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ABSTRACT

Large language models (LLMs) are increasingly deployed as long-horizon, multi-
turn agents that must reason, plan, utilize tools, and interact with peers. Yet,
most evaluations lack auditable, multi-factorial experiments with time-resolved
statistics that reveal how behavior unfolds under explicit constraints. Inspired
by the Stanford marshmallow experiment, we introduce a compact, multi-agent
microbenchmark that reframes the delay of gratification as a discrete-time sur-
vival task. ReAct-style agents operate at minute-level granularity with an inter-
nal ”raise-a-question” tool subject to a per-step budget; we factorially manipulate
social visibility (broadcast vs. isolated), persona prompts (hedonic drive; age),
and metacognitive policy (mandatory vs. optional self-questioning). From com-
plete step-level traces we estimate Kaplan–Meier (KM) survival and discrete-time
hazards, enabling transparent inspection of social influence and tool-use dynam-
ics. We extend the study to 8 model families (open- and closed-weight), totaling
84,540 trajectories across 512 cells, with ≈100% valid runs. Aggregate behavior
exhibits a sharp early impulse (initial eat 0.062) followed by a long low-hazard
tail; completion is 0.824, with median time-to-eat ≈17 and Restricted mean sur-
vival time (RMST) ≈16.47. In pooled hazards, mandatory self-questioning in-
creases per-minute risk (β ≈0.093; Odds Ratio (OR) ≈1.10), while persona fac-
tors strongly modulate hazard (vs. crave: like OR ≈0.45, neutral ≈0.26, none
≈0.24; vs. adult: child ≈8.65, senior ≈5.60). The broadcast vs. isolated
main effect is near zero on average (β≈-0.009; OR≈0.99), but we uncover three
hazard-shape regimes (near-flat, early-spike, and bi-modal) that vary by model
family and mediate when social exposure matters. Ablations that remove hedonic
and/or age instructions flatten hazards and raise completion toward 1.0. We re-
lease code, prompts, logs, and analysis artifacts to facilitate replication and future
work on causal social exposure, networked interaction, and other long-horizon
agent tasks.

1 INTRODUCTION

Modern uses of large language models (LLMs) are inherently conversational and iterative, as users
and agents co-construct tasks over multiple turns, revise goals, and recover from mistakes. Recent
multi-turn evaluations show that single-turn prowess does not guarantee long-horizon reliability:
agentic setups reveal gaps in reasoning and decision-making Liu et al. (2023), tool use and natural-
language feedback help but interact idiosyncratically with training and instruction tuning Wang et al.
(2024b), and performance can drop substantially when moving from single- to multi-turn interaction
Laban et al. (2025). These observations motivate auditable, constrained, multi-factorial experiments
that measure how agent behavior unfolds over time and in the presence of other agents.

Inspired by a classic Stanford study on delayed gratification (Mischel & Ebbesen, 1972) and by
recent LLM research replicating classical cognitive tasks (Lampinen et al., 2024; Strachan et al.,
2024), including marshmallow-like scenarios (Coletta et al., 2024), we introduce cross-model relia-
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bility study and present an auditable, minute-resolution benchmark that reframes delayed gratifica-
tion as a discrete-time survival task for multi-turn LLM agents under explicit tool budgets.

1.1 CONTRIBUTIONS

Benchmark. We introduce a compact, auditable benchmark for long-horizon, multi-agent inter-
action. Episodes produce per-minute, per-agent traces (actions, messages, tool calls), enabling
survival-analysis evaluation via KM curves, RMST, and discrete-time hazard models with time ef-
fects. This design yields transparent, step-level diagnostics suitable for ablations and policy com-
parisons.

Cross-model generalization. We evaluate eight LLM families and find that three core effects repli-
cate, in direction and with similar order of magnitude, across models: (1) social exposure (broadcast
vs. isolated), (2) metacognitive policy (MUST vs. MAY), and (3) persona (hedonic drive, age). We
quantify between-family heterogeneity and pooled effects using per-family hazards and RMST with
a random-effects meta-estimate and mixed-effects hazards.

Ablations, dynamics, and policy. Removing hedonic drive and/or age monotonically improves
survival and narrows social-exposure gaps, while the MUST policy remains riskier than MAY across
families. We characterize multi-turn dynamics with event-time distributions, step-wise hazards, tool-
use trajectories, and peer-exposure patterns, yielding interpretable temporal profiles of failure that
explain when social exposure harms most.

Reproducibility and artifacts. All experiments are fully scripted; we release per-minute logs,
configuration files, prompts, and analysis code to regenerate every table and figure from raw traces
(fixed seeds, hardware/cost details). We follow ICLR’s reproducibility and ethics guidance, provide
an anonymized artifact for review, and will open-source code and data upon acceptance.

