
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

On the Performance of Gradient Tracking with Local Updates

Anonymous Authors1

Abstract
We study the decentralized optimization problem
where a network of n agents seeks to minimize
the average of a set of heterogeneous non-convex
cost functions distributedly. State-of-the-art de-
centralized algorithms like Exact Diffusion and
Gradient Tracking (GT) involve communicating
every iteration. However, communication is ex-
pensive, resource intensive, and slow. This work
analyzes a locally updated GT method (LU-GT),
where agents perform local recursions before in-
teracting with their neighbors. While local up-
dates have been shown to reduce communication
overhead in practice, their theoretical influence
has not been fully characterized. We show LU-
GT has the same communication complexity as
the Federated Learning setting but allows for de-
centralized (symmetric) network topologies and
prove that the number of local updates does not
degrade the quality of the solution achieved by
LU-GT.

1. Introduction
We study the distributed multi-agent optimization problem

minimize
x∈Rm

f(x) ≜
1

n

n∑
i=1

fi(x), (1)

where fi(·) : Rm → R is a smooth, non-convex function
held privately by agent i ∈ {1, . . . , n}. The agents collabo-
rate to find a consensual solution x∗ of (1) with communi-
cation constrained by some network topology.

Many decentralized methods have been proposed to
solve (1). Among the most prolific include decentral-
ized/distributed gradient descent (DGD) (Ram et al., 2010;
Cattivelli & Sayed, 2010), EXTRA (Shi et al., 2015), Exact-
Diffusion/D2/NIDS (ED) (Yuan et al., 2019; Li et al., 2019;

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Yuan et al., 2020; Tang et al., 2018), and Gradient Track-
ing (GT) (Xu et al., 2015; Di Lorenzo & Scutari, 2016;
Qu & Li, 2018; Nedic et al., 2017). DGD is an algorithm
wherein agents perform a local gradient step followed by
a communication round. However, DGD has been shown
not optimal for constant stepsizes when agents’ local ob-
jective functions are heterogeneous, i.e., the minimizer of
functions fi(·) differs from the minimizer of f(·). This
shortcoming has been analyzed in (Chen & Sayed, 2013;
Yuan et al., 2016) where the heterogeneity causes the rate
of DGD to incur an additional bias term with a magnitude
directly proportional to the level of heterogeneity. Moreover,
this bias term is inversely influenced by the connectivity of
the network (becomes larger for sparse networks) (Yuan
et al., 2020; Koloskova et al., 2020).

EXTRA, ED, and GT employ bias-correction techniques
to account for heterogeneity. EXTRA and ED use local
updates that incorporate the previous iteration’s parame-
ter and gradient. GT methods have each agent perform
the local update with an estimate of the global gradient
called the tracking variable. In these techniques, the bias
term proportional to the heterogeneity found in DGD is re-
moved (Alghunaim & Yuan, 2022; Koloskova et al., 2021).
However, they require communication over the network at
every iteration.

Communication is expensive, resource intensive, and slow
in practice (Ying et al., 2021). Centralized methods in which
agents communicate with a central coordinator (i.e., server)
have been developed to solve (1) with an explicit focus on
reducing the communication cost. This has been achieved
empirically by requiring agents to perform local recursions
before communicating. Among these methods include Lo-
calGD (Stich, 2019; Khaled et al., 2019; 2020b; Zhang et al.,
2016; Lin et al., 2020), Scaffold (Karimireddy et al., 2020),
S-Local-GD (Gorbunov et al., 2021), FedLin (Mitra et al.,
2021), and Scaffnew (Mishchenko et al., 2022). Analysis
on LocalGD revealed that local recursions cause agents to
drift towards their local solution (Khaled et al., 2019; 2020a;
Koloskova et al., 2020). Scaffold, S-Local-GD, FedLin, and
Scaffnew address this issue by introducing bias-correction
techniques. However, besides (Mishchenko et al., 2022),
analysis of these methods has failed to show communication
complexity improvements. The work (Mishchenko et al.,
2022) has shown that for µ-strongly-convex, L-smooth, and

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

On the Performance of Gradient Tracking with Local Updates

deterministic functions, the communication complexity of
Scaffnew can be improved from O(κ) to O(

√
κ) if one

performs
√
κ local recursions with κ ≜ L/µ.

Local recursions in decentralized methods have been much
less studied. DGD with local recursions has been studied
in (Koloskova et al., 2020), but the convergence rates still
have bias terms due to heterogeneity. Additionally, the mag-
nitude of the bias term is proportional to the number of local
recursions taken. Scaffnew (Mishchenko et al., 2022) has
been studied under the decentralized case but for the strongly
convex and smooth function class. In (Mishchenko et al.,
2022), for sufficiently connected graphs, an improvement
to a communication complexity of O(

√
κ/(1− λ)) where

λ is the mixing rate of the matrix is shown. Several works
studied GT under time-varying graphs such as (Di Lorenzo
& Scutari, 2016; Nedic et al., 2017; Scutari & Sun, 2019;
Sun et al., 2022; Saadatniaki et al., 2020), among these
only the works (Di Lorenzo & Scutari, 2016; Scutari & Sun,
2019; Lu & Wu, 2020) considered nonconvex setting. Dif-
ferent from (Di Lorenzo & Scutari, 2016; Scutari & Sun,
2019; Lu & Wu, 2020), we provide explicit expressions that
characterize the convergence rate in terms of the problem
parameters (e.g., network topology).

In this work, we propose and study LU-GT, a locally up-
dated decentralized algorithm based on the bias-corrected
method GT. Our contributions are as follows:

• We analyze LU-GT under the deterministic, non-
convex regime. As a byproduct, we provide an al-
ternative and simpler analysis for GT, which extends
the techniques from (Alghunaim & Yuan, 2022).

• We show LU-GT has a communication complexity
matching locally updated variants of federated algo-
rithms.

• We demonstrate that LU-GT retains the bias-correction
properties of GT irrespective of the number of local
recursions and that the number of local recursions does
not affect the quality of the solution.

• Numerical analysis shows that local recursions can
reduce the communication overhead in certain regimes,
e.g., well-connected graphs.

This paper is organized as follows. Section 2 defines rele-
vant notation, states the assumptions used in our analysis,
introduces LU-GT, and states our main result on the conver-
gence rate. In Section A, we provide intuition into how the
direction of our analysis can show that following LU-GT,
agents reach a consensus that is also a first-order stationary
point. We also cover relevant lemmas needed in the analysis
of LU-GT. In Section B, we prove the convergence rate

of LU-GT. Section 3 shows evidence that the local recur-
sions of LU-GT can reduce communication costs in certain
regimes.

