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Abstract

Experimental studies are a cornerstone of machine learning (ML) research. A com-1

mon, but often implicit, assumption is that the results of a study will generalize2

beyond the study itself, e.g. to new data. That is, there is a high probability that3

repeating the study under different conditions will yield similar results. Despite the4

importance of the concept, the problem of measuring generalizability remains open.5

This is probably due to the lack of a mathematical formalization of experimental6

studies. In this paper, we propose such a formalization and develop a quantifiable7

notion of generalizability. This notion allows to explore the generalizability of8

existing studies and to estimate the number of experiments needed to achieve the9

generalizability of new studies. To demonstrate its usefulness, we apply it to two10

recently published benchmarks to discern generalizable and non-generalizable11

results. We also publish a Python module that allows our analysis to be repeated12

for other experimental studies.13

1 Introduction14

Due to the importance of experimental studies, the machine learning (ML) community advocates for15

high methodological standards [20, 12, 13, 17, 8, 31, 32, 44]. Failure to meet these standards can16

have significant consequences, such as the ongoing reproducibility crisis [6, 47, 50, 51, 30].17

Reproducibility is not the only desirable property of a study. For example, the reader expects that the18

best encoders of categorical features identified in [41] will not only remain the best when the study19

is reproduced, but will also outperform their competitors on new datasets. This property of getting20

the same results from different data is known as replicability [46, 48]. Replicability is a special case21

of generalizability, the property of obtaining the same results with any change in the inputs. The22

assumption of generalizability is arguably the main motivation for extensive experimental studies and23

benchmarks. However, existing definitions of generalizability do not quantify how well the results of24

a study can be transferred to other contexts. This hinders the usefulness of such studies and leads to25

confusion. For example, articles [38, 41, 49, 42] and [19, 8, 11, 13, 29, 43] report that the results of26

experimental studies are often contradictory.27

Quantifying generalizability can also help determine the appropriate size of experimental studies. For28

example, one dataset is unlikely to be sufficient to draw far-reaching conclusions, but 106 datasets29

are likely enough. Of course, such large studies are usually not practical: it is crucial to determine the30

minimum amount of data needed to achieve generalizability. This principle also applies to decisions31

other than the number of datasets, such as the choice of quality metric and the initialization seed.32

A notion similar to generalizability is model replicability [1, 22, 23, 24, 33, 36, 37]. A model is33

ρ-replicable if, given i.i.d. samples from the same data distribution, the trained models are the same34

with probability 1 − ρ [33]. Adapting this definition to quantify generalizability is not trivial, as35

it requires formalizing experimental studies. The latter must take into account several aspects: the36

research question, the results of a study, and how to compare the results. Regarding the problem of37
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defining the size of experimental studies, the current literature addresses the (crucial, but orthogonal)38

problem of choosing appropriate experimental factors [20, 12, 13, 17, 8, 31, 32, 44]. While these39

studies recommend varying the factors, they do not help decide how many of the factor levels are40

enough.41

Our contributions are as follows:42

1. we formalize experimental studies and their results;43

2. we propose a quantifiable definition of the generalizability of experimental studies;44

3. we develop an algorithm to estimate the size of a study to obtain generalizable results;45

4. we consider two recent experimental studies on categorical encoders [41] and Large Lan-46

guage Models [55] and show how their results may or may not be generalizable.47

5. we will publish the GENEXPY1 Python module to repeat our analysis in other studies.48

Paper outline: Section 2 is related work, Section 3 formalizes experimental studies, Section 4 defines49

generalizability and provides the algorithm to estimate the required size of a study for generalizability,50

Section 5 contains the case studies, Section 6 describes limitations and concludes.51

2 Related work52

We first discuss the literature related to the motivation we are tackling, i.e., why experimental studies53

may not generalize. Second, we overview the existing concept of model replicability, closely related54

to our work. Finally, we show other meanings that these words can assume in other domains.55

Non-generalizable results. It is well known that experimental results can significantly vary based56

on design choices [38, 41, 49, 42]. Possible reasons include an insufficient number of datasets [19,57

41, 3, 12] as well as differences in hyperparameter tuning [13, 41], initialization seed [30], and58

hardware [56]. As a result, the statistical benchmarking literature advocates for experimenters to59

motivate their design choices [7, 43, 11, 13, 44] and clearly state the conclusions they are attempting60

to draw from their study [7, 45].61

Replicability and generalizability in ML. Our work formalizes the definitions of replicability and62

generalizability given in [48, 46]. Intuitively, replicable work consists of repeating an experiment63

on different data, while generalizable work varies other factors as well — e.g., quality metric,64

implementation. A recent line of work, initiated by [33], has linked replicability to model stability: a65

ρ-replicable model learns (with probability 1− ρ) the same parameters from different i.i.d. samples.66

This definition has later been adapted and applied to other learning algorithms [23], clustering [24],67

reinforcement learning [22, 37], convex optimization [1], and learning rules [36]. Recent efforts68

have been bridging the gap between replicability, differential privacy, generalization error, and global69

stability [15, 16, 26, 45, 21]. However, these applications remain limited to model replicability.70

Replicability and generalizability in Science. In other fields of Science, generalizability and71

replicability take different meanings. In social sciences, generalizability theory is a tool to quantify72

the effect of different factors on numerical responses [14]. In medicine, the replicability proposed73

in [34] is the probability of observing a positive treatment effect in a meta-study. Although these74

concepts are related to generalizability of experimental studies, they are limited to purely numerical75

responses or specific study designs.76

3 Experiments and experimental studies77

An experimental study is a set of experiments comparing the same alternatives under different78

experimental conditions. An experimental condition is a tuple of levels of experimental factors, the79

parameters defining the experiments. Different factors play different roles in the study: the design80

and held-constant factors are fixed by design, while the generalizability of a study is defined in terms81

of the allowed-to-vary factors. The study aims at answering a research question, which defines its82

scope and goals.83

1https://anonymous.4open.science/r/genexpy-B94D
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Figure 1: Two empirical studies on the checkmate-in-one task, cf. Example 3.1.