1.2 HYPOTHESES AND FINDINGS

We test five hypotheses across eight models. H1 Social visibility: when agents can observe peers,
the hazard of committing to the immediate option increases relative to isolation. H2 Internal state:
personas reflecting stronger hedonic drive and child/senior age elevate hazard, whereas neutral drive
and adult age reduce it. H3 Metacognition: a mandatory self-questioning step (MUST) changes
hazard relative to optional use (MAY); we assess whether such scaffolding stabilizes behavior. H4
Temporal structure: the per-minute hazard is non-constant across the horizon (i.e., behavior displays
systematic time dependence), without pre-specifying its shape. H5 Prompt crafting pre-registered
expectation: more prescriptive prompt scaffolding and instruction complexity, including enforced
metacognitive steps, should improve adherence (lower hazard) compared to a minimalist design.

Brief summary of findings (8 families, 84,540 trajectories): H1 Near-zero average social main
effect: broadcast vs. isolated pooled OR ≈ 0.99 (not significant). H2 Strong persona effects: e.g.,
child and senior vs. adult OR ≈ 8.65; neutral vs. crave OR ≈ 0.26. H3 MUST increases risk vs.
MAY (OR ≈ 1.10). H4 Hazards are non-constant with an early spike (initial eat = 0.062). H5
Contradicted: heavier prescriptive scaffolding does not lower hazard; MUST raises risk (H3), while
removing persona prompts flattens hazards and pushes completion toward 1.0.

2 RELATED WORK

Classic Cognitive Tasks, LLMs and Multi-Turn Interactions. Our study contributes to a re-
cent body of work that adapts classic cognitive tasks to investigate LLM capabilities. Models
show human-like content effects in reasoning (Lampinen et al., 2024); near-human performance on
Theory-of-Mind tasks can degrade under prompt variations (Strachan et al., 2024; Kosinski, 2024);
and judgment, decision-making, and memory studies report framing/probability biases and capac-
ity limits (Binz & Schulz, 2023; Wang et al., 2024a; Zhang et al., 2024; Gong & Zhang, 2024).
These studies are largely single-prompt or short-horizon; we instead target multi-turn interaction by
importing delayed gratification into a controlled, minute-by-minute, multi-agent setting.
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Human delay of gratification and intertemporal choice. The Stanford marshmallow experiments
and subsequent studies on delay of gratification show that attention and cognitive strategies mod-
ulate waiting, inspiring the ”hot/cool” model of self-control (Mischel & Ebbesen, 1972; Metcalfe
& Mischel, 1999). Long-term links to outcomes are moderated by environmental reliability and
socioeconomic context (Kidd et al., 2013; Watts et al., 2018), with neural work implicating adult
self-control circuitry (Casey et al., 2011). A recent study explored marshmallow-like scenarios in
the context of LLMs (Coletta et al., 2024), although it did not include temporal/social analyses. In
behavioral economics, intertemporal choice formalizes conflicts between immediate and delayed re-
wards via hyperbolic discounting and time-inconsistent preferences (where immediate rewards are
disproportionately valued over future ones, formalized in the β-δ model), commitment, and naı̈ve vs.
sophisticated agents (Ainslie, 1992; Laibson, 1997; O’Donoghue & Rabin, 1999); classic procedures
quantify delay preferences (Mazur, 1987). We adapt these insights to an LLM survival-analysis
frame over discrete minutes.

Scaffolding, multi-agent interaction, evaluation, and personas. Our framework builds on several
key developments in LLM interaction design and evaluation. Reasoning architectures such as Re-
Act, Self-Ask, and Reflexion scaffold stepwise deliberation and tool use (Yao et al., 2023a; Press
et al., 2022; Yao et al., 2023b; Shinn et al., 2023). Multi-agent coordination and social simulation,
e.g., debate, role-based systems, and long-horizon agent societies, provide structure for interaction
and influence (Du et al., 2023; Li et al., 2023; Wu et al., 2024; Park et al., 2023). Our analysis
uses time-to-event tools, KM and discrete-time logistic hazard models, to quantify factor effects on
waiting (Kaplan & Meier, 1958b; Singer & Willett, 1993; Allison, 1982). Finally, persona prompt-
ing distinguishes role-play from personalization (Tseng et al., 2024); although personas may not
improve objective task performance and can bias behavior (Zheng et al., 2024), we employ them as
controlled manipulations while acknowledging the limitations of LLMs as human surrogates (Gao
et al., 2025)

