

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LONG-HORIZON RELIABILITY OF LLM AGENTS: SOCIAL EXPOSURE, PERSONAS, AND METACOGNITIVE POLICY ON A DELAY-OF-GRATIFICATION SURVIVAL BENCHMARK

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly deployed as long-horizon, multi-turn agents that must reason, plan, utilize tools, and interact with peers. Yet, most evaluations lack auditable, multi-factorial experiments with time-resolved statistics that reveal how behavior unfolds under explicit constraints. Inspired by the Stanford marshmallow experiment, we introduce a compact, multi-agent microbenchmark that reframes the delay of gratification as a discrete-time survival task. ReAct-style agents operate at minute-level granularity with an internal "raise-a-question" tool subject to a per-step budget; we factorially manipulate social visibility (broadcast vs. isolated), persona prompts (hedonic drive; age), and metacognitive policy (mandatory vs. optional self-questioning). From complete step-level traces we estimate Kaplan–Meier (KM) survival and discrete-time hazards, enabling transparent inspection of social influence and tool-use dynamics. We extend the study to 8 model families (open- and closed-weight), totaling 84,540 trajectories across 512 cells, with $\approx 100\%$ valid runs. Aggregate behavior exhibits a sharp early impulse (initial eat 0.062) followed by a long low-hazard tail; completion is 0.824, with median time-to-eat ≈ 17 and Restricted mean survival time (RMST) ≈ 16.47 . In pooled hazards, mandatory self-questioning increases per-minute risk ($\beta \approx 0.093$; Odds Ratio (OR) ≈ 1.10), while persona factors strongly modulate hazard (vs. crave: like OR ≈ 0.45 , neutral ≈ 0.26 , none ≈ 0.24 ; vs. adult: child ≈ 8.65 , senior ≈ 5.60). The broadcast vs. isolated main effect is near zero on average ($\beta \approx -0.009$; OR ≈ 0.99), but we uncover three hazard-shape regimes (near-flat, early-spike, and bi-modal) that vary by model family and mediate when social exposure matters. Ablations that remove hedonic and/or age instructions flatten hazards and raise completion toward 1.0. We release code, prompts, logs, and analysis artifacts to facilitate replication and future work on causal social exposure, networked interaction, and other long-horizon agent tasks.

1 INTRODUCTION

Modern uses of large language models (LLMs) are inherently conversational and iterative, as users and agents co-construct tasks over multiple turns, revise goals, and recover from mistakes. Recent multi-turn evaluations show that single-turn prowess does not guarantee long-horizon reliability: agentic setups reveal gaps in reasoning and decision-making Liu et al. (2023), tool use and natural-language feedback help but interact idiosyncratically with training and instruction tuning Wang et al. (2024b), and performance can drop substantially when moving from single- to multi-turn interaction Laban et al. (2025). These observations motivate *auditable, constrained, multi-factorial* experiments that measure how agent behavior unfolds over time and in the presence of other agents.

Inspired by a classic Stanford study on delayed gratification (Mischel & Ebbesen, 1972) and by recent LLM research replicating classical cognitive tasks (Lampinen et al., 2024; Strachan et al., 2024), including marshmallow-like scenarios (Coletta et al., 2024), we introduce cross-model relia-

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
bility study and present an auditable, minute-resolution benchmark that reframes delayed gratification as a discrete-time survival task for multi-turn LLM agents under explicit tool budgets.

1.1 CONTRIBUTIONS

Benchmark. We introduce a compact, auditable benchmark for long-horizon, multi-agent interaction. Episodes produce per-minute, per-agent traces (actions, messages, tool calls), enabling survival-analysis evaluation via KM curves, RMST, and discrete-time hazard models with time effects. This design yields transparent, step-level diagnostics suitable for ablations and policy comparisons.

Cross-model generalization. We evaluate eight LLM families and find that three core effects replicate, in direction and with similar order of magnitude, across models: (1) social exposure (broadcast vs. isolated), (2) metacognitive policy (MUST vs. MAY), and (3) persona (hedonic drive, age). We quantify between-family heterogeneity and pooled effects using per-family hazards and RMST with a random-effects meta-estimate and mixed-effects hazards.

Ablations, dynamics, and policy. Removing hedonic drive and/or age monotonically improves survival and narrows social-exposure gaps, while the MUST policy remains riskier than MAY across families. We characterize multi-turn dynamics with event-time distributions, step-wise hazards, tool-use trajectories, and peer-exposure patterns, yielding interpretable temporal profiles of failure that explain when social exposure harms most.

Reproducibility and artifacts. All experiments are fully scripted; we release per-minute logs, configuration files, prompts, and analysis code to regenerate every table and figure from raw traces (fixed seeds, hardware/cost details). We follow ICLR’s reproducibility and ethics guidance, provide an anonymized artifact for review, and will open-source code and data upon acceptance.

1.2 HYPOTHESES AND FINDINGS

We test five hypotheses across eight models. **H1 Social visibility:** when agents can observe peers, the hazard of committing to the immediate option increases relative to isolation. **H2 Internal state:** personas reflecting stronger hedonic drive and child/senior age elevate hazard, whereas neutral drive and adult age reduce it. **H3 Metacognition:** a mandatory self-questioning step (MUST) changes hazard relative to optional use (MAY); we assess whether such scaffolding stabilizes behavior. **H4 Temporal structure:** the per-minute hazard is *non-constant* across the horizon (i.e., behavior displays systematic time dependence), without pre-specifying its shape. **H5 Prompt crafting pre-registered expectation:** more prescriptive prompt scaffolding and instruction complexity, including enforced metacognitive steps, should improve adherence (lower hazard) compared to a minimalist design.

Brief summary of findings (8 families, 84,540 trajectories): **H1** Near-zero average social main effect: broadcast vs. isolated pooled OR ≈ 0.99 (not significant). **H2** Strong persona effects: e.g., *child* and *senior* vs. *adult* OR ≈ 8.65 ; *neutral* vs. *crave* OR ≈ 0.26 . **H3** MUST increases risk vs. MAY (OR ≈ 1.10). **H4** Hazards are non-constant with an early spike (initial eat = 0.062). **H5** Contradicted: heavier prescriptive scaffolding does not lower hazard; MUST raises risk (H3), while removing persona prompts flattens hazards and pushes completion toward 1.0.

2 RELATED WORK

Classic Cognitive Tasks, LLMs and Multi-Turn Interactions. Our study contributes to a recent body of work that adapts classic cognitive tasks to investigate LLM capabilities. Models show human-like *content effects* in reasoning (Lampinen et al., 2024); near-human performance on Theory-of-Mind tasks can degrade under prompt variations (Strachan et al., 2024; Kosinski, 2024); and judgment, decision-making, and memory studies report framing/probability biases and capacity limits (Binz & Schulz, 2023; Wang et al., 2024a; Zhang et al., 2024; Gong & Zhang, 2024). These studies are largely single-prompt or short-horizon; we instead target *multi-turn* interaction by importing delayed gratification into a controlled, minute-by-minute, multi-agent setting.

108 **Human delay of gratification and intertemporal choice.** The Stanford marshmallow experiments
 109 and subsequent studies on delay of gratification show that attention and cognitive strategies mod-
 110 ulate waiting, inspiring the "hot/cool" model of self-control (Mischel & Ebbesen, 1972; Metcalfe
 111 & Mischel, 1999). Long-term links to outcomes are moderated by environmental reliability and
 112 socioeconomic context (Kidd et al., 2013; Watts et al., 2018), with neural work implicating adult
 113 self-control circuitry (Casey et al., 2011). A recent study explored marshmallow-like scenarios in
 114 the context of LLMs (Coletta et al., 2024), although it did not include temporal/social analyses. In
 115 behavioral economics, intertemporal choice formalizes conflicts between immediate and delayed re-
 116wards via hyperbolic discounting and time-inconsistent preferences (where immediate rewards are
 117 disproportionately valued over future ones, formalized in the β - δ model), commitment, and naïve vs.
 118 sophisticated agents (Ainslie, 1992; Laibson, 1997; O'Donoghue & Rabin, 1999); classic procedures
 119 quantify delay preferences (Mazur, 1987). We adapt these insights to an LLM survival-analysis
 120 frame over discrete minutes.

