smaller,
cleaner ones, highlighting the trade-off between data quantity and label quality.

- Red Sea–focused benchmark: A dedicated Al-Wajh split allows systematic evaluation of model
generalization on an ecologically critical but underrepresented region, providing a benchmark for
studying regional biases and adaptation.

A.2 ADDITIONAL INFORMATION ON THE DATASET

A.2.1 REEFNET DATA COLLECTION METHODOLOGY

The ReefNet dataset was constructed through a multi-stage curation pipeline applied to publicly
available sources hosted on CoralNet. Beginning with all 1,366 publicly listed CoralNet sources,
we applied a series of semantic, ecological, and technical filters to isolate high-quality, taxonomically
relevant reef imagery and annotations. These steps ensured that retained sources featured dense,
consistent, and biologically meaningful annotation data.

We first excluded sources with names containing keywords such as “test” or “trial”—commonly
created by users trialing the platform—reducing the pool to 1,310 sources. An exception was made
for CoralNet Assistance Test, which was retained after manual inspection confirmed its annotation
reliability and ecological relevance.

Next, we removed sources lacking a trained classifier or any confirmed (i.e., human-annotated)
images, yielding 775 sources. Applying a minimum threshold of 500 confirmed images further
reduced the set to 125 sources. These were manually reviewed against two domain-specific criteria:
(i) the presence of annotations for Scleractinian (reef-building hard coral) taxa, and (ii) use of in situ
imagery from shallow, tropical reef environments, resulting in 100 sources.

To ensure uniqueness, we eliminated duplicate annotations based on filename, label identity, and
point-level annotation coordinates—occasionally leading to the exclusion of entire sources. We also
removed any sources that had become private after our data crawl, yielding 88 public, verifiable
sources. Following consultation with data owners, we excluded three calibration sources used for
training novice annotators, resulting in 85 sources.

A final filtering stage retained only labels that met all of the following criteria: (i) ecologically relevant
(i.e., hard coral taxa), (ii) appeared at least 100 times, (iii) were present in a minimum of three distinct
sources with at least 10 annotations per source, (iv) exhibited consistent, visually distinguishable
patterns, and (v) were taxonomically valid per WoRMS. After filtering and consolidation, the final
ReefNet dataset consisted of 76 sources and approximately 925,000 hard coral annotations.

In parallel, we standardized associated metadata for each source, including geographic location,
contributor affiliation, and source history (see Table 13). The complete metadata will be made
available as a CSV file.

A.2.2 REEFNET DATA QUALITY CONTROL

To ensure taxonomic reliability and consistency across ReefNet annotations, we implemented a multi-
stage expert verification and filtering process. This process was supported by a custom web-based
application developed specifically for large-scale, structured review of coral genus annotations by ma-
rine biologists. Expert feedback collected through this platform was used to assess annotation quality,
identify systematic labeling errors, and curate high-confidence subsets for benchmark construction.

Manual Verification Tool. We developed a custom web-based platform to support expert review
of coral genus annotations. Marine biologists used the tool to verify stratified subsets of model
predictions across sources and taxa. Each annotation was labeled as Correct, Incorrect, Low Image
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Figure 6: Screenshot of the ReefNet manual verification platform. Experts assess genus-level
annotations by reviewing image patches with full-context overlays and assign structured labels via
a dropdown interface. The tool supports efficient, large-scale quality control of AI-generated coral
labels.

Quality, or Hard to Decide, based on a zoomable patch and full-image context. The interface supports
genus- and source-specific filtering, progress tracking, and pseudonymized user sessions. The system
is lightweight, scalable, and integrated with the ReefNet pipeline. All verification actions are logged
with metadata for auditability and downstream filtering. Expert feedback informed exclusion criteria
and helped construct benchmark splits (e.g., Train-S2, Train-S4) with up to 92% agreement. These
labels were also used to refine taxon definitions and guide model re-training.

A.2.3 MORE DETAILS ON THE CENTRALIZED RE-VERIFICATION PROTOCOL

Our reviewers are not inherently superior to the original CoralNet annotators. However, our audit
revealed systematic issues such as taxonomic inconsistencies across sources, frequent mislabeling
(e.g., genus-level errors in Acropora), and the absence of standardized label conventions. Moreover,
because each CoralNet source was annotated by a distinct group with varying taxonomic expertise,
intra-source labels are acceptable but introduce significant noise and bias when merged across
datasets. ReefNet addresses this by applying centralized expert verification across all sources, thereby
establishing a consistent cross-source quality baseline that CoralNet alone cannot provide.

Expert Reviewers Background. The verification team included one highly experienced coral
taxonomist, three senior coral ecologists, and six PhD-level specialists in coral systematics and reef
monitoring. Full reviewer details will be provided in the acknowledgments after the review process
to preserve anonymity.

Review Protocol. We implemented a stratified random sampling procedure covering 8,962 patches
(10 per genus per source). Each reviewer independently annotated the selected patches and flagged
uncertain samples. Unresolved cases were either excluded or explicitly marked as low-confidence.
This protocol increased expert agreement from 73% to 92% by retaining only source–class pairs that
received high-confidence consensus across verifiers.

Goals of Expert Filtering. The objective of our verification is not to override CoralNet annotations,
but to augment them with standardized, reproducible curation. Specifically, the process (i) standard-
izes labels through WoRMS AphiaIDs, (ii) resolves cross-source inconsistencies, and (iii) produces a
high-confidence dataset suitable for benchmarking machine learning models in ecological research.

Scalability Considerations. Although the verification tool enables efficient, structured feedback
from expert reviewers, its scalability remains bounded by the availability of qualified taxonomists.
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As ReefNet grows or is applied to more diverse regions, expanding human-in-the-loop verification to
support broader annotation throughput will be necessary. Future directions include active learning
to prioritize ambiguous or low-confidence cases, hierarchical review pipelines with tiered expertise,
and exploration of consensus-based crowdsourcing for preliminary filtering stages. Addressing these
limitations will be critical to sustaining high-quality annotation pipelines in large-scale ecological
monitoring.