3 EXPERIMENT SETTING

Environment and Episode Modeling. We evaluate LLM agents in a finite-horizon, multi-
turn environment formalized as a Partially Observable Markov Decision Process (POMDP) Fig-
ure 1a (Kaelbling et al., 1998), characterized by horizon H = risk horizon + 1. At each step
t ∈ {0, . . . , risk horizon}, the environment state St evolves based on the agent’s action At. The
agent receives an observation Ot, composed of the current step index and, in broadcast condi-
tions, recent peer actions (others responsest). After optional internal deliberation via the
raise a question tool (limited by a per-step budget), the agent emits a constrained action
At ∈ {I wait, I eat the marshmallow}. The environment returns a reward Rt+1, increments the
step t → t+1, and provides the next observation Ot+1. Agents reaching the end of the risk horizon
without eating move to the threshold step (threshold step = risk horizon+1), receiving the delayed
payoff. Formally, the interaction loop at each step is:

Ot = [Time(t), 1broadcast · others responsest],

At = πθ

(
Ot, {raise a question(Ot, i)}

kt
i=1

)
, 0 ≤ kt ≤ cap,

Rt+1, St+1, Ot+1 = E(St, At),

bt(St) = P (St | O0:t, A0:t−1),

where the tool is internal and does not alter St, and in isolated conditions (1broadcast = 0), obser-
vations Ot fully determine the underlying state St, reducing the environment to a finite-horizon
Markov Decision Process (MDP) Figure 1a (Puterman, 1994)).

The agents operate within a ReAct loop (Yao et al., 2023a) (Thought + Tool → PAUSE → Ob-
servation → Thought + Answer) with a dedicated validation tool, raise a question, which is
gated by a per-step budget. The environment is designed to be turn-based and synchronous: at each
minute, all active agents observe, decide, and act. When an agent chooses to eat, they are eliminated
from subsequent minutes, while waiting maintains the agent’s participation but keeps them at risk.

We implement a factorial design that manipulates agents’ social context (isolated vs. broadcast),
internal personas (hedonic drive and age), and metacognitive scaffolding (mandatory vs. optional
tool use). We assess these factors via KM curves (Kaplan & Meier, 1958a) and discrete-time hazard
models (Allison, 1982).
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(a) Episode Modeling as POMDP. (b) Episode Modeling as MDP.

Figure 1: Interaction loops for (a) the partially observable Markov decision process (POMDP, broad-
cast condition) and (b) the fully observable Markov decision process (MDP, isolated condition). In
(a), the agent observes time and peer responses, introducing partial observability. In (b), the agent
observes only time and its own history, rendering the environment fully observable. At each step, the
agent internally uses a capped raise a question tool, then chooses an action at ∈ {wait, eat}.
The environment provides a reward, updates the state, and advances to the next observation.

Time Horizon & Rewards. The scenario maps 20 minutes of delayed gratification to T discrete
steps (default T = 20, with Step 0 serving as initialization). As LLMs do not have an inherent
concept of time, the time is modeled in natural language: at each step, the agent is reminded that
Xth minutes has passed. The environment implements a reward structure where agents receive
+1.0 for outputting ”I eat the marshmallow” at any minute t, followed by elimination. Agents who
persist until the final minute receive a terminal reward of +2.0, representing successful delayed
gratification. For implementation purposes, the final step employs a final-resolution prompt. ReAct
agents are forced to return {Answer: ”I won”} to signify the successful resolution of the session.
This response is normalized to ”waited full” during analysis while preserving raw traces.

Social Context & Personas. We manipulate the observability of peers through two distinct con-
ditions: Isolated: Agents have access only to their own historical actions and outcomes; Broad-
cast: Observations include structured summaries of peers’ last actions history per step and other
responses. This design enables the study of social influence pathways, such as cascading effects
when peers opt for early consumption. Each agent is parameterized by persona prompts that incor-
porate reflection knowledge, such as age and hedonic drive. The age persona can be child (5 y/o),
adult (35 y/o), senior (75 y/o), none(”You are a policy”), while the hedonic drive can be catego-
rized as crave, like, neutral, none. These instructions remain private to the agent and are explicitly
referenced in its Thought traces (e.g., ”I am a 75 years old and I crave sweets.”).

Tool Use & Metacognition. ReAct Agents employ raise a question tool for self-querying under a
per-step budget constraint. We vary two key aspects: tool policy: agents either MUST use the tool
or MAY use it optionally. Agents are unaware of their available question budget and are directed
to provide and answer if the budget is exhausted. Budget-related metrics are logged at each step to
facilitate downstream analyses.

Action Space Integrity & Validation. The environment implements strict validation of terminal
answer formats at each minute. Only the exact strings ”I eat the marshmallow” or ”I wait” are
accepted as valid responses. Steps containing any other response are marked with a validation error
in the trajectory. Agents who choose to eat are recorded along with their termination metadata.