Notation: Lowercase letters define vectors or scalars, while
uppercase letters define matrices. We let col{a1, ..., an}
or col{ai}ni=1 denote the vector that concatenates the vec-
tors/scalars ai. We let diag{d1, ..., dn} or diag{di}ni=1

denote the matrix with diagonal elements di. Similarly,
blkdiag{D1, D2, ..., Dn} or blkdiag{Di}ni=1 represents the
block diagonal matrix with matrices Di along the diagonal.
The notation 1 represents the one vector of size that should
be inferred while 1n represents the one vector of size n.
The inner product of two vectors a, b is defined as ⟨a, b⟩. ⊗
represents the Kronecker product. Boldface variables such
as (x,W) represent augmented network quantities.

2. Algorithm, Assumptions, and Main Result
The original gradient tracking method has the form (Xu
et al., 2015):

xk+1
i =

∑
j∈Ni

wij(x
k
j − η̄gkj) (2a)

gk+1
i =

∑
j∈Ni

wij

(
gkj +∇fj(x

k+1
j)−∇fj(x

k
j)
)
, (2b)

with g0i = ∇f(x0
i). Here, xk

i is agent i’s current parameter
estimate at iteration k, and gki ∈ Rn is an additional param-
eter held by agent i that tracks the average of the gradient.
Here, wij is a scalar weight that scales the information agent
i receives from agent j, and Ni is the set of neighbors of
agent i. We set wij = 0 if j /∈ Ni.

In this work, we study a locally updated variant of gradi-
ent tracking listed in Algorithm 1 where instead of agents
communicating every iteration, they communicate every To

iterations. The proposed method LU-GT is detailed in Algo-
rithm 1 where α and η are step-size parameters, and To is
the number of local recursions before a round of communi-
cation. The intuition behind the algorithm is to have agents
perform a descent step using a staling estimate of the global
gradient for To iterations. Afterwards, agents perform a
weighted average of their parameters with their neighbors
and update their tracking variable.
Remark 2.1. For To = 1, Algorithm 1 becomes equivalent
to the original ATC-GT (Xu et al., 2015) with stepsize η̄ =
ηα. This can be seen by introducing the change of variable
gki = (1/α)yki . Thus, our analysis also covers the original
GT method.

For analysis reasons, we will rewrite algorithm 1 using
network notation. To do so,we define W = [wij] ∈ Rn×n

as the mixing matrix for an undirected graph that models
the connections of a group of n agents. We also introduce

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

On the Performance of Gradient Tracking with Local Updates

Algorithm 1 LU-GT for each agent i
1: Input: x0

i = 0 ∈ Rm, y0i = α∇fi(x
0
i), α > 0, η > 0

To ∈ Z≥0, K ∈ Z+

2: Define: τ = {0, To, 2To, 3To...}
3: for k = 0, ...,K − 1 do
4: if k ∈ τ then
5: xk+1

i =
∑

j∈Ni

wij(x
k
j − ηykj)

6: yk+1
i =

∑
j∈Ni

wij(y
k
j + α∇fj(x

k+1
j)− α∇fj(x

k
j))

7: else
8: xk+1

i = xk
i − ηyki

9: yk+1
i = yki + α∇fi(x

k+1
i)− α∇fi(x

k
i)

10: end if
11: end for

the network notations:

W = W ⊗ Id ∈ Rmn×mn

xk = col{xk
1 , . . . , x

k
n}, yk = col{yk1 , . . . , ykn}

f(x)=

n∑
i=1

fi(xi), ∇f(x)=col{∇f1(x1), . . . ,∇fn(xn)}.

To analyze Algorithm 1, we first introduce the following
time-varying matrix:

Wk ≜

{
W when k ∈ τ,

I otherwise.
(4)

Thus, we can succinctly rewrite Algorithm 1 as follows

xk+1 = Wk(x
k − ηyk) (5a)

yk+1 = Wk(y
k + α∇f(xk+1)− α∇f(xk)). (5b)

We now list the assumptions used in our analysis.

Assumption 2.2. The mixing matrix W is doubly stochastic
and symmetric.

The Metropolis-Hastings algorithm (Hastings, 1970) can
be used to construct mixing matrices from an undirected
graph satisfying Assumption 2.2. Moreover, from As-
sumption 2.2, the mixing matrix W has a singular, max-
imum eigenvalue denoted as λ1 = 1. All other eigenval-
ues are defined as {λi}ni=2. We define the mixing rate as
λ := maxi∈{2,...,n}{|λi|}.

Assumption 2.3. Each function fi : Rm → R is L-smooth
for i ∈ V , i.e., ∥∇fi(y) −∇fi(z)∥ ≤ L∥y − z∥, ∀ y, z ∈
Rm for some L > 0. We assume there exists a f∗ ∈ R such
that f(x) ≥ f∗.

We are now ready to state the main result of this paper on
the convergence analysis of LU-GT.

Theorem 2.4 (Convergence of LU-GT). Let Assump-
tions 2.2 and 2.3 hold, and let, To ∈ Z≥0, η > 0, and
α > 0 with η < O(1/To), and α < O((1 − λ)/L) (Exact
bounds found in (18), (19), (23), (25)). Then, for any K ≥ 1,
the output xK , of Algorithm 1 (LU-GT) with x0 = (1⊗ x0)
for any x0 ∈ Rm has the following property:

1

K

K−1∑
k=0

(
∥∇f(x̄k)∥2 + ∥∇f(xk)∥2

)
+

L2

Kn

K−1∑
k=0

∥Φk∥2 ≤

+
8

ηαK
f̃(x̄0) +

3α2L2Toζ0
nK(1− λ̄)2

, (6)

Proof. The proof can be found in Appendix B.