A.2.4 CORALNET POINT SAMPLING STRATEGIES

Randomized point sampling is a long-established ecological standard and has also been widely
adopted in terrestrial ecology (e.g., canopy cover, bird populations, vegetation structure). While
ReefNet models treat each annotation point as an independent patch-level sample, the underlying
point annotations originate from CoralNet-selected sources, which employ automated sampling
methods across sites with:

• Simple random: 51 sources

• Stratified random: 23 sources

• Uniform grid: 2 sources

ReefNet includes a total of 925,322 point annotations across 181,046 images, with the following
per-image statistics:

• Mean: 40 points per image

• Median: 22 points per image

• Range: 25–180 points per image

A.2.5 ADDITIONAL DETAILS ON COVARIATE DIVERSITY

This section highlights three key aspects of metadata in ReefNet that are essential for both machine
learning and biological applications: i) geographic location (Figure. 3), ii) image white balance, and
iii) image resolution.

Ecoregions Distribution. To assess the geographic and ecological diversity of ReefNet, we grouped
all annotations by marine ecoregion using the Marine Ecoregions of the World (MEOW) classification
system. Figure 7 summarizes the distribution of sources, images, and annotations across 25 unique
ecoregions.

The dataset spans a wide range of coral reef habitats, including the Red Sea, Caribbean, Central
Indo-Pacific, and Central Pacific. Notably, several biodiversity hotspots are heavily represented: the
Hawaiian Islands (18 sources, 221,419 annotations), Samoa Islands (2 sources, 201,685 annotations),
and Mariana Islands (6 sources, 107,553 annotations). Other regions, such as the East Caroline
Islands and Fiji, also contribute substantial volumes of data, enriching the taxonomic and ecological
breadth of the dataset.

The number of image sources per ecoregion varies significantly, reflecting uneven global monitoring
efforts. While some ecoregions are represented by multiple contributors and thousands of images,
others—such as the Tweed-Moreton or Southwestern Caribbean—appear undersampled. This varia-
tion is important for evaluating model robustness and generalization across biogeographically distinct
environments.

All counts are shown on a log scale to accommodate differences spanning several orders of magni-
tude. Overall, this distribution highlights ReefNet’s potential to support geographically robust coral
classification and cross-region generalization studies.

Image White Balance. Varying water clarity, depth, and light penetration in combination with
the use of different camera configurations or settings can lead to strong color casts in underwater
imagery. Therefore, we document the average intensities of the Red, Green, and Blue color bands
across CoralNet sources (Figure 15). Sources with non-overlapping peaks in their RGB distributions
generally suffer from color casts due to poor white balancing. The variety of color casts captured
in the ReefNet dataset improves the robustness of models trained on ReefNet, however, certain
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Figure 7: Distribution of annotations, images, and sources across marine ecoregions. Each bar
group represents one of 25 marine ecoregions covered in the ReefNet dataset, as defined by the
MEOW classification. The plot shows the number of annotations, distinct images, and image sources
per ecoregion (log scale). Geographic coverage is notably high in regions like Hawaii, Samoa, and
the Mariana Islands, but more limited in some Atlantic and Western Indian Ocean regions.

applications may benefit from using imagery with lighting conditions that closely match the target
dataset.

Image Resolution. Image resolution in the ReefNet dataset ranges from 0.2 to 27 megapixels, with a
median resolution of 12 megapixels. This diversity of image resolutions enhances the generalizability
of AI models trained on ReefNet data. However, similarly to the white balance, users may prefer
to extract images with a consistent resolution for specific tasks. Most sources in ReefNet exhibit
uniform resolution distributions as a result of the use of standard camera systems. However, a few
sources show a lot of variation, which generally stems from the manual cropping of the benthic
quadrats visible in the image (Figure 16).

To facilitate the creation of customized sub-datasets, source-level metadata—including geographic
location, RGB color profiles, and resolution statistics—will be made available with the ReefNet
dataset on HuggingFace.

A.2.6 AL-WAJH LAGOON DATASET

Dataset Overview. As part of a larger environmental monitoring effort, nearly 300 coral reefs were
surveyed in the Al-Wajh lagoon (25.6°N, 36.8°E) between March and September 2021. Surveyed
reefs were strategically selected using a stratified random design to ensure representation of the
region’s diverse reef habitats, including Reef Walls, Reef Crests, Reef Slopes, Patch Reefs, and
Algal Reefs. The Al-Wajh Test dataset is composed of a subset of this imagery collected from the
outer reefs of the lagoon. Imagery in the Al-Wajh Test dataset was collected using purpose-built
photoquadrats, ensuring images were taken from a consistent distance from the seafloor. The camera
was Canon PowerShot G9 X Mark II which shoots images of 20.2 MP. This represents the upper
end of the resolutions available in the ReefNet dataset (Figure 16). A total of 1,376 images were
manually annotated on the CoralNet platform. Per image, 10 points were generated following a
stratified random design of 2 rows and five columns, generating a total of 4,609 annotations of hard
corals.

Annotation Distribution. The Al-Wajh Lagoon dataset covers 12 coral genera that overlap with
those used to train the different models. Figure 9 shows the annotation distribution, which exhibits a
bias toward more abundant classes such as Porites, Acropora, Pocillopora, and Montipora.
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Figure 8: Map showing the origin of the imagery in the Al-Wajh test dataset. Panel a shows
the location of panel b and c in the Red Sea. Panel b shows the Al-Wajh lagoon with the specific
locations of the annotations in the test set. Panel c shows the location of a limited set of images taken
outside the Al-Wajh lagoon. Map contains Natural Earth data and Bing satellite imagery.

Figure 9: Log-scale Distribution of Annotations Across 12 Hard Coral Genera in the Al-Wajh
Lagoon Dataset. The distribution shows a bias toward some classes, comparable to the distribution
in ReefNet.

A.3 EXPERIMENTAL DETAILS

A.3.1 TRAINING SETUP

General Settings. Unless otherwise specified, all models were trained for 100 epochs using the
AdamW optimizer with a base learning rate of 2 × 10−5 and a batch size adjusted per model
according to memory constraints. Inputs were normalized using the ReefNet training set statis-
tics: mean [0.385, 0.419, 0.341] and standard deviation [0.162, 0.177, 0.158]. We applied standard
image augmentation techniques including random horizontal flipping, color jitter, RandAugment
(rand-m7-mstd0.5-inc1), Mixup (0.4), CutMix (0.5), and random erasing with a probability
of 0.1 (reprob=0.1). Training was conducted with automatic mixed precision (AMP), channels-last
memory format, and cosine learning rate scheduling with optional warmup. A held-out validation set
was used to monitor performance during training and to select the best-performing model checkpoint
across all the splits. No validation samples were included in training or augmentation procedures,
ensuring a clean separation between training and evaluation.