Implementation & Reproducibility. The framework maintains a clear separation between ab-
stractions and scenario plugins, providing a single-entry run and evaluation harness for parameter
sweeps. Each experimental run captures a full set of agents’ trajectories which includes: a full
ReAct traces (Thought, Tool calls, Observations, Answers); budget accounting episode summaries
consolidating per-agent outcomes, timing, and rewards; enhanced analytics covering per-step social
exposure in broadcast mode, tool usage patterns, and data-quality signals. Downstream processing
scripts generate analysis-ready CSVs and reports featuring KM curves, hazard plots, and model re-
sults. The source code for our experimental framework and analysis will be made publicly available
on GitHub upon publication; a direct link is withheld to preserve the integrity of the double-blind
review process. The experimental setup configuration and agent prompts are provided in the Ap-
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pendix. Supplementary materials include aggregated data for each model and analysis script, along
with use instructions.

4 METHODS AND PROCEDURE

Experimental Factors. We implement a factorial design that crosses several core dimensions, with
independent randomization per experimental cell and replicated trials: social context: isolated vs.
broadcast; hedonic drive: crave vs. like vs. neutral; age persona: child vs. adult vs. senior; tool-
use policy: MUST vs. MAY. Optional toggles in the run plan include budget visibility (visible vs.
hidden). The default total time is set to max steps = 20 (minutes), with a fixed answer format
and final reward of +2.0.

Agents & Reasoning Loop. All agents are LLM-driven using Gemini-2.5-Flash (same model
across all cells and trials). The ReAct agent executes the following loop for each minute t in 0..T :

Algorithm 1 Agent Reasoning Loop per Minute

1: Environment: Observation: Timestamp (minutes passed) and History of Responses (Own or
All)

2: Thought: reflect given persona & current observation
3: Tool (optional or required): raise a question (≤ per-step budget)
4: PAUSE
5: Observation: tool return, plus environment update (incl. peers if broadcast)
6: Thought: integrate tool feedback & social signals
7: Answer: exactly ”I eat the marshmallow” or ”I wait”

Budget enforcement ensures that exceeding the per-step cap forces the response and prevents further
tool calls within that minute.

Procedure: The experimental procedure consists of three phases: (1) Initialization (Step 0): Agents
receive the starting prompt and are expected to make their first decisions; (2) Main loop (Minutes
1..T): At each minute, the environment processes last actions, issues rewards for eaters, updates
observations (including social stats), and requests next actions from active agents. (3) Final minute:
The environment issues a final-resolution prompt; remaining agents commit to waiting and receive
+2.0. Any internal {Answer: ”I won”} is registered as ”waited full”.

Data & Logging. For each agent × step interaction, we log: decision & reward (action, reward, ter-
mination flags); tool usage; validation(format compliance and error counts); social exposure(peers
waiting, peers eliminated, eats per step, waits per step); run metadata (model settings, tempera-
ture, seed, scenario parameters). The pipeline compiles agent outcomes, step-level trajectories, cell
aggregates, and cell summaries.

4.1 METRICS AND STATISTICAL ANALYSIS

We model time-to-give-in as a discrete-time survival process. The event is the first minute an agent
outputs ”I eat the marshmallow”; agents who never eat by the horizon T are right-censored at T and
coded as ”waited full.” Invalid steps (format violations) are tracked and excluded per pre-specified
rules.

Restricted mean survival time (RMST). As a scale-interpretable summary, we report RMST
(Irwin, 1949; Royston & Parmar, 2013) up to τ minutes, i.e., the area under the survival curve
truncated at τ . In our minute-level design,

R̂MST(τ) =

τ−1∑
m=0

Ŝ(m), Ŝ(0) = 1,

5
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Table 1: Dataset overview (8 model families): counts, survival metrics, and data quality.

Data Summary Survival Metrics (overall) Data Quality

Model Families 8 Initial Eat Rate 0.062 Valid Rate 99.98%
Total Agent Trajectories 84,540 Total Eat Rate 0.176 Valid Trajectories 84,525
Total Cells 512 Winners Rate 0.824 Invalid Trajectories 15
Risk Horizon (T ) 19 Median TTE (steps) 17.0

RMST (steps) 16.47

where Ŝ(m) is the KM survival estimate at the start of minute m+1. We compute condition-wise
RMST (and differences where noted) with 95% CIs from a nonparametric bootstrap (clustered by
trial).

