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Abstract

We study the decentralized optimization problem
where a network of n agents seeks to minimize
the average of a set of heterogeneous non-convex
cost functions distributedly. State-of-the-art de-
centralized algorithms like Exact Diffusion and
Gradient Tracking (GT) involve communicating
every iteration. However, communication is ex-
pensive, resource intensive, and slow. This work
analyzes a locally updated GT method (LU-GT),
where agents perform local recursions before in-
teracting with their neighbors. While local up-
dates have been shown to reduce communication
overhead in practice, their theoretical influence
has not been fully characterized. We show LU-
GT has the same communication complexity as
the Federated Learning setting but allows for de-
centralized (symmetric) network topologies and
prove that the number of local updates does not
degrade the quality of the solution achieved by
LU-GT.

1. Introduction

We study the distributed multi-agent optimization problem
minimize f(z) £ 1 Z fi(z) (1)
z€R™ n &=t

where f;(-) : R™ — R is a smooth, non-convex function
held privately by agent ¢ € {1,...,n}. The agents collabo-
rate to find a consensual solution z* of (1) with communi-
cation constrained by some network topology.

Many decentralized methods have been proposed to
solve (1). Among the most prolific include decentral-
ized/distributed gradient descent (DGD) (Ram et al., 2010;
Cattivelli & Sayed, 2010), EXTRA (Shi et al., 2015), Exact-
Diffusion/D*/NIDS (ED) (Yuan et al., 2019; Li et al., 2019;
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Yuan et al., 2020; Tang et al., 2018), and Gradient Track-
ing (GT) (Xu et al., 2015; Di Lorenzo & Scutari, 2016;
Qu & Li, 2018; Nedic et al., 2017). DGD is an algorithm
wherein agents perform a local gradient step followed by
a communication round. However, DGD has been shown
not optimal for constant stepsizes when agents’ local ob-
jective functions are heterogeneous, i.e., the minimizer of
functions f;(-) differs from the minimizer of f(-). This
shortcoming has been analyzed in (Chen & Sayed, 2013;
Yuan et al., 2016) where the heterogeneity causes the rate
of DGD to incur an additional bias term with a magnitude
directly proportional to the level of heterogeneity. Moreover,
this bias term is inversely influenced by the connectivity of
the network (becomes larger for sparse networks) (Yuan
et al., 2020; Koloskova et al., 2020).

EXTRA, ED, and GT employ bias-correction techniques
to account for heterogeneity. EXTRA and ED use local
updates that incorporate the previous iteration’s parame-
ter and gradient. GT methods have each agent perform
the local update with an estimate of the global gradient
called the tracking variable. In these techniques, the bias
term proportional to the heterogeneity found in DGD is re-
moved (Alghunaim & Yuan, 2022; Koloskova et al., 2021).
However, they require communication over the network at
every iteration.

Communication is expensive, resource intensive, and slow
in practice (Ying et al., 2021). Centralized methods in which
agents communicate with a central coordinator (i.e., server)
have been developed to solve (1) with an explicit focus on
reducing the communication cost. This has been achieved
empirically by requiring agents to perform local recursions
before communicating. Among these methods include Lo-
calGD (Stich, 2019; Khaled et al., 2019; 2020b; Zhang et al.,
2016; Lin et al., 2020), Scaffold (Karimireddy et al., 2020),
S-Local-GD (Gorbunov et al., 2021), FedLin (Mitra et al.,
2021), and Scaffnew (Mishchenko et al., 2022). Analysis
on LocalGD revealed that local recursions cause agents to
drift towards their local solution (Khaled et al., 2019; 2020a;
Koloskova et al., 2020). Scaffold, S-Local-GD, FedLin, and
Scaffnew address this issue by introducing bias-correction
techniques. However, besides (Mishchenko et al., 2022),
analysis of these methods has failed to show communication
complexity improvements. The work (Mishchenko et al.,
2022) has shown that for p-strongly-convex, L-smooth, and
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deterministic functions, the communication complexity of
Scaffnew can be improved from O(k) to O(y/k) if one
performs / local recursions with s = L/ .