Note that the left-hand side of (7) has three main compo-
nents. The first two indicate the asymptotic convergence
to a stationary point, while the third term ∥Φk∥2 guaran-
tees asymptotic consensus. If in Theorem 2.4, we consider
a sufficiently well-connected graph where 1 ≥ 2

√
λ and

set α ∝ (1− λ)/L, and η ∝ 1/To, then we obtain the
convergence rate,

1

K

K−1∑
k=0

(
∥∇f(x̄k)∥2 + ∥∇f(xk)∥2

)
+

L2

Kn

K−1∑
k=0

∥Φk∥2 ≤

O

(
Tof̃(x̄

0)

K
+
Toζ0
nK

)
. (7)

The communication complexity of LU-GT is obtained by
dividing the number of iterations K by To to find the num-
ber of communication rounds, i.e., R = K/To. Theo-
rem 2.4 implies that LU-GT matches the same commu-
nication complexity (R = O(1/ϵ) for a desired accuracy
ϵ > 0) as (Karimireddy et al., 2020) for distributed (feder-
ated) setups. However, LU-GT allows arbitrary symmetric
undirected network topologies (Assumptions 2.2).

3. Numerical Results
We simulate the performance of Algorithm 1 for the follow-
ing least squares problem with a non-convex regularization
term:

min
x

1

n

n∑
i=1

∥Aix− bi∥2 + ρ

m∑
j=1

x(j)2

1 + x(j)2
, (8)

where {Ai, bi} is the local data held by agent i and x(j)
is the j − th component of the parameter x. We consider
two cases: 1) close to homogeneous, where local station-
ary points are different but sufficiently close; 2) heteroge-
neous, where no assumptions are made on the similarity
of local stationary points. We generate Ai ∈ Rp×m where
p = 500,m = 20 with values drawn from N (0, 1), a pa-
rameter vector x∗

i ∈ Rm with values drawn from N (0, 1),

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

On the Performance of Gradient Tracking with Local Updates

and bi ∈ Rp = Aix
i
0 + γ × zi where zi ∈ Rp is drawn

from N (0, 1). This is a heterogeneous case. The difference
for the close to homogeneous is that we draw Ai once such
that Ai = Aj ,∀i, j. For the close to homogeneous case, we
examine exponential and fully-connected graphs, while for
the heterogeneous case, we examine star and ring graphs, all
with 16 nodes. We set ρ = 0.01, γ = 150. Table 1 lists the
manually optimized ηα for each graph and To combination.

Table 1. Manually optimized ηα used for each graph and To com-
bination.

To = 1 To = 5 To = 50 To = 100 To = 200

Complete 2× 10−3 2× 10−3 2× 10−3 2× 10−3 2× 10−3

Exponential 2× 10−3 2× 10−3 2× 10−3 2× 10−3 2× 10−3

To = 1 To = 2 To = 5 To = 10 To = 50

Ring 2× 10−5 1× 10−5 0.4× 10−5 .2× 10−5 0.04× 10−5

Star .4× 10−4 .2× 10−4 .08× 10−4 .04× 10−4 .008× 10−4

Our simulation results in Figure 1 reveal that for (sufficiently
well-connected) graphs, LU-GT reduces communication
costs up to a certain To. In addition, for the exponential
graph, the benefits saturate much faster. For sparse networks,
the hyperparameter tuning of ηα matches the suggested
inversely proportional relation with To predicted by the
theory. In this scenario, communication costs are equivalent
to no local updates, matching the analysis.

0 20 40 60 80 100

Communication Rounds

10−10

10−8

10−6

10−4

10−2

100

102

104

‖∇
f(

x̄k)
‖2

+
‖∇

f(
xk)
‖2

To = 1
To = 5
To = 50
To = 100
To = 200

0 50 100 150 200 250 300 350 400

Communication Rounds

10−9

10−6

10−3

100

103

106

‖∇
f(

x̄k)
‖2

+
‖∇

f(
xk)
‖2

To = 1
To = 5
To = 50
To = 100
To = 200

(a) Fully-Connected Graph (b) Exponential

0 500 1000 1500 2000 2500 3000 3500 4000

Communication Rounds

10−10

10−8

10−6

10−4

10−2

100

102

‖∇
f(

x̄k)
‖2

+
‖∇

f(
xk)
‖2

To = 1
To = 2
To = 5
To = 10
To = 50

0 500 1000 1500 2000 2500

Communication Rounds

10−10

10−8

10−6

10−4

10−2

100

102

‖∇
f(

x̄k)
‖2

+
‖∇

f(
xk)
‖2

To = 1
To = 2
To = 5
To = 10
To = 50

(c) Ring (d) Star

Figure 1. Performance of LU-GT to solve (8) with varying To, αη,
and topologies.

4. Conclusions
We propose the algorithm LU-GT that incorporates local
recursions into Gradient Tracking. Our analysis shows that
LU-GT matches the same communication complexity as
the Federated Learning setting but allows arbitrary network
topologies. In addition, regardless of the number of local
recursions, LU-GT incurs no additional bias term in the rate.
We show reduced communication complexity in simulation
for well-connected graphs. However, further refinement of
the analysis is necessary to quantify the precise effect of
local recursions on Gradient Tracking. It is still unclear un-
der what regimes local updates reduce the communication
cost and what the upper bound is on these local updates.
Numerical results suggest that local updates might not ben-
efit sparsely connected networks. Such explicit relations
between network topologies and local updates are left for
future work. While we focus on the non-convex setting
in this work due to space constraints, we can extend our
work to the convex setting. Another extension of the work
we have done on LU-GT is accounting for the stochastic
setting to determine if the analysis can reveal linear speedup
similar to what has already been show for vanilla Gradient
Tracking (Alghunaim & Yuan, 2022). Additionally, we can
consider more sophisticated scenarios such as asynchronous
updates (Assran et al., 2020) and varying the number of lo-
cal updates throughout the progression of the algorithm. In
the latter case, future studies may reveal scenarios in which
performing many local updates initally and then increasing
the communication frequency over iterations may improve
the performance of LU-GT.

References
Alghunaim, S. A. and Yuan, K. A unified and refined con-

vergence analysis for non-convex decentralized learning.
IEEE Transactions on Signal Processing, 70:3264–3279,
June 2022.

Assran, M., Aytekin, A., Feyzmahdavian, H., Johansson,
M., and Rabbat, M. Advances in asynchronous parallel
and distributed optimization, 2020.

Cattivelli, F. S. and Sayed, A. H. Diffusion LMS strategies
for distributed estimation. IEEE Trans. Signal Process,
58(3):1035, 2010.

Chen, J. and Sayed, A. H. Distributed pareto optimiza-
tion via diffusion strategies. IEEE J. Sel. Topics Signal
Process., 7(2):205–220, April 2013.