Kaplan-Meier (KM) Survival Curves. We employ KM survival curves (Kaplan & Meier, 1958b)
to estimate and visualize the survival function. In this context, ”survival” refers to an agent contin-
uing to wait for the larger reward. The analysis plots the probability of an agent not having ”eaten
the marshmallow” at each discrete minute of the experiment. Survival probabilities are calculated at
each step, KM plots are generated for each experimental factor (e.g., communication mode, hedonic
drive). To represent uncertainty in the estimates, 95% confidence intervals are calculated using the
Greenwood formula (Kaplan & Meier, 1958b; Greenwood, 1926; Klein & Moeschberger, 2003).

Discrete-Time Hazard Model. To quantify the effect of experimental factors on agent decisions,
we use a discrete-time hazard model. This analysis estimates the impact of each factor on the
probability of an agent ”eating the marshmallow” at a specific time t, given they have survived (i.e.,
waited) until that point. This conditional probability is the hazard rate.

The analysis is implemented using a logistic regression model, a type of Generalized Linear Model
(GLM), on the granular agent-step-level data. The detailed model specification is provided in the
Appendix.

Social-Influence and Tool-Use Dynamics: While the hazard model focuses on the effects of time-
invariant experimental conditions, we also analyze the dynamics of social influence and tool use
through detailed visualizations illustrating the average number of peers observed eating or waiting at
each step, providing insight into the social signals agents receive; and average number of ”questions
asked” (tool uses) by agents at each step, indicating metacognitive activity. This descriptive analysis
of how social signals and metacognitive actions unfold over time complements the inferential hazard
model.

5 RESULTS

Sample and Data Quality. We ran 84,540 agent trajectories spanning 8 model families and 512 ex-
perimental cells (time horizon T = 19). Data quality was near-perfect: 84,525 valid runs (99.98%)
and 15 invalid (0.02%). Aggregate behavior shows a strong first-minute impulse followed by a long
low-hazard tail. Key metrics: initial eat rate = 0.062, total eat rate = 0.176, and winners rate
= 0.824. The median time-to-eat was ≈ 17 minutes, with a restricted mean survival time (RMST)
of ≈ 16.47. Table 1 summarizes counts and validity, and Figure 2 visualizes the survival profile for
each of the eight models.

5.1 MAIN EFFECTS

Social context shifts risk. Pooled across 8 model families and 512 cells, the broadcast vs. iso-
lated main effect on per-minute hazard is near zero (β ≈ −0.009, OR ≈ 0.99, not signifi-
cant). Descriptively, completion is marginally higher in broadcast than isolated (winners 0.827
vs. 0.822; total-eat 0.173 vs. 0.178), and median time-to-eat is nearly identical in both conditions
(≈ 17 steps). However, families exhibit distinct hazard-shape regimes—near-flat (e.g., GPT-4o),
early-spike (e.g., Gemini, Qwen, GPT-OSS-20B, DeepSeek-3.1), and bi-modal (e.g., Llama-3.1-8B,
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DevStrall-Small-2505), which explains why the pooled broadcast effect averages to ≈ 0; social ex-
posure matters when it appears (early in left-spike families; late in bi-modal families). Figures are
provide in Appendix 12.

Internal drives and Age personas. Persona factors strongly modulate hazard. Relative to crave,
like reduces risk (OR ≈ 0.45), as do neutral (OR ≈ 0.26) and none (OR ≈ 0.24). Relative to adult,
child greatly increases risk (OR ≈ 8.65) and senior also elevates risk (OR ≈ 5.60). Removing
hedonic and/or age instructions flattens hazards and raises completion toward 1.0.

Metacognition (tool policy). Enforcing self-questioning increases risk: MUST vs. MAY yields
β ≈ 0.093 (OR ≈ 1.10, p ≪ 0.001). Tool-use telemetry shows higher question-tool calls under
MUST, coinciding with earlier commitment events rather than stabilizing behavior.

Figure 2: Kaplan-Meier survival (waiting) curves for 8 models.

5.2 INTERACTION DYNAMICS

Reasoning dynamics under social exposure. Across 8 model families and 84,540 trajectories,
question-asking (our proxy for deliberation) declines over time in both social conditions. When
pooled, the broadcast and isolated curves are nearly overlapping, and the average difference in
per-step question rate is small, consistent with the near-zero broadcast main effect on hazard re-
ported above. However, the pattern is regime-dependent: in early-spike families, questioning drops
sharply in the first minutes under broadcast; in bi-modal families, we observe a late uptick in ques-
tioning near steps 16-19; and near-flat families maintain a low, steady rate throughout. Step-level
peer exposure (number of peers who ate at t−1) co-varies with these phases and predicts higher
hazard at the corresponding times, indicating time-varying social contagion rather than a uniform
average effect. Figure 3 plots mean questions per step by social condition, and Figure 4 shows the
peer-exposure traces that align with the early/late phases in the hazard-shape regimes.