Local recursions in decentralized methods have been much
less studied. DGD with local recursions has been studied
in (Koloskova et al., 2020), but the convergence rates still
have bias terms due to heterogeneity. Additionally, the mag-
nitude of the bias term is proportional to the number of local
recursions taken. Scaffnew (Mishchenko et al., 2022) has
been studied under the decentralized case but for the strongly
convex and smooth function class. In (Mishchenko et al.,
2022), for sufficiently connected graphs, an improvement
to a communication complexity of O(y/x/(1 — A)) where
A is the mixing rate of the matrix is shown. Several works
studied GT under time-varying graphs such as (Di Lorenzo
& Scutari, 2016; Nedic et al., 2017; Scutari & Sun, 2019;
Sun et al., 2022; Saadatniaki et al., 2020), among these
only the works (Di Lorenzo & Scutari, 2016; Scutari & Sun,
2019; Lu & Wu, 2020) considered nonconvex setting. Dif-
ferent from (Di Lorenzo & Scutari, 2016; Scutari & Sun,
2019; Lu & Wu, 2020), we provide explicit expressions that
characterize the convergence rate in terms of the problem
parameters (e.g., network topology).

In this work, we propose and study LU-GT, a locally up-
dated decentralized algorithm based on the bias-corrected
method GT. Our contributions are as follows:

* We analyze LU-GT under the deterministic, non-
convex regime. As a byproduct, we provide an al-
ternative and simpler analysis for GT, which extends
the techniques from (Alghunaim & Yuan, 2022).

e We show LU-GT has a communication complexity
matching locally updated variants of federated algo-
rithms.

¢ We demonstrate that LU-GT retains the bias-correction
properties of GT irrespective of the number of local
recursions and that the number of local recursions does
not affect the quality of the solution.

* Numerical analysis shows that local recursions can
reduce the communication overhead in certain regimes,
e.g., well-connected graphs.

This paper is organized as follows. Section 2 defines rele-
vant notation, states the assumptions used in our analysis,
introduces LU-GT, and states our main result on the conver-
gence rate. In Section A, we provide intuition into how the
direction of our analysis can show that following LU-GT,
agents reach a consensus that is also a first-order stationary
point. We also cover relevant lemmas needed in the analysis
of LU-GT. In Section B, we prove the convergence rate

of LU-GT. Section 3 shows evidence that the local recur-
sions of LU-GT can reduce communication costs in certain
regimes.

Notation: Lowercase letters define vectors or scalars, while
uppercase letters define matrices. We let col{ay,...,a,}
or col{a;}_; denote the vector that concatenates the vec-
tors/scalars a;. We let diag{dy,...,d,} or diag{d;}" ,
denote the matrix with diagonal elements d;. Similarly,
blkdiag{ D1, D, ..., D, } or blkdiag{ D; }?" ; represents the
block diagonal matrix with matrices D; along the diagonal.
The notation 1 represents the one vector of size that should
be inferred while 1,, represents the one vector of size n.
The inner product of two vectors a, b is defined as (a,b). ®
represents the Kronecker product. Boldface variables such
as (x, W) represent augmented network quantities.

2. Algorithm, Assumptions, and Main Result

The original gradient tracking method has the form (Xu
etal., 2015):

af T =" w2k —ngh) (2a)
JEN;

gt =" wi(gh + VT = V5(h), @b)
JEN;

with g0 = V f(2?). Here, z¥ is agent i’s current parameter
estimate at iteration k, and gf € R” is an additional param-
eter held by agent ¢ that tracks the average of the gradient.
Here, w;; is a scalar weight that scales the information agent
1 receives from agent j, and N; is the set of neighbors of
agent i. We set w;; = 0if j ¢ ;.

In this work, we study a locally updated variant of gradi-
ent tracking listed in Algorithm 1 where instead of agents
communicating every iteration, they communicate every 7y,
iterations. The proposed method LU-GT is detailed in Algo-
rithm 1 where o and 7 are step-size parameters, and 75, is
the number of local recursions before a round of communi-
cation. The intuition behind the algorithm is to have agents
perform a descent step using a staling estimate of the global
gradient for T, iterations. Afterwards, agents perform a
weighted average of their parameters with their neighbors
and update their tracking variable.

Remark 2.1. For T, = 1, Algorithm 1 becomes equivalent
to the original ATC-GT (Xu et al., 2015) with stepsize =
na. This can be seen by introducing the change of variable
g¥ = (1/a)yF. Thus, our analysis also covers the original
GT method.