Di Lorenzo, P. and Scutari, G. Next: In-network nonconvex
optimization. IEEE Transactions on Signal and Informa-
tion Processing over Networks, 2(2):120–136, 2016.

Gorbunov, E., Hanzely, F., and Richtarik, P. Local SGD:
Unified theory and new efficient methods. In Banerjee,

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

On the Performance of Gradient Tracking with Local Updates

A. and Fukumizu, K. (eds.), Proceedings of The 24th
International Conference on Artificial Intelligence and
Statistics, volume 130 of Proceedings of Machine Learn-
ing Research, pp. 3556–3564. PMLR, 13–15 Apr 2021.

Hastings, W. K. Monte carlo sampling methods using
markov chains and their applications. Biometrika, 57
(1):97–109, 1970. ISSN 00063444.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich,
S., and Suresh, A. T. SCAFFOLD: Stochastic controlled
averaging for federated learning. In III, H. D. and Singh,
A. (eds.), Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 5132–5143. PMLR,
13–18 Jul 2020.

Khaled, A., Mishchenko, K., and Richtárik, P. First
analysis of local GD on heterogeneous data. CoRR,
abs/1909.04715, 2019.

Khaled, A., Mishchenko, K., and Richtárik, P. Tighter
theory for local SGD on identical and heterogeneous data.
In International Conference on Artificial Intelligence and
Statistics, pp. 4519–4529. PMLR, 2020a.

Khaled, A., Mishchenko, K., and Richtarik, P. Tighter theory
for local SGD on identical and heterogeneous data. In
Proceedings of the Twenty Third International Conference
on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pp. 4519–
4529. PMLR, 26–28 Aug 2020b.

Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and Stich,
S. A unified theory of decentralized SGD with changing
topology and local updates. In International Conference
on Machine Learning, pp. 5381–5393, 2020.

Koloskova, A., Lin, T., and Stich, S. U. An improved
analysis of gradient tracking for decentralized machine
learning. Advances in Neural Information Processing
Systems, 34:11422–11435, 2021.

Li, Z., Shi, W., and Yan, M. A decentralized proximal-
gradient method with network independent step-sizes
and separated convergence rates. IEEE Transactions on
Signal Processing, 67(17):4494–4506, Sept. 2019.

Lin, T., Stich, S. U., Patel, K. K., and Jaggi, M. Don’t
use large mini-batches, use local SGD. In International
Conference on Learning Representations, 2020.

Lu, S. and Wu, C. W. Decentralized stochastic non-convex
optimization over weakly connected time-varying di-
graphs. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5770–5774,
2020.

Mishchenko, K., Malinovsky, G., Stich, S., and Richtárik,
P. Proxskip: Yes! local gradient steps provably lead to
communication acceleration! finally! In International
Conference on Machine Learning, 2022.

Mitra, A., Jaafar, R., Pappas, G. J., and Hassani, H. Lin-
ear convergence in federated learning: Tackling client
heterogeneity and sparse gradients. In Beygelzimer, A.,
Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.), Ad-
vances in Neural Information Processing Systems, 2021.

Nedic, A., Olshevsky, A., and Shi, W. Achieving geomet-
ric convergence for distributed optimization over time-
varying graphs. SIAM Journal on Optimization, 27(4):
2597–2633, 2017.

Qu, G. and Li, N. Harnessing smoothness to accelerate
distributed optimization. IEEE Transactions on Control
of Network Systems, 5(3):1245–1260, Sept. 2018.

Ram, S. S., Nedic, A., and Veeravalli, V. V. Distributed
stochastic subgradient projection algorithms for convex
optimization. J. Optim. Theory Appl., 147(3):516–545,
2010.

Saadatniaki, F., Xin, R., and Khan, U. A. Decentralized
optimization over time-varying directed graphs with row
and column-stochastic matrices. IEEE Transactions on
Automatic Control, 65(11):4769–4780, 2020.

Scutari, G. and Sun, Y. Distributed nonconvex constrained
optimization over time-varying digraphs. Mathematical
Programming, 176(1-2):497–544, 2019.

Shi, W., Ling, Q., Wu, G., and Yin, W. EXTRA: An exact
first-order algorithm for decentralized consensus opti-
mization. SIAM Journal on Optimization, 25(2):944–966,
2015.

Stich, S. U. Local SGD converges fast and communicates
little. In International Conference on Learning Represen-
tations, 2019.

Sun, Y., Scutari, G., and Daneshmand, A. Distributed opti-
mization based on gradient tracking revisited: Enhancing
convergence rate via surrogation. SIAM Journal on Opti-
mization, 32(2):354–385, 2022.

Tang, H., Lian, X., Yan, M., Zhang, C., and Liu, J. D2:
Decentralized training over decentralized data. In Interna-
tional Conference on Machine Learning, pp. 4848–4856,
Stockholm, Sweden, 2018.

Xu, J., Zhu, S., Soh, Y. C., and Xie, L. Augmented dis-
tributed gradient methods for multi-agent optimization
under uncoordinated constant stepsizes. In Proc. 54th
IEEE Conference on Decision and Control (CDC), pp.
2055–2060, Osaka, Japan, 2015.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

On the Performance of Gradient Tracking with Local Updates

Ying, B., Yuan, K., Hu, H., Chen, Y., and Yin, W. Bluefog:
Make decentralized algorithms practical for optimization
and deep learning. 2021.

Yuan, K., Ling, Q., and Yin, W. On the convergence of
decentralized gradient descent. SIAM Journal on Opti-
mization, 26(3):1835–1854, 2016.

Yuan, K., Ying, B., Zhao, X., and Sayed, A. H. Exact
diffusion for distributed optimization and learning—part
i: Algorithm development. IEEE Transactions on Signal
Processing, 67(3):708–723, 2019. doi: 10.1109/TSP.
2018.2875898.

Yuan, K., Alghunaim, S. A., Ying, B., and Sayed, A. H. On
the influence of bias-correction on distributed stochastic
optimization. IEEE Transactions on Signal Processing,
68:4352–4367, 2020.