Architectures. We evaluated eight supervised models: ViT-Large (pretrained and from scratch),
DeiT-Base, Swin-Base, ResNet-101, ConvNeXt-Large, EfficientNet-B4, BEiT-Base, and BioCLIP.
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Most models used pretrained weights from ImageNet-1K or their respective public checkpoints unless
stated otherwise. Input resolutions varied by architecture: 224×224 for ViT/DeiT, 384×384 for
ConvNeXt/BEiT, and 380×380 for EfficientNet. Model-specific batch sizes were selected to balance
memory efficiency and throughput.

Self-Supervised Models. We evaluated a self-supervised variant using a Masked Autoencoder
(MAE)He et al. (2022) with a ViT-LargeDosovitskiy et al. (2021) backbone. Pretraining was
performed on 1.2 million 512 × 512 patches of hard coral annotations, using data from an earlier
stage of the ReefNet pipeline prior to the final filtration step (i.e., using 85 sources, before removing
nine low-quality sources). The MAE was trained for 800 epochs with a 75% masking ratio and cosine
learning rate scheduling (base LR 1.5× 10−4).

Fine-tuning was conducted on the fully filtered ReefNet dataset over 100 epochs using a learning
rate of 5 × 10−4 and a layer-wise decay of 0.65. The model was trained using the same setup as
supervised runs and evaluated across all four benchmark splits described in the main paper.

BioClip Training Setup. We fine-tuned BioCLIP using ReefNet’s hierarchical taxonomic structure,
initializing with pretrained weights from TreeOfLife-10M. For each genus, we constructed a taxon-
omy string by concatenating all hierarchical levels from kingdom to genus based on WoRMS (e.g.,
"Animalia;Cnidaria;Hexacorallia;Scleractinia;Acroporidae;Acropora").
BioCLIP was trained for 100 epochs using AdamW (learning rate 1× 10−4, weight decay 0.2) with
cosine learning rate scheduling. We selected the best-performing checkpoint based on validation
accuracy. The model was trained using local and global loss objectives, as in the original BioCLIP
setup.

Dataset Input. All models were trained using 512×512 patches extracted around point annotations
from full-resolution CoralNet imagery, referenced via a custom CSV loader. We selected this patch
size to balance local texture and global morphological structure, both of which are essential for
accurate coral genus classification. Preliminary experiments with smaller patches (224× 224 and
448× 448) showed diminished performance, likely due to loss of spatial context or insufficient detail.
This design choice aligns with prior work showing that effective coral classification requires capturing
both textural and structural cues Almazán et al. (2019). Each training sample in our data includes
genus annotation or family in the case of Fungiidae, patch coordinates, and source metadata.

Loss Function Parameters In our loss function ablation (Table 4), we evaluated several class-
balanced and standard variants. We used Cross-Entropy (CE) Loss implemented with PyTorch
nn.CrossEntropyLoss(). For Focal Loss, we set γ = 2 and α = 0.25 (Lin et al., 2017). For
the Class-Balanced Cross-Entropy, we applied effective number reweighting with β = 0.9999 (Cui
et al., 2019). And for the Class-Balanced Focal Loss, we set β = 0.9999 and γ = 2 (Cui et al.,
2019).

A.3.2 COMPUTE RESOURCES

We trained all models using the PyTorch Image Models (Timm) framework or compatible extensions
for specialized architectures. Training was performed using torchrun with distributed data par-
allelism across 4 NVIDIA V100 GPUs, most of the time and few models were trained on Google
Cloud Platform using 16 NVIDIA V100 GPUs.

A.4 ADDITIONAL RESULTS

A.4.1 CLOSED-SET EVALUATION AND OPEN-SET RECOGNITION

We implemented a standard open-set recognition (OSR) protocol similar to (Vaze et al., 2022; Wang
et al., 2024) on the cross-source split (Train-S4 / Test-S3&S4). Specifically, we held out 8 coral
classes as unknown (e.g., Agaricia, Pavona), training only on the remaining 30 known classes. At
test time, evaluation was performed on a mixed set containing both known (32,173 samples) and
unknown (1,867 samples) classes. We followed a stratified hold-out protocol commonly used in
OSR literature by excluding low-frequency classes and selecting unknowns with ≥ 100 test-sample
support for sound evaluation. Following (Vaze et al., 2022), we note that a classifier’s closed-set
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accuracy correlates strongly with its open-set detection ability. Accordingly, we use Max Logit
Score (MLS) scoring as a competitive baseline, which their experiments show performs on par with
specialized OSR methods. Consistent with (Wang et al., 2024), we evaluate multiple scoring rules:
1) Max Softmax Probability (MSP), 2) Max Logit Score (MLS), 3) Energy Score (Liu et al., 2020),
and observe in Table 6 that magnitude-sensitive approaches like MLS and Energy yield the best
performance, reinforcing their finding that such scoring functions generalize across both OSR and
OOD tasks.

Table 6: Open-set Recognition Results. AUROC (higher is better) and FPR@95%TPR (lower is
better) for different post hoc scoring methods.

Method AUROC ↑ FPR@95%TPR ↓
MSP 0.8169 0.6067
MLS 0.8361 0.5820
Energy 0.1616 0.9902

A.4.2 AUGMENTATION ABLATION RESULTS

While this work does not introduce new domain adaptation methods, our cross-domain experiments
leveraged strong domain adaptation techniques, particularly through diverse data augmentation
strategies. Specifically, we used a combination of RandAugment, color jitter, horizontal flipping,
Mixup, CutMix, and random erasing (reprob = 0.1). These augmentations are widely used to
improve generalization in the presence of domain shift due to variations in lighting, turbidity, and reef
structure (Cubuk et al., 2020; Yun et al., 2019). To validate the contribution of these augmentations,
we conducted an ablation study on the cross-source benchmark (Train-S4 / Test-S3&S4) using
ViT-B (Dosovitskiy et al., 2021). The results in Table 7 demonstrate that using all augmentations
yields the highest performance, confirming their collective benefit. Disabling any single augmentation
(e.g., RandAug, ColorJitter, Random Erase) results in a performance drop, showing that each plays
a role in enhancing robustness. Training without augmentation or with only a single augmentation
significantly underperforms, validating that augmentation functions as an effective domain adaptation
mechanism in our setup.

Table 7: Effect of Data Augmentation Strategies. Macro Recall and accuracy under different
augmentation settings.