For analysis reasons, we will rewrite algorithm 1 using
network notation. To do so,we define W = [w;;] € R"*"
as the mixing matrix for an undirected graph that models
the connections of a group of n agents. We also introduce
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Algorithm 1 LU-GT for each agent @
1: Input: 29 = 0 € R™, y? = aVfi(x
T, € ZZO’ K e Z+
2: Define: 7 = {0, T,, 275, 37T,...}

N,a>0,1m7>0

3: fork=0,...K —1do

4: if k € 7 then

500 a2t = 3wk —nyh)
JEN;

6yt = 3wy +aVENT) - aV (b))
JEN;

7:  else

3 e xk nyk

o: %H = yZ +aVfi(z k“) ani(:Ef)

10: end if

11: end for

the network notations:

W = W@Id c Rmnxmn
7372}’

Vi(x)=col{V fi(z1),...,

xP = col{zk, ...

= filw),
=1

To analyze Algorithm 1, we first introduce the following
time-varying matrix:

Ly}

V fn(zn)}-

y* = col{yt,...

W, 2 Ay’ whenk.eT, @)
I  otherwise.
Thus, we can succinctly rewrite Algorithm 1 as follows
= Wi(x"* —ny") (5a)
yil = Wi (y* + aVE(x") — aVE(xF)).  (5b)

We now list the assumptions used in our analysis.

Assumption 2.2. The mixing matrix W is doubly stochastic
and symmetric.

The Metropolis-Hastings algorithm (Hastings, 1970) can
be used to construct mixing matrices from an undirected
graph satisfying Assumption 2.2. Moreover, from As-
sumption 2.2, the mixing matrix W has a singular, max-
imum eigenvalue denoted as A\; = 1. All other eigenval-
ues are defined as {\;}?_,. We define the mixing rate as
A i=maxe(a n}{‘)‘z|}

Assumption 2.3. Each function f; : R — R is L-smooth
fori € V,ie., [[Vfi(y) = Vfi(2)| < Llly = 2[l. Vy,z €
R™ for some L > 0. We assume there exists a f* € R such

that f(x) > f*.

We are now ready to state the main result of this paper on
the convergence analysis of LU-GT.

Theorem 2.4 (Convergence of LU-GT). Let Assump-
tions 2.2 and 2.3 hold, and let, T,, € Z>o, n > 0, and
a > 0withn < O(1/T,), and o < O((1 — X)/L) (Exact
bounds found in (18), (19), (23), (25)). Then, forany K > 1,
the output xX, of Algorithm 1 (LU-GT) with x° = (1 ® 2°)
for any 2V € R™ has the following property:

Z IV f(z

2 2 L2K k|2
I+ ITEIE) + 2= > I19F)° <

8 /-0 30[2L2T0<0
- 6
+77aKf(x>+nK(1—)\)2 ©
Proof. The proof can be found in Appendix B. O

Note that the left-hand side of (7) has three main compo-
nents. The first two indicate the asymptotic convergence
to a stationary point, while the third term ||®"||> guaran-
tees asymptotic consensus. If in Theorem 2.4, we consider
a sufficiently well-connected graph where 1 > 2/ and
set « « (1—A)/L, and n < 1/T,, then we obtain the
convergence rate,

Z IVf(z
T0f<-'17) TOCO
o(K +nK>.

The communication complexity of LU-GT is obtained by
dividing the number of iterations K by T, to find the num-
ber of communication rounds, i.e., R = K/T,. Theo-
rem 2.4 implies that LU-GT matches the same commu-
nication complexity (R = O(1/¢) for a desired accuracy
€ > 0) as (Karimireddy et al., 2020) for distributed (feder-
ated) setups. However, LU-GT allows arbitrary symmetric
undirected network topologies (Assumptions 2.2).