Zhang, J., De Sa, C., Mitliagkas, I., and Ré, C. Paral-
lel SGD: When does averaging help? arXiv preprint
arXiv:1606.07365, 06 2016.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

On the Performance of Gradient Tracking with Local Updates

A. Transformation of Algorithm 1
We perform a series of transformations on (5) to simplify the analysis and accurately characterize the behavior of our
algorithm. In particular, the trajectory of the average of agent parameters x̄k is defined to show convergence of x̄k to a
first-order stationary point of (1). Motivated by (Alghunaim & Yuan, 2022), the deviation of agent parameters xk from the
average x̄k ≜ x̄k ⊗ 1n and the deviation of the gradient tracking variable yk from its average ȳk ≜ ȳk ⊗ 1n are considered
jointly as one augmented quantity, which simplifies the analysis.

Note that the mixing matrix W can be decomposed as

W = QΛQT =
[

1√
n
1 Q̂

] [1 0

0 Λ̂

][1√
n
1T

Q̂T

]
,

where Λ̂ = diag{λi}ni=2, Q is a square orthogonal (QQT = QTQ = I), and Q̂ is a matrix of size n× (n− 1) such that
Q̂Q̂T = In − 1

n11
T and 1TQ̂ = 0. From the above, we have

W = QΛQT =
[

1√
n
1⊗ Im Q̂

] [Im 0

0 Λ̂

] [1√
n
1T ⊗ Im

Q̂T

]
,

where Λ̂ ≜ Λ̂⊗ Im ∈ Rm(n−1)×m(n−1), Q ∈ Rmn×mn is orthogonal, and Q̂ ≜ Û ⊗ Im ∈ Rmn×m(n−1) satisfies:

Q̂TQ̂=I, Q̂Q̂T=I− 1
n11

T ⊗ Im, (1T ⊗ Im)Q̂=0. (9)

Using (4), it follows that Λk ≜ Λ if k ∈ τ and Λk ≜ I otherwise. Equation (9) directly leads to

∥Q̂Tx∥2 = xTQ̂Q̂TQ̂Q̂Tx = ∥Q̂Q̂Tx∥2 = ∥x− x̄∥2

∥Q̂Ty∥2 = yTQ̂Q̂TQ̂Q̂Ty = ∥Q̂Q̂Ty∥2 = ∥y − ȳ∥2.

In addition, we know that Q ≜
[

1√
n
1⊗ Im Q̂

]
. To recover the average x̄ from the augmented vector x, the following

operation can be performed (1n1
T ⊗ Im)x = x̄. Hence, we multiply (5) by QT and simplify to get

QTxk+1 = ΛkQ
T(xk − ηyk)

QTyk+1 = ΛkQ
Tyk + αΛkQ

T(∇f(xk+1)−∇f(xk))[
x̄k+1

Q̂Txk+1

]
= Λk

([
x̄k

Q̂Txk

]
−
[
ηα∇f(xk)

ηQ̂Tyk

])
[∇f(xk+1)

Q̂Tyk+1

]
=Λk

[∇f(xk)

Q̂Tyk

]
+ αΛk

[∇f(xk+1))−∇f(xk)

Q̂T(∇f(xk+1)−∇f(xk))

]
.

Using the structure of Λk, we then have

x̄k+1=x̄k − ηα∇f(xk) (11a)

Q̂Txk+1=Λ̂kQ̂
T(xk − ηyk) (11b)

Q̂Tyk+1=Λ̂kQ̂
Tyk+αΛ̂kQ̂

T(∇f(xk+1)−∇f(xk)). (11c)

Observe that the average vector update (11a) has stepsizes α and η, the stepsize α comes from the fact that

ȳk+1 = ȳk + α(∇f(xk+1)−∇f(xk)) = α∇f(xk+1), (12)

where where ȳk = 1
n

∑n
i=1 y

k
i and the last step holds due to our initialization y0 = α∇f(x0). Equation (11a) shows that

the average of agent parameters, x̄, is updated by performing a gradient descent step using the global gradient evaluated at
the past average gradients. Then, x̄ will converge to a stationary point in the limit. Therefore, if agents reach a consensus,
this consensus will be a stationary point of (1). We then convert (11) into matrix notation

x̄k+1 = x̄k − ηα∇f(xk) (13a)[
Q̂Txk+1

Q̂Tyk+1

]
=

[
Λ̂k −ηΛ̂k

0 Λ̂k

] [
Q̂Txk

Q̂Tyk

]
++α

[
0

Λ̂kQ̂
T(∇f(xk+1)−∇f(xk))

]
. (13b)

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

On the Performance of Gradient Tracking with Local Updates

By iterating (13) up to rkTo where rk = ⌊k/To⌋ it follows that (5) can be rewritten as

x̄k+1 = x̄k − ηα∇f(xk) (14a)

Φk+1 =

(
rkTo∏
l=k

Gl

)
ΦrkTo + αhk+1+α

k−1∑
t=rkTo

(
t∏

l=k−1

Gl

)
ht+1. (14b)

where

Φk ≜

[
Q̂Txk

Q̂Tyk

]
,

Gk ≜

[
Λ̂k −ηΛ̂k

0 Λ̂k

]
,

hk+1 ≜

[
0

Λ̂kQ̂
T(∇f(xk+1)−∇f(xk))

]
.

In the next Section, we analyze and bound the trajectory of the augmented consensus quantity ∥Φk∥ necessary to establish
the convergence of Algorithm 1.
Remark A.1. The product notation

∏t
l=k−1 Gl start from the large indices to the smaller, which is different from sum

notation where order is not important. As a simple, example, consider a recursion of the form sk+1 = Aks
k. Then, we have

for example s4 = A3s
3 = A3A2s

2 = A3A2A1s
1.

B. Analysis on Convergence of Algorithm 1
In this section we prove our main result in Theorem 2.4. We start by introducing a series of technical lemmas that will help
us build the desired result. Lemma B.1 and Lemma B.2 quantify the effect of local steps and the mixing matrix W on the
augmented consensus quantity. Lemma B.3 provides a bound of the deviation of the parameter xk between iterations. This
is needed in Lemma B.4 to bound the quantity hk used in the bound on the augmented consensus quantity.
Lemma B.1. For iterates t, and k of Algorithm 1 where rkTo < t < k − 1 and k − 1, t /∈ τ , the following matrix inequality
holds ∥∥∥∥∥

t∏
l=k−1

Gl

∥∥∥∥∥ ≤ 1 + η(k − 1− t) < 1 + ηTo. (15)

Proof. ∥∥∥∥∥
t∏

l=k−1

Gl

∥∥∥∥∥ =

∥∥∥∥[I −η(k − 1− t)I
0 I

]∥∥∥∥
=

∥∥∥∥I+ [0 −η(k−1−t)I
0 0

]∥∥∥∥ ≤ 1+η(k−1−t) ≤ 1+ηTo.