Augmentation Setting Macro Recall (%) Accuracy (%)
all-augmentation 50.49 81.08
no-randaug 49.47 80.78
only-randerase 47.35 80.01
no-randerase 50.44 81.36
no-augmentation 48.13 80.81
only-hflip 46.93 79.80
no-mixup 49.52 80.48
no-cutmix 49.44 80.64
only-mixup 46.04 79.40
only-colorjitter 46.71 80.06
no-hflip 49.84 80.96
only-randaug 49.04 80.39
no-colorjitter 49.91 80.53
only-cutmix 48.29 80.12

A.4.3 PER CLASS ANALYSIS OF VIT (MAE-PRETRAINED)

Since ViT (MAE-pretrained) fine-tuned on Train-S3 (evaluated on Test-S1) achieved high perfor-
mance on the challenging cross-source benchmark, we provide a detailed per-class recall analysis
for it on the (Train-S3 / Test-S3&S4) setup in Figure 10. Many of the misclassifications observed
can be attributed to a combination of factors, primarily the low number of training images available
for certain genera, in addition to morphological similarity and limitations related to image quality.
Genera such as Diploria, Meandrina, and Dendrogyra were underrepresented in the training dataset,
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which likely contributed significantly to their poor classification performance. More generally, when
viewed in planar images, morphologically similar genera such as Gardineroseris and Goniastrea, or
Colpophyllia and either Platygyra or Pseudodiploria, exhibit meandroid or sub-meandroid corallite
structures that can appear nearly indistinguishable, especially for underwater images. Likewise,
genera including Acanthastrea, Dipsastrea, and Favites show compact, polygonal corallites with
prominent septa, leading to overlapping visual characters. Misclassifications between Echinopora
and Montipora, or between Echinopora and Porites, may arise from comparable surface textures and
encrusting to branching growth forms that become difficult to discriminate in images not focusing on
the polyps. Similarly, genera such as Siderastrea, Leptastrea, Pavona, and Agaricia often have small,
densely packed corallites and granular textures that challenge image-based classification. In pairs
such as Plesiastrea and Cyphastrea or Astreopora and Montipora, the difficulty lies in distinguishing
fine-scale textures and inconspicuous corallite structures. Finally, the confusion between Goniastrea
and Platygyra represents a known case of convergent brain coral morphology, which can be difficult
to resolve without high-resolution analysis on the skeleton.

In Figure 10, we present the top-1 error percentage across all errors for each class. For a more detailed
view of per-class performance, Figure 11 shows the normalized confusion matrix of the model’s
predictions.

Figure 10: Per-class analysis of the ViT (MAE pretrained) model trained on the cross-source Train-S3
and evaluated on the Test-S3&S4. Classes are ordered (left → right) by the number of training
samples, shown in the top panel (log scale). The middle panel reports the fraction of all errors
attributable to the single most frequent mis-label (top-1 misclassification rate). The bottom panel
shows the per-class recall.
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Figure 11: Normalized confusion matrix for the ViT MAE-pretrained model fine-tuned on the
cross-source Train-S3 split and evaluated on the Test-S3&S4 set. The matrix includes all predicted
classes (38 out of 39 possible labels in the Train-S3 set). Classes with no ground-truth samples in
Test-S3&S4 (i.e., not part of its 33-label set) have zero values across their corresponding rows.

A.4.4 OVERALL ACCURACY

Table 8 reports the overall accuracy of each model, measured as the micro-average recall across all
classes. This metric captures the global classification performance but is inherently biased toward
more abundant classes in both the training and test sets. The models shown correspond to the same
experiments reported in Table 3 and Table 11 (updated BioCLIP-FT results).

A.4.5 PRECISION AND F1 SCORE

Table 9 reports the F1 score of each model, calculated as the macro-average F1 across all classes.
This metric provides a complementary view to the macro recall reported in Table 3. However, because
some training classes may not appear in the test set, we cannot fully capture all false positives. As a
result, both the precision values reported in Table 10 and the macro F1 scores may vary depending on
the specific test classes available. In contrast, macro recall—used as our primary metric—remains
consistent and unaffected by the absence of certain test classes.
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Table 8: Hard coral classification Micro Recall under different train/test settings. Each model is
evaluated using the micro-average recall, representing overall accuracy.

Model

Train/Test split

within-source
Train-S1 /

Test-S1

within-source
Train-S2 /

Test-S2

cross-source
Train-S3 /

Test-S3 & S4

cross-source
Train-S4 /

Test-S3 & S4

cross-source
Train-S3 /

Test-W

cross-source
Train-S4 /

Test-W

EfficientNet Tan & Le (2019) 97.24 96.53 80.79 81.15 93.56 86.90
ResNet He et al. (2016) 93.71 93.53 80.83 80.79 89.74 84.65
ConvNext Liu et al. (2022) 96.89 98.63 80.86 81.08 92.12 83.99
ViT Dosovitskiy et al. (2021) 97.27 98.05 81.08 81.02 93.75 87.95
ViT (scratch) Dosovitskiy et al. (2021) 86.38 89.27 80.72 80.90 92.92 87.51
BEiT Bao et al. (2022) 96.35 96.77 81.46 80.80 92.48 88.03
DeiT Touvron et al. (2021) 96.99 97.20 81.21 81.70 92.72 87.37
Swin Liu et al. (2021) 96.96 96.38 81.23 81.30 92.08 83.19
ViT Dosovitskiy et al. (2021) (MAE He et al. (2022) pretrained) 97.71 96.51 84.05 83.09 94.32 81.74
BioCLIP-FT Stevens et al. (2023b) 89.39 93.54 66.14 70.03 79.40 71.08

Number of test classes 39 39 33 33 12 12
Number of test samples 40,881 23,043 34,040 34,040 4,606 4,606

Table 9: Hard corals classification Macro F1 Score under different train/test settings.