Example 3.1. (The “checkmate-in-one” task, cf. Figure 1) An experimenter wants to compare three84

Large Language Models (LLMs), the alternatives, on the “checkmate-in-one” task [55, 2, 5, 4, 18].85

The assignment is to find the unique checkmating move from a position of pieces on a chessboard: an86

LLM succeeds if and only if it outputs the correct move. The experimenter considers two experimental87

factors: the number of shots, n, and the initial position on the chessboard, posl. The number of shots88

is a design factor, while the initial position is an allowed-to-vary factor. The experimenter wants to89

find if LLM1 ranks consistently against the other two LLMs when changing the initial position, for a90

fixed number of shots.91

The rest of this section defines the terms introduced above.92

3.1 Experiments93

An experiment evaluates all the considered alternatives under a valid experimental condition.94

Alternatives. An alternative a ∈ A is an object compared in the study, like an LLM in Example 3.1.95

Here, A is the set of alternatives considered in the study, with cardinality na.96

Experimental factors. An experimental factor is anything that could, in principle, affect the result97

of an experiment. i denotes a factor, Ci the (possibly infinite) set of levels i can take, c ∈ Ci a level98

of i, and I the set of all factors. We adapt Montgomery’s classification of experimental factors [44,99

Chapter 1] and discern between design factors, held-constant factors, and allowed-to-vary factors.100

• Design factors, e.g., whether and how to tune the hyperparameters, quality metrics, number101

of shots, are chosen by the experimenter.102

• Held-constant factors, e.g., implementation, initialization seed, number of cross-validated103

folds, may affect the outcome but are not in the scope of the experiment and are fixed by the104

experimenter.105

• Allowed-to-vary factors, e.g., “dataset” or “chessboard position” in Example 3.1, may affect106

the outcome but cannot be held constant: the experimenter expects results to generalize w.r.t.107

these factors; Iatv denotes them.108

Experimental conditions. An experimental condition c is a tuple of levels of experimental factors,109

c = (ci)i∈I ∈ C ⊆∏i∈I Ci. We endow C with a probability µ, as we will need to sample from it to110

define the result of a study in Section ??. The probability space (C,F , µ) is the universe of valid111

experimental conditions. C may not coincide with
∏

i∈I Ci as some experimental conditions may be112

invalid, i.e., illegal or not of interest. Validity has to be assessed on a case-by-case basis. For instance,113

in Example 3.1, C = {(posl, n)}l,n, where posl is a legal configuration of pieces on a chessboard114

and m is the non-negative number of shots.115

Experimental results. The experiment function E evaluates the alternatives A under a valid116

experimental condition c ∈ C. Unless necessary, we consider A fixed and omit it in our notation.117

We require that E : C → Rna
is a measurable function, for some fixed A. Finally, the result of an118

experiment E (A, c) is a ranking on A.119
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Definition 3.1 (Ranking (with ties)). A ranking r on A is a transitive and reflexive binary endorelation120

on A. Equivalently, r is a totally ordered partition of A into tiers of equivalent alternatives. r(a)121

denotes the rank of a ∈ A, i.e., the position of the tier of a in the ordering. W.l.o.g. (Rna ,P(Rna))122

denotes the measure space of all rankings of na objects, where P indicates the power set.123

Example 3.1 (Continued). The result of an experiment on (posl, n) is a ranking of the three LLMs,124

according to whether or not they output the checkmating move. Suppose that only LLM1 and LLM2125

output the correct move. Then E(posl, n) ranks LLM1 and LLM2 tied as best and LLM3 as worst.126

3.2 Experimental studies127

A study is defined by its research question Q, i.e., its scope and goals. The scope consists of the128

alternatives A, the valid experimental conditions C, and the allowed-to-vary factors Iatv. The goal is129

the kind of conclusions one is attempting to draw from the study. For now, the goal is a statement of130

interests, i.e., a set of strings.131

Definition 3.2 (Research question). The research question Q = (A,C, Iatv, goals) is a tuple contain-132

ing the set of alternatives A, the experimental conditions C, the set of allowed-to-vary-factors Iatv,133

and the goals of the study.134

Example 3.1 (Continued). The research question of the “checkmate-in-one” study is as follows.135

The scope is
(
A = {LLMa}a=1,2,3 , C = {(posl, n)}l,n , Iatv = {“position”})

)
. The goal is “Does136

LLM1 rank consistently against the other LLMs?”137

A crucial element of our formalization is the distinction between ideal and empirical studies. An138

ideal study exhausts its research question; however, its result is not observable. An empirical study is139

an observable sample of an ideal study.140

3.2.1 Ideal studies141

The ideal study on a research question Q = (A,C, Iatv, goals) is the experimental study consist-142

ing of an experiment for each valid experimental condition c ∈ C. We say that such a study143

exhausts Q. Hence, there exists exactly one ideal study on Q. The result of an ideal study is144

the probability distribution of the results of its experiments. Recall that the experiment function145

E : (C,F , µ) → (Rna
,P (Rna

)) is measurable.146

Definition 3.3 (Result of an ideal study). The result of an ideal study with research question147

Q = (A,C, Iatv, goals) is148

S (Q) = P : Rna
→ [0, 1]

r 7→ P (r) := µ
(
E−1(r)

)
,

where E−1(r) = {c : E(c) = r} ⊆ C is the preimage of r through E.149

In general, multiple experiments of a study may yield identical results. Definition 3.3 supports this by150

assigning a higher probability mass to results that occur more often.151

3.2.2 Empirical studies152

Consider again a research question Q = (A,C, Iatv, goals). In practice, as C might be infinite or too153

large, one can only run experiments on a sample of valid experimental conditions {cj}Nj=1

iid∼ (C, µ).154

The study performed on {cj}Nj=1 is an empirical study on Q, of size N . As for ideal studies, the155

result of an empirical study is the probability distribution of the results of its experiments.156

Definition 3.4 (Result of an empirical study). The result of an empirical study on Q is157

ŜN (Q) : Rna
→ [0, 1]

r 7→ #
{
j ∈ {cj}Nj=1 : E (A, cj) = r

}
.

Where Q, {cj}Nj=1 is a research question and a set of valid experimental conditions as above.158
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The result of an empirical study can be thought of as the empirical distribution of a sample following159

the distribution of the result of the corresponding ideal study. With a slight abuse of notation,160

indicating both the sample and its empirical distribution as ŜN (Q), we write161

ŜN (Q) iid∼ S (Q) .