The first equality follows from multiplying Gl from l = t to l = k − 1. The second equality follows from directly
decomposing the result matrix product as a sum. The final step uses the sub-additive property of matrix norms.

Lemma B.2. Suppose that Assumption 2.2 holds. For an iterate k of Algorithm 1 where rkTo < k and k /∈ τ , the following
matrix inequality holds ∥∥∥∥∥

rkTo∏
l=k

Gl

∥∥∥∥∥ ≤ λ(1 + ηTo). (16)

Proof.
rkTo∏
l=k

Gl ≜ C =

[
Λ̂ −ηΛ̂

0 Λ̂

] [
I −η(k − rkTo)I
0 I

]

=

[
Λ̂ −η(k − rkTo)Λ̂− ηΛ̂

0 Λ̂

]
.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

On the Performance of Gradient Tracking with Local Updates

This result directly follows from multiplying Gl from l = rkTo to l = k.

There exists a coordinate of transformation matrix R such that RTCR = blkdiag{C}ni=2, where

Ci =

[
λi −η(k − rkTo)λi − ηλi

0 λi

]
= λi

(
I +

[
0 −η(k − rkTo)− η
0 0

])
.

To get the above result, we factored out λi and decomposed the matrix as a sum of matrices. Hence,

∥Ci∥ ≤ λi(1 + η(k − rkTo) + η)

∥C∥ ≤ λ(1 + η(k − rkTo) + η) ≤ λ(1 + η(To)).

Here we first used the sub-additive property of matrix norms. Then, we took advantage of the block-diagonal structure of
RTCR and the fact that ∥R∥ = 1.

Lemma B.3. Let 0 < η, α < 1 and k ≥ 0. Then, an iterate xk of Algorithm 1 has the following property:

∥xk+1 − xk∥2=
{
4∥Φk∥2+4nη2α2∥∇f(xk)∥2 k ∈ τ,

4η2∥Φk∥2+4nη2α2∥∇f(xk)∥2 else.

where n is the number of agents.

Proof. Depending on k, we have two possibilities

∥xk+1 − xk∥2 =

{
∥(W − I)xk − ηWyk∥2 when k ∈ τ,

∥ηyk∥2 otherwise.

We start by bounding the first case:

∥(W − I)xk − ηWyk∥2 = ∥(W − I)(xk − (1⊗ x̄k))− ηWyk∥2

≤ 4∥xk − x̄k∥2 + 2∥ηyk∥2

≤ 4∥xk − x̄k∥2 + 4η2∥yk − ȳk∥2 + 4η2∥ȳk∥2

The first equality adds and subtracts 1⊗ x̄k inside the norm. We take advantage of the fact that W(1⊗ x̄k)) = 1⊗ x̄k. In
the first inequality, we use ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 twice and then use Assumption 2.2 to upper bound the spectral norm
of W by 1. In the final inequality, we use ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2. Using (12), we have

∥(W − I)xk −Wyk∥2 ≤ 4∥xk − x̄k∥2 + 4η2∥yk − ȳk∥2 + 4nη2α2∥∇f(xk)∥2.
Using the properties in (9) the following upper bound on the consensus error holds

∥Φk∥2 =

∥∥∥∥[Q̂Txk

Q̂Tyk

]∥∥∥∥2 = ∥xk − x̄k∥2 + ∥yk − ȳk∥2.

Since 0 < η < 1 it follows that

∥xk − x̄k∥2 + η2∥yk − ȳk∥2 ≤ ∥Φk∥2. (17)

Hence,
∥(W − I)xk −Wyk∥2 ≤ 4∥Φk∥2 + 4nη2α2∥∇f(xk)∥2.

We now bound the second case

∥ηyk∥2 = η2∥yk − ȳk + ȳk∥2

≤ 2η2∥Q̂Tyk∥2 + 2nη2α2∥∇f(xk)∥2

≤ 4η2∥Φk∥2 + 4nη2α2∥∇f(xk)∥2.

In the first inequality, we apply ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 and use (9) on the term ∥ȳk − ȳk∥. Then, we use (12) on the
term ȳk. In the final inequality, we use (17).

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

On the Performance of Gradient Tracking with Local Updates

Lemma B.4. Let Assumptions 2.2 and 2.3 hold. For an iteration k /∈ τ , step-size α > 0, smoothness parameter L defined
in Assumption 2.3, constant 1 > η > 0, and number of local iterations To, the following inequality holds

∥hk+1∥2 +
∥∥∥∥∥

k−1∑
t=rkTo

(
t∏

l=k−1

Gl

)
ht+1

∥∥∥∥∥
2

≤ 8L2η2To(1 + ηTo)
2

k∑
t=rkTo+1

(∥Φt∥2+nα2∥∇f(xt)∥2)

+ 8L2λ2(1 + ηTo)(∥ΦrkTo∥2+nη2α2∥∇f(xrkTo)∥2).

Proof. First, we use ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 to obtain,

∥hk+1∥2 +
∥∥∥∥∥

k−1∑
t=rkTo

(
t∏

l=k−1

Gl

)
ht+1

∥∥∥∥∥
2

≤ ∥hk+1∥2 + 2

∥∥∥∥∥
(

rkTo∏
l=k−1

Gl

)
hrkTo+1

∥∥∥∥∥
2

+ 2

∥∥∥∥∥
k−1∑

t=rkTo+1

(
t∏

l=k−1

Gl

)
ht+1

∥∥∥∥∥
2

≤ L2∥xk+1−xk∥2+2L2λ2(1 + ηTo)∥xrkTo+1 − xrkTo∥2

+ 2L2To(1 + ηTo)
2

k−1∑
t=rkTo+1

∥∥xt+1−xt
∥∥2

≤ 4L2η2(∥Φk∥2+nα2∥∇f(xk)∥2)
+ 8L2λ2(1 + ηTo)(∥ΦrkTo∥2+nη2α2∥∇f(xrkTo)∥2)

+ 8L2η2To(1 + ηTo)
2

k−1∑
t=rkTo+1

(∥Φt∥2+nα2∥∇f(xt)∥2)

≤ 8L2λ2(1 + ηTo)(∥ΦrkTo∥2+nη2α2∥∇f(xrkTo)∥2)

+ 8L2η2To(1 + ηTo)
2

k∑
t=rkTo+1

(∥Φt∥2+nα2∥∇f(xt)∥2).