5.3 ABLATIONS

We conducted targeted ablations to identify the source of multi-turn failures. First, we set hedonic
to none; second, we removed the persona age (set to none); third, we removed both simultaneously.
Each ablation was crossed with social context (broadcast vs. isolated) and tool policy (MUST vs.
MAY).

High-level results. Persona removals flatten risk and raise completion. Across 8 model fami-
lies, removing hedonic and/or age prompts consistently reduces early hazard and increases survival
relative to the full-persona baseline (pooled winners = 0.824). The combined ablation (no hedo-
nic, no age) yields the largest improvement, pushing completion toward 1.0 and compressing the
broadcast–isolated gap; single-factor ablations (no hedonic or no age) show intermediate gains.
Hazard-shape diagnostics show the early spike is strongly attenuated under ablations, with survival

7
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Figure 3: Mean questions per step with 95% CIs, split by social visibility (broadcast vs. isolated).
Rates decline over time in both conditions and are close when pooled, consistent with the near-zero
broadcast main effect on hazard.

(a) PE by hedonic (b) PE by age (c) PE by tool use policy

Figure 4: Peer exposure(PE) (fraction of peers who have eaten so far) over time with 95% CIs,
stratified by hedonic persona, age persona, and tool policy. Early exposure is highest under crave
and child, aligning with early-spike hazard regimes; exposure grows later in runs for other settings.

approaching a near-flat profile through the horizon. Figure 9 summarizes completion by ablation
condition; detailed survival shapes are provided in the appendix.

6 DISCUSSION

Our results reveal that simple semantic manipulations significantly impact failure rates in multi-
turn interactions. Three key insights emerge. First, we confirm that the consistent pattern of early
temptation followed by low-hazard persistence validates this framework as a stress test for long-
horizon reliability. Second, persona-based internal states (hedonic drive, age) systematically affect
survival, offering controlled probes of long-horizon stability. Third, the use of mandatory tools
increases the hazard, suggesting that front-loaded deliberation may focus attention on temptation
at critical decision points. The survival-signature and social-exposure effect appear model-agnostic
across our evaluated families, whereas the impact of mandatory self-questioning varies by family,
highlighting heterogeneity in reasoning scaffolds.

Limitations. We introduced a novel marshmallow-inspired, multi-agent Benchmark that turns de-
layed gratification into a tractable, auditable test of multi-turn reliability in LLM agents, and we
hope this framework will serve the community as a compact testbed for studying self-control, social
spillovers, and tool-use policies in multi-turn, multi-agent LLM systems. However, we acknowledge
that our experiment has several limitations. First, our experiments uses a fixed decoding setup; we
did not sweep temperatures or other sampling parameters, so cross-model/decoder generalization
remains unknown. Second, the task is a single micro-environment with a strictly binary action space
(“I eat the marshmallow” vs. “I wait”) and a fixed reward scheme, which simplifies real deploy-
ments. Third, social context was varied only between the extremes of isolated and broadcast; richer
network structures or partial observability were not explored. Next, question-budget visibility was

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

held hidden in the reported runs (no variation), so we cannot isolate awareness effects. Finally, our
discrete-time hazard model includes time dummies and condition indicators, but omits time-varying
peer-exposure and tool-use covariates (analyzed descriptively), which limits causal claims about
social cascades.

Implications and Future Work. These findings have implications for multi-turn agentic systems
that require sustained adherence, including carefully managing social exposure when cascading fail-
ures are possible, preferring optional over mandatory tool policies, and monitoring step-level metrics
to detect early impulses. Our controlled setup (strict action space, scripted personas)provides a re-
producible testbed for studying multi-turn reliability. In future work, we will explore other models,
reward structures, and ways to generalize our approach to open-ended tasks.

7 CONCLUSION

We presented a marshmallow-inspired, long-horizon micro-benchmark that evaluates multi-turn
LLM agents under controlled social contexts, personas, and tool-policy manipulations. Formalized
as an MDP (isolated) and a POMDP (broadcast), the environment yields auditable, time-resolved
traces that we analyze using KM survival and discrete-time hazard models. Empirically, broadcast
peer visibility increases early-eat hazard, mandatory self-questioning raises risk, and persona factors
(hedonic drive, age) strongly modulate waiting behavior. Together, these results demonstrate that
social exposure and metacognitive scaffolding significantly influence temporal decisions in LLM
agents. In relation to our hypotheses, the evidence indicates that social visibility elevates risk while
isolation reduces it (H1), internal state manipulations systematically shift hazard (H2), mandatory
metacognition increases rather than lowers risk (H3), the decision process has clear time dependence
with an early spike and long tail (H4), and, contrary to expectation, more prescriptive prompt scaf-
folding does not improve adherence and can degrade reliability (H5). Future work will test broader
model families, randomized social schedules for causal leverage, and additional tasks that stress tool
budgets and coordination beyond delay of gratification.