4 Generalizability of experimental studies162

The currently accepted definition of generalizability is the property of two independent studies with163

the same research question to yield similar results [46, 48]. Although intuitive, this notion is not164

directly applicable as it does not provide a way to measure the generalizability of a study. We now165

introduce a quantifiable notion of generalizability of experimental studies, as the probability that any166

two empirical studies approximating the same ideal study yield similar results.167

Definition 4.1 (Generalizability). Let Q = (A,C, Iatv, κ) be the research question of an ideal study,168

let P = S(Q) be the result of that study, and let d be some distance between probability distributions.169

The generalizability of the ideal study on Q is170

Gen (Q; ε, n) := Pn ⊗ Pn
(
(Xj , Yj)

n
j=1 : d(X,Y ) ≤ ε

)
, (1)

where ε ∈ R+ is a similarity threshold.171

As the result of an ideal study is usually unobservable (cf. Section 3.2), we do not know the true172

distribution P. However, we can observe the result of an empirical study, P̂N = ŜN (Q), which173

approximates P under the assumption that the experimental conditions are i.i.d. samples from C. As174

the sample size N increases (the empirical study becomes larger), P̂N converges in distribution to P.175

Definition (1) requires a distance d between probability distributions. In the next sections, we propose176

to use a generalizability based on kernels and Maximum Mean Discrepancy (MMD) [27], as it allows177

to compute generalizability w.r.t. different research questions. The underlying idea is that we can178

capture the goal of a study with an appropriate kernel. We conclude this section with an algorithm to179

estimate the number of experimental conditions required to obtain generalizable results.180

4.1 Similarity between rankings — kernels181

Whether two experimental results (i.e., rankings) are similar or not ultimately depends on the goal of182

the study. For instance, consider two rankings on A = {a1, a2, a3}, r = (1, 2, 3) and r′ = (1, 3, 2),183

where ri is the tier of alternative ai. The conclusions drawn from r and r′ are identical if one’s goal is184

to find the best alternative, but very different if one’s goal is to obtain an ordering of the alternatives.185

One can use kernels to quantify the similarity between experimental results. Kernels are suitable to186

formalize the aspects of the result of a study one wants to generalize, i.e., the goals of the study. For187

instance, one kernel is suitable to identify the best tier while another kernel focuses on the position of188

a specific alternative. In the following, we describe three representative kernels that cover a wide189

spectrum of possible goals.190

Borda kernel. The Borda kernel is suitable for goals in the form “Is the alternative a∗ consistently191

ranked the same?”. It uses the Borda count: the number of alternatives (weakly) dominated by a given192

one [9]. For a pair of rankings, we compute the Borda counts of a∗, and then take their difference.193

κa∗,ν
b (r1, r2) = e−ν|b1−b2|,

where bl = {a ∈ A : rl(a) ≥ rl(a
∗)} is the number of alternatives dominated by a∗ in rl and ν ∈ R194

is the kernel bandwidth. The Borda kernel takes values in
[
e(−νna), 1

]
. If ν is too large compared to195

1/|b1−b2|, the kernel is oversensitive and will penalize every deviation too much. On the contrary, if ν196

is too small, the kernel is undersensitive and will not penalize deviations unless they are very large.197

As |b1 − b2| ∈ [0, na], we recommend ν = 1/na.198

Jaccard kernel. The Jaccard kernel is suitable for goals in the form “Are the best alternatives199

consistently the same ones?”. As it measures the similarity between sets [25, 10], we use it to compare200
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the top-k tiers of two rankings.201

κk
j (r1, r2) =

∣∣r−1
1 ([k]) ∩ r−1

2 ([k])
∣∣∣∣r−1

1 ([k]) ∪ r−1
2 ([k])

∣∣ ,
where r−1([k]) = {a ∈ A : r1(a) ≤ k} is the set of alternatives whose rank is better than or equal to202

k. The Jaccard kernel takes values in [0, 1].203

Mallows kernel. The Mallows kernel is suitable for goals in the form “Are the alternatives ranked204

consistently?”. It measures the overall similarity between rankings [35, 40, 39]. We adapt the original205

definition in [39] for ties,206

κν
m(r1, r2) = e−νnd ,

where nd =
∑

a1,a2∈A |sign (r1(a1)− r1(a2))− sign (r2(a1)− r2(a2))| is the number of discor-207

dant pairs and ν ∈ R is the kernel bandwidth. If a pair is tied in one ranking but not in the other, one208

counts it as half a discordant pair. The Mallows kernel takes values in
[
exp

(
−2ν

(
na

2

))
, 1
]
. If ν is209

too large compared to 1/nd, the kernel is oversensitive and it will penalize every deviation too much.210

On the contrary, if ν is too small, the kernel is undersensitive and will not penalize deviations unless211

they are very large. As nd ∈
[
0,
(
na

2

)]
, we recommend ν = 1/(na

2 ).212

4.2 Distance between distributions — Maximum Mean Discrepancy213

Having sorted out how to measure the similarity between the results of experiments, we now214

discuss how to measure the distance between the results of studies. We chose the Maximum Mean215

Discrepancy (MMD) [27], for the following reasons. First, MMD is compatible with the kernels216

described in Section 4.1, i.e., it takes into consideration the goal of the studies. Second, it handles217

sparse distributions well; this is needed as empirical studies are typically small compared to the218

number of all possible rankings, which grows exponentially in the number of alternatives. 2 Finally,219

it comes with bounds and theoretical guarantees, which we will use in Section 4.3.220

Definition 4.2 (MMD (empirical distributions)). Let X be a set with a kernel κ, and let Q1 and Q2221

be two probability distributions onRna
. Let x = (xi)

n
i=1 ,y = (yi)

m
i=1 be two i.i.d. samples from222

Q1 and Q2 respectively. Then,223

MMD (x,y)
2 :=

1

n2

n∑
i,j=1

κ(xi, xj) +
1

m2

m∑
i,j=1

κ(yi, yj)−
2

mn

∑
i=1...n
j=1...m

κ(xi, yj).

Proposition 4.1. MMD takes values in
[
0,
√

2 · (κsup − κinf)
]
, where κsup = supx,y∈X κ(x, y) and224

κinf = infx,y∈X κ(x, y).225

4.3 How many experiments ensure generalizability?226

When designing a study, an experimenter has to decide how many experiments to run in order to227

obtain generalizable results. In other words, they need to choose a (minimum) sample size n∗ that228

achieves the desired generalizability α∗ and the desired similarity ε∗.229

n∗ = min {n ∈ N0 : Gen (P; ε∗, n) ≥ α∗} . (2)

To estimate n∗ we make use of a linear dependency between the logarithms of the sample size n and230

the logarithm of the α∗-quantile of MMD εα
∗

n that we have observed in our experiments.231

Proposition 4.2. ∀α∗, there exist β0 ≥ 0, β1 ≤ 0 s.t.232

log(n) ≈ β1 log
(
εα

∗

n

)
+ β0 (3)

Appendix A.3.2 provides a proof for a simplified case. Proposition 4.2 suggests that one can use a233

small set of N preliminary experiments to estimate n∗. One can then iteratively improve that estimate234

with the results of additional experiments.235

Our algorithm, shown in detail in Appendix A.3.3, requires specifying the desired generalizability,236

α∗, and the similarity threshold between the studies results, ε∗. Then, it performs the following steps:237

2Fubini or ordered Bell numbers, OEIS sequence A000670.
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Figure 2: Predicted n∗ for categorical encoders.