+ = ZW‘IIQ

(N

O + [ VE(x"

3. Numerical Results

We simulate the performance of Algorithm 1 for the follow-
ing least squares problem with a non-convex regularization
term:

mianHAﬂ—bin—i—pZ L)z,, (®)
@ n =~ 1+ z(5)2
where {A;,b;} is the local data held by agent ¢ and z(j)
is the j — th component of the parameter z. We consider
two cases: 1) close to homogeneous, where local station-
ary points are different but sufficiently close; 2) heteroge-
neous, where no assumptions are made on the similarity
of local stationary points. We generate A; € RP*™ where
p = 500, m = 20 with values drawn from A/ (0, 1), a pa-
rameter vector x; € R with values drawn from A/ (0, 1),
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and b; € RP = A;z + v x z; where z; € RP is drawn
from A (0, 1). This is a heterogeneous case. The difference
for the close to homogeneous is that we draw A; once such
that A; = A;, Vi, j. For the close to homogeneous case, we
examine exponential and fully-connected graphs, while for
the heterogeneous case, we examine star and ring graphs, all
with 16 nodes. We set p = 0.01, v = 150. Table 1 lists the
manually optimized na for each graph and 7, combination.

Table 1. Manually optimized na used for each graph and 75, com-
bination.

T,=1 T,=5 T, = 50 T,=100 T,=200
Complete 2x107% 2x107%  2x 1073 2x 1073 2x 1073
Exponential 2 x 1073 2x 1073 2x1073 2x 1073 2x 1073

T,=1 T, =2 T,=5 T, =10 T, = 50
Ring 2x107° 1x107° 04x107° 2x107° 0.04x107°
Star Ax107* 2x107* .08 x10~* .04x10"* .008 x 10~

Our simulation results in Figure 1 reveal that for (sufficiently
well-connected) graphs, LU-GT reduces communication
costs up to a certain 7;,. In addition, for the exponential
graph, the benefits saturate much faster. For sparse networks,
the hyperparameter tuning of na matches the suggested
inversely proportional relation with 7, predicted by the
theory. In this scenario, communication costs are equivalent
to no local updates, matching the analysis.

T,=5

— T,=50
— T, =100
—— T, =200

IV R IVE 2

0 2 & & 50 100 0
Communication Rounds

(a) Fully-Connected Graph

S0 10 150 00 20 30 30 40
Communication Rounds

(b) Exponential

VAP + VRN

0 S0 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500
Communication Rounds Communication Rounds

(c) Ring (d) Star

Figure 1. Performance of LU-GT to solve (8) with varying T, an,
and topologies.

4. Conclusions

We propose the algorithm LU-GT that incorporates local
recursions into Gradient Tracking. Our analysis shows that
LU-GT matches the same communication complexity as
the Federated Learning setting but allows arbitrary network
topologies. In addition, regardless of the number of local
recursions, LU-GT incurs no additional bias term in the rate.
We show reduced communication complexity in simulation
for well-connected graphs. However, further refinement of
the analysis is necessary to quantify the precise effect of
local recursions on Gradient Tracking. It is still unclear un-
der what regimes local updates reduce the communication
cost and what the upper bound is on these local updates.
Numerical results suggest that local updates might not ben-
efit sparsely connected networks. Such explicit relations
between network topologies and local updates are left for
future work. While we focus on the non-convex setting
in this work due to space constraints, we can extend our
work to the convex setting. Another extension of the work
we have done on LU-GT is accounting for the stochastic
setting to determine if the analysis can reveal linear speedup
similar to what has already been show for vanilla Gradient
Tracking (Alghunaim & Yuan, 2022). Additionally, we can
consider more sophisticated scenarios such as asynchronous
updates (Assran et al., 2020) and varying the number of lo-
cal updates throughout the progression of the algorithm. In
the latter case, future studies may reveal scenarios in which
performing many local updates initally and then increasing
the communication frequency over iterations may improve
the performance of LU-GT.
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A. Transformation of Algorithm 1

We perform a series of transformations on (5) to simplify the analysis and accurately characterize the behavior of our
algorithm. In particular, the trajectory of the average of agent parameters " is defined to show convergence of Z* to a
first-order stationary point of (1). Motivated by (Alghunaim & Yuan, 2022), the deviation of agent parameters xF from the
average X* £ z* ® 1,, and the deviation of the gradient tracking variable y* from its average y* £ 7* ® 1,, are considered
jointly as one augmented quantity, which simplifies the analysis.