In the second inequality, we used Lemma B.1, Lemma B.2, and Assumption 2.3. In the third inequality, we used Lemma B.3.
In the fourth inequality, we group similar terms.

Next, we find a bound on the consensus inequality to later use in the descent inequality. Note that we define
∑k

t=rkTo
(·) as

zero if rkTo > k − 1.

Lemma B.5 (Consensus Inequality). Let Assumptions 2.2 and 2.3 hold and

η < min

{
1,

(1−
√
λ)

(
√
λ)(To)

}
, (18)

α ≤ min

{√
(1− λ)(1− θ)

16L2λ
,

√
(λ̄− λ̄2)(1− θ)

8L2η2T 2
o

}
, (19)

hold. Define θ = λ(1 + ηTo)
2 < 1. Then, the output of Algorithm (1) satisfies the following inequality

1

K

K−1∑
k=0

∥Φk∥2 ≤ (1− λ̄)(1
K

∑K−1
k=0 λ̄rk)

1− λ̄− e1To
∥Φ0∥2 +

(
e2To

K(1− λ̄− e1To)

)K−1∑
k=0

(
∥∇f(xk)∥2 + ∥∇f(x̄k)∥2

)
, (20)

where ∥Φk∥2 = ∥xk − x̄k∥2 + ∥yk − ȳk∥2, rk ≜ ⌊k/To⌋, e1 ≜ 8L2η2α2To(1+ηTo)
2

(1−θ) , and e2 ≜ 8nL2η2α4To(1+ηTo)
2

(1−θ) .

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

On the Performance of Gradient Tracking with Local Updates

Proof of Lemma B.5. We take the norm of (14) and apply Jensen’s inequality for any 0 < θ < 1.

∥Φk+1∥2 ≤ 1

θ

∥∥∥∥∥
(

rkTo∏
l=k

Gl

)
ΦrkTo

∥∥∥∥∥
2

+
2α2

(1− θ)

(
∥hk+1∥2 +

∥∥∥∥∥
k−1∑

t=rkTo

(
t∏

l=k−1

Gl

)
ht+1

∥∥∥∥∥
2)

≤ λ2(1 + ηTo)
2

θ

∥∥∥ΦrkTo

∥∥∥2 + 8L2α2(1 + ηTo)
2

(1− θ)

(
k∑

t=rkTo+1

Toη
2∥Φt∥2 + λ2∥ΦrkTo∥2

)

+
8nL2η2α4(1 + ηTo)

2

(1− θ)

(
k∑

t=rkTo+1

To∥∇f(xk)∥2 + λ2∥∇f(xrkTo)∥2)
)
.

In the second inequality, we applied the results from Lemma B.2 and Lemma B.4. Set

θ = λ(1 + ηTo)
2 < 1 ⇒ η <

1−
√
λ√

λ(To)
.

Moreover, define e1 ≜ 8L2η2α2To(1+ηTo)
2

(1−θ) , and e2 ≜ 8nL2η2α4To(ηTo)
2

(1−θ) , then

∥Φk+1∥2 ≤ (λ+
λ2e1
Toη2

)
∥∥∥ΦrkTo

∥∥∥2 + e1

k∑
t=rkTo+1

∥Φt∥2 + e2

(
k∑

t=rkTo+1

∥∇f(xt)∥2 + λ2

To
∥∇f(xrtTo)∥2

)
.

Choose α such that

λ+
λ2e1
Toη2

≤ 1 + λ

2
⇒ α ≤

√
(1− λ)(1− θ)

16L2λ
.

Defining λ̄ = (1 + λ)/2 and observing that λ2

To
< 1, we have

∥Φk+1∥2≤λ̄∥ΦrkTo∥2 + e1

k∑
t=rkTo+1

∥Φt∥2 + e2

k∑
t=rkTo

∥∇f(xt)∥2. (21)

When k = rkTo − 1, we have

∥ΦrkTo∥2≤λ̄∥Φ(rk−1)To∥2+e1

rkTo−1∑
t=(rk−1)To

∥Φt∥2 + e2

rkTo−1∑
t=(rk−1)To

∥∇f(xt)∥2.

Substitute the above into (21) and iterate to find

∥Φk+1∥2 ≤ λ̄rk+1∥Φ0∥2 + e1

(
k∑

t=rkTo

∥Φt∥2 + λ̄

rkTo−1∑
t=(rk−1)To

∥Φt∥2 + · · ·+ λ̄rk

To−1∑
t=0

∥Φt∥2
)

+ e2

(
k∑

t=rkTo

∥∇f(xt)∥2 + λ̄

rkTo−1∑
t=(rk−1)To

∥∇f(xt)∥2 + · · ·+ λ̄rk

To−1∑
t=0

∥∇f(xk)∥2
)
.

Recall that rk = ⌊ k
To
⌋. Thus, we introduce the notation

λ̄(k,t) ≜



0 t ≤ −1

1 rkTo ≤ t ≤ k

λ̄ (rk − 1)To ≤ t ≤ rkTo − 1
...

...
λ̄rk 0 ≤ t ≤ To − 1.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

On the Performance of Gradient Tracking with Local Updates

We can then describe the previous bound more compactly as

∥Φk∥2 ≤ λ̄rk+1∥Φ0∥2 + e1

k−1∑
t=0

λ̄(k−1,t)∥Φt∥2 + e2

k−1∑
t=0

λ̄(k−1,t)∥∇f(xt)∥2.

when setting k + 1 as k. Then, we average over k = 0, ...,K − 1 and upper bound the result as follows

1

K

K−1∑
k=0

∥Φk∥2 ≤ 1

K

K−1∑
k=0

λ̄rk+1∥Φ0∥2 + e1
K

K−1∑
k=0

k−1∑
t=0

λ̄(k−1,t)∥Φt∥2 + e2
K

K−1∑
k=0

k−1∑
t=0

λ̄(k−1,t)∥∇f(xt)∥2

=
1

K

K−1∑
k=0

λ̄rk+1∥Φ0∥2 + e1
K

K−1∑
t=0

K−1∑
k=t

λ̄(k−1,t)∥Φt∥2 + e2
K

K−1∑
t=0

K−1∑
k=t

λ̄(k−1,t)∥∇f(xt)∥2

=
1

K

K−1∑
k=0

λ̄rk+1∥Φ0∥2 + e1
K

K−1∑
t=0

∥Φt∥2
K−1∑
k=t

λ̄(k−1,t) +
e2
K

K−1∑
t=0

∥∇f(xt)∥2
K−1∑
k=t

λ̄(k−1,t)

≤ 1

K

K−1∑
k=0

λ̄rk+1∥Φ0∥2 + e1To

K(1− λ̄)

K−1∑
k=0

∥Φk∥2 + e2To

K(1− λ̄)

K−1∑
k=0

∥∇f(xk)∥2.

