
Safe and Stable Control via Lyapunov-Guided
Diffusion Models

Xiaoyuan Cheng∗ Xiaohang Tang Yiming Yang
University College London, United Kingdom

Abstract

Diffusion models have made significant strides in recent years, exhibiting strong
generalization capabilities in planning and control tasks. However, most diffusion-
based policies remain focused on reward maximization or cost minimization, often
overlooking critical aspects of safety and stability. In this work, we propose Safe
and Stable Diffusion (S2Diff), a model-based diffusion framework that explores
how diffusion models can ensure safety and stability from a Lyapunov perspective.
We demonstrate that S2Diff eliminates the reliance on both complex gradient-
based solvers (e.g., quadratic programming, non-convex solvers) and control-
affine structures, leading to globally valid control policies driven by the learned
certificate functions. Additionally, we uncover intrinsic connections between
diffusion sampling and Almost Lyapunov theory, enabling the use of trajectory-
level control policies to learn better certificate functions for safety and stability
guarantees. To validate our approach, we conduct experiments on a wide variety of
dynamical control systems, where S2Diff consistently outperforms both certificate-
based controllers and model-based diffusion baselines in terms of safety, stability,
and overall control performance.

1 Introduction

Real-world control tasks often go beyond simple cost minimization or reward maximization, requiring
safety [19] and stability [7] as essential requirements in various fields such as robotics and aerospace.
Specifically, safety ensures a risk-free trajectory during control, while stability drives the system
toward convergence to achieve a desired goal. However, achieving both safety and stability remains
an open problem in control theory due to the complexity of synthesizing numerous non-convex
constraints, including both equalities and inequalities [21], within a single formulation.

Model Predictive Control. A common approach to address this challenge is to leverage convex
optimization techniques, minimizing the accumulated costs under multiple constraints [11, 52]. One
of the most well-known methods is the model predictive control (MPC) [23] and its variants [17, 18].
While MPC is widely used to ensure safety and stability, the policies derived from MPC algorithms
often remain suboptimal in execution [38]. Moreover, MPC can easily become infeasible for some
problems with many safety constraints and tight control limitations. Another significant drawback of
MPC is its computational complexity [24]. Achieving better performance typically requires a longer
receding horizon, making MPC inefficient for high-dimensional nonlinear problems.

Certificate-Based Method. Another approach to ensuring safety and stability in control relies
on certificate functions, such as control Lyapunov functions (CLFs) [4, 6, 43] and control barrier
functions (CBFs) [5, 36, 46]. However, identifying a valid certificate function is challenging and
highly problem-dependent [1], as most existing methods rely on convex optimization with known
system dynamics [34, 37]. In addition, these approaches struggle to scale to high-dimensional control

∗Corresponding author: ucesxc4@ucl.ac.uk

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

tasks. To improve the generality of certificate-based methods, several approaches have been proposed
to learn certificate functions from data [3, 12, 45, 53, 54]. These techniques have been shown effective
in control-affine dynamics, enabling the learning of a control policy based on optimized certificate
functions. Specifically, the policy is generated by solving step-wise quadratic programs (QPs) using
learned parameterized certificate functions and a nominal policy. Two representative methods in this
field are proposed in [35] and [13]. The former [35] formulates an approach to synthesizing CBFs for
goal-oriented multi-agent control tasks, while the latter [13] introduces the control Lyapunov barrier
function (CLBF) which ensures safe and stable control performance [36]. However, synthesizing
QP-based control with certificate functions remains challenging [39, 50], due to several factors: (1)
QP formulation typically requires control-affine dynamics; (2) ensuring the existence of a control
policy for step-wise greedy optimization often requires the introduction of slack variables, which can
lead to globally inconsistent behavior; and (3) jointly learning the certificate and policy may lead to
an infeasible QP, destabilizing training and degrading certificate quality.

update Lyapunov function

satisfaction violation

Lyapunov function VV vector field generated trajectory

guidance

update

Figure 1: Overview of S2Diff. Bottom to top: as guid-
ance function improves, vector fields align better with
the goal, Lyapunov landscapes get smooth, and trajecto-
ries converge more reliably. Right to left: the generated
policy is guided by the Lyapunov function, and diffusion
sampled trajectories are used to update the Lyapunov
function.

Contribution. To address the aforemen-
tioned challenges in gradient-based meth-
ods, we propose Safe and Stable Diffusion
(S2Diff), a novel sampling-based method
based on model-based diffusion planning
framework2, where we learn the certificate
functions based on policies sampled via
diffusion models and do policy improve-
ment via guided policy sampling iteratively.
Crucially, since the guidance is a learned
certificate functions (CLBF), the control se-
quence obtained by guided diffusion sam-
pling is guaranteed to be safe and stable.
Unlike previous MPC or QP-based meth-
ods, our approach goes beyond step-wise
greedy policies for control-affine dynamics,
avoids the use of slack variables, and can
be extended to trajectory-level optimization
for general differentiable dynamics (the
core idea is illustrated in Figure 1). Theo-
retically, we uncover intrinsic connections
between diffusion sampling and Almost
Lyapunov theory: the diffusion-sampled
certificate function is not merely a weak relaxation of classical methods — it constitutes a realization
of Almost Lyapunov theory, which prioritizes global convergence rather than pointwise strict descent.
In experiments, we evaluate S2Diff across a wide range of dynamical systems, where it consistently
outperforms both gradient-based methods and model-based diffusion approaches in terms of safety
and stability. We summarize the comparison with other methods in Table 1.

Related Work. In parallel with gradient-based approaches, an increasing number of works have
explored diffusion models [26, 41, 42] for control problems [2, 15, 20, 29, 30, 47, 49]. One work
focuses specifically on diffusion planning, as formulated in Diffuser [22], a probabilistic diffusion
model that generates action plans by iteratively denoising trajectories. Diffusion planning shows
strong performance in long-horizon decision-making and trajectory generation at test time [22, 30]. To
address safety in control, model-free safe diffusion planning methods have been proposed, integrating
QP based on handcrafted control barrier functions (CBFs) [51]. However, designing valid CBFs prior
remains a challenge [1], and the stability guarantee of diffusion policies are still unexplored.

2 Preliminary

Consider a general differentiable nonlinear dynamical system given by

ẋ = f(x, u), (1)

2Model-based diffusion planning here refers to planning with known dynamics as defined in [32].

2

Table 1: Comparison of existing methods and S2Diff (ours). Policy inference includes, quadratic
programming (QP), non-convex optimization (NCO), and Diffusion Sampling (DS).

Methods Control-affine Trajectory level Safe Stable Policy Inference

CLBF-QP [13] ✓ ✗ ✓ ✓ QP (fast)
MPC ✓ ✓ ✗ ✗ NCO (slow)

MBD [32] ✗ ✓ ✗ ✗ DS (fast)

S2Diff (ours) ✗ ✓ ✓ ✓ DS (fast)

where the state x and control input u belong to the compact sets X ⊆ Rn and U ⊆ Rm, respectively.
The function f : X ×U → Rn is globally Lipschitz. While most existing works on learning certificate
functions assume control-affine dynamics [13, 45, 50], we argue that this assumption is unnecessary
in our approach due to diffusion sampling. The symbol Xs ⊆ X denotes the safe set and L denotes
the Lie derivative. The control Lyapunov barrier function (CLBF) is defined as follows.
Definition 2.1 (CLBF [36]). A potential function V : X → R is a CLBF if the function V satisfies
following conditions, for some constant c, λ > 0,

Equilibrium: V (x⋆) = 0, (2a)
Positivity: V (x) > 0, ∀x ∈ X \ {x⋆}, (2b)
Safe State: V (x) ≤ c, ∀x ∈ Xs, (2c)
Unsafe State: V (x) > c, ∀x ∈ X \ Xs, (2d)
Uniform Dissipation: inf

u∈U
LfV (x) + λV (x) ≤ 0, ∀x ∈ X \ {x⋆}. (2e)

Remark 2.2. CLBFs are Lyapunov-like functions that simultaneously guarantee a system’s safety and
stability. Under the conditions specified in Equations Equation (2a), Equation (2b), and Equation (2e),
there exists a control policy that steers the system toward a unique equilibrium point with monotonic
decrease. In general, Equation (2e) implies an exponential stability as ∥xt − x⋆∥ ≤ O(exp(−λt)),
see proof in Appendix C. In this framework, the sublevel and superlevel sets identify the safe and
unsafe regions, respectively. Since the uniform dissipation of V is along the trajectory, the state
can always be kept in a safe region. With the aid of CLBFs, we establish a rigorous mathematical
framework to enforce safety and stability constraints.

Problem Definition. Following the conventional setting, the control problem can be formulated as
an optimization problem in a fixed horizon T with CLBF V (·). For ∀t ∈ [T] and ∀ut ∈ U :

argmin
u1:T

T∑
t=1

q(xt, ut)

s.t. ẋt = f(xt, ut)︸ ︷︷ ︸
constraint of dynamics

, LfV (xt) + λV (xt) ≤ 0︸ ︷︷ ︸
constraint of Lyapunov stability

, V (xt) ≤ c︸ ︷︷ ︸
constraint of safety

.
(3)

Here, thesacly cost function q : X × U → R+ is predefined and non-negative. The objective is to
minimize the accumulated control cost while satisfying multiple constraints. The constraints include
conditions derived from the CLBF and bounded control inputs, ensuring global safety and stability.

Challenges in Gradient-based Methods. We briefly revisit gradient-based optimization techniques
and its challenges. Traditionally, cost minimization problems for control policies are solved using
LQR or MPC approaches, often without incorporating safe or stable constraints. The resulting
solution, known as the nominal (or reference) control policy denoted as unominal. Then, the new cost
can be simply transformed to l2 distance with unominal as ∥u− unominal∥2. Under this setting, many
methods are proposed to incorporate certificate functions V (·) into the one-step policy optimization
formulation as QP [13, 39, 40, 45, 50]: for ∀t ∈ [T],

argmin
u

∥u− unominal∥2, s.t. LfV + λV ≤ 0. (4)

A feasible solution may not always exist in Equation (4) if u lying a bounded set U . To make the
optimization tractable, the constraint term is usually relaxed by introducing a large slack variable

3

z ∈ R+ and coefficient λpenalty showing as

argmin
u,z

∥u− unominal∥2 + λpenaltyz , s.t. LfV (xt) + λV (xt) ≤ z . (5)

In this approach, the optimized control solution is a trade-off between cost minimization and
safety/stability. However, solving the problem in Equation (3) using gradient-based optimization
presents three challenges: 1). The construction of QP inherently requires dynamics to be control-
affine, extending to general nonlinear systems is non-trivial; 2). The step-wise greedy optimization
of u can lead to globally inconsistent behavior across the trajectory, often resulting in excessive
reliance on a large slack variable z to satisfy CLBF constraints; 3). The CLBF function V is learned
jointly with the optimized control policy u, which introduces a coupling issue: as V evolves during
training, it alters the feasible region of the QP, potentially destabilizing optimization and degrading the
learned certificate. These limitations motivate the exploration of alternative approaches— diffusion
guided-sampling. We pose the following research question:

Can guided diffusion sampling overcome the limitations of gradient-based approaches while
ensuring both safety and stability?

We will answer this question by linking Almost Lyapunov theory and diffusion sampling.