1. it estimates the α∗-quantile of MMD for all n less than some budget nmax. If there exists an238

n less than nmax that satisfies the condition in (2), we return it as n∗;239

2. it then fits the linear model in (3), computing the coefficients β0 and β1;240

3. finally, it outputs n∗ = exp
(
β1 log

(
εα

∗

n

)
+ β0

)
, which satisfies the condition in (2) thanks241

to Proposition 4.2.242

In practice, choosing ε∗ is hardly interpretable as it is a threshold on MMD. To solve this, we propose243

choosing ε∗ as a function of another parameter δ∗, such that244

ε∗(δ∗) =
√

2(κsup − fκ(δ∗)).

Here, δ∗ represents the distance between two rankings as computed by the kernel and fκ is the245

function linking the distance to the kernel value. For instance, for the Jaccard kernel, δ∗ is simply246

the Jaccard coefficient between the top-k tiers of two rankings, fκ(δ∗) = 1 − δ∗, and ε∗(δ∗) =247 √
2(1− (1− δ∗)). For the Mallows kernel (with our recommendation for ν), δ∗ is the fraction of248

discordant pairs, fκ(x) = e−x, and ε∗(δ∗) =
√

2(1− e−δ∗). As a concrete example, achieving249

(α∗ = 0.99, δ∗ = 0.05)-generalizable results for the Jaccard kernel means that, with probability 0.99,250

the average Jaccard coefficient between two rankings drawn from the results is 0.95.251

5 Case studies252

5.1 Case Study 1: A benchmark of categorical encoders253

We now evaluate the generalizability of a recent study [41] that analyzes the performance of encoders254

for categorical data. The performance of an encoder is approximated by the quality of a model trained255

on the encoded data. The design factors are the model, the tuning strategy for the pipeline, and the256

quality metric for the model, while the only allowed-to-vary factor is the dataset. We impute missing257

values in the results of the study by assigning the worst rank. We evaluate how well the results of the258

study generalize w.r.t. three goals:259

(g1) Find out if One-Hot encoder (a popular encoder) ranks consistently amongst its competitors,260

using the Borda kernel with ν = 1/na.261

(g2) Investigate if some encoders outperform all the others using the Jaccard kernel with k = 1.262

(g3) Evaluate whether the encoders are typically ranked in a similar order, using the Mallows263

kernel with ν = 1/(na
2 ).264

Figure 2 shows the predicted n∗ for different choices of α∗ and δ∗, the other one fixed at 0.95265

and 0.05 respectively. The variance in the boxes comes from variance in the design factors. For266

example, the results for the design factors “decision tree, full tuning, accuracy” have a different267

(α∗, δ∗)-generalizability than the results for “SVM, no tuning, accuracy”. We observe on the left268

that — as expected — obtaining generalizable results requires more experiments as the desired269
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Figure 3: Predicted n∗ for LLMs.

generalizability α∗ increases. We can also see that the variance of the boxes increases with α∗. This270

means that the choice of the design factors has a larger influence on the achieved generalizability.271

We observe the same when decreasing δ∗, as it corresponds to a stricter similarity condition on the272

rankings. In the rather extreme cases of α∗ = 0.7 or δ∗ = 0.3, even less than 10 datasets are enough273

to achieve (α∗, δ∗)-generalizability.274

Consider now goal g2 for two different choices of design factors: (A): “decision tree, full tuning,275

accuracy” and (B): “SVM, full tuning, balanced accuracy”. Furthermore, let (α∗, δ∗) = (0.95, 0.05):276

we estimate n∗ = 28 for (A) and n∗ = 34 for (B), corresponding to the bottom and top whiskers of277

the corresponding box in Figure 2. As both (A) and (B) were evaluated using n = 30 experiments,278

we conclude that the results of (A) are (barely) (0.95, 0.05)-generalizable, while those of (B) are not.279

Hence, one should run more experiments with fixed factors (B) to make the study generalizable.280

5.2 Case study 2: BIG-bench — A benchmark of Large Language Models281

We now evaluate the generalizability of BIG-bench [55], a collaborative benchmark of Large Lan-282

guage Models (LLMs). The benchmark compares LLMs on different tasks, such as the checkmate-283

in-one task (cf. Example 3.1), and for different numbers of shots. Task and number of shots are the284

design factors. Every task has a number of subtasks, which is the allowed-to-vary factor. We stick to285

the preferred scoring for each subtask. As the results have too many missing values to impute them,286

we only consider the experimental conditions where at least 80% of the LLMs had results, and to the287

LLMs whose results cover at least 80% of the conditions.288

Similar to before, we define the three goals as follows:289

(g1) Find out if GPT3 (to date, one of the most popular LLMs) ranks consistently amongst its290

competitors, using the Borda kernel with ν = 1/na.291

(g2) Investigate if some encoders outperform all the others using the Jaccard kernel with k = 1.292

(g3) Evaluate whether the LLMs are typically ranked in a similar order, using the Mallows kernel293

with ν = 1/(na
2 ).294

Figure 3 shows the predicted n∗ for different choices of α∗ and δ∗, the other one fixed at 0.95 and295

0.05 respectively. Again, the variance in the boxes comes from variance in the design factors, i.e., the296

task and the number of shots. As before, increasing α∗ or decreasing δ∗ leads to higher n∗. Unlike in297

the previous section, n∗ for g2 greatly depends on the combination of fixed factors, as we now detail.298

Consider now goal g2 for two different choices of design factors: (A): “conlang_translation, 0 shots”,299

and (B): “arithmetic, 2 shots”. Furthermore, let (α∗, δ∗) = (0.95, 0.05). For this choice of of300

parameters, we estimate n∗ = 44 for (A), corresponding to the top whisker of the corresponding box301

in Figure 2. As the study evaluates (A) on 10 subtasks, it is therefore not (0.95, 0.05)-generalizable.302

In fact, we estimate that this would require 34 more subtasks. For (B), on the other hand, we estimate303

n∗ = 1: the best 2-shot LLM for the observed subtasks is always PALM 535B. Hence, the result of a304

single experiment is enough to achieve (0.95, 0.05)-generalizability.305
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Figure 4: Relative error in the estimate of n∗ against n∗
50.