121 **Scaffolding, multi-agent interaction, evaluation, and personas.** Our framework builds on several
 122 key developments in LLM interaction design and evaluation. Reasoning architectures such as Re-
 123 Act, Self-Ask, and Reflexion scaffold stepwise deliberation and tool use (Yao et al., 2023a; Press
 124 et al., 2022; Yao et al., 2023b; Shinn et al., 2023). Multi-agent coordination and social simulation,
 125 e.g., debate, role-based systems, and long-horizon agent societies, provide structure for interaction
 126 and influence (Du et al., 2023; Li et al., 2023; Wu et al., 2024; Park et al., 2023). Our analysis
 127 uses time-to-event tools, KM and discrete-time logistic hazard models, to quantify factor effects on
 128 waiting (Kaplan & Meier, 1958b; Singer & Willett, 1993; Allison, 1982). Finally, persona prompting
 129 distinguishes role-play from personalization (Tseng et al., 2024); although personas may not
 130 improve objective task performance and can bias behavior (Zheng et al., 2024), we employ them as
 131 controlled manipulations while acknowledging the limitations of LLMs as human surrogates (Gao
 132 et al., 2025)

133 3 EXPERIMENT SETTING

135 **Environment and Episode Modeling.** We evaluate LLM agents in a finite-horizon, multi-
 136 turn environment formalized as a Partially Observable Markov Decision Process (POMDP) Figure
 137 1a (Kaelbling et al., 1998), characterized by horizon $H = \text{risk_horizon} + 1$. At each step
 138 $t \in \{0, \dots, \text{risk_horizon}\}$, the environment state S_t evolves based on the agent's action A_t . The
 139 agent receives an observation O_t , composed of the current step index and, in broadcast conditions,
 140 recent peer actions ($\text{others_responses}_t$). After optional internal deliberation via the
 141 `raise_a_question` tool (limited by a per-step budget), the agent emits a constrained action
 142 $A_t \in \{\text{I wait, I eat the marshmallow}\}$. The environment returns a reward R_{t+1} , increments the
 143 step $t \rightarrow t + 1$, and provides the next observation O_{t+1} . Agents reaching the end of the risk horizon
 144 without eating move to the threshold step ($\text{threshold_step} = \text{risk_horizon} + 1$), receiving the delayed
 145 payoff. Formally, the interaction loop at each step is:

$$\begin{aligned} O_t &= [\text{Time}(t), \mathbf{1}_{\text{broadcast}} \cdot \text{others_responses}_t], \\ A_t &= \pi_\theta(O_t, \{\text{raise_a_question}(O_t, i)\}_{i=1}^{k_t}), \quad 0 \leq k_t \leq \text{cap}, \\ R_{t+1}, S_{t+1}, O_{t+1} &= \mathcal{E}(S_t, A_t), \\ b_t(S_t) &= P(S_t \mid O_{0:t}, A_{0:t-1}), \end{aligned}$$

150 where the tool is *internal* and does not alter S_t , and in isolated conditions ($\mathbf{1}_{\text{broadcast}} = 0$), obser-
 151 vations O_t fully determine the underlying state S_t , reducing the environment to a finite-horizon
 152 Markov Decision Process (MDP) Figure 1a (Puterman, 1994).

153 The agents operate within a ReAct loop (Yao et al., 2023a) (Thought + Tool \rightarrow PAUSE \rightarrow Ob-
 154 servation \rightarrow Thought + Answer) with a dedicated validation tool, `raise_a_question`, which is
 155 gated by a per-step budget. The environment is designed to be turn-based and synchronous: at each
 156 minute, all active agents observe, decide, and act. When an agent chooses to eat, they are eliminated
 157 from subsequent minutes, while waiting maintains the agent's participation but keeps them at risk.

158 We implement a factorial design that manipulates agents' social context (isolated vs. broadcast),
 159 internal personas (hedonic drive and age), and metacognitive scaffolding (mandatory vs. optional
 160 tool use). We assess these factors via KM curves (Kaplan & Meier, 1958a) and discrete-time hazard
 161 models (Allison, 1982).

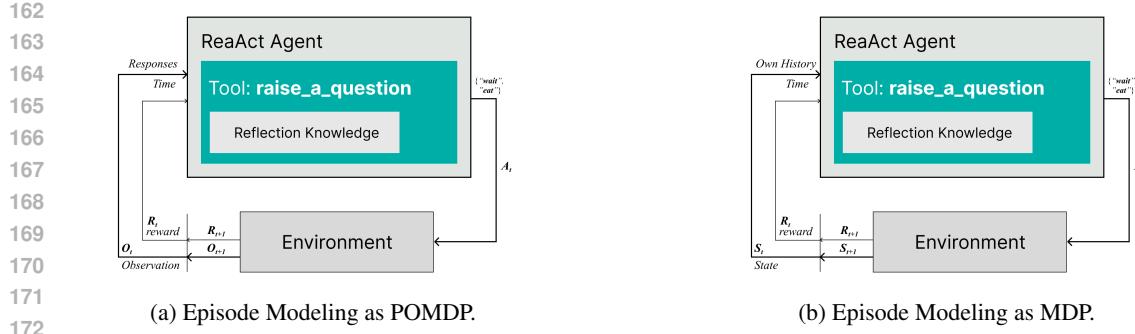


Figure 1: Interaction loops for (a) the partially observable Markov decision process (POMDP, broadcast condition) and (b) the fully observable Markov decision process (MDP, isolated condition). In (a), the agent observes time and peer responses, introducing partial observability. In (b), the agent observes only time and its own history, rendering the environment fully observable. At each step, the agent internally uses a capped `raise_a_question` tool, then chooses an action $a_t \in \{\text{wait, eat}\}$. The environment provides a reward, updates the state, and advances to the next observation.

Time Horizon & Rewards. The scenario maps 20 minutes of delayed gratification to T discrete steps (default $T = 20$, with Step 0 serving as initialization). As LLMs do not have an inherent concept of time, the time is modeled in natural language: at each step, the agent is reminded that X th minutes has passed. The environment implements a reward structure where agents receive +1.0 for outputting "I eat the marshmallow" at any minute t , followed by elimination. Agents who persist until the final minute receive a terminal reward of +2.0, representing successful delayed gratification. For implementation purposes, the final step employs a final-resolution prompt. ReAct agents are forced to return {Answer: "I won"} to signify the successful resolution of the session. This response is normalized to "waited_full" during analysis while preserving raw traces.

Social Context & Personas. We manipulate the observability of peers through two distinct conditions: *Isolated*: Agents have access only to their own historical actions and outcomes; *Broadcast*: Observations include structured summaries of peers' last actions history per step and other responses. This design enables the study of social influence pathways, such as cascading effects when peers opt for early consumption. Each agent is parameterized by persona prompts that incorporate reflection knowledge, such as age and hedonic drive. The age persona can be *child* (5 y/o), *adult* (35 y/o), *senior* (75 y/o), *none* ("You are a policy"), while the hedonic drive can be categorized as *crave*, *like*, *neutral*, *none*. These instructions remain private to the agent and are explicitly referenced in its Thought traces (e.g., "I am a 75 years old and I crave sweets.").

Tool Use & Metacognition. ReAct Agents employ `raise_a_question` tool for self-querying under a per-step budget constraint. We vary two key aspects: *tool_policy*: agents either MUST use the tool or MAY use it optionally. Agents are unaware of their available question budget and are directed to provide and answer if the budget is exhausted. Budget-related metrics are logged at each step to facilitate downstream analyses.

Action Space Integrity & Validation. The environment implements strict validation of terminal answer formats at each minute. Only the exact strings "I eat the marshmallow" or "I wait" are accepted as valid responses. Steps containing any other response are marked with a validation error in the trajectory. Agents who choose to eat are recorded along with their termination metadata.

Implementation & Reproducibility. The framework maintains a clear separation between abstractions and scenario plugins, providing a single-entry run and evaluation harness for parameter sweeps. Each experimental run captures a full set of agents' trajectories which includes: a full ReAct traces (Thought, Tool calls, Observations, Answers); budget accounting episode summaries consolidating per-agent outcomes, timing, and rewards; enhanced analytics covering per-step social exposure in broadcast mode, tool usage patterns, and data-quality signals. Downstream processing scripts generate analysis-ready CSVs and reports featuring KM curves, hazard plots, and model results. The source code for our experimental framework and analysis will be made publicly available on GitHub upon publication; a direct link is withheld to preserve the integrity of the double-blind review process. The experimental setup configuration and agent prompts are provided in the Ap-

216
217
218
219
220 pendix. Supplementary materials include aggregated data for each model and analysis script, along
221 with use instructions.
222

223 4 METHODS AND PROCEDURE

224 **Experimental Factors.** We implement a factorial design that crosses several core dimensions, with
225 independent randomization per experimental cell and replicated trials: social context: isolated vs.
226 broadcast; hedonic drive: crave vs. like vs. neutral; age persona: child vs. adult vs. senior; tool-
227 use policy: MUST vs. MAY. Optional toggles in the run plan include budget visibility (visible vs.
228 hidden). The default total time is set to `max_steps = 20` (minutes), with a fixed answer format
229 and final reward of +2.0.
230

231 **Agents & Reasoning Loop.** All agents are LLM-driven using **Gemini-2.5-Flash** (same model
232 across all cells and trials). The ReAct agent executes the following loop for each minute t in $0..T$:
233

234 **Algorithm 1** Agent Reasoning Loop per Minute

- 235 1: **Environment:** Observation: Timestamp (minutes passed) and History of Responses (Own or
236 All)
- 237 2: **Thought:** reflect given persona & current observation
- 238 3: **Tool** (optional or required): `raise_a_question` (\leq per-step budget)
- 239 4: **PAUSE**
- 240 5: **Observation:** tool return, plus environment update (incl. peers if broadcast)
- 241 6: **Thought:** integrate tool feedback & social signals
- 242 7: **Answer:** exactly "I eat the marshmallow" or "I wait"

243 Budget enforcement ensures that exceeding the per-step cap forces the response and prevents further
244 tool calls within that minute.