3 Method

We propose Safe and Stable Diffusion (S2Diff), a model-based diffusion framework that unifies
diffusion sampling with Lyapunov-inspired certificates to address safety and stability in general
nonlinear systems. The section is organized as follows: (a) We formulate a CLBF-guided diffusion
process for sampling trajectory-level policies without requiring slack variables and control-affine
assumptions. (b) We design a loss to iteratively refine CLBFs using diffusion-sampled trajectories.
(c) We provide theoretical insights linking diffusion sampling to Almost Lyapunov theory.

3.1 Probabilistic Formulation and Diffusion Sampling

To apply diffusion for sampling a safe and stable control policy, we first reformulate Equation (3)
as a probabilistic formulation. This formulation captures the key insight of the Almost Lyapunov
theorem: even if the Lie derivative condition is locally violated with small probability, as long as such
violations are confined to regions with minimal influence, the overall system can still exhibit long-
term exponential decay, ensuring global stability and safety. By framing probabilistic formulation as
a sampling task, we can leverage diffusion models to efficiently explore safe and stable trajectories.

We define the target trajectory sequence distribution p(U) as a Gibbs measure, proportional to

p(U) ∝ psafe(U) pstable(U) pcost(U), (6)

where U denotes the full trajectory sequence (x1:T , u1:T) over a fixed horizon. Here, psafe(U),
pstable(U), and pcost(U) are scalar-valued functions that score the trajectory according to safety,
stability, and accumulated cost, respectively. These functions shape the unnormalized distribution
over policies, reflecting their relative importance. Leveraging the definition of CLBFs, we specify
these components as follows:

psafe ∝
T∏

t=1

1{V (xt)≤c}, pstable ∝
T∏

t=1

1{LfV (xt)+λV (xt)≤0}, pcost ∝ exp
(
− 1

γ

T∑
t=1

q(xt, ut)
)
, (7)

where the variable notation U = (x1:T , u1:T) for each probability is omitted for simplification, 1{·}
denotes the indicator function. The definitions of psafe and pstable adhere to the CLBF conditions as
stated in Definition 2.1, while pcost is expressed as an exponential function of the negative cumulative
cost with a temperature parameter γ. When a nominal control policy unominal

1:T is given, the cost term
can be formulated as pcost ∝ exp

(
− 1

γ1
∥u1:T −unominal

1:T ∥2
)
, which biases the sampling process toward

the nominal policy and improves efficiency.

Almost Lyapnunov Function Guidance. As demonstrated in prior work [10, 16], it is theoretically
impossible to learn a Lyapunov function that satisfies the required properties at every point, such as

4

a strictly negative Lie derivative using only a finite number of sampled data points. Nevertheless,
Almost Lyapunov theory [27] suggests that despite the existence of regions with non-negative Lie
derivative, system trajectories can still converge to a sufficiently small neighborhood around the
equilibrium point. Thus, instead of enforcing the second hard constraint in Equation (7), we can
adopt a soft constraint formulation:

pstable ∝ exp

(
− 1

γ2

T∑
t=1

∥
[
LfV (xt) + λV (xt)

]+
∥2
)
, (8)

where [z]+ ≜ ReLU(z) and 0 < γ2 ≪ 1 is a low temperature parameter. When the temperature
factor γ2 is sufficiently small, the sampled control policy can guarantee trajectory-level safety and
stability under the guidance of CLBF. We provide a statement to verify this point see Theorem 3.1.
Moreover, this probabilistic (soft) constraint formulation addresses a key limitation of gradient-based
methods, which often require introducing large slack variables that can shift the feasible region of
the control solution (see Equation (5)). In contrast, the soft constraint in Equation (8) leaves the
optimization problem (3) unchanged and improves sampling efficiency by avoiding the high rejection
rate associated with strict indicator-based constraints.

Control Trajectory Sampling. We adopt Monte Carlo score ascent within diffusion sampling to
iteratively denoise trajectories toward the target distribution p(U). The forward and reverse diffusion
process with Gaussian noise is defined as follows [42]. Denote scale factor ᾱi =

∏i
k=1 αk,

p(U i | U0) ∼ N
(√
ᾱiU

0, (1− ᾱi)I
)
, U i−1 =

1
√
αi

(
U i + (1− αi)∇Ui log p(U i)

)
. (9)

Notably, the unbiased estimator of score function relies on the posterior expectation EU0∼p(U0|Ui)[U
0]

estimated from sequential Monte Carlo [14, 33] (with provided proof in Lemma B.5):

∇Ui log p(U i) ≈ − 1

1− ᾱi

(
U i −

√
ᾱi EU0∼p(U0|Ui)[U

0]
)
. (10)

In contrast to QP-based approaches for solving Equation (5), our sampling-based method avoids
introducing slack variables and does not require a control-affine structure. After generating the clean
trajectory U0, we implement the control policy u1:T in environments.

3.2 CLBF Update via Sampled Trajectories

The process of diffusion sampling and CLBF updating is iterative. After generating control policies
through diffusion sampling, we use the sampled trajectories to update the CLBF function iteratively.
Let D denote the dataset of sampled trajectories; the CLBF update is formulated as follows:

argmin
V̂

Ex1:T∼D

[T∑
t=1

1xt=x⋆
∥V̂ (xt)∥+ [−V̂ (xt)]

+ + 1xt∈Xs
[V̂ (xt)− c]+ + 1xt∈X\Xs

[c− V̂ (xt)]
+

+ α1[Lf V̂ (xt) + λV̂ (xt) + ϵ]+ + α2[V̂ (xt+1)− V̂ (xt) + λV̂ (xt) + ϵ]+
]
.

(11)

Here, α1 and α2 are two tunable parameters. Unlike the quadratic form used in prior work [13], we
parameterize the CLBF with a general N -layer neural network V̂ =WNσN−1(WN−1 · · ·σ1(W1x)),
to handle nonconvex constraints. Our experiments show that such flexible parameterization outper-
forms the quadratic form in problems with nonconvex safe sets (see Section 4.1). Each component
targets a fundamental control principle as:

• The first term, 1xt=x⋆
∥V̂ (xt)∥, enforces V̂ (x∗) = 0, as required by Equation (2a).

• The second term, [−V̂ (xt)]
+, enforces positivity of the Lyapunov function as Equation (2b).

• The third and fourth terms, 1xt∈Xs
[V̂ (xt) − c]+ and 1xt∈X\Xs

[c − V̂ (xt)]
+, encode the

sub-level and super-level set conditions, aligning with Equations (2c) and (2d).

5

• The fifth term,
∑T

t=1[Lf V̂ (xt) + λV̂ (xt) + ϵ]+, enforces trajectory-level stability using
diffusion-sampled control inputs.. The buffer term ϵ accounts for the small violation as
formalized in Theorem C.6 (see Equation (32)). Lie derivatives are computed via automatic
differentiation, and minimizing this term reduces violations, enhancing global stability.

• Finally, the sixth term,
∑T

t=1[V̂ (xt+1)− V̂ (xt)+λV̂ (xt)+ϵ]
+ with xt+1 = xt+f(xt, ut),

complements the continuous constraint by regulating the discrete-time Lyapunov condition.

Our algorithm leverages model-based diffusion as its foundation, and the implementation details are
presented in Appendix E.

Diffusion Sampling vs. Gradient-based Optimization. Diffusion sampling, as formulated in
Section 3.1, avoids the need for slack variables and does not rely on control-affine assumptions,
enabling the effective exploration of complex, nonconvex control policy landscapes [32]. As a
result, the generated policies can be used to update CLBFs without altering the original optimization
objective. In contrast, QP-based methods rely on carefully tuned relaxations and yield locally greedy
solutions that may fail globally. Likewise, nonconvex MPC often gets stuck in local minima, limiting
its ability to ensure global stability and safety.

3.3 Theoretical Results

In this section, we establish the theoretical guarantees of safety and stability for diffusion-sampled
policies under the framework of an Almost Lyapunov function. Furthermore, we introduce an auxiliary
theorem from a learning-theoretic perspective to demonstrate that diffusion-sampled policies give
rise to an Almost Lyapunov function.

Theorem 3.1 (Safety and Stability with Almost Sure Guarantees). Let X be a compact state space
and consider the continuously differentiable dynamical system f in Equation (1). Let V : X → R+

be a smooth positive definite function. Assume that there exist constants λ > 0 and ϵ > 0, and a
connected, non-self-overlapping and measurable set Ω ⊂ X satisfying the small volume Vol(Ω) < ϵ,
such that the following holds:

(A) For every x ∈ X \Ω, the Lie derivative of V along f satisfies minu∈U LfV (x) < −λV (x).

(B) For x ∈ Ω, we allow LfV (x) ≥ −λV (x) without any further restrictions, i.e. no uniform
dissipation condition.

Then, there exist positive constants λ1 and M , with 0 < λ1 < λ, such that for any x0 ∈ Xs ⊂ X , the
solution xt of Equation (1) under the diffusion-sampled policy satisfies, almost surely,

V (xt) ≤ exp(−λ1t)V (x0) +Mϵ
1
n , ∀t ≥ 0. (12)

In other words, the influence of the “bad” region Ω introduces only an additive buffer term of order
O(ϵ

1
n), ensuring that the overall decay remains almost exponential over time.

Connection to Almost Lyapunov Theory. Theorem 3.1 implies that the CLBF V is not necessary to
decrease at every local point in time, reflecting the probabilistic formulation in Equation (8). Instead,
even if V leads to local increases, the long-term trajectory exhibits exponential decay (reflecting
the core idea of Almost Lyapunov function). As long as any violation is confined to regions with
sufficiently weak influence (i.e., small ϵ), the net behavior of system dynamics guarantees global
safety and stability. This suggests a robust strategy is to prioritize global performance while allowing
a small chance of local Lie derivative violations. On the other hand, the trajectories generated under
the diffusion-sampled policy can be reused to train and improve the neural CLBF V , progressively
reducing the measure of the violation region. Theorem 3.1 holds when the violation region Ω has
sufficiently small volume. This establishes an end-to-end guarantee: the data-driven learning of V
ensures the small-volume condition required by the theorem (see detailed proof in Appendix C).

4 Experiment

In this section, we comprehensively evaluate the performance of our model across various nonlinear
dynamical systems, covering both tracking and control tasks. In the first subsection, we compare our

6

Pendulum Car tracking Neural landerSegway F-16Quadrotor

Figure 2: Benchmark control tasks for safety and stability.

rCLBF-QP Ours

Contour maps of learned CLBF by our algorithm for F-16Contour map of learned CLBFs for inverted pendulum

Figure 3: Left: CLBFs learned by Gradient-based method (left-1) vs. Diffusion Sampling (left-2)
for inverted pendulum . Right: Contour maps along different axes of the CLBF learned by S2Diff
for the high-dimensional, non-control-affine F-16 with non-convex constraints. The smooth level
sets across 2D projections highlight the CLBF’s expressiveness and its ability to capture complex,
constrained dynamics.

algorithm, S2Diff, with competitive baseline methods and interpret how our design contributes to per-
formance improvements. In the second subsection, we investigate the impact of key hyperparameters,
such as sampling horizons and temperature factors, on control performance.