Note that, although we correctly estimated n∗ = 1 for (B), this estimate relies on 10 preliminary306

experiments. In other words, our algorithm was able to quantify in hindsight that a single experiment307

would have been enough to obtain generalizable results. Of course, however, one cannot trust an308

estimate of n∗ based on only one experiment. The next section thus investigates how the number of309

preliminary experiments influences the estimate of n∗.310

5.3 How many preliminary experiments?311

This section evaluates the influence of the number of preliminary experiments N on n∗. For each312

study, we consider the design factor combinations for which we have at least 50 experiments. This313

results in 23 out of 48 combinations for the categorical encoders and 9 out of 24 combinations for314

the LLMs. For each of those combinations, we consider the estimate n∗
50 made at N = 50 as the315

ground truth and observe how the estimates of n∗ for N < 50 differ. Figure 4 shows the relative error316
|n∗

N−n∗
50|/n∗

50, for different goals: the relative errors behave very differently. For goal g3 (Mallows317

kernel), even n∗
10 is close to n∗

50 for a majority of the design factor combinations. On the contrary,318

one needs 20 to 30 preliminary experiments for goal g1 (Borda kernel). This means that knowing the319

goals of a study when performing preliminary experiments can help understand how trustworthy the320

estimate of n∗ is.321

6 Conclusion322

Limitations & future work. First, we dealt with experimental results as rankings. Other forms of323

results, e.g., the absolute performance of alternatives according to some quality measure, will require324

the development of appropriate kernels. Second, our approach uses kernels to compute the similarity325

of experimental results and MMD the distance between the results of studies. There are, however.326

other possible choices. Third, we processed missing evaluations by either dropping them or imputing327

them. One could analyze different solutions, for instance by adapting the kernels to missing values.328

Fourth, we estimate the distribution of the MMD by sampling multiple times from the results. A329

non-asymptotic theory of MMD, at least for some kernels, might yield more insights in improving330

this procedure. Fifth, we plan to investigate the possibility of actively selecting experiments to obtain331

good estimates of the required size n∗ with less preliminary experiments. Sixth and related to the332

previous one, we intend to obtain some guarantees on the convergence of n∗ to the true value.333

Conclusions. An experimental study is generalizable if, with high probability, its findings will hold334

under different experimental conditions, e.g., on unseen datasets. Non-generalizable studies might be335

of limited use or even misleading. This study is, to our knowledge, the first to develop a quantifiable336

notion for the generalizability of experimental studies. To achieve this, we formalize experiments,337

experimental studies and their results — rankings and distributions over rankings. Our approach338

allows us to estimate the number of experiments needed to achieve a desired level of generalizability339

in new experimental studies. We demonstrate its utility showing generalizable and non-generalizable340

results in two recent experimental studies.341
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A Details for Section 4451

A.1 Details for Section 4.1452

This section contains the proofs to show that the similarities introduced in Section 4.1 are kernels,453

i.e., symmetric and positive definite functions. As symmetry is a clear property of all of them, we454

only discuss their positive definiteness. Our proofs for the Borda and Mallows kernels follow that455

in [35]: we define a distance d on the set of rankingsRna
and show that (Rna

, d) is isometric to an456

L2 space. This ensures that d is a conditionally positive definite (c.p.d.) function and, thus, that e−νd457

is positive definite [52, 53]. Our proof for the Jaccard kernel, instead, follows without much effort458

from previous results. For ease of reading, we restate the definitions as well.459

Definition A.1 (Borda kernel).

κa∗,ν
b (r1, r2) = e−ν|d1−d2|, (4)

where dl = {a ∈ A : rl(a) ≥ rl(a
∗)} is the number of alternatives dominated by a∗ in rl and ν ∈ R.460

Proposition A.1. The Borda kernel as defined in (4) is a kernel.461

Proof. Define a distance462

d : Rna ×Rna → R+

(r1, r2) 7→ |d1, d2| ,
where dl = {a ∈ A : rl(a) ≥ rl(a

∗)} is the number of alternatives dominated by a∗ in rl. Now,463

(Rna
, d) is isometric to (R, ∥·∥2) via the map rl 7→ dl. Hence, d is c.p.d. and κb is a kernel.464

Definition A.2 (Jaccard kernel).

κk
j (r1, r2) =

∣∣r−1
1 ([k]) ∩ r−1

2 ([k])
∣∣∣∣r−1

1 ([k]) ∪ r−1
2 ([k])

∣∣ , (5)

where r−1([k]) = {a ∈ A : r1(a) ≤ k} is the set of alternatives whose rank is better than or equal to465

k.466

Proposition A.2. The Jaccard kernel as defined in (5) is a kernel.467

Proof. It is already know that the Jaccard coefficients for sets is a kernel [25, 10]. As the Jaccard468

kernel for rankings is equivalent to the Jaccard coefficient for the k-best tiers of said rankings, the469

former is also a kernel.470

Definition A.3 (Mallows kernel).
κν
m(r1, r2) = e−νnd , (6)

where nd =
∑

a1,a2∈A |sign (r1(a1)− r1(a2))− sign (r2(a1)− r2(a2))| is the number of discor-471

dant pairs and ν ∈ R is the kernel bandwidth.472

Proposition A.3. The Mallows kernel as defined in (6) is a kernel.473

Proof. The number of discordant pairs nd is a distance onRna [54]. Consider now the mapping of a474

ranking into its adjacency matrix,475

Φ : Rna
→ {0, 1}na×na

r 7→ (sign (r(i)− r(j)))
na

i,j=1 .

Then,476

nd = ∥Φ(r1)− Φ(r2)∥1 = ∥Φ(r1)− Φ(r2)∥22
where ∥·∥p indicates the entry-wise matrix p-norm and the equality holds because the entries of the477

matrices are either 0 or 1. As a consequence, (Rna
, nd) is isometric to (Rna×na , ∥·∥2) via Φ. Hence,478

nd is c.p.d. and κm is a kernel.479
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A.2 Details for Section 4.2480

Proposition 4.1. MMD takes values in
[
0,
√

2 · (κsup − κinf)
]
, where κsup = supx,y∈X κ(x, y) and481

κinf = infx,y∈X κ(x, y).482

Proof.