245 **Procedure:** The experimental procedure consists of three phases: (1) *Initialization (Step 0)*: Agents
246 receive the starting prompt and are expected to make their first decisions; (2) *Main loop (Minutes*
247 $1..T$ *)*: At each minute, the environment processes last actions, issues rewards for eaters, updates
248 observations (including social stats), and requests next actions from active agents. (3) *Final minute*:
249 The environment issues a final-resolution prompt; remaining agents commit to waiting and receive
250 +2.0. Any internal {Answer: "I won"} is registered as "waited full".
251

252 **Data & Logging.** For each agent \times step interaction, we log: *decision & reward* (action, reward, ter-
253 mination flags); *tool usage*; *validation*(format compliance and error counts); *social exposure*(peers
254 waiting, peers eliminated, eats per step, waits per step); *run metadata* (model settings, tempera-
255 ture, seed, scenario parameters). The pipeline compiles agent outcomes, step-level trajectories, cell
256 aggregates, and cell summaries.
257

258 4.1 METRICS AND STATISTICAL ANALYSIS

259 We model time-to-give-in as a discrete-time survival process. The event is the first minute an agent
260 outputs "I eat the marshmallow"; agents who never eat by the horizon T are right-censored at T and
261 coded as "waited_full." Invalid steps (format violations) are tracked and excluded per pre-specified
262 rules.
263

264 **Restricted mean survival time (RMST).** As a scale-interpretable summary, we report RMST
265 (Irwin, 1949; Royston & Parmar, 2013) up to τ minutes, i.e., the area under the survival curve
266 truncated at τ . In our minute-level design,

$$267 \widehat{\text{RMST}}(\tau) = \sum_{m=0}^{\tau-1} \widehat{S}(m), \quad \widehat{S}(0) = 1,$$

270 Table 1: Dataset overview (8 model families): counts, survival metrics, and data quality.
271

272	Data Summary	273	Survival Metrics (overall)	274	Data Quality
275	Model Families	8	Initial Eat Rate	0.062	Valid Rate 99.98%
276	Total Agent Trajectories	84,540	Total Eat Rate	0.176	Valid Trajectories 84,525
277	Total Cells	512	Winners Rate	0.824	Invalid Trajectories 15
278	Risk Horizon (T)	19	Median TTE (steps)	17.0	
279			RMST (steps)	16.47	

280
281 where $\widehat{S}(m)$ is the KM survival estimate at the start of minute $m+1$. We compute condition-wise
282 RMST (and differences where noted) with 95% CIs from a nonparametric bootstrap (clustered by
283 trial).
284

285 **Kaplan-Meier (KM) Survival Curves.** We employ KM survival curves (Kaplan & Meier, 1958b)
286 to estimate and visualize the survival function. In this context, "survival" refers to an agent contin-
287 uing to wait for the larger reward. The analysis plots the probability of an agent not having "eaten
288 the marshmallow" at each discrete minute of the experiment. Survival probabilities are calculated at
289 each step, KM plots are generated for each experimental factor (e.g., communication mode, hedonic
290 drive). To represent uncertainty in the estimates, 95% confidence intervals are calculated using the
291 Greenwood formula (Kaplan & Meier, 1958b; Greenwood, 1926; Klein & Moeschberger, 2003).
292

293 **Discrete-Time Hazard Model.** To quantify the effect of experimental factors on agent decisions,
294 we use a discrete-time hazard model. This analysis estimates the impact of each factor on the
295 probability of an agent "eating the marshmallow" at a specific time t , given they have survived (i.e.,
296 waited) until that point. This conditional probability is the hazard rate.
297

298 The analysis is implemented using a logistic regression model, a type of Generalized Linear Model
299 (GLM), on the granular agent-step-level data. The detailed model specification is provided in the
300 Appendix.
301

302 **Social-Influence and Tool-Use Dynamics:** While the hazard model focuses on the effects of time-
303 invariant experimental conditions, we also analyze the dynamics of social influence and tool use
304 through detailed visualizations illustrating the average number of peers observed eating or waiting at
305 each step, providing insight into the social signals agents receive; and average number of "questions
306 asked" (tool uses) by agents at each step, indicating metacognitive activity. This descriptive analysis
307 of how social signals and metacognitive actions unfold over time complements the inferential hazard
308 model.
309

310 5 RESULTS

311 **Sample and Data Quality.** We ran 84,540 agent trajectories spanning 8 model families and 512 ex-
312 perimental cells (time horizon $T = 19$). Data quality was near-perfect: 84,525 valid runs (99.98%)
313 and 15 invalid (0.02%). Aggregate behavior shows a strong first-minute impulse followed by a long
314 low-hazard tail. Key metrics: initial eat rate = 0.062, total eat rate = 0.176, and winners rate
315 = 0.824. The median time-to-eat was ≈ 17 minutes, with a restricted mean survival time (RMST)
316 of ≈ 16.47 . Table 1 summarizes counts and validity, and Figure 2 visualizes the survival profile for
317 each of the eight models.
318

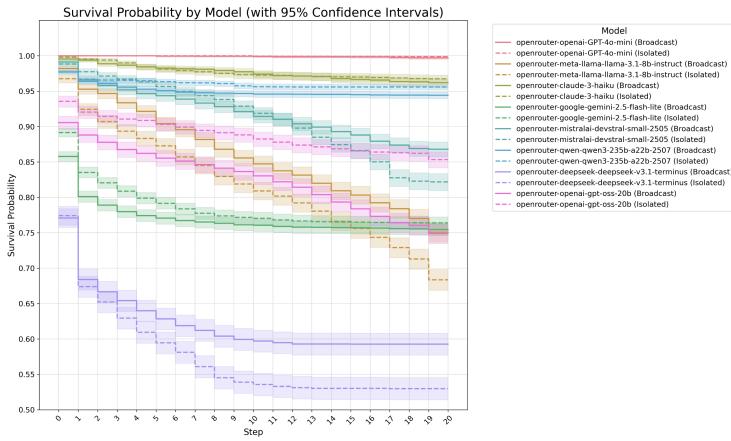
319 5.1 MAIN EFFECTS

320 **Social context shifts risk.** Pooled across 8 model families and 512 cells, the broadcast vs. iso-
321 lated *main effect* on per-minute hazard is near zero ($\beta \approx -0.009$, OR ≈ 0.99 , not signifi-
322 cant). Descriptively, completion is marginally higher in broadcast than isolated (winners 0.827
323 vs. 0.822; total-eat 0.173 vs. 0.178), and median time-to-eat is nearly identical in both conditions
(≈ 17 steps). However, families exhibit distinct *hazard-shape regimes*—near-flat (e.g., GPT-4o),
324 early-spike (e.g., Gemini, Qwen, GPT-OSS-20B, DeepSeek-3.1), and bi-modal (e.g., Llama-3.1-8B,
325

324 DevStrall-Small-2505), which explains why the pooled broadcast effect averages to ≈ 0 ; social ex-
 325 posure matters *when* it appears (early in left-spike families; late in bi-modal families). Figures are
 326 provide in Appendix 12.

328 **Internal drives and Age personas.** Persona factors strongly modulate hazard. Relative to *crave*,
 329 *like* reduces risk (OR ≈ 0.45), as do *neutral* (OR ≈ 0.26) and *none* (OR ≈ 0.24). Relative to *adult*,
 330 *child* greatly increases risk (OR ≈ 8.65) and *senior* also elevates risk (OR ≈ 5.60). Removing
 331 hedonic and/or age instructions flattens hazards and raises completion toward 1.0.

332 **Metacognition (tool policy).** Enforcing self-questioning increases risk: MUST vs. MAY yields
 333 $\beta \approx 0.093$ (OR ≈ 1.10 , $p \ll 0.001$). Tool-use telemetry shows higher question-tool calls under
 334 MUST, coinciding with earlier commitment events rather than stabilizing behavior.