4.1 Control Performance Comparison

Tasks. (1) Inverted pendulum (n = 2): stabilize the pendulum in the upright position by moving the
base left or right. (2) Car trajectory tracking (n = 5, 7): make the car follow a desired trajectory by
controlling its speed and steering angle. (3) Segway (n = 4): keep the two-wheeled robot balanced
while moving forward or backward as commanded. (4) Neural lander (n = 6): land a aircraft
smoothly and accurately on the target in space by adjusting thrusters and orientation. (5) 2D and 3D
Quadrotor (n = 6, 9): stabilize the quadrotor in hover or level flight with complex obstacles. (6) F-16
(n = 16): control a F-16 aircraft to stabilize key variables such as altitude, velocity, angle of attack,
elevator position and other critical states. The first five systems are control-affine, while the F-16 is
non-control-affine. See illustrations in Figure 2.

Baseline Algorithms. (1) Robust Control Lyapunov Barrier Function based on QP (rCLBF-QP)
[13]: a certificate-based control method for control-affine dynamics, utilizing a step-wise greedy
policy derived from a learned quadratic CLBF. (2) Model Predictive Control (MPC) [25, 28]: a
robust MPC framework designed for safe control tasks. (3) Model-Based Diffusion (MBD) [33]: a
model-based diffusion planning approach that leverages known dynamics with constraints.

Evaluation Metric. We evaluate the control policies from three aspects: (1) Safety rate—the
percentage of trajectories that remain safe, computed over 20 initial states; (2) Stability—the distance
between the fixed-horizon terminal state and the equilibrium state; (3) Efficiency—the inference time
required to generate control policies.

Result Analysis. We present an analysis of our results by addressing four key questions that explore
the contributions of diffusion sampling and CLBFs in our framework:

(1) Does diffusion sampling help in learning certificate functions? Yes—diffusion sampling signifi-
cantly improves the learning of certificate functions. In Figure 3 (left), we compare contour maps
of the CLBF for the inverted pendulum obtained via diffusion sampling and a traditional step-wise
QP-based approach. The diffusion-based method results in a noticeably larger contraction region,
indicating stronger stability guarantees. Moreover, this advantage generalizes to more complex,
high-dimensional systems. For example, in Figure 3 (right), we visualize contour slices of the CLBF

7

Table 2: Comparison of controller performance in various control environments. The first three tasks
are for stability, and other tasks need to consider both safety and stability. − means not applicable.

Task Algorithm Safety rate ∥x− x⋆∥ Eval. time (ms)

Inverted Pendulum
rCLBF-QP – 0.02± 0.01 4.4± 0.2
MPC – 0.01± 0.01 109.3± 0.8
MBD – 0.12± 0.05 49.5± 0.3
S2Diff – 0.01± 0.01 23.5± 0.1

Car (Kin.)
rCLBF-QP – 0.75± 0.37 10.2± 0.3
MPC – 1.51± 0.86 194.6± 1.6
MBD – 1.57± 0.91 88.5± 1.1
S2Diff – 0.61± 0.12 38.2± 0.5

Car (Slip)
rCLBF-QP – 1.03± 0.34 9.6± 0.2
MPC – 0.15± 0.09 336.5± 2.7
MBD – 1.84± 0.62 69.2 ± 0.6
S2Diff – 0.51± 0.18 34.7 ± 0.9

Segway
rCLBF-QP 90% 0.11± 0.13 5.2± 0.1
MPC 20% 1.39± 0.55 254.6± 4.3
MBD 85% 1.58± 0.79 205.7± 0.8
S2Diff 100% 0.23± 0.09 21.8± 0.3

Neural Lander
rCLBF-QP 55% 0.13 ± 0.06 12.7± 0.2
MPC 100% 0.21 ± 0.09 247.2± 3.6
MBD 35% 0.32 ± 0.19 165.9± 0.4
S2Diff 100% 0.06± 0.02 35.4± 0.7

2D Quad
rCLBF-QP 70% 0.19± 0.05 18.6± 0.7
MPC 45% 0.15± 0.03 279.6± 1.3
MBD 75% 0.47± 0.29 112.3± 0.2
S2Diff 95% 0.11± 0.03 82.4± 0.3

3D Quad
rCLBF-QP 100% 0.46± 0.12 9.7± 0.4
MPC 100% 0.09± 0.02 324.9± 2.7
MBD 100% 0.78± 0.38 168.0± 1.6
S2Diff 100% 0.05± 0.02 83.5± 0.8

Average Performance above
rCLBF-QP 78.75% 0.384 10.06
MPC 66.25% 0.501 249.53
MBD 73.75% 0.954 122.73
S2Diff 98.75% 0.226 45.64

F-16 (non-control-affine)
rCLBF-QP – – –
MPC – – –
MBD 100% 68.34± 32.77 611.3± 13.7
S2Diff 100% 47.61 ± 12.45 257.2± 5.5

MBD OursrCLBF-QP MPC

Figure 4: Control trajectories of a 2D quadrotor with four methods including ours (S2Diff). The ◦
and × mark the start and end points, respectively. Green lines denote safe states; red lines indicate
constraint violations. S2Diff achieves higher safety and stability, effectively handling non-convex
constraints where baselines struggle.

learned for the F-16 system. Unlike gradient-based methods reliant on explicit linearization, S2Diff
can directly handle general nonlinear and non-control-affine dynamics. The resulting non-quadratic
level sets highlight the flexibility and expressiveness of the neural network-based CLBF.

(2) Do diffusion-sampled policies outperform those obtained through gradient-based methods?
Empirical results indicate that diffusion-sampled policies generally achieve superior performance.
As shown in Table 2, they outperform both MBD and rCLBF-QP across multiple metrics. This
is further illustrated in Figure 4, which depicts trajectories for a 2D quadrotor navigating around
non-convex obstacles. While rCLBF-QP performs reasonably well near the goal, the QP-based
controller often struggles when the system starts far from the target, due to its myopic nature. In

8

contrast, diffusion-sampled policies produce smoother, more globally consistent trajectories and
maintain a significantly higher safety rate throughout the task.

(3) Are diffusion-sampled policies further improved under the guidance of CLBFs? Yes—guiding the
diffusion process with a learned CLBF enhances both safety and robustness. Unguided model-based
diffusion with fixed penalties offer only local repulsion near unsafe boundaries, leaving most of the
space uninformative; as a result, the sampler exhibits low sampling efficiency due to largely unguided
exploration, leading to high variance and unsafe outcomes (see Table 2, Figure 5a, 12). In contrast, the
CLBF shapes a global energy landscape that funnels trajectories toward safe, goal-directed regions,
yielding more stable behavior, consistently safer policies, and lower inference cost.

(4) Is the Almost Lyapunov theory reflected in our empirical results? Our empirical evaluations
provide strong support for the theoretical guarantees in Theorem 3.1, showing that the violation rate
is empirically small (see Table 3). In the F-16 control task, for instance, we monitor violations of
the Lie derivative condition and find that they occur with a frequency below 1.5%, as illustrated in
Figures 5b and 10. These low violation rates, together with the near-monotonic decrease of the CLBF
scalar values, indicate that the observed system behavior is consistent with the Almost Lyapunov
stability property in Equation (30). Additional quantitative results are provided in Appendix F.2.

(a) Comparison of control performance between
MBD and S2Diff on the F-16 system.

(b) Evolution of the CLBF scalar value under the
S2Diff control policy, indicating Almost Lyapunov
theory.

Figure 5: Comparison of control performance and Lyapunov behavior on the F-16 system. (a) S2Diff
achieves improved tracking compared to MBD. (b) The scalar value of the CLBF under S2Diff shows
a nearly monotonic decrease, demonstrating Almost Lyapunov stability.

Table 3: Estimated violation rate Vol(Ω)
Vol(X) on selected benchmark tasks. This fraction quantifies the

relative size of the violation region within the compact state set X (see Equation (18)), and is
empirically estimated via uniform sampling over X to assess the practical violation rate.

Task Segway Neural Lander 2D Quad 3D Quad F-16

Violation rate 0.5% 1.1% 1.6% 1.3% 2.4%

4.2 Ablation Study

To assess the sensitivity of diffusion sampling and loss function hyperparameters, we conduct a series
of ablation experiments in the neural lander environment. More ablation studies in Appendix F.1.

Violation Temperature. To evaluate robustness to the stability temperature γ2, we train our CLBF
with γ2 ∈ {0.5, 0.2, 0.1, 0.05, 0.02, 0.01}, fixing γ1 = 0.5 (selection from grid search). As shown in
Table 4, both high and low γ2 degrade performance: high values overly relax stability, increasing
violation of stability and safety; low values impose strict constraints, leading to suboptimal solutions.
An intermediate value γ2 = 0.1 offers the best balance between stability and control performance.

Hyperparameter in Loss Function. We study the effect of Lie derivative formulations in the
loss (11), comparing automatic differentiation (α1) and discretized approximations (α2). Here, α1

9

Table 4: Control performance of S2Diff across different temperatures for stability term.
Metric 0.5 0.2 0.1 0.05 0.02 0.01
Safety rate 35% 75% 100% 100% 100% 100%
∥x− x⋆∥ 0.18± 0.08 0.09± 0.06 0.06± 0.02 0.08± 0.03 0.11± 0.03 0.12± 0.02

and α2 weight the penalties from automatic (auto.) and discretized (dis.) Lie derivatives, respectively.
Table 5 shows that using only the discretized term (α1 = 0, α2 = 1) degrades safety and convergence.
Incorporating with balanced weights (α1 = α2 = 1), yields the best stability and accuracy.

Table 5: Control performance of S2Diff under various CLBFs with different α1, α2 configurations.

Metric α1 = 0
α2 = 0

α1 = 1
α2 = 0

α1 = 0
α2 = 1

α1 = 1
α2 = 0.5

α1 = 0.5
α2 = 1

α1 = 1
α2 = 1

CBF CLBF (auto.) CLBF (dis.) - - CLBF

Safety rate 10% 100% 85% 100% 100% 100%
∥x− x⋆∥ 0.65± 0.14 0.15± 0.07 0.21± 0.09 0.09± 0.03 0.11± 0.05 0.06± 0.02

5 Conclusion

In this work, we introduced Safe and Stable Diffusion (S2Diff), a novel model-based control frame-
work that demonstrates how diffusion sampling can be leveraged to learn certificate functions inspired
by Almost Lyapunov theory. Conversely, we show that these learned certificate functions can effec-
tively guide the diffusion process, resulting in safe and stable control policies. Through a probabilistic
formulation, our approach avoids the limitations of traditional gradient-based methods, requiring
neither relaxations nor control-affine assumptions. Furthermore, the framework is flexible and can
be extended to more expressive neural certificate functions, offering a promising direction for safe
learning-based control. A current limitation is the slower inference speed compared to QP methods,
which may be addressed via policy distillation.

References
[1] Amir Ali Ahmadi and Anirudha Majumdar. Some applications of polynomial optimization in

operations research and real-time decision making. Optimization Letters, 10:709–729, 2016.

[2] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit
Agrawal. Is conditional generative modeling all you need for decision-making? arXiv preprint
arXiv:2211.15657, 2022.

[3] Alberto Alfarano, François Charton, Amaury Hayat, and CERMICS-Ecole des Ponts Paristech.
Discovering lyapunov functions with transformers. In The 3rd Workshop on Mathematical
Reasoning and AI at NeurIPS, volume 23, 2023.