Model

Train/Test split

within-source
Train-S1 /

Test-S1

within-source
Train-S2 /

Test-S2

cross-source
Train-S3 /

Test-S3 & S4

cross-source
Train-S4 /

Test-S3 & S4

cross-source
Train-S3 /

Test-W

cross-source
Train-S4 /

Test-W

EfficientNet Tan & Le (2019) 76.44 81.41 51.58 47.60 68.30 63.13
ResNet He et al. (2016) 64.96 65.14 44.69 33.21 64.00 54.81
ConvNext Liu et al. (2022) 75.33 80.37 47.81 51.02 67.98 64.12
ViT Dosovitskiy et al. (2021) 73.60 76.93 53.06 49.66 68.65 64.41
ViT (scratch) Dosovitskiy et al. (2021) 68.73 73.41 45.88 49.73 66.21 64.19
BEiT Bao et al. (2022) 71.12 72.14 50.38 37.21 64.77 62.54
DeiT Touvron et al. (2021) 72.68 75.23 50.20 47.14 64.09 64.34
Swin Liu et al. (2021) 75.41 81.39 50.13 48.07 65.56 62.62
ViT Dosovitskiy et al. (2021) (MAE He et al. (2022) pretrained) 77.36 75.33 57.57 51.77 70.22 59.80
BioCLIP-FT Stevens et al. (2023b) 65.16 69.06 66.14 70.03 64.99 59.73

Number of test classes 39 39 33 33 12 12
Number of test samples 40,881 23,043 34,040 34,040 4,606 4,606

Table 10: Hard corals classification Macro Precision under different train/test settings.

Model

Train/Test split

within-source
Train-S1 /

Test-S1

within-source
Train-S2 /

Test-S2

cross-source
Train-S3 /

Test-S3 & S4

cross-source
Train-S4 /

Test-S3 & S4

cross-source
Train-S3 /

Test-W

cross-source
Train-S4 /

Test-W

EfficientNet Tan & Le (2019) 74.66 80.48 55.73 55.33 67.32 61.72
ResNet He et al. (2016) 66.04 65.82 54.31 39.73 63.86 58.96
ConvNext Liu et al. (2022) 73.21 78.04 55.11 55.71 66.81 60.61
ViT Dosovitskiy et al. (2021) 71.80 75.00 55.93 55.66 67.62 62.72
ViT (scratch) Dosovitskiy et al. (2021) 63.23 66.57 54.57 55.47 66.25 62.36
BEiT Bao et al. (2022) 70.08 70.70 56.35 44.09 65.29 62.77
DeiT Touvron et al. (2021) 71.08 73.19 56.05 55.57 64.99 62.17
Swin Liu et al. (2021) 73.25 80.17 56.01 55.60 65.49 60.08
ViT Dosovitskiy et al. (2021) (MAE He et al. (2022) pretrained) 74.92 73.10 59.00 57.47 68.76 58.33
BioCLIP-FT Stevens et al. (2023b) 57.43 76.33 79.40 71.08 60.59 56.45

Number of test classes 39 39 33 33 12 12
Number of test samples 40,881 23,043 34,040 34,040 4,606 4,606

Table 11: Hard corals classification Macro Recall of BioCLIP under different train/test settings.

Model

Train/Test split

within-source
Train-S1 /

Test-S1

within-source
Train-S2 /

Test-S2

cross-source
Train-S3 /

Test-S3 & S4

cross-source
Train-S4 /

Test-S3 & S4

cross-source
Train-S3 /

Test-W

cross-source
Train-S4 /

Test-W

BioCLIP-FT Stevens et al. (2023b) 75.29 84.06 45.31 42.93 70.07 63.42

A.5 ADDITIONAL QUALITATIVE EXAMPLES

This section presents qualitative examples illustrating model predictions and annotations from the
ReefNet benchmarks. Figures 12 and 13 highlight predictions from the Test-S3 & S4 splits and the
Al-Wajh dataset, respectively, offering insights into model performance across diverse hard coral
categories.

In Figure 12, predictions from a cross-source model trained on Train-S4 demonstrate the model’s
ability to classify a range of coral genera such as Porites, Acropora, and Montipora. Ground-
truth (GT) labels are displayed alongside model predictions and confidence scores, with correct
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classifications shown in green and misclassifications in red. For instance, while the model achieves
high precision on Acropora and Porites, it occasionally misclassifies Porites as Montipora, reflecting
the difficulty of distinguishing morphologically similar coral types.

Figure 13 presents examples from the Al-Wajh dataset, which poses additional region-specific
challenges. This dataset includes coral genera such as Stylophora and Favia. Notably, consistent
confusion between Porites and Montipora underscores the difficulty of separating genera with
overlapping morphological features. Nevertheless, the model demonstrates high confidence in
classifying visually distinctive classes like Goniastrea.

These qualitative examples emphasize the inherent complexity of coral reef imagery, driven by
factors such as morphological similarity, environmental variability (e.g., water clarity and lighting
conditions), the presence of multiple benthic organisms in the same patch, and fuzzy class boundaries.

Figure 12: Qualitative examples from the ReefNet Cross-Source Test-S3. The model shown is a ViT
finetuned using MAE pretraining. GT: Ground truth label; Pred: Model prediction.
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Figure 13: Qualitative examples from the Al-Wajh dataset. The model shown is a ViT finetuned using
MAE pretraining. GT: Ground truth label; Pred: Model prediction.

A.6 TEXT DESCRIPTION GENERATION AND PERFORMANCE FOR ZERO-SHOT MODELS

We use two approaches to generate descriptions for various coral genera, both using GPT-4o. 1) We
directly prompt GPT-4o to generate a description for a coral genus with the prompt presented in
Figure 14. 2) In the second approach, we provide context information about the genus extracted
from domain experts’ chosen books Wallace (1999); Veron (2000a;b) and online sources by
allowing an agent to scrape results from Google search. The second approach was done using an
agentic pipeline built using CrewAI. The system included one agent per book, one agent for online
sources, and a final agent to take the information from the previous agents and produce the final output.

From Table 12, it can be seen that across the three vision language models trained on general data
from the internet, OpenCLip performs the best. BioCLIP clearly outperformed all the other models
across all the splits, supporting the idea that its pretrained data from TreeOfLife-10M Stevens et al.
(2023c), which contains coral information, supports its performance.

For the Within-source Test-S2 and Cross-source Test-S3&S4 splits, the benchmark includes up to
39 unique hard coral genera. Each genus is paired with two textual descriptions, referred to as
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Produce a sentence, without any additional context, that
doesn’t exceed 30-40 words describing the coral class
‘coral_class’ with a focus on including as many descriptive
adjectives as possible. The sentence does not need to be
grammatically perfect. Be as descriptive of its physical
appearance as possible (color, texture, shape, etc).

Figure 14: ChatGPT prompt used to generate class descriptions.

Table 12: Average Rank of the Ground Truth Class for Each Model Across Data Splits. All the
Vision Language Models use generated textual descriptions for the Coral genus.