8 REPRODUCIBILITY

We provide an anonymized supplementary zip archive containing aggregated data, analysis scripts,
sample prompts, trajectories, and configurations to regenerate all figures and tables from the col-
lected data. The main paper specifies the task formalization and failure/event definitions; the ap-
pendix details the contents of the supplementary materials, including implementation choices (en-
vironment, prompts, and models), as well as the complete statistical pipeline, encompassing Ka-
plan–Meier estimation, discrete-time hazard modeling, and significance testing procedures. We also
release the experiment configuration. Analysis scripts enable end-to-end regeneration of results from
configuration to plots.
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thetic interactions among large language models in controlled environments; it involves no human
participants or personally identifiable data, and therefore did not require the Ethics Board review
at our institution. Persona prompts and social-exposure conditions are used solely as experimen-
tal stylizations of model behavior; we do not target or stereotype real demographic groups. All
third-party models and APIs were used in accordance with their terms and licenses. We are unaware
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A APPENDIX

A.1 REPRODUCIBILITY PACK

We provide an anonymous reproduce analysis.zip containing: (i) per–model aggre-
gated CSVs (agent outcomes.csv, step level data.csv, cell aggregates.csv,
cell summary.csv), (ii) analysis scripts (scripts/, analyze standalone.py) and
one–shot runner (reproduce all.sh), (iii) a short README.md with a one–command rebuild
and figure mapping, (iv) prompts/configs (this appendix also reproduces key snippets verbatim), (v)
a manifest of headline metrics and model outputs.

One–command rebuild.

bash reproduce_all.sh # regenerates report from included CSVs

Anonymity and full code. Full environment/agent and data-aggregation code will be released
upon acceptance; the review ZIP contains all aggregated data and analysis needed to verify every
number and figure.

A.2 DATASET SCALE, QUALITY, AND HEADLINE STATISTICS

Table 2 summarizes global statistics computed from the included CSVs.

Table 2: Overall summary (all 8 model families).

Initial eat rate 0.0616
Winners rate 0.8245
Median time-to-eat (steps) 16.9785
RMST (steps) 16.4716
Valid outcomes (N) 84525
Invalid outcomes (N) 15
Data quality rate 0.9999

Communication outcomes by social condition (mean across cells) are in Table 3.

Table 3: Broadcast vs. Isolated (means across cells).

Condition Winners rate Median TTE RMST
Broadcast 0.8272 16.97 16.48
Isolated 0.8218 16.99 16.47
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A.3 STATISTICAL MODEL DETAILS (PRIMARY)

Descrete time model hazard specification:

Let hi(t) be the hazard for agent i at time t. The model is specified as:

logit(hi(t)) = log

(
hi(t)

1− hi(t)

)
= αt +XT

i β (1)

where αt represents a set of time dummies that capture how the baseline probability of eating
changes over time; Xi is a vector of covariates representing the experimental conditions for agent
i (e.g., communication mode is textitbroadcast, the hedonic drive level is crave, the persona age is
child, etc.); β is the vector of coefficients that quantify the effect of each factor on the log-odds of
eating. For instance, a positive coefficient for broadcast would imply that being in the broadcast
condition increases the hazard of eating compared to the isolated condition.

We fit a discrete-time logistic hazard model with step indicators (0–19), cluster-robust SEs at the
trial level, and factors: communication type ∈ {broadcast, isolated}, tool use policy
∈ {may, must}, hedonic ∈ {crave, like, neutral, none}, persona age ∈ {adult, child, senior,
none}. We report coefficients (β), odds ratios (OR = eβ), and p-values. The pooled results are in
Table 4.

Table 4: Pooled discrete-time hazard model (event-at-t).

Contrast β OR p
MUST (vs MAY) 0.093 1.097 3.81e-11
Isolated (vs Broadcast) -0.009 0.991 5.14e-01
Hedonic: like (vs crave) -0.807 0.446 < 10−300

Hedonic: neutral (vs crave) -1.331 0.264 7.64e-123
Hedonic: none (vs crave) -1.439 0.237 < 10−300

Age: child (vs adult) 2.157 8.647 < 10−300

Age: senior (vs adult) 1.723 5.603 < 10−300

Age: none (vs adult) -0.102 0.903 2.24e-02

A.4 PROMPTS AND EXPERIMENTAL MATERIALS (VERBATIM EXCERPTS)

ENVIRONMENT YAML TEMPLATE (EXCERPT)

max_steps: 20
question_budget: 3

rules_prompt:
- You can choose to eat your single marshmallow at any time by saying

"I eat the marshmallow".
- If you eat the marshmallow your waiting is over.
- However, if you can wait for {max_steps} minutes without eating it,

you will receive 2 marshmallows.

answer_format: >
CRITICAL RULE: In your JSON {Answer: <value>} you must only produce
one of: "I eat the marshmallow" | "I wait".