[4] Aaron D Ames, Kevin Galloway, and Jessy W Grizzle. Control lyapunov functions and hybrid
zero dynamics. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pages
6837–6842. IEEE, 2012.

[5] Aaron D Ames, Jessy W Grizzle, and Paulo Tabuada. Control barrier function based quadratic
programs with application to adaptive cruise control. In 53rd IEEE conference on decision and
control, pages 6271–6278. IEEE, 2014.

[6] Zvi Artstein. Stabilization with relaxed controls. Nonlinear Analysis: Theory, Methods &
Applications, 7(11):1163–1173, 1983.

[7] Andrea Bacciotti and Lionel Rosier. Liapunov functions and stability in control theory. Springer
Science & Business Media, 2005.

[8] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds
for neural networks. Advances in neural information processing systems, 30, 2017.

10

[9] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

[10] Nicholas Boffi, Stephen Tu, Nikolai Matni, Jean-Jacques Slotine, and Vikas Sindhwani. Learn-
ing stability certificates from data. In Conference on Robot Learning, pages 1341–1350. PMLR,
2021.

[11] Eduardo F Camacho, Carlos Bordons, Eduardo F Camacho, and Carlos Bordons. Constrained
model predictive control. Springer, 2007.

[12] Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural lyapunov control. Advances in neural
information processing systems, 32, 2019.

[13] Charles Dawson, Zengyi Qin, Sicun Gao, and Chuchu Fan. Safe nonlinear control using robust
neural lyapunov-barrier functions. In Conference on Robot Learning, pages 1724–1735. PMLR,
2022.

[14] Pierre Del Moral and Laurent Miclo. Branching and interacting particle systems approximations
of Feynman-Kac formulae with applications to non-linear filtering. Springer, 2000.

[15] Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and
Ye Shi. Diffusion-based reinforcement learning via q-weighted variational policy optimization.
arXiv preprint arXiv:2405.16173, 2024.

[16] Peter Giesl, Boumediene Hamzi, Martin Rasmussen, and Kevin N Webster. Approximation of
lyapunov functions from noisy data. arXiv preprint arXiv:1601.01568, 2016.

[17] Lars Grne and Jrgen Pannek. Nonlinear model predictive control: theory and algorithms.
Springer Publishing Company, Incorporated, 2013.

[18] Lars Grüne, Jürgen Pannek, Lars Grüne, and Jürgen Pannek. Nonlinear model predictive control.
Springer, 2017.

[19] Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll.
A review of safe reinforcement learning: Methods, theory and applications. arXiv preprint
arXiv:2205.10330, 2022.

[20] Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey
Levine. Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

[21] Lukas Hewing, Kim P Wabersich, Marcel Menner, and Melanie N Zeilinger. Learning-based
model predictive control: Toward safe learning in control. Annual Review of Control, Robotics,
and Autonomous Systems, 3(1):269–296, 2020.

[22] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion
for flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

[23] Basil Kouvaritakis and Mark Cannon. Model predictive control. Switzerland: Springer
International Publishing, 38(13-56):7, 2016.

[24] Wook Hyun Kwon and Soo Hee Han. Receding horizon control: model predictive control for
state models. Springer Science & Business Media, 2005.

[25] William S Levine, Lars Grüne, Rafal Goebel, Saša V Rakovic, Ali Mesbah, Ilya Kolmanovsky,
Stefano Di Cairano, Douglas A Allan, James B Rawlings, Martin A Sehr, et al. Handbook of
model predictive control. Control Engineering, Birkhäuser Cham, 2018.

[26] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[27] Shenyu Liu, Daniel Liberzon, and Vadim Zharnitsky. Almost lyapunov functions for nonlinear
systems. Automatica, 113:108758, 2020.

11

[28] Johan Löfberg. Automatic robust convex programming. Optimization methods and software,
27(1):115–129, 2012.

[29] Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive
energy prediction for exact energy-guided diffusion sampling in offline reinforcement learning.
In International Conference on Machine Learning, pages 22825–22855. PMLR, 2023.

[30] Haofei Lu, Dongqi Han, Yifei Shen, and Dongsheng Li. What makes a good diffusion planner
for decision making? In The Thirteenth International Conference on Learning Representations,
2025.

[31] Colin McDiarmid et al. On the method of bounded differences. Surveys in combinatorics,
141(1):148–188, 1989.

[32] Chaoyi Pan, Zeji Yi, Guanya Shi, and Guannan Qu. Model-based diffusion for trajectory
optimization. Advances in Neural Information Processing Systems, 37:57914–57943, 2024.

[33] Chaoyi Pan, Zeji Yi, Guanya Shi, and Guannan Qu. Model-based diffusion for trajectory
optimization. Advances in Neural Information Processing Systems, 37:57914–57943, 2025.

[34] Antonis Papachristodoulou and Stephen Prajna. On the construction of lyapunov functions using
the sum of squares decomposition. In Proceedings of the 41st IEEE Conference on Decision
and Control, 2002., volume 3, pages 3482–3487. IEEE, 2002.

[35] Zengyi Qin, Kaiqing Zhang, Yuxiao Chen, Jingkai Chen, and Chuchu Fan. Learning safe multi-
agent control with decentralized neural barrier certificates. arXiv preprint arXiv:2101.05436,
2021.

[36] Muhammad Zakiyullah Romdlony and Bayu Jayawardhana. Stabilization with guaranteed
safety using control lyapunov–barrier function. Automatica, 66:39–47, 2016.

[37] Carsten Scherer and Siep Weiland. Linear matrix inequalities in control. Lecture Notes, Dutch
Institute for Systems and Control, Delft, The Netherlands, 3(2), 2000.

[38] Pierre OM Scokaert, David Q Mayne, and James B Rawlings. Suboptimal model predictive
control (feasibility implies stability). IEEE Transactions on Automatic Control, 44(3):648–654,
1999.

[39] Oswin So and Chuchu Fan. Solving stabilize-avoid optimal control via epigraph form and deep
reinforcement learning. arXiv preprint arXiv:2305.14154, 2023.

[40] Oswin So, Zachary Serlin, Makai Mann, Jake Gonzales, Kwesi Rutledge, Nicholas Roy, and
Chuchu Fan. How to train your neural control barrier function: Learning safety filters for
complex input-constrained systems. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 11532–11539. IEEE, 2024.

[41] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

[42] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[43] Eduardo D Sontag. A lyapunov-like characterization of asymptotic controllability. SIAM journal
on control and optimization, 21(3):462–471, 1983.

[44] Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low noise and fast rates.
Advances in neural information processing systems, 23, 2010.

[45] Dawei Sun, Susmit Jha, and Chuchu Fan. Learning certified control using contraction metric.
In conference on Robot Learning, pages 1519–1539. PMLR, 2021.

[46] Keng Peng Tee, Shuzhi Sam Ge, and Eng Hock Tay. Barrier lyapunov functions for the control
of output-constrained nonlinear systems. Automatica, 45(4):918–927, 2009.

12

[47] Toshihide Ubukata, Jialong Li, and Kenji Tei. Diffusion model for planning: A systematic
literature review. arXiv preprint arXiv:2408.10266, 2024.

[48] Sara van de Geer and Sara van de Geer. Symmetrization, contraction and concentration.
Estimation and Testing Under Sparsity: École d’Été de Probabilités de Saint-Flour XLV–2015,
pages 233–238, 2016.

[49] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

[50] Wei Xiao and Calin Belta. High-order control barrier functions. IEEE Transactions on Automatic
Control, 67(7):3655–3662, 2021.

[51] Wei Xiao, Tsun-Hsuan Wang, Chuang Gan, and Daniela Rus. Safediffuser: Safe planning with
diffusion probabilistic models. arXiv preprint arXiv:2306.00148, 2023.

[52] Melanie N Zeilinger, Manfred Morari, and Colin N Jones. Soft constrained model predictive
control with robust stability guarantees. IEEE Transactions on Automatic Control, 59(5):1190–
1202, 2014.

[53] Jiechao Zhang, Hadi Beik Mohammadi, and Leonel Rozo. Learning riemannian stable dynami-
cal systems via diffeomorphisms. In 6th Annual Conference on Robot Learning, 2022.

[54] Ruikun Zhou, Thanin Quartz, Hans De Sterck, and Jun Liu. Neural lyapunov control of unknown
nonlinear systems with stability guarantees. Advances in Neural Information Processing Systems,
35:29113–29125, 2022.

13

A Notation

Notations Meaning

c safety level
f differentiable dynamics
p probability distribution
q cost function
t discrete time step
u control policy

unominal nominal control policy
x state
x⋆ equilibrium state

α1, α2 tunable parameters in loss function (11)
σ activation function

γ, γ1, γ2 temperature constants
λ dissipation rate
R Rademacher complexity
U trajectory sequence (x1:T , u1:T)
U compact control policy space
V control Lyapunov barrier function
X compact state space
Xs compact safe state space
1{·} indicator function
L Lie derivative

V ol(·) volume measure function
Ω violating set lying in the compact set X

∥2∥2 spectrum norm of operator
∥2∥2,1 1−norm of 2−norm of the rows of matrices

14

B Preliminaries

Definition B.1 (Safe and Stable Control Policy). Given a differentiable dynamical system ẋt =
f(xt, ut) with a target goal x⋆, a non-empty safe set Xs, and an avoid set X \ Xs, a safe and stable
control policy must satisfy the following properties:

• Stability: The system state xt asymptotically approaches x⋆ within a small tolerance ϵ, i.e.,

lim sup
t→∞

∥xt − x⋆∥ ≤ ϵ.

• Safety: The system remains within the safe set at all times, i.e.,

xt ∈ Xs, ∀t ∈ N.

Remark B.2. The stability ensures the reachability of the dynamical system asymptotically contracting
to x⋆ while avoiding all unsafe states in X \ Xs. We make a mild assumption that a control policy
always exists to satisfy both safety and stability requirements.

Definition B.3 (Lie Derivative). Let V : X → R be a continuously differentiable scalar function and
let f : X × U → Rn be a continuously differentiable vector field. The Lie derivative of V along the
vector field f , denoted LfV , is defined as:

LfV (x) = ∇V (x)⊤f(x, u)

where ∇V (x) ∈ Rn is the gradient of V at point x. This quantity represents the rate of change of V
along the trajectories of the dynamical system ẋ = f(x, u).

Proposition B.4. Let V : X → R be a continuously differentiable function satisfying the following
conditions [6]:

1. Equilibrium: V (x⋆) = 0,

2. Positivity: V (x) > 0 for all x ∈ X \ {x⋆},

3. Uniform dissipation: There exists λ > 0 such that

inf
u∈U

LfV (x) + λV (x) ≤ 0, ∀x ∈ X \ {x⋆},

where LfV (x) is the Lie derivative of V along the system dynamics ẋ = f(x, u).

Then the equilibrium point x⋆ is exponentially stable under a suitable control policy u ∈ U , in the
sense that:

V (xt) ≤ V (x0)e
−λt, ∀t ≥ 0.