Note that the mixing matrix W can be decomposed as

r_[aq o] [V O][wY
wean’=[g1 o[ ] 1]

where A = diag{\;}",, Q is a square orthogonal (QQT = QTQ = I), and Q is a matrix of size n x (n — 1) such that
QQT =1, — %llT and ITQ = 0. From the above, we have

A Im O L]-T ® I’rn
W:QAQT:{ﬁlgﬂm QHO A} WQT ,
where A £ A ® I,,, € Rm(n=bxm(n=1) '@ ¢ Rmnxmn js orthogonal, and Q 2 U ® I,,, € R™"*m(n—1) gatisfies:
Q'Q=I, QQ'=1-111"® I,, 17 ® I,,)Q=0. ©)

Using (4), it follows that Ay 2 Aifk € 7 and Ay, £ T otherwise. Equation (9) directly leads to
1Q7x|* = x"QQ"QQ x = |QQ x|* = |x — x|
1Q7y]* =y"QQTQQ"y = |QQTy|* = |ly - ¥/*-
In addition, we know that Q = [ﬁl ® Iy Q . To recover the average = from the augmented vector x, the following
operation can be performed (%1 T® I,)x = Z. Hence, we multiply (5) by QT and simplify to get
QTxk+1 _ AkQT(Xk) o nyk)
Qly"™ = AQTy* + aA QT (VE(XMT) — VE(xF))

] = (lane] - )

VEGH)]_ [VEGE) VE(x ) — VE(xb)
QTy**! }: * {QT.V’“] ok [QT(Vf(X’““) - Vf(xk))} '
Using the structure of Ay, we then have
zFHl=zF — naVF(x") (11a)
QT =M, QT (x* —ny*) (11b)
QTy 1 =ArQTy" +aA QT (VE(x 1)~ VE(xh)). (11¢)

Observe that the average vector update (11a) has stepsizes « and 7, the stepsize o comes from the fact that
FH = g 1 a(VE(E ) — VE(xH)) = aVE(xH), (12)

where where 7 = % S y¥ and the last step holds due to our initialization y° = aVf(x°). Equation (11a) shows that
the average of agent parameters, Z, is updated by performing a gradient descent step using the global gradient evaluated at
the past average gradients. Then, z will converge to a stationary point in the limit. Therefore, if agents reach a consensus,
this consensus will be a stationary point of (1). We then convert (11) into matrix notation

Rt — 7k naﬁ(xk) (13a)
QTXk+1 _ Ak _T]Ak QTXk 0
|:QTyk+1] - [ 0 Ak QTyk + +a AkQT(Vf(XkH) _ Vf(xk')) . (13b)
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By iterating (13) up to 7T, where r, = | k/T, ] it follows that (5) can be rewritten as

HH = 7% — naVE(xY) (14a)
reTo k—1 t
PH! = <H Gl> ™" 4+ a4 Y ( 11 Gl> h'* (14b)
1=k t=rT, \l=k—1
where
rA Tk
ka | QX
o2 G
(A, —nAy
G, 2 i
T lo Ay } ’
hk+1 é _A . 0
[ALQT(VE(x"T!) — VE(xF))]

In the next Section, we analyze and bound the trajectory of the augmented consensus quantity H<I>k || necessary to establish
the convergence of Algorithm 1.

Remark A.1. The product notation H?:kq G; start from the large indices to the smaller, which is different from sum

notation where order is not important. As a simple, example, consider a recursion of the form skt = A, s*. Then, we have
for example s* = A3s3 = A3Ay5? = AzAyA;st.

B. Analysis on Convergence of Algorithm 1

In this section we prove our main result in Theorem 2.4. We start by introducing a series of technical lemmas that will help
us build the desired result. Lemma B.1 and Lemma B.2 quantify the effect of local steps and the mixing matrix W on the
augmented consensus quantity. Lemma B.3 provides a bound of the deviation of the parameter x* between iterations. This
is needed in Lemma B.4 to bound the quantity h” used in the bound on the augmented consensus quantity.

Lemma B.1. Foriterates t, and k of Algorithm 1 where 1Ty <t < k — 1l and k — 1,t ¢ 7, the following matrix inequality

holds ,
11

l=k—

<l4nk—-1-1t) <1+nT,. (15)

G,
1

Proof.

t
1 e
l=k—1

The first equality follows from multiplying G; from [ =¢ to [ = k — 1. The second equality follows from directly
decomposing the result matrix product as a sum. The final step uses the sub-additive property of matrix norms. O

-||

0 —n(k—1-)1
0 0

(I) —n(k —11 — t)I} H

I+ { ]H < 14n(k—1-t) < 14nT,.