Split CLIP SigLIP OpenCLIP BioCLIP
within-source 15.96 15.03 14.12 10.33
within-source (QC) 18.00 17.32 16.52 10.40
cross-source 17.29 16.16 15.29 9.13
cross-source (QC) 16.42 15.48 14.67 8.89

"GPT" and "Book," which were generated using our described pipeline. Although the pipeline can
produce additional descriptions, we restrict our experiments to one description per genus in both the
"Qwen-GPT" and "Qwen-Book" settings. This design isolates inference-time performance without
introducing further training, thereby demonstrating how such descriptions enhance the zero-shot
classification ability of Qwen2.5-VL.

A.7 LIMITATIONS

While the ReefNet dataset marks a significant advancement in providing standardized, taxonomically
fine-grained annotations for coral reef imagery, several limitations should be considered when training
models or developing applications based on this dataset:

• Dynamic Taxonomy: Coral taxonomy is an evolving field of science, and taxonomic
classifications are subject to revision over time. While the dataset reflects the most current
understanding at the time of compilation, future changes in taxonomy may render some
annotations outdated. Users are encouraged to leverage the provided AphiaIDs to verify the
latest accepted taxonomy through the World Register of Marine Species (WoRMS) (Board,
2024).

• Patch-Based Annotations: ReefNet annotations are exclusively patch-based, which may
not fully capture the spatial variability and ecological context of coral reefs (e.g., Figure 4).
Patch-based models, while valuable, may be less accurate than models leveraging more
comprehensive semantic segmentation. Although recent large-scale segmentation datasets,
such as CoralVOS and CoralSCOP (Zheng et al., 2024; Ziqiang et al., 2023), offer valuable
insights, they lack fine-grained taxonomic data. ReefNet complements these datasets by
providing extensive taxonomically detailed annotations, filling a critical gap for future
integration with segmentation-based approaches.

A.8 CONTRIBUTOR ATTRIBUTION AND ETHICAL DATA USE.

To ensure transparency, traceability, and proper credit to original data providers, we compiled a
comprehensive list of all 85 CoralNet sources included in ReefNet, along with their corresponding
contributors and institutional affiliations. This attribution acknowledges the global community
of researchers and practitioners who have made their data publicly available through CoralNet,
often as part of long-term ecological monitoring efforts. The information was curated through a
combination of CoralNet metadata, institutional websites, and direct outreach to contributors. In line
with principles of responsible data stewardship, we have preserved all original attribution metadata
and encourage future users of ReefNet to do the same.
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A.9 RESOURCES AVAILIBITY

The taxonomically mapped annotations, ReefNet metadata, trained models, and the Al-Wajh Lagoon
image collection we collected will be made publicly available on the Hugging Face platform. For
the corresponding CoralNet imagery, we will provide a list of source image URLs and a script to
download the data directly from CoralNet, thereby leaving control over the images with the original
owners. The code will be released on GitHub.
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Figure 15: Density plots per CoralNet source of the average Red, Green, and Blue values of each
image.
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Figure 16: Scatter plot showing the resolution of each annotated image per source.
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Table 13: Contributors and affiliations for the 85 CoralNet sources included in the ReefNet dataset.
This list is based on publicly available information from the CoralNet platform, supplemented by our
in-depth online research into each source and outreach to their original contributors.

CoralNet source Listed contributors Listed affiliations

2002 Zuhairah Dindar University of New South
Wales

2016 Zuhairah Dindar University of New South
Wales

2Maldives_2Katie Katie Lubarsky, Hugh Runyan University of California San
Diego

403 He’eia Restoration Cynthia Hunter, Dorian Brunzelle, Kaitlyn Jacobs,
Alana Minato, Cody Powers, Connor Antonis, Devon
Stapleton, Dylan Rich, Jeany Robledo, Jacob Nygaard,
Jordan Pounds-Crihfield, Jacquelyn Simpson, Kevin
Christensen, Kaitlin Hooper, Madeline Payne, Renee
Wold, Shayna Arakaki, Zachary Clark

Hawaii Institute of Ma-
rine Biology, University of
Hawaii at Manoa

403 He’eia Restoration ’21 Cynthia Hunter, Dorian Brunzelle, Kaitlyn Jacobs,
Keisha Bahr, Brooklyn Bennett, Marisa Bhao-Intr, Brit-
tany Kernodle, Corey Ling, Dan Zhuo, Desiree Shaw,
Johann Vollrath, Kenzie Vierra, Lena Marinkovich,
Lauryn Pisciotto, Mellisa Gajardo, Madeleine Perez,
Sophia Hanscom, Samantha Thomas, Toranosuke De-
gawa, Zada Boyce-Quentin

Hawaii Institute of Ma-
rine Biology, University of
Hawaii at Manoa

Ain Sukhna Sea Urchin and
Coral Cover

Omar Attum Indiana University South-
east

Ant Hugh Runyan Scripps Institution of
Oceanography, University
of California San Diego

Antigua_weird Hugh Runyan Scripps Institution of
Oceanography, University
of California San Diego

APN Project Roslizawati Ab Lah, Kirsten Benkendorff, Zoe White University of Malaysia
Terengganu, Southern Cross
University

BHP GSR Fiji John Stratford, Jason Lynch University College London,
Zoological Society London

BIO 403 Morgan Guadagnoli, Ana Velasquez, Eliza Beckwith,
Haley Weis, Isabella Davila, Jamie Mazurski, Rachel
Bagnas, Terra Stevens

University of Hawaii at
Manoa

BIO403 Green Group Morgan Guadagnoli, Ana Velasquez, Eliza Beckwith,
Haley Weis, Terra Stevens

University of Hawaii at
Manoa

BTS_DEF Henrique dos Santos, Igor Cruz, Joao Ferreira, Ian Vini-
cio

Universidade Federal da
Bahia

Cape Maeda2021 Tomofumi Nagata Okinawa Environment Sci-
ence Center

Capstone 2023 Emily Ogawa, David Hyrenbach, Kristina Bechthold,
Leslie Rosa, Ivy Haxo

Hawaii Pacific University

carib Hugh Runyan, Nathaniel Hanna Holloway Scripps Institution of
Oceanography, University
of California San Diego

carib_bitbybit Hugh Runyan Scripps Institution of
Oceanography, University
of California San Diego

Chao Jing Park Surveys Emma Chen, Shinya Shikina, Kaixiang Yang, Chu Yu
Ling, Joey Hsia, Yu-Chund Chuan, Tzu-Cheng Lin,
Cheng Yin Chu, Wen Teng Huang, Yuenyi Leung

National Taiwan Ocean Uni-
versity

CoralNet Dong Li Zhejiang University
CoralNet_Assistance_Test_0921Hugh Runyan, Ceiba Becker, Esmaralda Alcantar,