Moreover, if V (x) is radially unbounded and satisfies bounds

α1(∥x− x⋆∥) ≤ V (x) ≤ α2(∥x− x⋆∥),

for some class K∞ functions α1, α2, then:

∥xt − x⋆∥ ≤ β(∥x0 − x⋆∥, t),

for some class KL function β, and in particular:

∥xt − x⋆∥ ≤ Ke−λt, for some K > 0.

While the ideal Lyapunov function highlights that uniform dissipation ensures exponential stability,
learning such a perfect function from finite data is theoretically impossible. Rather than focusing on
these strict conditions, we turn to the framework of Almost Lyapunov theory.

15

Lemma B.5 (Monte-Carlo Estimation of Score). In the Diffusion process defined as follows. The
marginal distribution satisfies:

p(U0) =

∫
p(UN)

N∏
i=1

p(U i−1 | U i) dU1:N . (13)

And the forward process:

p(U i | U i−1) ∼ N (
√
αiU

i−1, (1− αi)I), (14)

where αi is the scaling factor and I is the identity matrix. the score function of corrupted samples
can be rewritten as

∇Ui log p(U i) = EU0∼p(U0|Ui)

[
1

1− ᾱi
(U i −

√
ᾱiU

0)

]
. (15)

Proof. We leverage the estimated for Diffusion Sampling, we start with:

∇Ui log p(U i) =
∇Uip(U i)

p(U i)
=

∇Ui

∫
p(U i | U0)p(U0) dU0

p(U i)

=

∫
∇Uip(U i | U0)p(U0)

p(U i)
dU0

=

∫
∇Uip(U i | U0)

p(U i | U0)

p(U i | U0)p(U0)

p(U i)
dU0

=

∫
∇Ui log p(U i | U0) p(U0 | U i) dU0

= EU0∼p(U0|Ui)

[
∇Ui log p(U i | U0)

]
.

(16)

Using the known form of p(U i | U0) from Equation (9), the score function becomes:

∇Ui log p(U i) = EU0∼p(U0|Ui)

[
1

1− ᾱi
(U i −

√
ᾱiU

0)

]
. (17)

16

C Theoretical Guarantees

This section is divided into two parts:

• Appendix C.1: we give a learning-theoretic analysis showing that one cannot, in general,
learn a neural CLBF that enforces uniform dissipation everywhere on a bounded domain.
Instead, with sufficiently many samples, the volume (Lebesgue measure) of the “dissipation-
violating” region can be driven arbitrarily close to zero.

• Appendix C.2: we further prove that—even when uniform dissipation fails—our diffusion-
sampled control policy still achieves almost-sure stability, provided the volume of the
dissipation-violating region is sufficiently small.

C.1 Convergence Analysis of Neural CLBFs

To establish an error bound for the neural CLBF, we consider the probability—under the uniform
distribution over a compact set X ⊂ Rn—that the Lyapunov dissipation condition is violated.
Specifically, we define the violation probability as

pX (LfV (x) + λV (x) > 0) = Ex∼Unif(X)

[
1{LfV (x)+λV (x)>0}

]
=
V ol ({x ∈ X | LfV (x) + λV (x) > 0})

V ol(X)
,

(18)

where V ol(·) denotes the volume measure (e.g., Lebesgue measure in probability theory) in Rn. Our
goal is to minimize the violation region’s volume. This expression quantifies the fraction of the
domain X over which the Lie derivative condition fails to hold. It follows that a small expectation
corresponds to a small violation region. Throughout we assume the dataset D is drawn i.i.d. from the
uniform distribution over X ; therefore training and test distributions coincide.

Regularity Assumptions. Before proceeding with the formal analysis, we introduce a regularity
assumption on the candidate CLBF V . Specifically, we assume that V ∈ V , where V ⊂ C2(Rn,R)
denotes the class of continuously differentiable functions that are uniformly bounded in magnitude
by a constant B > 0; that is ∥f∥∞, ∥V ∥∞ ≤ B for all x ∈ X , where X ⊂ Rn is compact. In
addition, we assume that the policy u(x) is Lipschitz continuous with respect to the state x, i.e., for
all x1, x2 ∈ X , ∥u(x1)− u(x2)∥ ≤ L∥x1 − x2∥ for some constant L > 0.

The following lemma provides an upper bound on the probability of constraint violation of uniform
dissipation with the learned V in terms of the model complexity and the number of training samples.
Lemma C.1. Fix a δ ∈ (0, 1). Assume that the function V ∈ V is bounded by a constant B in a
compact set. Suppose that the minimization of Equation (18) is feasible and let V denote a solution.
The following statement holds with probability at least 1 − δ over the randomness of x1, . . . , xm
drawn i.i.d. from dataset D :

px∼D(LfV (x) + λV (x) > −η) ≤M

(
log3m

η2
R2

m(V) + 2 log(log(4B/η)/δ)

m

)
, (19)

where Rm(V) ≜ supx1,··· ,xm∈D Eϵ∼Unif({±1}m)

[
supV ∈V

1
m

∣∣∑m
i=1 ϵi(LfV (xi)+λV (xi))

∣∣] is the

Rademacher complexity of the function class V and M is a universal constant. Also, the positive
constant η is a margin parameter.

Remark C.2. Lemma C.1 is directly derived from Theorem 5 in [44], which connects the probabilistic
error in Equation (18) to an upper bound involving the Rademacher complexity Rn(V). Different
from the previous proof in [10, 16], we prove the general error bound of neural CLBF without any
quadratic form assumptions.

Lemma C.3 (Concentration of the Sampled Control Policy). Let u11:T , . . . , u
Q
1:T be i.i.d. random

vectors in [a, b]T from the target distribution U in Equation (6), and define

u∗1:T = E[u1:T], û1:T =
1

Q

Q∑
i=1

ui1:T .

17

Then for any ε > 0,

p
(
∥û1:T − u∗1:T ∥∞ ≥ ε

)
≤ 2T exp

(
− 2Qε2

(b− a)2

)
.

In particular, if

Q ≥ (b− a)2

2ε2
log
(2T
δ

)
,

then with probability at least 1− δ,

∥û1:T − u∗1:T ∥∞ ≤ ε.

The proof of Lemma C.3 follows by applying Hoeffding’s inequality to each coordinate of the
trajectory and then taking a union bound over the T time-steps. When the sample number Q is greater
than (b−a)2

2ϵ2 log(2Tδ), the probability is at least 1− δ.

To prove the convergence of violation region’s volumn of a neural CLBF trained using diffusion-
sampled policies, two key factors must be taken into account: (1) the Rademacher complexity of the
function class V , denoted R(V); and (2) the perturbations introduced by the diffusion-sampled policy.
In contrast to the noiseless case, we denote the Rademacher complexity of the learned neural CLBF
under diffusion-induced noise as R(V̂).
Theorem C.4 (Sample Complexity of Neural CLBF). Under the regularized assumptions, the
function class V is controlled by a N−layer neural network with ReLU activation function such that
V (x) = WNσN−1(WN−1 · · ·σ1(W1x)). The following statement holds with probability at least
1− 2δ over the randomness of x1, . . . , xm drawn i.i.d. from dataset D and Q > (b−a)2

2ϵ2 log(2Tδ):

px∼D(LfV (x) + λV (x) > −η)

≤M
[
log3m

η2

(
R√
m

(
(∥f∥∞ + λ)ΠN

i=1∥Wi∥2
)(N∑

i=1

(∥Wi∥2,1
∥Wi∥2

)2/3)3/2

+ ∥∇uf∥∞∥ΠN
i=1Wiϵ

)2

︸ ︷︷ ︸
R2

m(V̂)

+
2 log(log(4B/η)/δ)

m

]
.

(20)

Here, ∥W∥2 is the spectral norm of W and ∥W∥2,1 ≜
∑

l

√∑
kW

2
l,k is denoted the 1−norm of

2−norm of the rows of W . Also, ∥f∥∞ ≜ supx∈X ,u∈U ∥f(x, u)∥2, R ≜ supx∈X ∥x∥2.

Proof. We now take V ∈ V to be the class ofN−layer neural network with ReLU activation function:

V (x) =WNσN−1(WN−1 · · ·σ1(W1x)), σi(z) = max{0, z}, (21)

with bounded spectral norm and row-sum norm ∥W∥2 and ∥W∥2,1, respectively.
Bartlett–Foster–Telgarsky [8] show that the Rademacher complexity of N−layer neural
network with ρi−lipschitz activation function is

Rm ≤ ΠN
i=1ρi∥Wi∥2R√

m

(N∑
i=1

(
∥Wi∥2,1
∥Wi∥2

)2/3)3/2

, (22)

where R ≜ supx∈X ∥x∥2.

Back to the Rademacher complexity Rm(V̂), V̂ is different from V since it also influenced by
perturbations from the diffusion-sampled policy. we first adapt a fundamental fact from the calculus
of Rademacher complexities [9], along with the trivial identity

Rm(V̂) ≤ Rm(V) + Eϵ[sup
V ∈V

1

m
|

m∑
i=1

ϵ
(
Lf(xi,ûi)V (xi)− Lf(xi,ui)V (xi)

)
|].

18

Since | 1m
∑m

i=1 ϵiδi| ≤
1
m

∑m
i=1 |δi| ≤ supi |δi|, we can further decompose it as

Rm(V) ≤ Eϵ

[
sup
V ∈V

1

m

∣∣ m∑
i=1

ϵi(LfV (xi) + λV (xi))
∣∣]

+ sup
x∈X

sup
V ∈V

|⟨f(xi, ûi),∇V (xi)⟩ − ⟨f(xi, ui),∇V (xi)⟩|

≤ Eϵ

[
sup
V ∈V

1

m

∣∣ m∑
i=1

ϵi(LfV (xi)
∣∣]

︸ ︷︷ ︸
R1

+Eϵ

[
sup
V ∈V

1

m

∣∣ m∑
i=1

ϵi(λV (xi)
∣∣]

︸ ︷︷ ︸
R2

+ sup
x∈X

sup
V ∈V

|⟨f(xi, ûi),∇V (xi)⟩ − ⟨f(xi, ui),∇V (xi)⟩|︸ ︷︷ ︸
∆policy

.

(23)

R2 is exactly follows the complexity in Equation (22). Based on the definition of Lie derivative, the
Rademacher complexity R1 can be bounded as

R1 = Eϵ

[
sup
V ∈V

1

m

∣∣ m∑
i=1

ϵi(LfV (xi)
∣∣]

≤ ∥f∥∞Eϵ

[
sup
V ∈V

1

m

∣∣ m∑
i=1

sup
∥vi∥=1

ϵi⟨vi,∇V (xi)⟩
∣∣]

≤ ∥f∥∞∥ΠN
i=1ρi∥Wi∥2R√
m

(N∑
i=1

(∥Wi∥2,1
∥Wi∥2

)2/3)3/2

.

(24)

The derivation of Equation (24) from the first to second line is based on Ledoux-Talagrand lemma
[48] 3 and Lie derivative properties |LfV (x)| = ∥f∥∞∥∇V (x)∥2. The second line to third line
is from the Jacobian Lipschitz property, in which we can use ΠN

i=1ρi∥Wi∥2 to bound the norm of
Jacobian matrix. On each linear piece of the ReLU network, the gradient is given by the same weight
matrices, so the spectral-norm product likewise controls the complexity of the Jacobian.