Lemma B.2. Suppose that Assumption 2.2 holds. For an iterate k of Algorithm 1 where ri,T, < k and k ¢ 7, the following

matrix inequality holds
e To

Ige

=k

< X1 +nTy). (16)

Proof.

TKTo ~ A
1’“—[ G eco A AT (k- Tl
=k l 0 A 0 I

A —n(k — rkTo)A - 77A
0 A '
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This result directly follows from multiplying G; from [ = r;T, tol = k.

There exists a coordinate of transformation matrix R such that R’CR. = blkdiag{C}?_,, where

C' _ )\z 77](]{} — rkTo))\i — 77)\1
10 Ai

_ <I+ [8 —n(k—ngo)—nD.

To get the above result, we factored out A\; and decomposed the matrix as a sum of matrices. Hence,
1Cill < Xi(1+n(k —reT,) +1n)
|CIl < AL +n(k —riTo) +n) < A1+ n(T5)).

Here we first used the sub-additive property of matrix norms. Then, we took advantage of the block-diagonal structure of
RTCR and the fact that | R| = 1. O

Lemma B.3. Let 0 <, < 1 and k > 0. Then, an iterate x* of Algorithm 1 has the following property:
”XkJrl _ ch||2_ 4||¢k|‘2+4nn2a2”ﬁ(xk)”2 ke T,
4n?||®" (|2 +4nn?a?||[VE(x*) |2 else.

where n is the number of agents.

Proof. Depending on k, we have two possibilities

[xA T — Xk |2 = {I(W —Dx* —nWyF*||2 whenk € T,

llny*|1? otherwise.
We start by bounding the first case:
I(W —D)x" = nWy*|? = (W ~ I)(x* — (1®z")) - nWy"|
< dflx® = =" + 2|y )2
R < e U Al A e U [

The first equality adds and subtracts 1 ® z* inside the norm. We take advantage of the fact that W(1 ® z¥)) = 1 ® z*. In
the first inequality, we use ||a + b||? < 2||a]|? + 2||b||? twice and then use Assumption 2.2 to upper bound the spectral norm
of W by 1. In the final inequality, we use ||a + b||* < 2||a||* + 2/|b]|?. Using (12), we have

[(W —I)x* — Wy" || < 4]|x" — 2*||* + 4p?|ly" — 5" > + 4nn*a® | VE(")||.

Using the properties in (9) the following upper bound on the consensus error holds

AT k712
k Q°x _ _
@] = H [nyk] ‘ = |x* —=F|? + |ly* — "7

Since 0 < n < 1 it follows that
%% — &F12 + n?|ly* — ¥ < @) (17)
Hence, _
(W —D)x* — Wy*|? < 4]|@"|1* + 4nn® (| VE(x") 2.
‘We now bound the second case
Iny*[I* = n*lly" — y* +5*|1?
< 20?|QTy"|? + 20 | VE(x") |1?
< 407 (| ¥ + 4nn’o? || VE(xF)||.

In the first inequality, we apply |la + b[|? < 2[|a||? + 2||b||? and use (9) on the term ||¥* — §*||. Then, we use (12) on the
term y*. In the final inequality, we use (17). O
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Lemma B.4. Let Assumptions 2.2 and 2.3 hold. For an iteration k ¢ T, step-size o > 0, smoothness parameter L defined
in Assumption 2.3, constant 1 > n > 0, and number of local iterations T, the following inequality holds

2

k—1 t k
[ Y ( 11 Gz) Wt <8L2PT,(1+0T.)° > (@Y +na®(|VE(x")]?)
t=riTo \l=k—1 t=riTo+1

+BL2(1 T (|87 Pl [VEGT0) |2)

Proof. First, we use ||a + b||? < 2||a||? + 2||b]|? to obtain,

2 2 2

k—1 t reTo k—1 t
Hhk:+1||2+ Z ( H Gl) htt! < ||hk+1H2+2 ( H Gl) hreTo+1 +2 Z ( H Gl> htt!
t=riyTo \l=k—1 l=k—1 t=ryTo+1 \l=k—1
§ L2ka+1—xk||2+2L2>\2(1 +77T0)||erT0+1 7XTkTOH2
k—1
+2L2To(]-+77T0)2 Z ||Xt+1_xt||2
t=riTo+1