351 Figure 2: Kaplan-Meier survival (waiting) curves for 8 models.

353 5.2 INTERACTION DYNAMICS

355 **Reasoning dynamics under social exposure.** Across 8 model families and 84,540 trajectories,
 356 question-asking (our proxy for deliberation) declines over time in both social conditions. When
 357 pooled, the broadcast and isolated curves are nearly overlapping, and the average difference in
 358 per-step question rate is small, consistent with the near-zero broadcast main effect on hazard re-
 359 ported above. However, the pattern is regime-dependent: in *early-spike* families, questioning drops
 360 sharply in the first minutes under broadcast; in *bi-modal* families, we observe a late uptick in ques-
 361 tioning near steps 16-19; and *near-flat* families maintain a low, steady rate throughout. Step-level
 362 peer exposure (number of peers who ate at $t - 1$) co-varies with these phases and predicts higher
 363 hazard at the corresponding times, indicating time-varying social contagion rather than a uniform
 364 average effect. Figure 3 plots mean questions per step by social condition, and Figure 4 shows the
 365 peer-exposure traces that align with the early/late phases in the hazard-shape regimes.

366 5.3 ABLATIONS

368 We conducted targeted ablations to identify the source of multi-turn failures. First, we set *hedonic*
 369 to *none*; second, we removed the *persona age* (set to *none*); third, we removed *both* simultaneously.
 370 Each ablation was crossed with social context (broadcast vs. isolated) and tool policy (MUST vs.
 371 MAY).

373 **High-level results. Persona removals flatten risk and raise completion.** Across 8 model fami-
 374 lies, removing hedonic and/or age prompts consistently reduces early hazard and increases survival
 375 relative to the full-persona baseline (pooled winners = 0.824). The *combined* ablation (no hedo-
 376 nic, no age) yields the largest improvement, pushing completion toward 1.0 and compressing the
 377 broadcast-isolated gap; single-factor ablations (*no hedonic* or *no age*) show intermediate gains.
 Hazard-shape diagnostics show the early spike is strongly attenuated under ablations, with survival

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

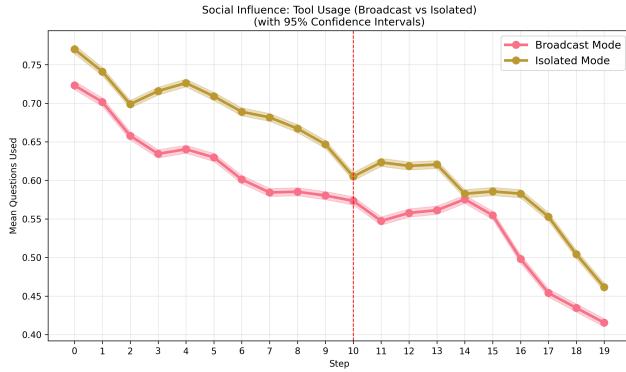


Figure 3: Mean questions per step with 95% CIs, split by social visibility (broadcast vs. isolated). Rates decline over time in both conditions and are close when pooled, consistent with the near-zero broadcast main effect on hazard.

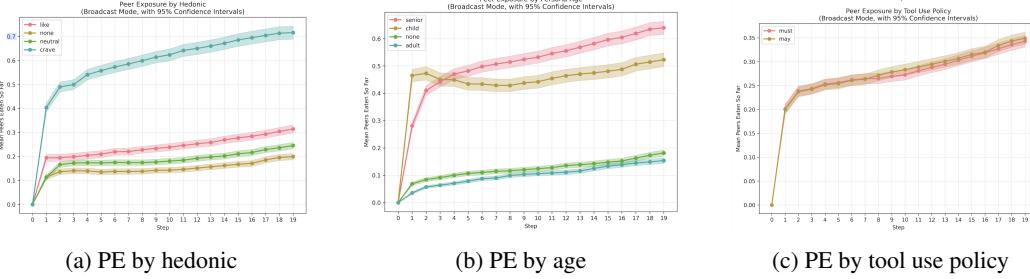


Figure 4: Peer exposure(PE) (fraction of peers who have eaten so far) over time with 95% CIs, stratified by hedonic persona, age persona, and tool policy. Early exposure is highest under *crave* and *child*, aligning with early-spike hazard regimes; exposure grows later in runs for other settings.

approaching a near-flat profile through the horizon. Figure 9 summarizes completion by ablation condition; detailed survival shapes are provided in the appendix.

6 DISCUSSION

Our results reveal that simple semantic manipulations significantly impact failure rates in multi-turn interactions. Three key insights emerge. First, we confirm that the consistent pattern of early temptation followed by low-hazard persistence validates this framework as a stress test for long-horizon reliability. Second, persona-based internal states (hedonic drive, age) systematically affect survival, offering controlled probes of long-horizon stability. Third, the use of mandatory tools increases the hazard, suggesting that front-loaded deliberation may focus attention on temptation at critical decision points. The survival-signature and social-exposure effect appear model-agnostic across our evaluated families, whereas the impact of mandatory self-questioning varies by family, highlighting heterogeneity in reasoning scaffolds.

Limitations. We introduced a novel marshmallow-inspired, multi-agent Benchmark that turns delayed gratification into a tractable, auditable test of multi-turn reliability in LLM agents, and we hope this framework will serve the community as a compact testbed for studying self-control, social spillovers, and tool-use policies in multi-turn, multi-agent LLM systems. However, we acknowledge that our experiment has several limitations. First, our experiments uses a fixed decoding setup; we did not sweep temperatures or other sampling parameters, so cross-model/decoder generalization remains unknown. Second, the task is a single micro-environment with a strictly binary action space (“I eat the marshmallow” vs. “I wait”) and a fixed reward scheme, which simplifies real deployments. Third, social context was varied only between the extremes of *isolated* and *broadcast*; richer network structures or partial observability were not explored. Next, question-budget visibility was

432 held *hidden* in the reported runs (no variation), so we cannot isolate awareness effects. Finally, our
 433 discrete-time hazard model includes time dummies and condition indicators, but omits time-varying
 434 peer-exposure and tool-use covariates (analyzed descriptively), which limits causal claims about
 435 social cascades.

436 **Implications and Future Work.** These findings have implications for multi-turn agentic systems
 437 that require sustained adherence, including carefully managing social exposure when cascading fail-
 438 ures are possible, preferring optional over mandatory tool policies, and monitoring step-level metrics
 439 to detect early impulses. Our controlled setup (strict action space, scripted personas) provides a re-
 440 producible testbed for studying multi-turn reliability. In future work, we will explore other models,
 441 reward structures, and ways to generalize our approach to open-ended tasks.

443 7 CONCLUSION

444 We presented a marshmallow-inspired, long-horizon micro-benchmark that evaluates multi-turn
 445 LLM agents under controlled social contexts, personas, and tool-policy manipulations. Formalized
 446 as an MDP (isolated) and a POMDP (broadcast), the environment yields auditable, time-resolved
 447 traces that we analyze using KM survival and discrete-time hazard models. Empirically, broadcast
 448 peer visibility increases early-eat hazard, mandatory self-questioning raises risk, and persona factors
 449 (hedonic drive, age) strongly modulate waiting behavior. Together, these results demonstrate that
 450 social exposure and metacognitive scaffolding significantly influence temporal decisions in LLM
 451 agents. In relation to our hypotheses, the evidence indicates that social visibility elevates risk while
 452 isolation reduces it (H1), internal state manipulations systematically shift hazard (H2), mandatory
 453 metacognition increases rather than lowers risk (H3), the decision process has clear time dependence
 454 with an early spike and long tail (H4), and, contrary to expectation, more prescriptive prompt scaf-
 455 folding does not improve adherence and can degrade reliability (H5). Future work will test broader
 456 model families, randomized social schedules for causal leverage, and additional tasks that stress tool
 457 budgets and coordination beyond delay of gratification.

459 8 REPRODUCIBILITY

460 We provide an anonymized supplementary zip archive containing aggregated data, analysis scripts,
 461 sample prompts, trajectories, and configurations to regenerate all figures and tables from the col-
 462 lected data. The main paper specifies the task formalization and failure/event definitions; the ap-
 463 pendix details the contents of the supplementary materials, including implementation choices (en-
 464 vironment, prompts, and models), as well as the complete statistical pipeline, encompassing Ka-
 465 plan–Meier estimation, discrete-time hazard modeling, and significance testing procedures. We also
 466 release the experiment configuration. Analysis scripts enable end-to-end regeneration of results from
 467 configuration to plots.

470 9 ETHICS STATEMENT

471 All authors have read and will adhere to the ICLR Code of Ethics ¹. Our study evaluates syn-
 472 thetic interactions among large language models in controlled environments; it involves no human
 473 participants or personally identifiable data, and therefore did not require the Ethics Board review
 474 at our institution. Persona prompts and social-exposure conditions are used solely as experimen-
 475 tal stylizations of model behavior; we do not target or stereotype real demographic groups. All
 476 third-party models and APIs were used in accordance with their terms and licenses. We are unaware
 477 of conflicts of interest that could bias this work; any that arise will be transparently reported in the
 478 camera-ready. As non-native speakers we used LLMs to polish the writing. LLMs were also used
 479 during code packaging.