The third term ∆policy can be bounded according Lemma C.3, and the probability holds with at least

1− δ when sample number Q > (b−a)2

2ϵ2 log(2Tδ):

∆policy = sup
x∈X

sup
V ∈V

|⟨f(xi, ûi),∇V (xi)⟩ − ⟨f(xi, ui),∇V (xi)⟩|

≤ sup
x∈X

sup
V ∈V

|⟨f(xi, ûi)− f(xi, ui),∇V (xi)⟩

≤∥∇uf∥∞∥∇V ∥∞ϵ ≤ ∥∇uf∥∞∥ΠN
i=1ρi∥Wi∥2ϵ.

(26)

Due to the properties of ReLU activation function, ρi is bounded by 1. Combining the R1, R2,
Lemma C.1, and perturbations of diffusion-sampled policy in Equation (26) together, we obtain that
the probability holds at least 1− 2δ:

px∼D(LfV (x) + λV (x) > −η)

≤M
[
log3m

η2

(
R√
m

(
(∥f∥∞ + λ)ΠN

i=1∥Wi∥2
)(N∑

i=1

(∥Wi∥2,1
∥Wi∥2

)2/3)3/2

+ ∥∇uf∥∞ΠN
i=1∥Wi∥2ϵ

)2

+
2 log(log(4B/η)/δ)

m

]
(27)

Here, M is a universally bounded constant, which avoids to use many constant terms. We can know
that the volume of violation region will decrease as Õ(1

m). The proof end.
3For arbitrary L−Lipschitz function ϕ : Rn → R, we have

Eϵ

[
sup
g∈G

1

m

∣∣ m∑
i=1

ϵi(ϕ(g(xi))
∣∣] ≤ LEϵ

[
sup
g∈G

1

m

∣∣ m∑
i=1

ϵig(xi)
∣∣]. (25)

19

C.2 Almost Sure Guarantees

To establish safety and stability with an almost sure guarantee, we also adopt the regularity assump-
tions detailed in Appendix C.1. Specifically, we assume that the gradients and Hessians of the
candidate CLBF, as well as the dynamics function and its Jacobian, are uniformly bounded over the
compact sets X and U . That is,

∥∇V ∥∞, ∥∇2V ∥∞, ∥f∥∞, ∥∇f∥∞ ≤ B

for some constant B > 0.

Lemma C.5 (Comparison Lemma [6]). Suppose that a continuously differentiable function V ∈
R+ 7→ R satisfies the following differential inequality:

V̇ (xt) ≤ −λV (xt) + C, ∀t ∈ R+, (28)

where λ ∈ R+, C ∈ R, and V̇ (x0) ∈ R. Then, we have

V (xt) ≤ exp(−λt)V (x0) +
C

λ

(
1− exp(−λt)

)
. (29)

Theorem C.6 (Safety and Stability with Almost Sure Guarantees). Let X be a compact state space
and consider the continuously differentiable dynamical system f in Equation (1). Let V : X → R+

be a smooth positive definite function. Assume that there exist constants λ > 0 and ϵ > 0, and an
invariant, connected, non-self-overlapping and measurable set Ω ⊂ X with small volume Vol(Ω) < ϵ,
such that the following holds:

(A) For every x ∈ X \Ω, the Lie derivative of V along f satisfies minu∈U LfV (x) < −λV (x).

(B) For x ∈ Ω, we allow LfV (x) ≥ −λV (x) without any further restrictions, i.e. no uniform
dissipation condition.

Then, there exist positive constants λ1 and C, with 0 < λ1 < λ, such that for any x0 ∈ Xs ⊂ X , the
solution xt of Equation (1) under the diffusion-sampled policy satisfies, almost surely,

V (xt) ≤ exp(−λ1t)V (x0) + Cϵ
1
n , ∀t ≥ 0. (30)

In other words, the influence of the “bad” region Ω introduces only an additive term of order O(ϵ
1
n),

ensuring that the overall decay remains almost exponential over time.

Proof. We split the argument into two main parts. In Step 1 we show that, by choosing a small
“buffer” around the bad set, we recover a uniform dissipation everywhere else. In Step 2 we
discretize the trajectory generated by diffusion policy, build a suitable supermartingale, and invoke
Azuma–Hoeffding together with the Borel–Cantelli lemma to conclude almost-sure exponential
decay.

Step 1. Uniform dissipation outside a small ball.

We firstly define l2−ball with radius r in Euclidean space Rn, it can be formally written as

B(q, r) ≜ {x | ∥x− q∥2 ≤ r}.

Concretely, for any radius r > 0 define the r−neighborhood of Ω by

Ωr = {x ∈ X : dist(x,Ω) ≤ r},

which is equivalently the Minkowski sum Ω+ B(0, r). By standard volume growth estimates (e.g.,
from Steiner’s formula), the volume of Ωr satisfies

V ol(Ωr) ≤ V ol(Ω) +O(r),

for some constant Cn > 0 depending on the geometry of Ω and the ambient dimension n. Therefore,
by choosing r = O(ϵ1/n), we can ensure that V ol(Ωr) ≤ 2ϵ for sufficiently small ϵ. This allows us
to recover a uniform dissipation on the complement X \ Ωr.

20

To analyze the local behavior, if xt is in the small bad region Ω. In such case, the extreme point can
be write as follow:

sup
t

LfV (xt) ≤ LfV (x′t) + sup
t

∥LfV (x′t)− LfV (xt)∥

≤ −λV (x′t) + sup
t

∥⟨f(x′t, u′t),∇V (x′t)⟩ − ⟨f(xt, ut),∇V (xt)⟩∥

≤ −λV (x′t) + (∥∇f∥∞∥∇V ∥∞ + ∥∇∇V ∥∥f∥∞) sup
t

∥x′t − xt∥,

(31)

where the derivation from this inequality is based on the regularity assumptions of f , V and u. Here,
the extreme point xt is lying in the bad region Ω, and x′t is just outside of a covering region Ωr. Since
Ω is always contained in a pre-defined region Ωr. We can always find x′t, with the distance between
xt and x′t bounded by c1ϵ

1
n with c1 > 0. The fact can be easy to derive based on the geometric

properties - the volume of hyper-sphere. According to this fact, we have

− λV (x′t) + (∥∇f∥∞∥∇V ∥∞ + ∥∇∇V ∥∥f∥∞) sup
t

∥x′t − xt∥

≤ − λV (x′t) + (∥∇f∥∞∥∇V ∥∞ + ∥∇∇V ∥∥f∥∞)cϵ
1
n

≤− (1− ϵ1)λV (x′t)− ϵ1λV (x′t) + (∥∇f∥∞∥∇V ∥∞ + ∥∇∇V ∥∥f∥∞)cϵ
1
n

≤− (1− ϵ1)λV (x′t)−ϵ1λV (x′t) + 2cB2ϵ
1
n︸ ︷︷ ︸

≤Cϵ
1
n .

.

(32)

According to the radially unbounded of CLBF see Proposition B.4, we have the property that
V (xt) ≥ µ∥xt∥2 with some µ > 0. Then, we have the following result such that

−(1−ϵ1)λV (x′t)−ϵ1λV (x′t)+2cB2ϵ
1
n ≤ −(1−ϵ1)λV (x′t), ∀x′t ∈ X \B(0,

√
2cB2ϵ

1
n

ϵ1λµ
). (33)

Step 2. Probabilistic convergence via a supermartingale

Stochastic model. Assume the controlled dynamics via diffusion policy are given by

dxt = f(xt, ut) dt+ γ2 Σ(xt) dWt,

where Wt is an n-dimensional Wiener noise, Let h > 0 be a fixed time step and define the discrete-
time sequence

Zk := V (xtk), where tk = kh.

Let Fk = σ(x0, x1, . . . , xk) be the associated filtration.

Itô increment decomposition. Applying Itô’s formula to V (xt) over interval [tk, tk+1] yields:

Zk+1 − Zk =

∫ tk+1

tk

LfV (xs, us) ds+
γ22
2

∫ tk+1

tk

tr
(
Σ⊤∇2V (xs)Σ

)
ds

+ γ2Mk, (34)

where Mk is a bounded martingale increment with E[Mk | Fk] = 0, and

|Mk| ≤ Σmax∥∇V ∥∞
√
h.

Uniform dissipation outside small region. Let X̃ := X \ B(0, rϵ), where

rϵ =

√
2cB2ϵ1/n

ϵ1λµ
.

From Step 1, we have
LfV (x) ≤ −(1− ϵ1)λV (x), ∀x ∈ X̃ .

Moreover, if γ2 is sufficiently small, then exist ϵ2 > 0 when the CLBF is radially unbounded (see
Proposition B.4)

γ22
2

tr(Σ⊤∇2V (x)Σ) ≤ ϵ2λV (x).

21

Combining these, we obtain from (34):

E[Zk+1 − Zk | Fk] ≤ −λ1hZk, λ1 := (1− ϵ1 − ϵ2)λ.

Thus, {Zk} is a nonnegative supermartingale.

Concentration via Azuma–Hoeffding [31]. Since the trajectory generated by diffusion policy is
always bounded, there exists a constant ∆max = O(hB + γ2

√
hB) such that

|Zk+1 − Zk| ≤ ∆max, a.s.

By Azuma–Hoeffding inequality, for any N ∈ N and η > 0:

p

(
ZN − Z0 + λ1

N−1∑
k=0

hZk ≥ η

)
≤ exp

(
− 2η2

N∆2
max

)
.

Choosing η = ∆max

√
N logN , we ensure the sum is finite as

∑∞
N=1 p(ZN −Z0+λ1

∑N−1
k=0 Zk) ≤∑∞

N=1N
−2 <∞. Then, by the first Borel–Cantelli lemma:

p (Zk+1 − Zk + λ1hZk ≥ 0 infinitely often) = 0,

which implies that almost surely:

Zk+1 − Zk ≤ −λ1hZk for all large k.

Therefore,
Zk ≤ (1− λ1h)

kZ0 a.s.
This implies that once the initial state x0 lies within the safe set, safety is almost surely guaranteed,
as the CLBF exhibits an almost monotonic decrease.

Return to continuous time and add influence of Ω. Replacing the discrete time k to continuous
time t/h and incorporating the worst-case additive term from the bad region Ω, which is bounded by
Cϵ1/n in Equation (32), we invoke the Comparison Lemma C.5 to conclude:

V (xt) ≤ exp(−λ1t)V (x0) +
Cϵ1/n

λ1
(1− exp(−λ1t)), ∀t ≥ 0, a.s.

where 0 < λ1 < λ. This completes the probabilistic part of the proof.

22

D More Details About Experiments

D.1 Tasks

Inverted Pendulum. The state of the inverted pendulum is given by x = [θ, θ̇], where θ is the
angular displacement from the upright position (measured counterclockwise from the vertical) and θ̇ is
the angular velocity. The control input is a torque u applied at the pivot. The system is parameterized
by the pendulum mass m, length l, and moment of inertia I = ml2. The dynamics are given by the
second-order nonlinear equation given by

ẋ =

[
θ̇

−mgl
I sin θ + 1

I u

]
,

and g is the gravitational acceleration. We consider a stabilization task at the upright equilibrium.
The goal set is x∗ = 0, the safe set is defined as Xsafe = {x : |θ| ≤ 0.5 rad ∧ ∥x∥ ≤ 2}, and the
unsafe set is defined as Xunsafe = {x : |θ| ≥ π/2 ∨ ∥x∥ ≥ 2.5}.