<AL (| @% P 4+na® | VE(")|1?)
+8L2N (L4 0To) (@™ [ *+nap o | VE(x"T) )

k—1
+8L P T,(L+0To)* Y (|®']°+na®|VE(x")]?)
t=rrTo+1
< 8LEN*(L+ nTo) (@™ |*+nn*a®|[VE(x" 1) ||?)
k
+BLAPTL(L+0T0)? Y (121 4+na® | VE)|?).
t=rpTo+1

In the second inequality, we used Lemma B.1, Lemma B.2, and Assumption 2.3. In the third inequality, we used Lemma B.3.
In the fourth inequality, we group similar terms. O

Next, we find a bound on the consensus inequality to later use in the descent inequality. Note that we define Zf:”‘To (+) as
zero if rpT, > k — 1.

Lemma B.5 (Consensus Inequality). Let Assumptions 2.2 and 2.3 hold and

<1—ﬁ>}

(V) (To) (1o

n < min{l,

. (1= (1 - A—A2)(1 -
< 19
“= mm{ w6r2x \ 7 osLperrz [ (19)

hold. Define § = \(1 + nT,)? < 1. Then, the output of Algorithm (1) satisfies the following inequality

K-1 1 —K—171,, K—1

1 (1 =M% 2pmo A™*) exT, — _

7 2N < Sl (K(l—f\—eﬂ“)) > (IVEGHIP+ IV FEHIF), 20y
k=0 ©° © k=0

2,2 2 2 2.2 4 2
where [|®" |2 = [[x¥ — %P2 + [ly* — FF|2 v £ |k/T,), e & SO ToGHIT ) g ¢y & Snbona Tellinto)

10
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Proof of Lemma B.5. We take the norm of (14) and apply Jensen’s inequality for any 0 < 6 < 1.

reTo 20[2 k—1
(H G ) @rkT + (1 — 9) <|hk+1”2 + Z ( H G > ht+1 )
=k t=rirTo, \l=k—1

N AT g 12 SL22(1 + nTy)? .
< MULEIRE gy S0 L2 S TRIe e + A2
t=riTo+1

2

1
L2 < =
@ 2 <

8nL2n?a*(1 + nT,)? k - —
Ll ( > TITE) P+ TR ).

t=riTo+1

In the second inequality, we applied the results from Lemma B.2 and Lemma B.4. Set

1—-VA
0=\1+nT,)> <1=1n< f.
VA(T,)
Moreover, define e; £ 8L2"2a(2171°8+nT°)2 ,and ey = %, then
k+1)12 < 2 : )2 2 A Sm T 2
@517 < (A e DY IR+ e IVE")]? + fllVf(X” -
t=ryTo+1 t= rkT +1 ©

Choose « such that

A2e; 1+ A (I1=X)(1-9)
< — < - -
Ton2 STy Tes 1612

A+

Defining A = (1 + \)/2 and observing that 2- < 1, we have

[@* <)@ T ||2+€1Z |@°[* + ez ZHVf )% 2D
t=rrTo+1 t=riT,
When k = r;, T, — 1, we have
T‘kT —1 TkT —1
17T P <A@ VT 2 ey Y (D7 + 60 Y [ VE(X.
t=(rpx—1)T, t=(ry—1)T,

Substitute the above into (21) and iterate to find

k rrTo—1 To—1
@512 < X+ @02 + el< Do EX D P A Y |‘I’t2>

t=rTo t=(rr—1)T, t=0

reTo—1
( Z IVEGHIZ+X > IVEE) |+ + A ZHVf ||2>

t=ri T, t=(rr—1)To

Recall that r, = | £ |. Thus, we introduce the notation

o

0 t<-1
1 el <t <k
NED 2 )X

(rp — V)T, <t <1 Tp—1

e 0<t<T,—1.

11
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We can then describe the previous bound more compactly as

k—1 k—
1] < A FHBOY2 4 e Y AT B2 ey Z AELD T (x|
t=0 t=0

when setting k£ + 1 as k. Then, we average over k£ = 0, ..., K — 1 and upper bound the result as follows