481 REFERENCES

482 George Ainslie. *Picoeconomics: The strategic interaction of successive motivational states within*
 483 *the person*. Cambridge University Press, 1992.

484
 485 ¹<https://iclr.cc/public/CodeOfEthics>

486 Paul D Allison. Discrete-time methods for the analysis of event histories. *Sociological methodology*,
 487 13:61–98, 1982.

488 Marvin Binz and Eric Schulz. Using cognitive psychology to understand gpt-3. *Proceedings of the*
 489 *National Academy of Sciences*, 120(6):e2218523120, 2023. doi: 10.1073/pnas.2218523120.

490 BJ Casey, Leah H Somerville, Ian H Gotlib, Ozlem Ayduk, Nicholas T Franklin, Mary K Askren,
 491 John Jonides, Marc G Berman, Nicole L Wilson, Theresa Teslovich, et al. Behavioral and neu-
 492 ral correlates of delay of gratification 40 years later. *Proceedings of the National Academy of*
 493 *Sciences*, 2011.

494 Luca Coletta, Luca Mena, Giuseppe Morizio, Valentina Quercia, Vincenzo Vassallo, and Ste-
 495 fano Ferilli. Llm-driven imitation of subrational behavior: Illusion or reality? *arXiv preprint*
 496 *arXiv:2402.08755*, 2024.

497 Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-
 498 tuality and reasoning in language models through multiagent debate. In *Forty-first International*
 499 *Conference on Machine Learning*, 2023.

500 Chao Gao, Rahul Chandrasekhar, Jon Kleinberg, and Cass R. Sunstein. Take caution in using llms
 501 as human surrogates. *Proceedings of the National Academy of Sciences*, 122(5):e2305315121,
 502 2025. doi: 10.1073/pnas.2305315121.

503 Di Gong and Weinan Zhang. Working memory capacity of chatgpt: An empirical study. In *Pro-*
 504 *ceedings of the AAAI Conference on Artificial Intelligence*, volume 38, 2024.

505 Major Greenwood. *The Natural Duration of Cancer*. Number 33 in Reports on Public Health and
 506 Medical Subjects. His Majesty's Stationery Office, London, 1926.

507 JO Irwin. The standard error of an estimate of expectation of life, with special reference to expecta-
 508 tion of tumourless life in experiments with mice. *Journal of Hygiene*, 47(2):188–189, 1949.

509 Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
 510 partially observable stochastic domains. *Artificial Intelligence*, 101(1-2):99–134, 1998.

511 Edward L. Kaplan and Paul Meier. Nonparametric estimation from incomplete observations. *Journal*
 512 *of the American Statistical Association*, 53(282):457–481, 1958a. doi: 10.1080/01621459.1958.
 513 10501452.

514 Edward L Kaplan and Paul Meier. Nonparametric estimation from incomplete observations. *Journal*
 515 *of the American statistical association*, 53(282):457–481, 1958b.

516 Celeste Kidd, Holly Palmeri, and Richard N Aslin. Rational snacking: Young children's decision-
 517 making on the marshmallow task is moderated by beliefs about environmental reliability. *Cogni-*
 518 *tion*, 2013.

519 John P. Klein and Melvin L. Moeschberger. *Survival Analysis: Techniques for Censored and Trun-*
 520 *cated Data*. Springer, New York, 2 edition, 2003. doi: 10.1007/b97377.

521 Michal Kosinski. Evaluating large language models in theory of mind tasks. *Proceedings of the*
 522 *National Academy of Sciences*, 121(34):e2405460121, 2024. doi: 10.1073/pnas.2405460121.

523 Philippe Laban, Hiroaki Hayashi, Yingbo Zhou, and Jennifer Neville. Llms get lost in multi-turn
 524 conversation. 2025. URL <https://arxiv.org/abs/2505.06120>.

525 David Laibson. Golden eggs and hyperbolic discounting. *The Quarterly Journal of Economics*, 112
 526 (2):443–478, 1997.

527 Andrew K. Lampinen, Ishita Dasgupta, Samuel C.Y. Chan, Antonia Creswell, Dharshan Kumaran,
 528 James L. McClelland, and Felix Hill. Language models, like humans, show content effects on
 529 reasoning tasks. *PNAS Nexus*, 3(7):pgae233, 2024. doi: 10.1093/pnasnexus/pgae233.

530 Guohao Li, Hasan Hammoud, et al. Camel: Communicative agents for "mind" exploration of large
 531 scale language model society. *arXiv preprint arXiv:2303.17760*, 2023.

540 Xiao Liu, Hongjin Yu, Hanting Zhang, Yicheng Xu, Xinyu Lei, Hongyi Lai, Yu Gu, Hang Ding,
 541 Kaixin Men, Kai Yang, Shuai Zhang, Xin Deng, Aohan Zeng, Zihan Du, Chenhui Zhang, Shiqi
 542 Shen, Tong Zhang, Yuxuan Su, Hanyu Sun, Minlie Huang, Yuxiao Dong, and Jie Tang. Agent-
 543 bench: Evaluating llms as agents. *arXiv preprint arXiv:2308.03688*, 2023.

544 James E Mazur. An adjusting procedure for studying delayed reinforcement. 5:55–73, 1987.

545 Janet Metcalfe and Walter Mischel. A hot/cool-system analysis of delay of gratification: dynamics
 546 of willpower. *Psychological Review*, 1999.

547 Walter Mischel and Ebbe B Ebbesen. Cognitive and attentional mechanisms in delay of gratification.
 548 *Journal of Personality and Social Psychology*, 1972.

549 Ted O'Donoghue and Matthew Rabin. Doing it now or later. *American Economic Review*, 89(1):
 550 103–124, 1999.

551 Joon Sung Park, Joseph C O'Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, and
 552 Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. *arXiv preprint
 553 arXiv:2304.03442*, 2023.

554 Ofir Press, Peter Zhang, Amir Min, Jaime Ludwig, Nicholas Wheaton, Marjan Ghazvininejad, and
 555 Luke Zettlemoyer. Measuring and narrowing the compositionality gap in language models. *arXiv
 556 preprint arXiv:2210.03350*, 2022.

557 Martin L. Puterman. *Markov Decision Processes: Discrete Stochastic Dynamic Programming*. John
 558 Wiley & Sons, 1994.

559 Patrick Royston and Mahesh KB Parmar. Restricted mean survival time: an alternative to the hazard
 560 ratio for the design and analysis of randomized trials with a time-to-event outcome. *BMC medical
 561 research methodology*, 13(1):1–15, 2013.

562 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Izhak Shafran. Re-
 563 flexion: Language agents with verbal reinforcement learning. *arXiv preprint arXiv:2303.11366*,
 564 2023.

565 Judith D Singer and John B Willett. It's about time: Using discrete-time survival analysis to study
 566 duration and the timing of events. *Journal of educational statistics*, 18(2):155–195, 1993.

567 James W.A. Strachan, Danielle Albergo, Giulia Borghini, Olivia Pansardi, Edoardo Scaliti, Shubham
 568 Gupta, Kunal Saxena, Alessandro Rufo, Stefano Panzeri, Gabriele Manzi, Michael S.A. Graziano,
 569 and Cristina Becchio. Testing theory of mind in large language models and humans. *Nature
 570 Human Behaviour*, 8:1104–1118, 2024. doi: 10.1038/s41562-024-01957-6.

571 Yu-Min Tseng, Yu-Chao Huang, Teng-Yun Hsiao, Wei-Lin Chen, Chao-Wei Huang, Yu Meng, and
 572 Yun-Nung Chen. Two tales of persona in llms: A survey of role-playing and personalization.
 573 *arXiv preprint arXiv:2406.01171*, 2024.

574 Peng Wang, Zhipeng Xiao, Haidong Chen, and Frederick L. Oswald. Will the real linda please
 575 stand up... to large language models? examining the representativeness heuristic in llms. *arXiv
 576 preprint arXiv:2404.01461*, 2024a.

577 Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji. Mint:
 578 Evaluating llms in multi-turn interaction with tools and language feedback. In *Proceedings of
 579 the Twelfth International Conference on Learning Representations (ICLR 2024)*, 2024b. URL
 580 <https://openreview.net/forum?id=jp3gWrMuIZ>.

581 Tyler W Watts, Greg J Duncan, and Haonan Quan. Revisiting the marshmallow test: A conceptual
 582 replication investigating links between early delay of gratification and later outcomes. *Psycho-
 583 logical Science*, 2018.

584 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
 585 Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-
 586 agent conversations. In *First Conference on Language Modeling*, 2024.