Nicole Pedersen
Scripps Institution of
Oceanography, University
of California San Diego

Continued on the next page

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

CoralNet source Listed contributors Listed affiliations

CREP-REA HAWAII
NOAA Pacific Islands
Fisheries Science Center,
Ecosystem Sciences Divi-
sion (2018b)

Annette DesRochers, Andrew Gray, Brett Schumacher,
Bernardo Vargas Angel, Courtney Couch, Ivor Williams,
Jonathan Charendoff, Morgan Winston Pomeroy, Paula
Misa, Tom Oliver, Troy Kanemura, Ari Halperin,
Chelsie Counsell, Colt Davis, Isabelle Basden, Jon
Ehrenberg, Kerry Reardon, Mia Lamirand, Roseanna
Lee

National Oceanographic
and Atmospheric Admin-
istration, Pacific Islands
Fisheries Science Center

CREP-REA MARIANAS
NOAA Pacific Islands
Fisheries Science Center,
Ecosystem Sciences Divi-
sion (2018a)

Annette DesRochers, Andrew Gray, Bernardo Vargas
Angel, Courtney Couch, Jonathan Charendoff, Morgan
Winston Pomeroy, Paula Misa, Tom Oliver, Troy Kane-
mura, Kaylyn McCoy, Kevin Lino, Marie Ferguson, Mia
Lamirand, Nalani Kito-Ho, Winter Jimenez, Brett Schu-
macher

National Oceanographic
and Atmospheric Admin-
istration, Pacific Islands
Fisheries Science Center

CREP-REA NWHI 2017
Tiny Photos NOAA Pacific
Islands Fisheries Science
Center, Ecosystem Sciences
Division (2018b)

Andrew Gray, Bernardo Vargas Angel, Courtney Couch,
Jon Ehrenberg

National Oceanographic
and Atmospheric Admin-
istration, Pacific Islands
Fisheries Science Center

CREP-REA SAMOA/PRIA
NOAA Pacific Islands
Fisheries Science Center,
Ecosystem Sciences Divi-
sion (2018c)

Annette DesRochers, Andrew Gray, Brett Schumacher,
Bernardo Vargas Angel, Courtney Couch, Ivor Williams,
Jonathan Charendoff, Morgan Winston Pomeroy, Paula
Misa, Tom Oliver, Troy Kanemura, Isabelle Basden,
Mia Lamirand, Andrew Shantz, Brittany Huntington,
Corinne Amir, Hatsue Bailey, Marie Ferguson, Mollie
Asbury, Nalani Kito-Ho, Winter Jiminez, Helen Ford,
Nicole Kamalu

National Oceanographic
and Atmospheric Admin-
istration, Pacific Islands
Fisheries Science Center

curacao Hugh Runyan Scripps Institution of
Oceanography, University
of California San Diego

ESD_REA HAWAII_v2
NOAA Pacific Islands
Fisheries Science Center,
Ecosystem Sciences Divi-
sion (2018b)

Annette DesRochers, Bernardo Vargas Angel, Courtney
Couch, Jonathan Charendoff, Morgan Winston Pomeroy,
Tom Oliver, Isabelle Basden, Jon Ehrenberg, Hatsue
Bailey, John Morris, Mia Larimand, Paula Misa

National Oceanographic
and Atmospheric Admin-
istration, Pacific Islands
Fisheries Science Center

ESD_REA_MARIANA_v2
NOAA Pacific Islands Fish-
eries Science Center,
Ecosystem Sciences Divi-
sion (2018a)

Andrew Gray, Bernardo Vargas Angel, Courtney Couch,
Jonathan Charendoff, Kaylyn McCoy, Tom Oliver, Ari
Halperin, Mia Lamirand, Hatsue Bailey, Nicolas Osborn,
Jon Ehrenberg

National Oceanographic
and Atmospheric Admin-
istration, Pacific Islands
Fisheries Science Center

ESD_REA_SAMOA_PRIA_v2
NOAA Pacific Islands Fish-
eries Science Center,
Ecosystem Sciences Divi-
sion (2018c)

Andrew Gray, Bernardo Vargas Angel, Courtney Couch,
Jonathan Charendoff, Morgan Winston Pomeroy, Paula
Misa, Ari Halperin, Isabelle Basden, Mia Lamirand,
Hatsue Bailey, Nicolas Osborn, Tom Oliver

National Oceanographic
and Atmospheric Admin-
istration, Pacific Islands
Fisheries Science Center

French Polynesia SEA Reef
Surveys

Elliott Bates International Master of Sci-
ence in Marine Biological
Resourses, Sea Education
Association

Hawaii_Leleiwi Russel Sparks, Devon Aguiar Department of Land and
Natural Resources - Aquat-
ics

island wide Daniela Escontrela, Elena Turner University of Hawaii
Kahekili Bernardo Vargas Angel, Ivor Williams, Andrew

Gray,Tye Kindinger, Mia Lamirand,
National Oceanographic
and Atmospheric Admin-
istration, Pacific Islands
Fisheries Science Center

Kimbe Bay study Alice Williams, Kitty Watts University of Bristol
Kulbul Ben Murphy, Caitlin Younis, Hannah Kish, Azri

Saparwan, Justin Bovery-Spencer, Tarquin Singleton
GBR Biology

Continued on the next page
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CoralNet source Listed contributors Listed affiliations

mal100 Hugh Runyan Scripps Institution of
Oceanography, University
of California San Diego

Maldives_2021 Katie Lubarsky, Hugh Runyan, Anupama Sethuraman,
Ceiba Becker, Jamie Pettengell

Scripps Institution of
Oceanography, University
of California San Diego

Maldives_2022 Hugh Runyan Scripps Institution of
Oceanography, University
of California San Diego

Maldives_bitbybit3 Hugh Runyan Scripps Institution of
Oceanography, University
of California San Diego

maldives_bbb5 Hugh Runyan Scripps Institution of
Oceanography, University
of California San Diego

maldives_check2020 Hugh Runyan Scripps Institution of
Oceanography, University
of California San Diego

maldives_check2021 Hugh Runyan Scripps Institution of
Oceanography, University
of California San Diego

Maldives_Katie Hugh Runyan, Katie Lubarsky Scripps Institution of
Oceanography, University
of California San Diego

maldives_theirs2 Hugh Runyan Scripps Institution of
Oceanography, University
of California San Diego