0 ≤ MMDκ (x,y)
2
=

1

n2

n∑
i,j=1

κ(xi, xj) +
1

m2

m∑
i,j=1

κ(yi, yj)−
2

mn

∑
i=1...n
j=1...m

κ(xi, yj) (7)

≤ 1

n2

n∑
i,j=1

κsup +
1

m2

n∑
i,j=1

κsup −
2

mn

∑
i=1...n
j=1...m

κinf

= 2(κsup − κinf)

483

A.3 Details for Section 4.3484

A.3.1 Choice of α∗, ε∗, and δ∗485

Consider a research question Q = (A,C, Iatv, κ) and the corresponding ideal study with result486

P. The algorithm introduced in Section 4.3 aims at finding the minimum n∗ such that, given two487

independent empirical studies on Q, they achieve similar results. It has two hyperparameters, α∗ and488

ε∗. α∗ ∈ [0, 1] is the generalizability that one wants to achieve from the study, i.e., the probability489

that two independent realizations of the same ideal study will yield similar results. ε∗ ∈ R+ is a490

similarity threshold: the results of two empirical studies x,y iid∼ P are similar if MMDκ(x,y) ≤ ε∗.491

However, as it is, ε∗ is not interpretable. Instead, adapting the proof of Proposition 4.1, we can bound492

MMD by imposing a condition on the kernel, as we’ll now illustrate. The key remark is that we are493

looking for a condition in the form494

MMDκ (x,y) ≤ ε∗ =
√
2(κsup − δ′),

where δ′ ∈ [0, κsup] replaces the third summatory in (7). In other terms, we can interpret δ′ as the495

minimum acceptable value for the average of the kernel, EP2 [κ(x, y)]. We now go a step further and496

compute δ′ (a condition on the kernel) from δ∗ ∈ [0, 1] (a condition on the rankings). The relation497

between δ′ and δ∗ changes with the kernel, and so does the interpretation of δ∗. For the three kernels498

we discuss in Section 4.1:499

• Mallows kernel with ν = 1/(n2): δ
∗ is the fraction of discordant pairs, δ′ = e−δ∗ .500

• Jaccard kernel: δ∗ is the intersection over union of the top k tiers, δ′ = 1− δ∗.501

• Borda kernel with ν = 1/na: δ∗ is the difference in relative position of a∗ in the rankings,502

normalized to the length of the rankings, δ′ = e−δ∗503

A.3.2 Proof of proposition 4.2504

Proposition 4.2. ∀α∗, there exist β0 ≥ 0, β1 ≤ 0 s.t.505

log(n) ≈ β1 log
(
εα

∗

n

)
+ β0 (3)
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Proof. We provide a proof replacing MMD with the distribution-free bound defined in [28].506

Pn ⊗ Pn

(
(Xj , Yj)

n
j=1 : MMD(X,Y )−

(
2κsup

n

)
> ε

)
< exp

(
− nε2

4κsup

)
(1)
==⇒Pn ⊗ Pn

(
(Xj , Yj)

n
j=1 : MMD(X,Y ) > ε‘

)
< exp

−n
(
ε′ −

(
2κsup

n

))2
4κsup


(2)
==⇒Pn ⊗ Pn

(
(Xj , Yj)

n
j=1 : MMD(X,Y ) > n− 1

2

(√
− log (1− α) 4κsup

)
+
√

2κsup

)
< 1− α

(3)
==⇒Pn ⊗ Pn

(
(Xj , Yj)

n
j=1 : MMD(X,Y ) ≤ n− 1

2

(√
− log (1− α) 4κsup

)
+
√

2κsup

)
≥ α

where:507

(1) ε′ = ε+
√

2κsup/n.508

(2) 1− α = exp

(
−n

(
ε′−

(
2κsup

n

))2

4κsup

)
and ε‘ = n− 1

2

(√
− log (1− α) 4κsup +

√
2κsup

)
.509

(3) Take the complementary event.510

Now,511

qαn = n− 1
2

(√
− log (1− α) 4κsup

)
+
√
2κsup

⇒n = (qαn)
−2

(√
−4κsup log (1− α) +

√
2κsup

)2

⇒ log(n) = −2 log(qαn) + 2 log

(√
−4κsup log (1− α) +

√
2κsup

)
.

concluding the proof.512

Remark. Altohugh theoretically sound, using the abovementioned bound instead of MMD leads to513

excessively conservative estimates for n∗, roughly one order of magnitude greater than the empirical514

estimate.515
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A.3.3 Pseudocode for the algorithm516

Algorithm 1 Compute n∗
N from preliminary study

Require: α∗ ▷ desired generalizability
Require: δ∗ ▷ similarity threshold on rankings
Require: Q ▷ research question, Q = (A,C, Iatv, κ)
Require: N ▷ size of preliminary study
Require: nmax ▷ maximum sample size to compute MMD
Require: nrep ▷ number of repetitions to compute MMD

procedure ESTIMATENSTAR(α∗, δ∗,Q, N, nmax, nrep)
ε∗ ← compute ε∗ from δ∗ ▷ cf. Appendix A.3
sample {cj}Nj=1

iid∼ C

nmax ← min {nmax, [N/2]} ▷ we need two disjoint samples of size nmax from {cj}Nj=1

for n = 1 . . . nmax do
mmds← empty list
for n = 1 . . . nrep do

sample without replacement (cj)
2nmax
j=1 ∼ {cj}

N
j=1

x← (cj)
nmax
j=1 ▷ split the disjoint samples

y← (cj)
2nmax
j=nmax

append MMD (x,y) to mmds
end for
εα

∗

n ← α∗-quantile of mmds
end for
fit a linear regression log(n) = β1 log

(
εα

∗

n

)
+ β0

n∗
N ← β1 log(ε

∗) + β0

return n∗
N

end procedure

procedure RUNEXPERIMENTS(α∗, δ∗,Q, nmax, nrep, step)
N ← step
while n∗ > N do

sample {cj}Nj=1

iid∼ C

n∗ ← ESTIMATENSTAR(α∗, δ∗,Q, N, nmax, nrep)
N ← N + step

end while
end procedure
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NeurIPS Paper Checklist517

1. Claims518

Question: Do the main claims made in the abstract and introduction accurately reflect the519

paper’s contributions and scope?520

Answer: [Yes]521

Justification: In order, our claims are: the formalization in Section 3; the definition gen-522

eralizability in Section 4; the algorithm for study size in Section 4.3, the case studies in523

Section 5, and we provide a link to the anonymized GitHub repository for the module.524

Guidelines:525

• The answer NA means that the abstract and introduction do not include the claims526

made in the paper.527

• The abstract and/or introduction should clearly state the claims made, including the528

contributions made in the paper and important assumptions and limitations. A No or529

NA answer to this question will not be perceived well by the reviewers.530

• The claims made should match theoretical and experimental results, and reflect how531

much the results can be expected to generalize to other settings.532

• It is fine to include aspirational goals as motivation as long as it is clear that these goals533

are not attained by the paper.534

2. Limitations535

Question: Does the paper discuss the limitations of the work performed by the authors?536

Answer: [Yes]537

Justification: In Section 6.538

Guidelines:539

• The answer NA means that the paper has no limitation while the answer No means that540

the paper has limitations, but those are not discussed in the paper.541

• The authors are encouraged to create a separate "Limitations" section in their paper.542