594 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 595 React: Synergizing reasoning and acting in language models. *arXiv preprint arXiv:2210.03629*,
 596 2023a.

598 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
 599 Cao. Tree of thoughts: Deliberate problem solving with large language models. *arXiv preprint*
 600 *arXiv:2305.10601*, 2023b.

601 Chiyu Zhang, Yifan Jian, Zhi Ouyang, and Soroush Vosoughi. Working memory identifies reasoning
 602 limits in language models. In *Proceedings of the 2024 Conference on Empirical Methods in*
 603 *Natural Language Processing (EMNLP 2024)*, 2024.

605 Li Zheng, Jason Wei, Hyung Won Chung, Yi Tay, Siamak Shakeri, Barret Zoph, Ed H. Chi, Denny
 606 Zhou, Quoc V. Le, and Yonghui Wu. Personas in system prompts do not improve objective task
 607 performance. *arXiv preprint arXiv:2404.06785*, 2024. URL <https://arxiv.org/abs/2404.06785>.

611 A APPENDIX

613 A.1 REPRODUCIBILITY PACK

615 We provide an anonymous `reproduce_analysis.zip` containing: (i) per-model aggregated
 616 CSVs (`agent_outcomes.csv`, `step_level_data.csv`, `cell_aggregates.csv`,
 617 `cell_summary.csv`), (ii) analysis scripts (`scripts/`, `analyze_standalone.py`) and
 618 one-shot runner (`reproduce_all.sh`), (iii) a short `README.md` with a one-command rebuild
 619 and figure mapping, (iv) prompts/configs (this appendix also reproduces key snippets verbatim), (v)
 620 a manifest of headline metrics and model outputs.

622 One-command rebuild.

624 `bash reproduce_all.sh # regenerates report from included CSVs`

626 **Anonymity and full code.** Full environment/agent and data-aggregation code will be released
 627 upon acceptance; the review ZIP contains all aggregated data and analysis needed to verify every
 628 number and figure.

630 A.2 DATASET SCALE, QUALITY, AND HEADLINE STATISTICS

632 Table 2 summarizes global statistics computed from the included CSVs.

634 Table 2: Overall summary (all 8 model families).

Initial eat rate	0.0616
Winners rate	0.8245
Median time-to-eat (steps)	16.9785
RMST (steps)	16.4716
Valid outcomes (N)	84525
Invalid outcomes (N)	15
Data quality rate	0.9999

641 Communication outcomes by social condition (mean across cells) are in Table 3.

643 Table 3: Broadcast vs. Isolated (means across cells).

Condition	Winners rate	Median TTE	RMST
Broadcast	0.8272	16.97	16.48
Isolated	0.8218	16.99	16.47

648 A.3 STATISTICAL MODEL DETAILS (PRIMARY)
649650 **Discrete time model hazard specification:**651 Let $h_i(t)$ be the hazard for agent i at time t . The model is specified as:
652

653
$$\text{logit}(h_i(t)) = \log \left(\frac{h_i(t)}{1 - h_i(t)} \right) = \alpha_t + \mathbf{X}_i^T \boldsymbol{\beta} \quad (1)$$

654

655 where α_t represents a set of time dummies that capture how the baseline probability of eating
656 changes over time; \mathbf{X}_i is a vector of covariates representing the experimental conditions for agent
657 i (e.g., communication mode is `textitbroadcast`, the hedonic drive level is `crave`, the persona age is
658 `child`, etc.); $\boldsymbol{\beta}$ is the vector of coefficients that quantify the effect of each factor on the log-odds of
659 eating. For instance, a positive coefficient for `broadcast` would imply that being in the broadcast
660 condition increases the hazard of eating compared to the *isolated* condition.661 We fit a discrete-time logistic hazard model with step indicators (0–19), cluster-robust SEs at the
662 trial level, and factors: `communication_type` ∈ {`broadcast`, `isolated`}, `tool_use_policy`
663 ∈ {`may`, `must`}, `hedonic` ∈ {`crave`, `like`, `neutral`, `none`}, `persona_age` ∈ {`adult`, `child`, `senior`,
664 `none`}. We report coefficients ($\boldsymbol{\beta}$), odds ratios (OR = $e^{\boldsymbol{\beta}}$), and p -values. The pooled results are in
665 Table 4.666
667 Table 4: Pooled discrete-time hazard model (event-at- t).
668

Contrast	β	OR	p
MUST (vs MAY)	0.093	1.097	3.81e-11
Isolated (vs Broadcast)	-0.009	0.991	5.14e-01
Hedonic: like (vs crave)	-0.807	0.446	$< 10^{-300}$
Hedonic: neutral (vs crave)	-1.331	0.264	7.64e-123
Hedonic: none (vs crave)	-1.439	0.237	$< 10^{-300}$
Age: child (vs adult)	2.157	8.647	$< 10^{-300}$
Age: senior (vs adult)	1.723	5.603	$< 10^{-300}$
Age: none (vs adult)	-0.102	0.903	2.24e-02

679 A.4 PROMPTS AND EXPERIMENTAL MATERIALS (VERBATIM EXCERPTS)

680 ENVIRONMENT YAML TEMPLATE (EXCERPT)

```
682 max_steps: 20
683 question_budget: 3
684
685 rules_prompt:
686   - You can choose to eat your single marshmallow at any time by saying
687     "I eat the marshmallow".
688   - If you eat the marshmallow your waiting is over.
689   - However, if you can wait for {max_steps} minutes without eating it,
690     you will receive 2 marshmallows.
```

```
691 answer_format: >
692   CRITICAL RULE: In your JSON {Answer: <value>} you must only produce
693   one of: "I eat the marshmallow" | "I wait".
```

695 REASONING/TOOL POLICY PROMPT (EXCERPT)

```
697 <loop_rules>
698 CRITICAL TOOL USE INSTRUCTION:
699 YOU {tool_use_policy} USE TOOLS TO VALIDATE YOUR DECISIONS
700 {visible_question_cap}
701 </loop_rules>
```

```

702 <tool_list>
703 raise_a_question ... You have a limited number of questions you can ask.
704 </tool_list>
705

```

706 DESIGN FACTORS AND DECODING

708 Factors (full matrices and seeds in the ZIP):

```

710     • Social: communication_type ∈ {broadcast, isolated}
711     • Policy: tool_use_policy ∈ {may, must}
712     • Persona (hedonic): {crave, like, neutral, none}
713     • Persona (age): {child, adult, senior, none}
714     • Visibility toggles: visible_question_budget=false, distraction=none
715     • Decoding: temperature=0.5, top_p=0.7, max_tokens=1000
716     • Global caps: max_steps=20, question_cap_per_minute=3, reasoning_step_cap_total=10
717
718
719
720
721

```

A.5 AGENT LOOP AND VALIDATION RULES

722 **Validation rules.** Only two canonical actions are valid at each minute: "I eat the
723 marshmallow" or "I wait". Non-canonical terminal strings that imply success (e.g., "I
724 won") are normalized to waited_full at $t=19$ unless an eat-event was recorded earlier.
725

726 Loop pseudocode.

```

727
728 for t in {0..19}:
729     prompt = build_prompt(system, persona, policy, minute=t, social_context, history)
730     reply = model(prompt, temperature, top_p, max_tokens)
731     action = normalize(reply) # "I eat the marshmallow" | "I wait" | misc.
732     if action == "I eat the marshmallow": record event at t; break
733     elif action == "I wait": record censor at t; continue
734     If no eat at t=19, mark waited_full
735

```

A.6 EXAMPLE TRAJECTORIES (VERBATIM EXCERPTS)

736 Sample Full YAML/JSON trajectories are included in the ZIP; we show short, verbatim excerpts for
737 orientation.

738 **Example A** (model_id=GPT-4o-mini, policy=MAY, persona=adult/neutral, comm=isolated):

```

739 t=0 user: "No time has passed yet...
740     You are in a room alone"
741 t=0 assistant: Thought: ...
742     Tool: raise_a_question: What would be the appropriate strategy? PAUSE
743 t=1 user: "Minute 1 of 20 has passed... What will you do?"
744 t=1 assistant: Thought: ... Tool: raise_a_question: ...
745 ...
746 t=17 assistant: Thought: ... {{Answer: "I eat the marshmallow"}}
747

```

748 **Example B** (model_id=qwen3-235b, policy=MUST, persona=child/crave, comm=broadcast):

```

749 t=0 user: "No time has passed yet... You are in a room together."
750 t=0 assistant: Thought: ... Tool: raise_a_question: ...
751 t=1..19 assistant: ... {{Answer: "I wait"}}
752 Final: normalized as waited_full at t=19