Car (Kin). The kinematic single-track car model is to catch a reference path. The reference path is
parameterized by its linear velocity vref , acceleration aref , heading ψref , and angular velocity ωref .

The state of the path-centric model is defined as x = [xe, ye, δ, ve, ψe], where (xe, ye) denotes the
position error in the Frenet frame, δ is the steering angle, ve is the velocity error and ψe is the
heading error. The control input is u = [vδ, along], representing the steering rate and the longitudinal
acceleration, respectively. The dynamics takes the form ẋ = f(x) + g(x)u, where

f(x) =


v cos(ψe)− vref + ωrefye

v sin(ψe)− ωrefxe
0

−aref
v

lr+lf
tan(δ)− ωref

 , g(x) =


0 0
0 0
1 0
0 1
0 0

 ,
with v = ve + vref , and lf , lr denoting the distances from the vehicle’s center of mass to the front
and rear axles, respectively. The goal state is defined as x∗ = 0. Since the reference heading and
position do not explicitly appear in the dynamics, this formulation describes a tracking task rather
than a reach-avoid task.

Car (Slip). The dynamic single-track (sideslip) car model is used for a trajectory tracking task,
where the objective is to follow a reference path. This model captures more complex vehicle behavior
than the kinematic model by incorporating lateral dynamics and tire slip, which become significant at
higher speeds or during aggressive maneuvers. The state of the model is x = [xe, ye, δ, ve, ψe, ψ̇e, β],
where xe, ye are lateral and longitudinal errors, δ is the steering angle, ve is the velocity error, ψe is the
heading error, ψ̇e is its time derivative, and β is the sideslip angle. The control inputs u = [vδ, along]
are the same as in the kinematic model. The dynamics takes the control form ẋ = f(x) + g(x)u,
where

f(x) =



v cos(ψe)− vref + ωrefye
v sin(ψe)− ωrefxe

0
0

ψ̇e

− µm
vIz(lr+lf)

(l2fCSfglr + l2rCSrglf)(ψ̇e + ωref) +
µm

Iz(lr+lf)
(lrCSrglf − lfCSfglr)β + µm

Iz(lr+lf)
(lfCSfglr)δ(

µ
v2(lr+lf)

(CSrglf lr − CSfglrlf)− 1
)
(ψ̇e − ωref)− µ

v(lr+lf)
(CSrglfCSfglr)β + µ

v(lr+lf)
(CSfglr)δ


,

g(x) =



0 0
0 0
1 0
0 1
0 0
0 0
0 0

 ,

23

with v = ve + vref , and parameters lf , lr, CSf , CSr, µ. g denotes gravitational acceleration. The
goal state is defined as x∗ = 0.

Segway. We consider the Segway obstacle avoidance task, where the system must move forward
while avoiding a circular obstacle. Successful avoidance requires the Segway to temporarily tilt
forward to maneuver around the obstruction. The state of the system is defined as x = [p, θ, v, ω],
where p is the horizontal position, θ is the tilt angle and v, ω are the corresponding linear and
angular velocities. The control input u is a horizontal force applied at the base. We assume the
wheel’s vertical position remains at zero and the Segway length is normalized to one. The obstacle
is modeled as a circle of radius 0.1 centered at (0, 1). The position of the Segway’s top is given by
(px, py) = (p+ sin θ, cos θ). The unsafe set is defined as

Xunsafe =

{
x |
√
p2x + (py − 1)2 ≤ 0.1

}
,

and the safe set is

Xsafe =

{
x |
√
p2x + (py − 1)2 ≥ 0.15

}
.

Let M be the base mass, m and J the mass and moment of inertia of the body, and l the distance
from the base to the center of mass. Define total mass Mt =M +m and total inertia Jt = J +ml2.
The gravitational constant is denoted g. The dynamics are expressed in form as ẋ = f(x) + g(x)u,
where

f(x) =


v
ω

g sin θ cos θ+λ1v cos θ+λ2v−lω2 sin θ

cos θ−MtJt
m2l2

+λ9

λ3v cos θ+λ4v−Mtg
ml sin θ−ω2 sin θ cos θ

cos2 θ−MtJt
m2l2

+λ9

 , g(x) =


0
0

λ6
Mt

(λ5+cos θ)

cos2 θ−MtJt
m2l2

+λ9
λ8l
Jt

(cos θ+λ7)

cos2 θ−MtJt
m2l2

+λ9

 .
Here, λi denote intermediate constants derived from model parameters and simplifications. This
formulation captures the coupled nonlinear dynamics and their dependence on tilt for obstacle
avoidance.

Neural Lander. The state of the Neural Lander model is defined as x = [px, py, pz, vx, vy, vz],
where [px, py, pz] denotes position and [vx, vy, vz] velocity. The control input is u = [fx, fy, fz],
with pz defined to be positive in the upward direction. This model is parameterized by the mass m
and system dynamics are expressed as ẋ = f(x) + g(x)u, where

f(x) =


vx
vy
vz

Fa1/m
Fa2/m

Fa3/m− g

 , g(x) =


0 0 0
0 0 0
0 0 0

1/m 0 0
0 1/m 0
0 0 1/m

 ,
and g is the gravitational acceleration. The term Fa = [Fa1, Fa2, Fa3] represents the aerodynamic
disturbance due to the ground effect. The goal state is defined as x∗ = 0, the safe set as Xsafe = {x :
pz ≥ −0.05 ∧ ∥x∥ ≤ 3}, and the unsafe set as Xunsafe = {x : pz ≤ −0.3 ∨ ∥x∥ ≥ 3.5}.

2D Quadrotor. The state vector of the 2D quadrotor model is defined as x = [px, pz, θ, vx, vz, θ̇],
where [px, pz] denotes position, θ is the pitch angle, and [vx, vz], θ̇ represent the corresponding
velocities. The control input is u = [u1, u2], with pz , u1, and u2 taken to be positive in the upward
direction. The system is characterized by the mass m, moment of inertia I , and rotor arm length r.
The dynamics are described by the system ẋ = f(x) + g(x)u, where

f(x) =


vx
vz
θ̇
0
−g
0

 , g(x) =


0 0
0 0
0 0

1
m sin θ 1

m sin θ
1
m cos θ 1

m cos θ
r
I − r

I

 ,

24

and g denotes the gravitational constant. The unsafe set Xunsafe is defined as the region occupied by
obstacles, while the safe set Xsafe is specified as a 0.1 m offset from the obstacle boundaries.

3D Quadrotor. The state of the 9-dimensional quadrotor model is defined as x =
[px, py, pz, vx, vy, vz, ϕ, θ, ψ], where pi and vi denote positions and velocities, and ϕ, θ, ψ are the
roll, pitch, and yaw angles, respectively. The control input is given by u = [f, ϕ̇, θ̇, ψ̇]. This model is
parameterized by the mass m, and system dynamics are expressed as a form, ẋ = f(x)+ g(x)u, with

f(x) =



vx
vy
vz
0
0
−g
0
0
0


, g(x) =



0 0 0 0
0 0 0 0
0 0 0 0

− 1
m sin θ 0 0 0

1
m cos θ sinϕ 0 0 0
1
m cos θ cosϕ 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


,

where g denotes the gravitational acceleration. The goal state is defined as x∗ = {0}, the safe set as
Xsafe = {x : pz ≥ 0 ∧ ∥x∥ ≤ 3}, and the unsafe set as Xunsafe = {x : pz ≤ −0.3 ∨ ∥x∥ ≥ 3.5}.

F-16. The F-16 aircraft is modeled as a nonlinear dynamical system with a 16-dimensional state
vector x ∈ R16 and a 4-dimensional control input vector u ∈ R4. Each component of the state vector
has a physical interpretation as follows:

x = [VT , α, β, ϕ, θ, ψ, P,Q,R, pn, pe, h, pow, intNz , intps, intNyr]

• VT : True airspeed (ft/s) — the speed of the aircraft relative to the surrounding air.
• α: Angle of attack (rad) — the angle between the aircraft’s longitudinal axis and the

oncoming airflow.
• β: Sideslip angle (rad) — the angle between the aircraft’s heading and its actual flight path

laterally.
• ϕ: Roll angle (rad) — the rotation of the aircraft about its longitudinal axis.
• θ: Pitch angle (rad) — the rotation of the aircraft about its lateral axis.
• ψ: Yaw angle (rad) — the rotation about the vertical axis, determining heading.
• P : Roll rate (rad/s) — angular velocity about the longitudinal (roll) axis.
• Q: Pitch rate (rad/s) — angular velocity about the lateral (pitch) axis.
• R: Yaw rate (rad/s) — angular velocity about the vertical (yaw) axis.
• pn: Northward position (ft) — horizontal displacement in the north direction.
• pe: Eastward position (ft) — horizontal displacement in the east direction.
• h: Altitude (ft) — vertical position above sea level.
• pow: Engine power state — internal dynamic state representing engine thrust lag.
• intNz : Integrator state for vertical acceleration (normal G-force) regulation.
• intps: Integrator state for stability-axis roll rate tracking.
• intNyr

: Integrator state for lateral acceleration and yaw rate tracking.

The control input vector is:
u = [N ref

z , pref
s , Ny

ref
r , throttle]

• N ref
z : Reference normal acceleration (G-forces) — controls pitch via the elevator.

• pref
s : Reference roll rate — governs rolling motion via ailerons and rudder.

• Nyref
r : Reference combination of side acceleration and yaw rate — maintains coordinated

flight and yaw control.

25

• throttle: Throttle command — scalar value in [0, 1], where 0 represents idle and 1
represents full throttle.

This system is not affine in control; that is, it cannot be expressed as ẋ = f(x) + g(x)u because the
inputs pass through a nonlinear autopilot that internally computes actuator commands, which are then
applied via a complex, nonlinear aircraft model involving aerodynamic forces, actuator dynamics,
and engine lag.

Goal Set:
x⋆ =

{
x ∈ R16

∣∣ θ + α ≥ 0, |ϕ| ≤ 0.1, |P | ≤ 0.25, h ≥ 1000
}

Safe Set:

Xsafe =
{
x ∈ R16

∣∣ h ≥ 500, 0.95 · xmin ≤ x ≤ 0.95 · xmax, x /∈ Bgoal
}

where Bgoal is a buffer region around the goal set defined as:

Bgoal =
{
x ∈ R16

∣∣ θ + α ≥ −0.2, |ϕ| ≤ 0.2, |P | ≤ 0.5, h ≥ 800
}

Unsafe Set:
Xunsafe =

{
x ∈ R16

∣∣ h ≤ 100
}

26

E Implementation

Algorithm 1: S2Diff
Input: Distribution of initial states Dx0

, model dynamics f , nominal policy, number of training
epochs K

Output: Certificate function (CLBF) VK
Initialize the certificate function (CLBF) V0 with parameters θ;
for epoch k = 1 to K do

// === Phase 1: Guided Trajectory Sampling ===
Initialize an empty dataset of new trajectories D;
for each initial state x0 in a batch sampled from Dx0 do

Generate one full trajectory via a guided denoising process by maximizing Equations (6)
and (8);

Sample a clean trajectory U0 by applying the reverse diffusion process (Equation (10))
with model dynamics f , starting from noise;

The process is guided at each step by the current CLBF Vk−1;
Add the resulting trajectory U0 to the dataset D;

// === Phase 2: CLBF Update ===
Use the entire newly generated dataset D for training;
Update CLBF parameters by performing gradient descent on the loss from Equation (11),

using trajectories from D, obtain Vk;

In Phase 1, we use the current CLBF Vk−1 to guide a model-based diffusion [32] sampler to generate
a batch of trajectories. This is done by sampling from a CLBF-shaped target distribution p(U),
defined in Equation (6) and (8), and using the reverse diffusion process. At each denoising step,
we approximate the score ∇ log p(U i) via sequential Monte Carlo, leveraging the known dynamics
model f(x, u).