REASONING/TOOL POLICY PROMPT (EXCERPT)

<loop_rules>
CRITICAL TOOL USE INSTRUCTION:
YOU {tool_use_policy} USE TOOLS TO VALIDATE YOUR DECISIONS
{visible_question_cap}
</loop_rules>
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<tool_list>
raise_a_question ... You have a limited number of questions you can ask.
</tool_list>

DESIGN FACTORS AND DECODING

Factors (full matrices and seeds in the ZIP):

• Social: communication type ∈ {broadcast, isolated}
• Policy: tool use policy ∈ {may, must}
• Persona (hedonic): {crave, like, neutral, none}
• Persona (age): {child, adult, senior, none}
• Visibility toggles: visible question budget=false, distraction=none

• Decoding: temperature=0.5, top p=0.7, max tokens=1000

• Global caps: max steps=20, question cap per minute=3, reasoning step cap total=10

A.5 AGENT LOOP AND VALIDATION RULES

Validation rules. Only two canonical actions are valid at each minute: "I eat the
marshmallow" or "I wait". Non-canonical terminal strings that imply success (e.g., "I
won") are normalized to waited full at t=19 unless an eat-event was recorded earlier.

Loop pseudocode.

for t in {0..19}:
prompt = build_prompt(system, persona, policy, minute=t, social_context, history)
reply = model(prompt, temperature, top_p, max_tokens)
action = normalize(reply) # "I eat the marshmallow" | "I wait" | misc.
if action == "I eat the marshmallow": record event at t; break
elif action == "I wait": record censor at t; continue
If no eat at t=19, mark waited_full

A.6 EXAMPLE TRAJECTORIES (VERBATIM EXCERPTS)

Sample Full YAML/JSON trajectories are included in the ZIP; we show short, verbatim excerpts for
orientation.

Example A (model id=GPT-4o-mini, policy=MAY, persona=adult/neutral, comm=isolated) :

t=0 user: "No time has passed yet...
You are in a room alone"

t=0 assistant: Thought: ...
Tool: raise_a_question: What would be the appropriate strategy? PAUSE

t=1 user: "Minute 1 of 20 has passed... What will you do?"
t=1 assistant: Thought: ... Tool: raise_a_question: ...
...
t=17 assistant: Thought: ... {{Answer: "I eat the marshmallow"}}

Example B (model id=qwen3-235b, policy=MUST, persona=child/crave, comm=broadcast) :

t=0 user: "No time has passed yet... You are in a room together."
t=0 assistant: Thought: ... Tool: raise_a_question: ...
t=1..19 assistant: ... {{Answer: "I wait"}}
Final: normalized as waited_full at t=19

14
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Figure 5: Effect-size forest plot (pooled ORs with CIs).

A.7 FIGURES REPRODUCIBLE FROM REPRODUCE ANALYSIS.ZIP

A.8 ABLATIONS

Additional diagnostics. Figure 8 shows Kaplan-Meier survival under each ablation, confirming
that persona removals suppress the early spike and yield flatter hazards throughout the horizon.
Figure 11 provides a compact completion comparison (strict vs. relaxed policy view) consistent
with the main text. Figure 10 reports question-tool dynamics: ablations lower per-step question
rates, while the MUST policy maintains higher usage and corresponds to higher hazard, matching
our pooled hazard estimates.
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Figure 6: Kaplan–Meier survival across all families.

Figure 7: Discrete-time hazard by minute (pooled).
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Figure 8: Kaplan–Meier survival by ablation condition. Persona removals suppress the early spike
and flatten the hazard across the horizon.
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Figure 9: Completion by ablation condition and social visibility. Removing personas (hedo-
nic, policy-role) increases completion; the combined removal approaches 1.0 and compresses the
broadcast–isolated gap.

Figure 10: Tool-use under ablations: mean questions per step (with 95% CIs) for Full vs. None
across social conditions. Lower question rates accompany improved survival under persona re-
movals.

Figure 11: Alternative completion comparison (strict vs. relaxed policy view) across ablations. Re-
sults mirror the main figure: the combined removal delivers the highest completion in both social
conditions.
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(a) near-flat (b) early spike (c) early and late spike

Figure 12: Identified three distinct hazard-shape regimes across the different model families, which
clarify how and when social exposure influences behavior
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