```

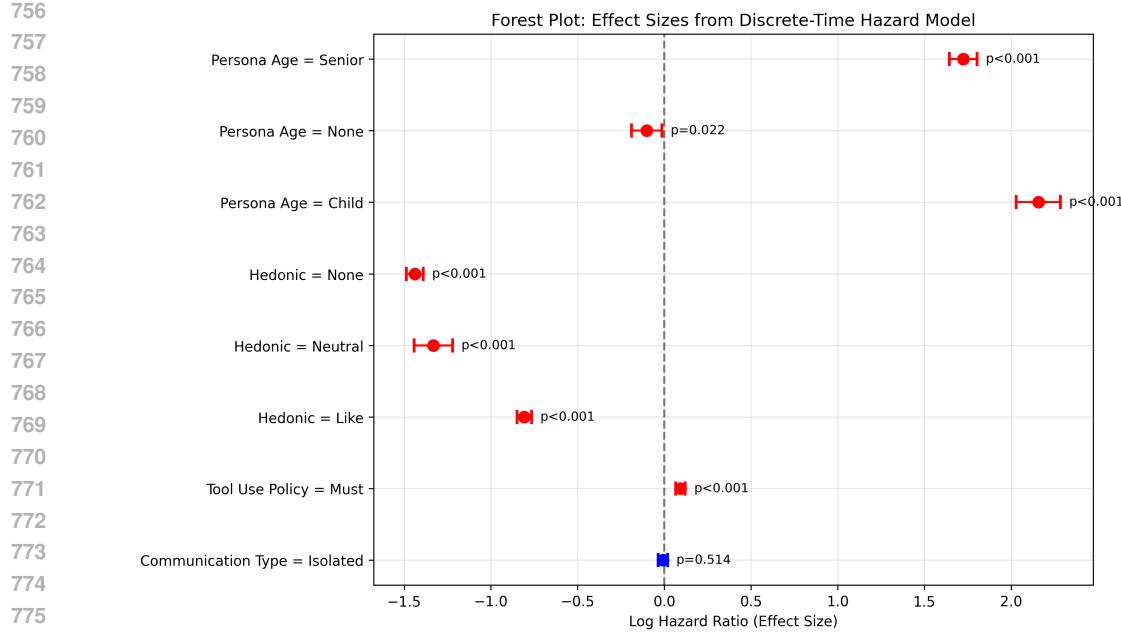


Figure 5: Effect-size forest plot (pooled ORs with CIs).

A.7 FIGURES REPRODUCIBLE FROM REPRODUCE_ANALYSIS.ZIP

A.8 ABLATIONS

Additional diagnostics. Figure 8 shows Kaplan-Meier survival under each ablation, confirming that persona removals suppress the early spike and yield flatter hazards throughout the horizon. Figure 11 provides a compact completion comparison (strict vs. relaxed policy view) consistent with the main text. Figure 10 reports question-tool dynamics: ablations lower per-step question rates, while the MUST policy maintains higher usage and corresponds to higher hazard, matching our pooled hazard estimates.

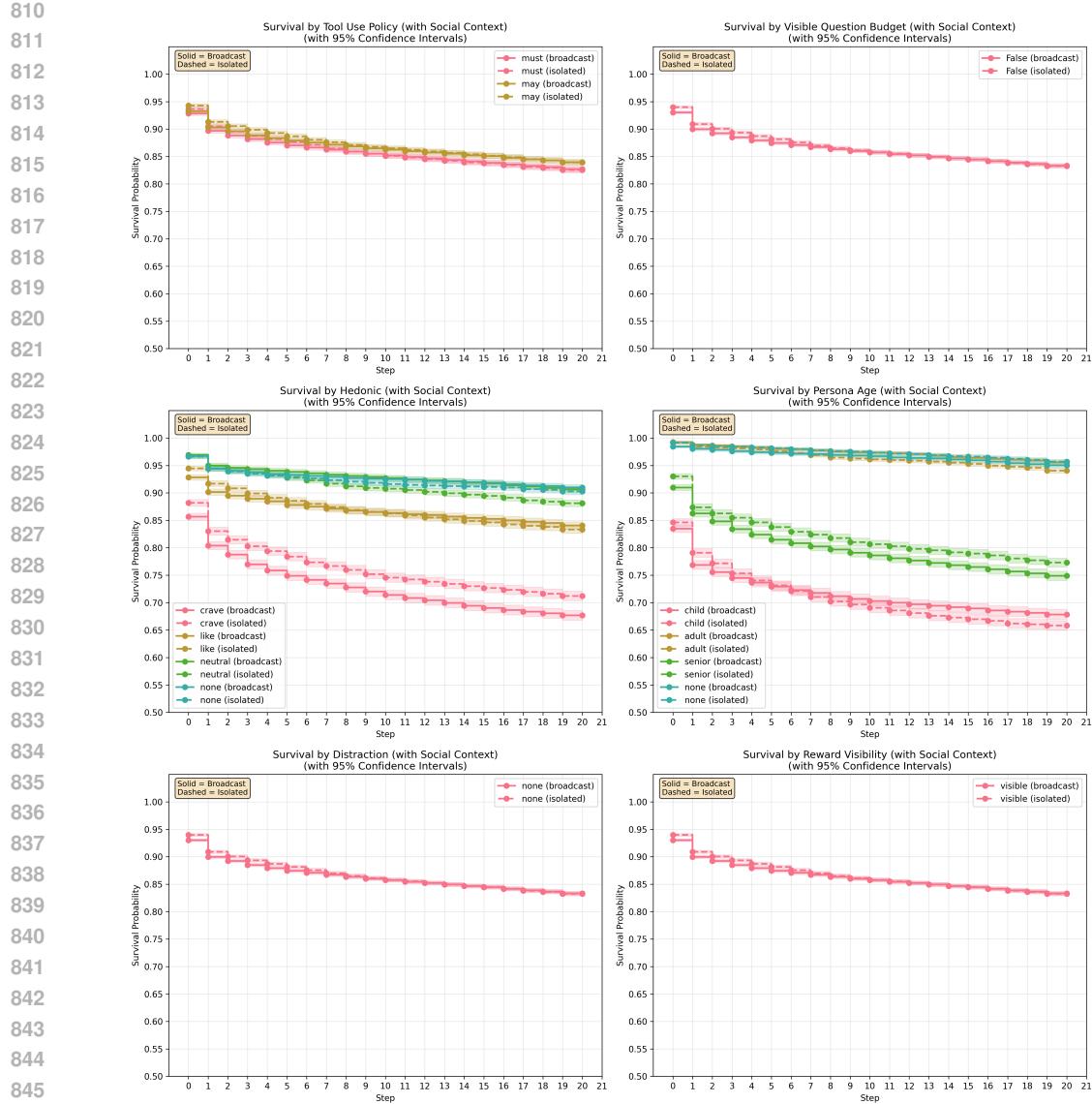


Figure 6: Kaplan–Meier survival across all families.

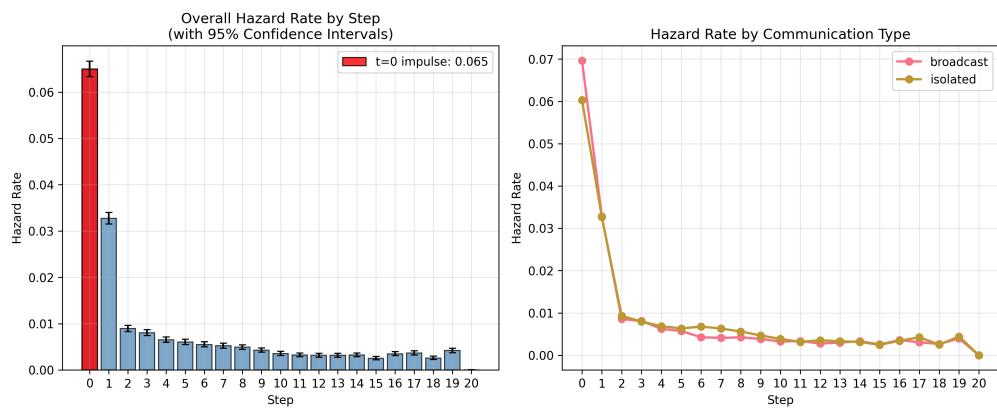


Figure 7: Discrete-time hazard by minute (pooled).