Importantly, our diffusion process is not learned via neural network training. Instead, it is a fully
algorithmic, model-based diffusion guided by the CLBF through the structure of the target distribution
p(U). This distribution is explicitly designed to assign higher likelihood to trajectories that satisfy
the safety and stability criteria, i.e., psafe and pstable. As a result, the diffusion process is biased toward
generating CLBF-compliant trajectories without requiring gradient-based training of a score network.
While there is no learned diffusion model, the objective p(U) still plays a central role—it guides the
sampling, not learning.

In Phase 2, the CLBF is updated using the sampled trajectories by minimizing the supervised loss
defined in Equation (11). This alternating process is repeated over training epochs, allowing the
CLBF and the sampler to iteratively improve.

27

F More Experiment Results

We also present additional experimental results, including extended ablation studies and further
quantitative analysis. Note that all inference time evaluations were conducted on the same device:
Intel i9-13900 CPU with one RTX 4090 GPU.

F.1 More Ablation Studies

Ablation in Trajectory Length We conduct an ablation study to evaluate the impact of trajectory
length on the performance of S2Diff in neural lander, as shown in Table 6. Short trajectories (length
2) lead to low evaluation time but suffer from poor safety (35%) due to limited foresight. Increasing
the trajectory length to 5 significantly improves both safety (100%) and accuracy, achieving the best
performance in terms of tracking error. However, further increasing the trajectory length results in
diminishing returns for safety and degraded tracking performance, along with substantially higher
evaluation time. This suggests that moderate trajectory lengths strike a good balance between
efficiency, safety, and control accuracy, while excessively long rollouts introduce variance and
unnecessary computational cost.

Table 6: Control performance of S2Diff under different trajectory lengths in neural lander.
Trajectory length Eval. time (ms) Safety rate ∥x− x⋆∥
2 28.9± 0.4 35% 0.08± 0.05
5 35.4± 0.7 100% 0.06± 0.02
10 105.1± 2.4 100% 0.09± 0.06
15 126.3± 1.5 100% 0.17± 0.09
20 237.5± 6.8 100% 0.26± 0.07
50 598.6± 25.0 100% 0.35± 0.17

Parameterization of V . We observed that the quadratic-form parameterization V (x) =
w(x)⊤w(x), as used in [13], can result in a high failure probability for systems with non-convex
constraints, such as the 2D quadrotor, Segway, and F-16. In contrast, employing a general neural
network parameterization for V improves both training stability and control performance.

28

F.2 Other Quantitative Results

F.2.1 Inverted Pendulum

Figure 6: Comparison of policy landscapes for the inverted pendulum task — rCLBF-QP (left) vs.
ours (right). Each surface visualizes the controller’s output torque over a 2D slice of the state space
(pendulum angle vs. angular velocity). The surface height and color both represent the magnitude of
the control input, providing a physical interpretation of how each policy maps states to actions. Our
method yields a smooth and symmetric policy around the upright equilibrium (angle = 0, velocity
= 0), which is desirable for stability and generalization. In contrast, the rCLBF-QP policy produces
irregular and less structured patterns, likely due to its step-wise greedy updates and slack variable
usage.

F.2.2 Car Tracking

Figure 7 and Figure 8 compare the control performance of rCLBF-QP and S2Diff in car tracking
tasks. While both methods closely follow the reference trajectory, S2Diff achieves a more globally
consistent performance with notably lower tracking error across time. The error profile of S2Diff
(Figure 8, right) shows reduced oscillation and slower error accumulation compared to rCLBF-QP
(Figure 7, right), indicating improved stability and accuracy in long-horizon tracking.

Figure 7: Control performance of rCLBF-QP in car tracking tasks. The left plot shows the reference
and controlled trajectories, while the right plot depicts the tracking error over time.

29

Figure 8: Control performance of S2Diff in car tracking tasks. The left plot shows the reference and
controlled trajectories, while the right plot depicts the tracking error over time.

F.2.3 Segway

MBDrCLBF-QP Ours

Figure 9: Comparison of control performance across three methods — rCLBF-QP (left), MBD
(center), and Ours (right). The objective of this task is to stabilize the system to the target point
(2, 0). The figure shows that rCLBF-QP struggles to ensure stability due to globally inconsistent
behavior induced by its step-wise QP formulation. MBD approaches the boundary of the unsafe
set and exhibits unstable performance with higher variance. In contrast, our method achieves safe
and consistent control, with most initial conditions stabilizing close to the target point (2, 0). This
demonstrates that our algorithm ensures more globally consistent behavior and delivers more stable
performance than MBD, guided by the learned CLBF.

30

F.2.4 Quadrotor

Figure 10: Change in the scalar value of the CLBF under the control policy of S2Diff for the 2D
quadrotor. The color of each trajectory corresponds to Figure 4. The scalar values of the CLBF from
different initial conditions under S2Diff exhibit a nearly monotonic decrease, closely aligning with
Lyapunov theory.

F.2.5 Neural Lander

rCLBF-QP Ours

Figure 11: Comparison of 3D trajectories under rCLBF-QP (left) and our method (right). Each
colored trajectory represents a system evolution from a different initial condition, with the black
star indicating the target. The rCLBF-QP controller fails to guarantee global safety when the slack
variable is reduced, leading to constraint violations and unsafe behavior. In contrast, our method
consistently maintains safe and stable trajectories across all initial conditions.

31

F.2.6 F-16

MBD Ours

Figure 12: Comparison of F-16 control performance between MBD (left) and our method (right).
The plots illustrate the evolution of altitude, pitch angle, velocity, angle of attack, and control inputs
(elevator and throttle) over time. Our method achieves smoother and more stable flight dynamics,
with significantly less oscillation in pitch and angle of attack, and well-regulated velocity recovery.
Control inputs remain continuous and low-frequency, indicating efficient and robust control. In
contrast, MBD shows high-frequency fluctuations in both elevator and throttle signals, suggesting
aggressive or unstable control behavior.

32

G Implementation of Baselines.

rCLBF-QP. The implementation of this baseline, including network architectures and hyperpa-
rameters, strictly follows the settings described in the original paper [13]. The corresponding code is
publicly available at https://github.com/MIT-REALM/neural_clbf/tree/main.

MPC. This baseline employs model predictive control (MPC), solved using the Gurobi optimizer
at each time step. The implementation strictly follows the settings described in [13], including a time
discretization of 0.1 seconds and a lookahead horizon of 5 steps. The MPC is configured to track
reference trajectories while satisfying both dynamic and control constraints.

MBD. This baseline is implemented following the methodology and hyperparameter settings
outlined in the original paper [33]. To ensure a fair comparison with MPC, the MBD controller
uses a time step of 0.1 seconds and a planning horizon of 5 steps. The controller is trained to
generate control sequences that track reference trajectories while satisfying learned dynamics and
safety constraints. The implementation code is available at https://github.com/LeCAR-Lab/
model-based-diffusion.

Ours. The following Table 7 provides the experimental details, including the network architecture
and other relevant hyperparameters.

Table 7: Hyperparameter configurations for eight tasks using S2Diff.

Task NN Architecture† Safe Level c Temp. Loss Coeff.‡ Traj. Len.

Inverted Pendulum 3×64 1 0.1 1,1 5
Car (Kin.) 3×64 1 0.1 1,1 5
Car (Slip) 3×64 1 0.1 1,1 5
Segway 3×64 1 0.1 1,1 5
Neural Lander 3×64 10 0.1 1,1 5
2D Quad 3×64 1 0.1 1,1 5
3D Quad 3×64 10 0.1 1,1 5
F-16 3×128 10 0.1 1,1 5

† Format “L×H” denotes L layers with H hidden units per layer.
‡ Two coefficients (α1, α2) represent weights for Lie derivative and discrete differences and CLBF losses,
respectively.

==

33

https://github.com/MIT-REALM/neural_clbf/tree/main
https://github.com/LeCAR-Lab/model-based-diffusion
https://github.com/LeCAR-Lab/model-based-diffusion

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: The abstract and introduction clearly state the key contributions of the paper:
the introduction of S2Diff, a novel diffusion-based control framework that jointly learns
and utilizes certificate functions inspired by Almost Lyapunov theory. The claims about
avoiding control-affine assumptions, enabling safe and stable control, and offering a flexible
probabilistic formulation are well-supported by both the theoretical exposition and the
empirical results. The limitations of diffusion speed are also acknowledged, along with a
potential remedy via policy distillation, aligning well with the scope of the current work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a discussion of its main limitation in conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

34

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide assumptions and complete proof in Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All code and data are provided in supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

35

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies the necessary experimental details to understand and
reproduce the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports statistical variability for key experimental results using error
bars that reflect standard deviation over multiple runs with different random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides details of the compute resources used in the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research fully conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper includes a discussion of broader impacts. On the positive side, the
proposed framework has the potential to improve the safety and stability of learning-based
control systems, which could benefit applications such as robotics, autonomous vehicles, and
other real-world systems where safety is critical. On the negative side, like other advanced
control techniques, there is a risk that the method could be misapplied in high-stakes systems
without sufficient verification, potentially leading to unintended behavior. While this work

37

https://neurips.cc/public/EthicsGuidelines

is primarily theoretical and demonstrated in simulation, awareness of deployment risks is
important. We believe transparency and further research into verification and robustness can
help mitigate these concerns.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The models and data used in this work do not pose a high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All external assets used in this work—such as code and datasets—are properly
cited in the paper. The licenses and terms of use are respected and, where applicable,
included in the references or appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.

38

• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces new code assets implementing the proposed S2Diff
framework. Documents are provided in supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve any crowdsourcing or research with human subjects.
All experiments are conducted in simulated environments without human data or interaction.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

39

paperswithcode.com/datasets

Justification: This work does not involve human subjects, user studies, or the collection of
human data. Therefore, IRB approval is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used as part of the core methodology, experiments, or technical
contributions of this work. Any use of LLMs was solely for writing refinement and editing
purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

40

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminary
	Method
	Probabilistic Formulation and Diffusion Sampling
	CLBF Update via Sampled Trajectories
	Theoretical Results

	Experiment
	Control Performance Comparison
	Ablation Study

	Conclusion
	Notation
	Preliminaries
	Theoretical Guarantees
	Convergence Analysis of Neural CLBFs
	Almost Sure Guarantees

	More Details About Experiments
	Tasks

	Implementation
	More Experiment Results
	More Ablation Studies
	Other Quantitative Results
	Inverted Pendulum
	Car Tracking
	Segway
	Quadrotor
	Neural Lander
	F-16

	Implementation of Baselines.