Maui_Honolua Russel Sparks Department of Land and
Natural Resources - Aquat-
ics

Maui_Kanahena Bay Russel Sparks Department of Land and
Natural Resources - Aquat-
ics

Maui_Mahinahina Russel Sparks Department of Land and
Natural Resources - Aquat-
ics

Maui_Molokini Russel Sparks Department of Land and
Natural Resources - Aquat-
ics

Maui_Olowalu Russel Sparks, Tatiana Martinez Department of Land and
Natural Resources - Aquat-
ics

Maui_Papa’ula Russel Sparks, Tatiana Martinez Department of Land and
Natural Resources - Aquat-
ics

Maui_Puamana Russel Sparks Department of Land and
Natural Resources - Aquat-
ics

Maunalua Bay Paula Moehlenkamp Univeristy of Hawaii
Maunalua Bay Nearshore
(official)

Pamela Weiant, Alexandria Barkman Malama Maunalua

micro_bbb4 Hugh Runyan Scripps Institution of
Oceanography, University
of California San Diego

Micro_challenge Hugh Runyan, Katie Lubarsky Scripps Institution of
Oceanography, University
of California San Diego

micro_combined Hugh Runyan, Katie Lubarsky, Chris Sullivan, Ahmyia
Cacapit, Charles Hambley, Isa Bersamin, Sarah Romero

Scripps Institution of
Oceanography, University
of California San Diego

Continued on the next page
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CoralNet source Listed contributors Listed affiliations

Micronesia_2022 Hugh Runyan, Katie Lubarsky, Chris Sullivan Scripps Institution of
Oceanography, University
of California San Diego

Micronesia_bitbybit2 Hugh Runyan Scripps Institution of
Oceanography, University
of California San Diego

MLC2008 Dong Li Zhejiang University
Moreton Bay Transects Joshua Wirth, Gal Eyal University of Queensland
N. Caribbean ACA Alexandra Ordonez Alvarez, Brianna Bambic, Myles

Phillips, Bernadette Charpentier
National Geographic,
Queensland University,
Wildlife Conservation Soci-
ety, University of Ottowa

NOAA ESD Coral Bleach-
ing Classifier Ehrenberg
et al. (2022)

Courtney Couch, Jonathan Charendoff, Morgan Winston
Pomeroy, Tom Oliver, Jon Ehrenberg

National Oceanographic
and Atmospheric Admin-
istration, Pacific Islands
Fisheries Science Center

North Shore Disease Sur-
veys

Julianna Renzi, Maddie Cunningham University of California
Santa Barbara

Okinawa Coral Reef
Conservation2017-18

Tomofumi Nagata, Eiji Yamakawa Okinawa Environment Sci-
ence Center

Okinawa Coral Reef
Conservation2019-20

Tomofumi Nagata Okinawa Environment Sci-
ence Center

Penida benthic surveys Pascal Sebastian, Rinaldi Gotama Indo Ocean Project
Pohnpei Hugh Runyan Scripps Institution of

Oceanography, University
of California San Diego

REEFolution Kenya Ewout G. Knoester, Anniek Vos, Bulisa Masiga, Jowan
van Lente, Luc Visser, Mercy Zawadi Katana, Omar F.
Yusuf

Wageningen University and
Research, REEFolution
Trust

Saudi Red Sea Seasonal
Differences: Offshore-
Midshelf sheltered crest

Clara Nuber, Matt Tietbohl, Karla Gonzalez King Abdullah University
of Science and Technology

Saudi Red Sea Seasonal
Differences: Offshore-
Midshelf sheltered slope

Clara Nuber, Matt Tietbohl, Karla Gonzalez King Abdullah University
of Science and Technology

SFS Mangrove DR Max Vierling, Samantha Krausse, Toni Trinh School for Field Studies
Sint Eustatius Myrsini Lymperaki Univeristy of Amsterdam
Southern Arabian Gulf Bio-
diversity Assessment 2019

Jeneen Hadj-Hammou, John Burt, Rita Bento New York University Abu
Dhabi

Southern Line Islands Nicole Pedersen, Samantha Clements Scripps Institution of
Oceanography, University
of California San Diego

STINAPA GCRMN Caren Eckrich, Tessa Haanskorf, Angelica Verschragen STIchting NAtionale
PArken Bonaire, Wa-
geningen University and
Research, University of
Amsterdam

TIBS Directed Research
Mangroves

Emma Greenberg, Jenna Shea, Rachel Schneider School for Field Studies

Tonga Patrick Smallhorn-West, Lucy Southworth James Cook University
Tonga_2022-08 &
Samoa_2022-09 &
Samoa_2019-12 &
Samoa_2017-12NOAA
Pacific Islands Fisheries
Science Center, Ecosystem
Sciences Division (2018c)

Chris Sullivan, Katie Lubarsky, Gloria Mariño-Briceño,
Hannah Gower, Kylie Yogi, Phi Lang

Scripps Institution of
Oceanography, University
of California San Diego

USSGuardianWreck Catherine Kim, Ben Neal, Dominic Bryant Univeristy of Queensland
Valentina Rocha Valentina Rocha, Emily Esplandiu University of Miami

Continued on the next page
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CoralNet source Listed contributors Listed affiliations

Vamizi Marques da Silva Isabel, Erwan Sol, Felix Domadoma Center for Research and En-
vironmental Conservation -
Lurio University

WAPA Coral Inventory 2.0 David Burdick, Colin Lock, Melissa Vaccarino National Park Service
WAPA Interns Ashton Williams, Marisa Agarwal, Andrew O’Connor,

Christina Kilkeary, Emma Vaughn, Erin Mullins, Kather-
ine Tangney, Malvika Shrimali, Michelle Diminuco, Mo-
tusaga Vaeoso, Natalie Scott, Nicholas Burgos, Philippe
Astier, Ryan Stanley, Sarah Yokota, Serena Butler, Ash-
ley Swafford, Xavier Quinata

National Park Service

WAPA RFI Anneke Padmos, Julia Padilla, Ronja Steinbach, Tim
Clark, Terence Dela Cruz, Eliza Frances Manglona

National Park Service

WAPA RFM Anneke Padmos, Julia Padilla, Ronja Steinbach, Tim
Clark, Terence Dela Cruz

National Park Service

WSU West Hawaii Brian Tissot, Molly Bogeberg Washington State Univer-
sity

ZONE 3 new Jamila Hassan, Sulemani Mohamed Wildlife Conservation Soci-
ety
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