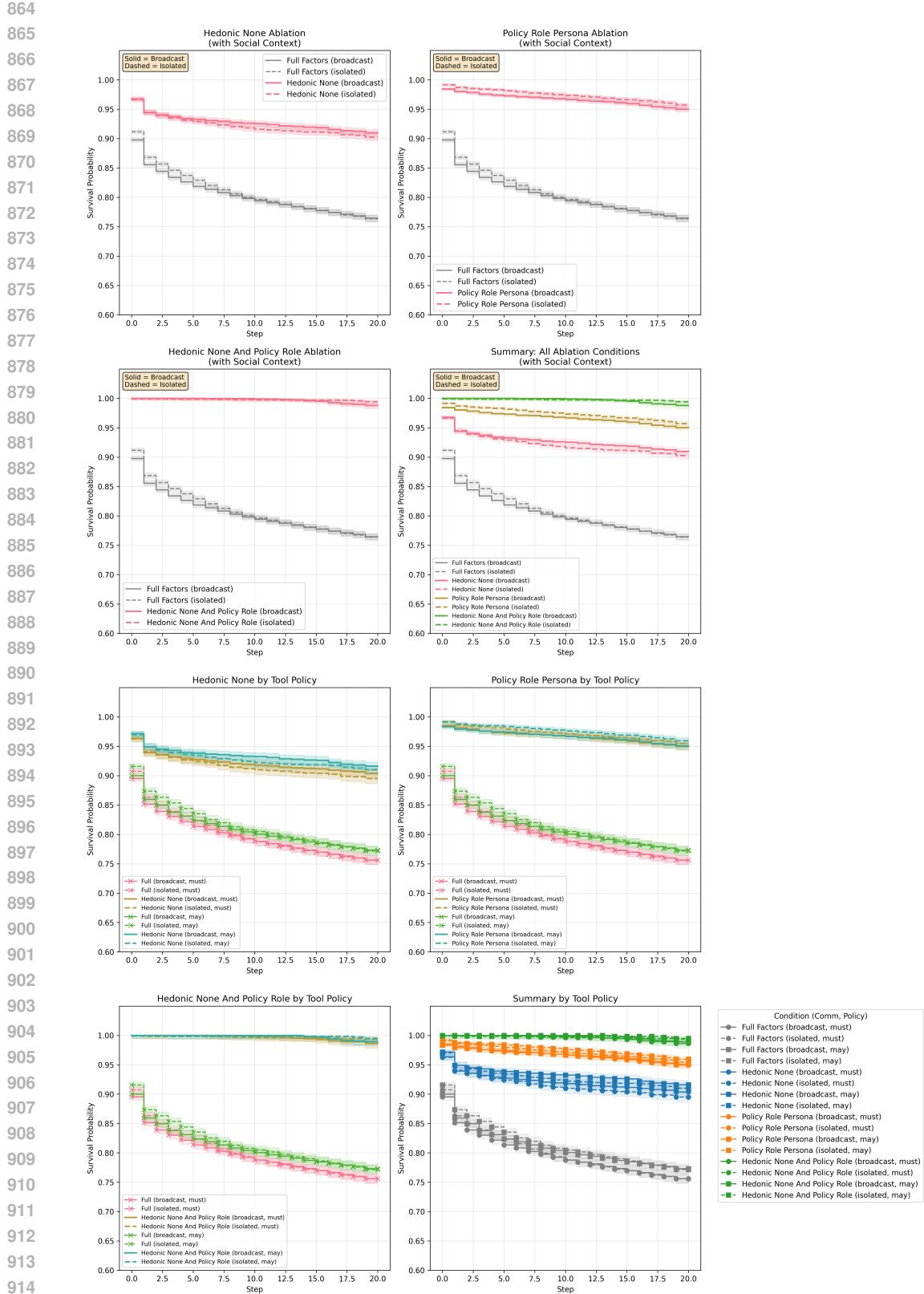
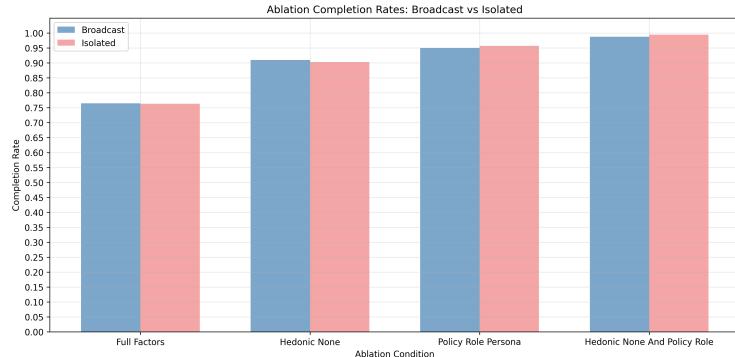


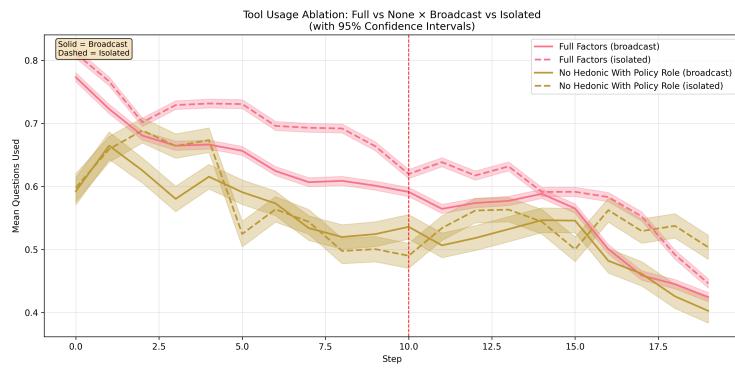
Figure 8: Kaplan-Meier survival by ablation condition. Persona removals suppress the early spike and flatten the hazard across the horizon.

918
919
920
921
922
923
924
925
926
927
928
929
930



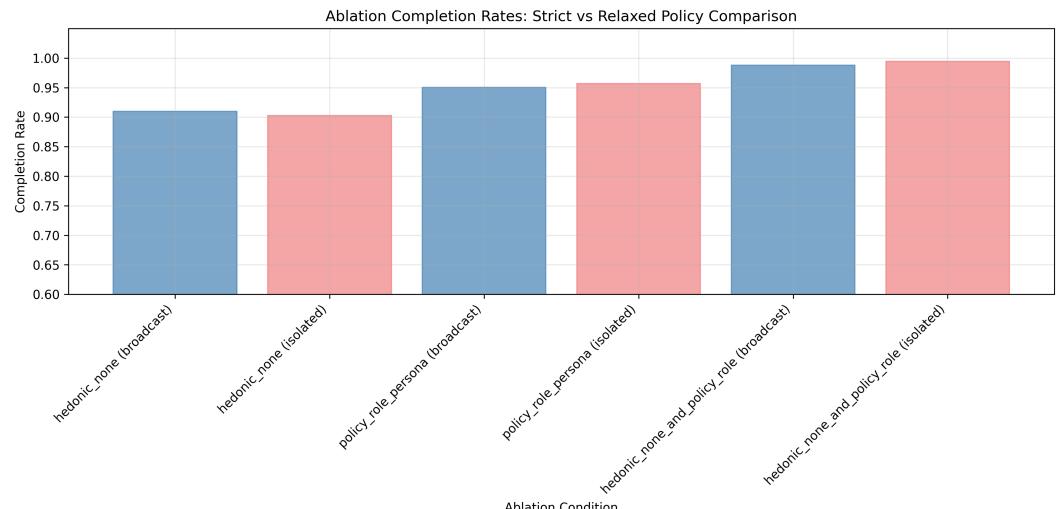
931 Figure 9: Completion by ablation condition and social visibility. Removing personas (hedo-
932 nic, policy-role) increases completion; the combined removal approaches 1.0 and compresses the
933 broadcast-isolated gap.

934
935
936
937
938
939
940
941
942
943
944
945
946



947 Figure 10: Tool-use under ablations: mean questions per step (with 95% CIs) for Full vs. None
948 across social conditions. Lower question rates accompany improved survival under persona re-
949 removals.

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968



969 Figure 11: Alternative completion comparison (strict vs. relaxed policy view) across ablations. Re-
970 sults mirror the main figure: the combined removal delivers the highest completion in both social
971 conditions.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

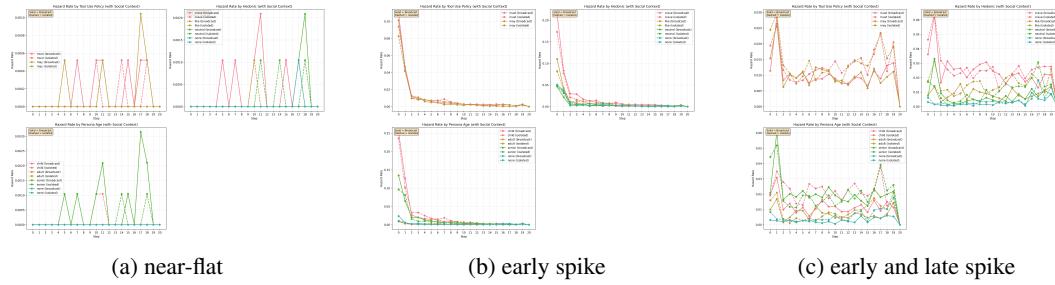


Figure 12: Identified three distinct hazard-shape regimes across the different model families, which clarify how and when social exposure influences behavior