• The paper should point out any strong assumptions and how robust the results are to543

violations of these assumptions (e.g., independence assumptions, noiseless settings,544

model well-specification, asymptotic approximations only holding locally). The authors545

should reflect on how these assumptions might be violated in practice and what the546

implications would be.547

• The authors should reflect on the scope of the claims made, e.g., if the approach was548

only tested on a few datasets or with a few runs. In general, empirical results often549

depend on implicit assumptions, which should be articulated.550

• The authors should reflect on the factors that influence the performance of the approach.551

For example, a facial recognition algorithm may perform poorly when image resolution552

is low or images are taken in low lighting. Or a speech-to-text system might not be553

used reliably to provide closed captions for online lectures because it fails to handle554

technical jargon.555

• The authors should discuss the computational efficiency of the proposed algorithms556

and how they scale with dataset size.557

• If applicable, the authors should discuss possible limitations of their approach to558

address problems of privacy and fairness.559

• While the authors might fear that complete honesty about limitations might be used by560

reviewers as grounds for rejection, a worse outcome might be that reviewers discover561

limitations that aren’t acknowledged in the paper. The authors should use their best562

judgment and recognize that individual actions in favor of transparency play an impor-563

tant role in developing norms that preserve the integrity of the community. Reviewers564

will be specifically instructed to not penalize honesty concerning limitations.565

3. Theory Assumptions and Proofs566

Question: For each theoretical result, does the paper provide the full set of assumptions and567

a complete (and correct) proof?568
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Answer: [Yes]569

Justification: The proofs are in the Appendix.570

Guidelines:571

• The answer NA means that the paper does not include theoretical results.572

• All the theorems, formulas, and proofs in the paper should be numbered and cross-573

referenced.574

• All assumptions should be clearly stated or referenced in the statement of any theorems.575

• The proofs can either appear in the main paper or the supplemental material, but if576

they appear in the supplemental material, the authors are encouraged to provide a short577

proof sketch to provide intuition.578

• Inversely, any informal proof provided in the core of the paper should be complemented579

by formal proofs provided in appendix or supplemental material.580

• Theorems and Lemmas that the proof relies upon should be properly referenced.581

4. Experimental Result Reproducibility582

Question: Does the paper fully disclose all the information needed to reproduce the main ex-583

perimental results of the paper to the extent that it affects the main claims and/or conclusions584

of the paper (regardless of whether the code and data are provided or not)?585

Answer: [Yes]586

Justification: On GitHub.587

Guidelines:588

• The answer NA means that the paper does not include experiments.589

• If the paper includes experiments, a No answer to this question will not be perceived590

well by the reviewers: Making the paper reproducible is important, regardless of591

whether the code and data are provided or not.592

• If the contribution is a dataset and/or model, the authors should describe the steps taken593

to make their results reproducible or verifiable.594

• Depending on the contribution, reproducibility can be accomplished in various ways.595

For example, if the contribution is a novel architecture, describing the architecture fully596

might suffice, or if the contribution is a specific model and empirical evaluation, it may597

be necessary to either make it possible for others to replicate the model with the same598

dataset, or provide access to the model. In general. releasing code and data is often599

one good way to accomplish this, but reproducibility can also be provided via detailed600

instructions for how to replicate the results, access to a hosted model (e.g., in the case601

of a large language model), releasing of a model checkpoint, or other means that are602

appropriate to the research performed.603

• While NeurIPS does not require releasing code, the conference does require all submis-604

sions to provide some reasonable avenue for reproducibility, which may depend on the605

nature of the contribution. For example606

(a) If the contribution is primarily a new algorithm, the paper should make it clear how607

to reproduce that algorithm.608

(b) If the contribution is primarily a new model architecture, the paper should describe609

the architecture clearly and fully.610

(c) If the contribution is a new model (e.g., a large language model), then there should611

either be a way to access this model for reproducing the results or a way to reproduce612

the model (e.g., with an open-source dataset or instructions for how to construct613

the dataset).614

(d) We recognize that reproducibility may be tricky in some cases, in which case615

authors are welcome to describe the particular way they provide for reproducibility.616

In the case of closed-source models, it may be that access to the model is limited in617

some way (e.g., to registered users), but it should be possible for other researchers618

to have some path to reproducing or verifying the results.619

5. Open access to data and code620
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Question: Does the paper provide open access to the data and code, with sufficient instruc-621

tions to faithfully reproduce the main experimental results, as described in supplemental622

material?623

Answer: [Yes]624

Justification: On GitHub.625

Guidelines:626

• The answer NA means that paper does not include experiments requiring code.627

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/628

public/guides/CodeSubmissionPolicy) for more details.629

• While we encourage the release of code and data, we understand that this might not be630

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not631

including code, unless this is central to the contribution (e.g., for a new open-source632

benchmark).633

• The instructions should contain the exact command and environment needed to run to634

reproduce the results. See the NeurIPS code and data submission guidelines (https:635

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.636

• The authors should provide instructions on data access and preparation, including how637

to access the raw data, preprocessed data, intermediate data, and generated data, etc.638

• The authors should provide scripts to reproduce all experimental results for the new639

proposed method and baselines. If only a subset of experiments are reproducible, they640

should state which ones are omitted from the script and why.641

• At submission time, to preserve anonymity, the authors should release anonymized642

versions (if applicable).643

• Providing as much information as possible in supplemental material (appended to the644

paper) is recommended, but including URLs to data and code is permitted.645

6. Experimental Setting/Details646

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-647

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the648

results?649

Answer: [Yes]650

Justification: In Section 5.651

Guidelines:652

• The answer NA means that the paper does not include experiments.653

• The experimental setting should be presented in the core of the paper to a level of detail654

that is necessary to appreciate the results and make sense of them.655

• The full details can be provided either with the code, in appendix, or as supplemental656

material.657

7. Experiment Statistical Significance658

Question: Does the paper report error bars suitably and correctly defined or other appropriate659

information about the statistical significance of the experiments?660

Answer: [Yes]661

Justification: The boxplots in Section 5 show the variability for the choice of fixed factors.662

Guidelines:663

• The answer NA means that the paper does not include experiments.664

• The authors should answer "Yes" if the results are accompanied by error bars, confi-665

dence intervals, or statistical significance tests, at least for the experiments that support666

the main claims of the paper.667

• The factors of variability that the error bars are capturing should be clearly stated (for668

example, train/test split, initialization, random drawing of some parameter, or overall669

run with given experimental conditions).670

• The method for calculating the error bars should be explained (closed form formula,671

call to a library function, bootstrap, etc.)672
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• The assumptions made should be given (e.g., Normally distributed errors).673