= | KoL oy Kol o, K1kl
k +1) 1 (k—1,t) | t]|2 2 (k—1,8)
= < = ™% 2 €2
LN et < L 1817+ 5 X S AN+ 5 S SRR
k=0 k=0 k=0 t=0 k=0 t=0
= oy Kol o, Kol
_ R B0 |12 1 T(k—1,6) 2 Th—1,8) | SF b2
e SRS S S I T Ul S S Ul (051
k=0 t=0 k=t =0 k—t
= o Kol K—1 o KoL K—1
S DR RS LD DR USR-S i COIED DR
K K K
k=0 t=0 k=t t=0 k—t
K-1 K-1 K-1
1 Ir e1To k2 e2To S5/ k2
< = D ONERRYP 4+ o N @2 0 ) | VERD)12
K = K(1-2\) = K(1-2\) ;)

In the first equality, we rearrange the order of the summation. In the second equal , we rearrange the terms in the
summation based on their index. In the second inequality, we upper bound Z Pl Z il 1 AE=18) with T, /(1 — ) and
change the indexing from ¢ to k afterwards. Therefore,

el \ 1 - eaTy
(1—1 ) Zn@kHZ ZA’““H@OHQ ( 2 )an 2,

and with further simplification, we have

1—X—e T, = exTy
— 1 2
()% ZH‘P’“II £ D R RN L )an IR
k=0
By imposing the following assumption on «
1—XA—eT, < (A= A2)(1—0)
—— 2> 1l - A= a<l\\|—5— 22
1-x - “= SL22T2 22)
it follows that
K-1 Y 1 K—1yrp+1 K-1
1 : (1 =M% 2k=0 A7) T,
7 2 l@P < SR T @) 4 (et ) D IVEGY)
k—0 - —€1lo ( - — €1 0) k—0
(1- )( ZK 1/\Tk+1) 012 e2To g kyp2 —ky|12
< L] —_—— vf v .
<N P (masi s ) 2 (IFF6OI +197@iP)
O
We are now ready to state the proof of Theorem 2.4.
Proof of Theorem 2.4. Following similar arguments as in Lemma 3 of (Alghunaim & Yuan, 2022) and imposing
< L (23)
a < —
— 2L7

we have the following inequality
_ _ @ _ Q== al?
FE<F @) =TV @) =T V) P 21

12
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Reorganize and lower bound the left-hand side to find

no _ =5 _ - WOZLQH‘I)]CHQ
M9 £ @) 24 TE M) < £ 24— p @ty TR
O
Next, subtract and add f* and set f(z*) = f(z*) — f*, then
R\ 12 (T (< E 12 < 2 —k ey 207 o
IVFED)IP+IVEGS)] Sn*a(f(x )= (@) +—||1 2"
Sum both sides from k = 0, ..., K — 1 and divide by K
KN K- 1 o2 K-1
i 2 f 2 ~ k-‘,—l /= (Pk 2. 24
Z(w I+ 1T )< e 37— F )+ 2 S 1 24)

Multiplying (20) from Lemma B.5 by ¢, a constant to be defined later, and adding it to the above equation, we then have the
following

1 - ]. Kl 2L2 K-1
2 2 k2 < by 4 2L .
e 3 (V71 + 1T e S0 < ,MZ SfE) 2N et
k=0 =0 P
(1= N)(& SE L)
L e sl L
esT, K-1 , )
T\ KO -A—aD) > (IVECHI? +IVFEH)IP).
k=0

3L

Rearranging and setting ¢ = we find

(hm);g@w I+ TR+ (2) & I:ZH@"'IF

0
K-1 1 K—17v,
4 Foahy i akttyy o TN s A oo
< - i3 o«
< ok ) = Fat )+ K= e
Require
1 3L%eyT, 1 =X)2(1—0)
< |(1l-—"T ) =a< T 25
2 —( n(lAelT)> C=\ T asnheTe 25
Then, we have
K-1 K—1 1 K-11,
1 L? = 6L2(1—N) (> ™)
V 2 vf @k 2 =0 4 A k=0 @0 2.
7 2 (VAP IV + 22 SO 184IP < o flat) + == p =i e’

Assume that the initialization for 1, zo, ..., z,, is identical. Then x° = 1 ® z° (for some z° € R?). As a result, x° = %°
meaning ||QTx°||2 = 0. Then,

A A 2 N
12012 = 1Q7Y"I? = [0QTVEE)|| = 0| VE() — 1@ VE")|2

Define ¢y = || V£(x°) — 1 @ VE(x°)||2. We also upper bound 31 0 ' Xk with T}, /(1 — A), a repeating geometric sequence
and use (22). Then, the desired relation follows.
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