In the first equality, we rearrange the order of the summation. In the second equality, we rearrange the terms in the
summation based on their index. In the second inequality, we upper bound

∑K−1
k=0

∑K−1
k=t λ̄(k−1,t) with To/(1− λ̄) and

change the indexing from t to k afterwards. Therefore,(
1− e1To

1− λ̄

)
1

K

K−1∑
k=0

∥Φk∥2 ≤ 1

K

K−1∑
k=0

λ̄rk+1∥Φ0∥2 +
(

e2To

K(1− λ̄)

)K−1∑
k=0

∥∇f(xk)∥2,

and with further simplification, we have(
1− λ̄− e1To

1− λ̄

)
1

K

K−1∑
k=0

∥Φk∥2 ≤ 1

K

K−1∑
k=0

λ̄rk+1∥Φ0∥2 +
(

e2To

K(1− λ̄)

)K−1∑
k=0

∥∇f(xk)∥2.

By imposing the following assumption on α

1− λ̄− e1To

1− λ̄
≥ 1− λ̄ ⇒ α ≤

√
(λ̄− λ̄2)(1− θ)

8L2η2T 2
o

, (22)

it follows that

1

K

K−1∑
k=0

∥Φk∥2 ≤
(1− λ̄)(1

K

∑K−1
k=0 λ̄rk+1)

1− λ̄− e1To

∥Φ0∥2 +
(

e2To

K(1− λ̄− e1To)

)K−1∑
k=0

∥∇f(xk)∥2

≤
(1− λ̄)(1

K

∑K−1
k=0 λ̄rk+1)

1− λ̄− e1To

∥Φ0∥2 +
(

e2To

K(1− λ̄− e1To)

)K−1∑
k=0

(
∥∇f(xk)∥2 + ∥∇f(x̄k)∥2

)
.

We are now ready to state the proof of Theorem 2.4.

Proof of Theorem 2.4. Following similar arguments as in Lemma 3 of (Alghunaim & Yuan, 2022) and imposing

α ≤ 1

2L
, (23)

we have the following inequality

f(x̄k+1)≤f(x̄k)−ηα

2
∥∇f(x̄k)∥2−ηα

4
∥∇f(xk)∥2+ηαL2

2n
∥Φk∥2.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

On the Performance of Gradient Tracking with Local Updates

Reorganize and lower bound the left-hand side to find

ηα

4

(
∥∇f(x̄k)∥2+∥∇f(xk)∥2

)
≤f(x̄k)−f(x̄k+1)+

ηαL2∥Φk∥2
2n

.

Next, subtract and add f∗ and set f̃(x̄k) = f(x̄k)− f∗, then

∥∇f(x̄k)∥2+∥∇f(xk)∥2≤ 4

ηα

(
f(x̄k)−f(x̄k+1)

)
+
2L2

n
∥Φk∥2.

Sum both sides from k = 0, ...,K − 1 and divide by K

1

K

K−1∑
k=0

(
∥∇f(x̄k)∥2 + ∥∇f(xk)∥2

)
≤ 4

ηαK

K−1∑
k=0

(f̃(x̄k)− f̃(x̄k+1)) +
2L2

nK

K−1∑
k=0

∥Φk∥2. (24)

Multiplying (20) from Lemma B.5 by c, a constant to be defined later, and adding it to the above equation, we then have the
following

1

K

K−1∑
k=0

(
∥∇f(x̄k)∥2 + ∥∇f(xk)∥2

)
+c

1

K

K−1∑
k=0

∥Φk∥2 ≤ 4

ηαK

K−1∑
k=0

(f̃(x̄k)− f̃(x̄k+1)) +
2L2

nK

K−1∑
k=0

∥Φk∥2

+ c
(1− λ̄)(1

K

∑K−1
k=0 λ̄rk)

1− λ̄− e1To
∥Φ0∥2

+ c

(
e2To

K(1− λ̄− e1To)

)K−1∑
k=0

(
∥∇f(xk)∥2 + ∥∇f(x̄k)∥2

)
.

Rearranging and setting c = 3L2

n we find(
1− 3L2e2To

n(1− λ̄− e1To)

)
1

K

K−1∑
k=0

(
∥∇f(x̄k)∥2 + ∥∇f(xk)∥2

)
+

(
L2

n

)
1

K

K−1∑
k=0

∥Φk∥2

≤ 4

ηαK

K−1∑
k=0

(f̃(x̄k)− f̃(x̄k+1)) + c
(1− λ̄)(1

K

∑K−1
k=0 λ̄rk)

1− λ̄− e1To
∥Φ0∥2.

Require

1

2
≤
(
1− 3L2e2To

n(1− λ̄− e1To)

)
⇒ α ≤ 4

√
(1− λ̄)2(1− θ)

48L4η2T 2
o

. (25)

Then, we have

1

K

K−1∑
k=0

(
∥∇f(x̄k)∥2 + ∥∇f(xk)∥2

)
+

L2

Kn

K−1∑
k=0

∥Φk∥2 ≤ 8

ηαK
f̃(x̄0) +

6L2(1− λ̄)(
∑K−1

k=0 λ̄rk)

nK(1− λ̄− e1To)
∥Φ0∥2.

Assume that the initialization for x1, x2, ..., xn is identical. Then x0 = 1⊗ x0 (for some x0 ∈ Rd). As a result, x0 = x̄0

meaning ∥Q̂Tx0∥2 = 0. Then,

∥Φ0∥2 = ∥Q̂Ty0∥2 =
∥∥∥αQ̂T∇f(x0)

∥∥∥2 = α2∥∇f(x̄0)− 1⊗∇f(x̄0)∥2.

Define ζ0 = ∥∇f(x̄0)− 1⊗∇f(x̄0)∥2. We also upper bound
∑K−1

k=0 λ̄rk with To/(1− λ̄), a repeating geometric sequence
and use (22). Then, the desired relation follows.

13