• It should be clear whether the error bar is the standard deviation or the standard error674

of the mean.675

• It is OK to report 1-sigma error bars, but one should state it. The authors should676

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis677

of Normality of errors is not verified.678

• For asymmetric distributions, the authors should be careful not to show in tables or679

figures symmetric error bars that would yield results that are out of range (e.g. negative680

error rates).681

• If error bars are reported in tables or plots, The authors should explain in the text how682

they were calculated and reference the corresponding figures or tables in the text.683

8. Experiments Compute Resources684

Question: For each experiment, does the paper provide sufficient information on the com-685

puter resources (type of compute workers, memory, time of execution) needed to reproduce686

the experiments?687

Answer: [No]688

Justification: The analysis we showcase in Section 5 executes very fast, requiring in total689

less than 4 hours on a standard office laptop.690

Guidelines:691

• The answer NA means that the paper does not include experiments.692

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,693

or cloud provider, including relevant memory and storage.694

• The paper should provide the amount of compute required for each of the individual695

experimental runs as well as estimate the total compute.696

• The paper should disclose whether the full research project required more compute697

than the experiments reported in the paper (e.g., preliminary or failed experiments that698

didn’t make it into the paper).699

9. Code Of Ethics700

Question: Does the research conducted in the paper conform, in every respect, with the701

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?702

Answer: [Yes]703

Justification:704

Guidelines:705

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.706

• If the authors answer No, they should explain the special circumstances that require a707

deviation from the Code of Ethics.708

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-709

eration due to laws or regulations in their jurisdiction).710

10. Broader Impacts711

Question: Does the paper discuss both potential positive societal impacts and negative712

societal impacts of the work performed?713

Answer: [NA]714

Justification:715

Guidelines:716

• The answer NA means that there is no societal impact of the work performed.717

• If the authors answer NA or No, they should explain why their work has no societal718

impact or why the paper does not address societal impact.719

• Examples of negative societal impacts include potential malicious or unintended uses720

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations721

(e.g., deployment of technologies that could make decisions that unfairly impact specific722

groups), privacy considerations, and security considerations.723
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• The conference expects that many papers will be foundational research and not tied724

to particular applications, let alone deployments. However, if there is a direct path to725

any negative applications, the authors should point it out. For example, it is legitimate726

to point out that an improvement in the quality of generative models could be used to727

generate deepfakes for disinformation. On the other hand, it is not needed to point out728

that a generic algorithm for optimizing neural networks could enable people to train729

models that generate Deepfakes faster.730

• The authors should consider possible harms that could arise when the technology is731

being used as intended and functioning correctly, harms that could arise when the732

technology is being used as intended but gives incorrect results, and harms following733

from (intentional or unintentional) misuse of the technology.734

• If there are negative societal impacts, the authors could also discuss possible mitigation735

strategies (e.g., gated release of models, providing defenses in addition to attacks,736

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from737

feedback over time, improving the efficiency and accessibility of ML).738

11. Safeguards739

Question: Does the paper describe safeguards that have been put in place for responsible740

release of data or models that have a high risk for misuse (e.g., pretrained language models,741

image generators, or scraped datasets)?742

Answer: [NA]743

Justification:744

Guidelines:745

• The answer NA means that the paper poses no such risks.746

• Released models that have a high risk for misuse or dual-use should be released with747

necessary safeguards to allow for controlled use of the model, for example by requiring748

that users adhere to usage guidelines or restrictions to access the model or implementing749

safety filters.750

• Datasets that have been scraped from the Internet could pose safety risks. The authors751

should describe how they avoided releasing unsafe images.752

• We recognize that providing effective safeguards is challenging, and many papers do753

not require this, but we encourage authors to take this into account and make a best754

faith effort.755

12. Licenses for existing assets756

Question: Are the creators or original owners of assets (e.g., code, data, models), used in757

the paper, properly credited and are the license and terms of use explicitly mentioned and758

properly respected?759

Answer: [Yes]760

Justification: To the best of our knowledge, we referenced all sources in the appropriate way.761

Guidelines:762

• The answer NA means that the paper does not use existing assets.763

• The authors should cite the original paper that produced the code package or dataset.764

• The authors should state which version of the asset is used and, if possible, include a765

URL.766

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.767

• For scraped data from a particular source (e.g., website), the copyright and terms of768

service of that source should be provided.769

• If assets are released, the license, copyright information, and terms of use in the770

package should be provided. For popular datasets, paperswithcode.com/datasets771

has curated licenses for some datasets. Their licensing guide can help determine the772

license of a dataset.773

• For existing datasets that are re-packaged, both the original license and the license of774

the derived asset (if it has changed) should be provided.775
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• If this information is not available online, the authors are encouraged to reach out to776

the asset’s creators.777

13. New Assets778

Question: Are new assets introduced in the paper well documented and is the documentation779

provided alongside the assets?780

Answer: [Yes]781

Justification: Our Python module is documented on GitHub.782

Guidelines:783

• The answer NA means that the paper does not release new assets.784

• Researchers should communicate the details of the dataset/code/model as part of their785

submissions via structured templates. This includes details about training, license,786

limitations, etc.787

• The paper should discuss whether and how consent was obtained from people whose788

asset is used.789

• At submission time, remember to anonymize your assets (if applicable). You can either790

create an anonymized URL or include an anonymized zip file.791

14. Crowdsourcing and Research with Human Subjects792

Question: For crowdsourcing experiments and research with human subjects, does the paper793

include the full text of instructions given to participants and screenshots, if applicable, as794

well as details about compensation (if any)?795

Answer: [NA]796

Justification:797

Guidelines:798

• The answer NA means that the paper does not involve crowdsourcing nor research with799

human subjects.800

• Including this information in the supplemental material is fine, but if the main contribu-801

tion of the paper involves human subjects, then as much detail as possible should be802

included in the main paper.803

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,804

or other labor should be paid at least the minimum wage in the country of the data805

collector.806

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human807

Subjects808

Question: Does the paper describe potential risks incurred by study participants, whether809

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)810

approvals (or an equivalent approval/review based on the requirements of your country or811

institution) were obtained?812

Answer: [NA]813

Justification:814

Guidelines:815

• The answer NA means that the paper does not involve crowdsourcing nor research with816

human subjects.817

• Depending on the country in which research is conducted, IRB approval (or equivalent)818

may be required for any human subjects research. If you obtained IRB approval, you819

should clearly state this in the paper.820

• We recognize that the procedures for this may vary significantly between institutions821

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the822

guidelines for their institution.823

• For initial submissions, do not include any information that would break anonymity (if824

applicable), such as the institution conducting the review.825
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