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ABSTRACT

Colours can be represented in an infinite set of spaces highlighting distinct fea-
tures. Here, we investigated the impact of colour spaces on the encoding capacity
of a visual system that is subject to information compression, specifically varia-
tional autoencoders (VAEs) where bottlenecks are imposed. To this end, we pro-
pose a novel unsupervised task: colour space conversion (ColourConvNets). We
trained several instances of VAEs whose input and output are in different colour
spaces, e.g. from RGB to CIE L*a*b* (in total five colour spaces were examined).
This allowed us to systematically study the influence of input-output colour spaces
on the encoding efficiency and learnt representation. Our evaluations demonstrate
that ColourConvNets with decorrelated output colour spaces produce higher qual-
ity images, also evident in pixel-wise low-level metrics such as colour difference
(∆E), peak signal-to-noise ratio (PSNR) and structural similarity index measure
(SSIM). We also assessed the ColourConvNets’ capacity to reconstruct the global
content in two downstream tasks: image classification (ImageNet) and scene seg-
mentation (COCO). Our results show 5-10% performance boost for decorrelating
ColourConvNets with respect to the baseline network (whose input and output are
RGB). Furthermore, we thoroughly analysed the finite embedding space of Vec-
tor Quantised VAEs with three different methods (single feature, hue shift and
linear transformation). The interpretations reached with these techniques are in
agreement suggesting that (i) luminance and chromatic information are encoded
in separate embedding vectors, and (ii) the structure of the network’s embedding
space is determined by the output colour space.

1 INTRODUCTION

Colour is an inseparable component of our conscious visual perception and its objective utility spans
over a large set of tasks such as object recognition and scene segmentation (Chirimuuta et al., 2015;
Gegenfurtner & Rieger, 2000; Wichmann et al., 2002). Consequently, colour is an ubiquitous feature
in many applications: colour transfer (Reinhard et al., 2001), colour constancy (Chakrabarti, 2015),
style transfer (Luan et al., 2017), computer graphics (Bratkova et al., 2009), image denoising (Dabov
et al., 2007), quality assessment (Preiss et al., 2014), to name a few. Progress in these lines requires
a better understanding of colour representation and its neural encoding in deep networks. To this
end, we present a novel unsupervised task: colour conversion.

In our proposed framework the input-output colour space is imposed on deep autoencoders (referred
to as ColourConvNets) that learn to efficiently compress the visual information (Kramer, 1991)
while transforming the input to output. Essentially, the output y for input image x is generated
on the fly by a transformation y = T (x), where T maps input to output colour space. This task
offers a fair comparison of different colour spaces within a system that learns to minimise a loss
function in the context of information bottleneck principle (Tishby & Zaslavsky, 2015). The quality
of output images demonstrates whether the representation of input-output colour spaces impacts
networks’ encoding power. Furthermore, the structure of internal representation provides insights
on how colour transformation is performed within a neural network.

In this work, we focused on Vector Quantised Variational Autoencoder (VQ-VAE) (van den Oord
et al., 2017) due to the discrete nature of its latent space that facilitates the analysis and interpretabil-
ity of the learnt features. We thoroughly studied five commonly used colour spaces by training
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ColourConvNets for all combinations of input-output spaces. First, we show that ColourConvNets
with a decorrelated output colour space (e.g. CIE L*a*b) convey information more efficiently in
their compressing bottleneck, in line with the presence of colour opponency in the human visual
system. This is evident qualitatively (Figures 1 and A.1) and quantitatively (evaluated with three
low-level and two high-level metrics). Next, we present the interpretation of ColourConvNets’
latent space by means of three methods reaching a consensus interpretation: (i) the colour repre-
sentation in the VQ-VAEs’ latent space is determined by the output colour space, suggesting the
transformation T occurs at the encoder, (ii) each embedding vector in VQ-VAEs encodes a specific
part of the colour space, e.g. the luminance or chromatic information, which can be modelled by a
parsimonious linear transformation.

Original rgb2rgb rgb2dkl rgb2lab

Figure 1: Qualitative comparison of three ColourConvNets (VQ-VAE of K=8 and D=128). The first
column is the networks’ input and the other columns their corresponding outputs. The output images
of rgb2dkl and rgb2lab have been converted to the RGB colour space for visualisation purposes. The
artefacts in rgb2rgb are clearly more visible in comparison to the other ColourConvNets.

1.1 RELATED WORK

The effectiveness of different colour spaces have been investigated in a few empirical studies of deep
neural networks (DNNs). Information fusion over several colour spaces improved retinal medical
imaging (Fu et al., 2019). A similar strategy enhanced the robustness of face (Li et al., 2014; Larbi
et al., 2018) and traffic light recognition (Cireşan et al., 2012; Kim et al., 2018). This was also
effective in predicting eye fixation (Shen et al., 2015). Opponent colour spaces have been explored
for applications such as style transfer (Luan et al., 2017; Gatys et al., 2017) and picture colourisation
(Cheng et al., 2015; Larsson et al., 2016). Most of these works are within the domain of supervised
learning. The most similar approach to our proposed ColourConvNets is image colourisation as a
pretext task for unsupervised visual feature learning (Larsson et al., 2017).

Initial works on colour representation in DNNs revealed object classification networks learn to
decorrelate their input images (Rafegas & Vanrell, 2018; Flachot & Gegenfurtner, 2018; Harris
et al., 2019). This is a reminiscence of horizontal and ganglion cells that decorrelate retinal sig-
nal into colour-opponency before transmitting it to the visual cortex (Schiller & Malpeli, 1977;
Derrington et al., 1984; Gegenfurtner & Kiper, 2003). Another set of works reported existence of
hue-sensitive units (Engilberge et al., 2017) that mainly emerge in early layers (Bau et al., 2017).
Representation of colours in deep networks at intermediate and higher layers is rather understudied.
In this article, we specifically focus on the intermediate representation that emerges at the latent
space of autoencoders, which to the best of our knowledge has not been reported in the literature.

2 COLOUR CONVERSION AUTOENCODERS

In this article, we propose a novel unsupervised task of colour conversion: the network’s output
colour space is independent of its input (see Figure 2). A colour space is an arbitrary definition of
colours’ organisation in the space (Koenderink & van Doorn, 2003). Thus, the choice of transfor-
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Figure 2: Left: exemplary conversions across different colour spaces. Right: the schematic view of
VQ-VAE ColourConvNets.

mation matrix T in ColourConvNets is perfectly flexible to model any desired space,

Cin
T−−−−−→ Cout, (1)

where Cin and Cout are the input and output colour spaces. This framework offers a controlled
environment to compare colour spaces within a complex visual system. Here, we studied their ef-
fectiveness in information encoding constrained to a bottleneck. This can be extended to encompass
other constraints (such as entropy, energy, wiring, etc.) relevant to understanding colour represen-
tation in complex visual systems. We further used this structure to compare autoencoder’s latent
space across colour spaces aiming to decipher the intermediate colour representation within these
networks. The proposed framework can also be employed in applications, e.g., as an add-on optimi-
sation capsule to any computer vision application (Mosleh et al., 2020), or as a proxy task for visual
understanding (Larsson et al., 2017).

2.1 NETWORKS

We studied a particular class of VAEs—Vector Quantised Variational Autoencoder (VQ-VAE)
(van den Oord et al., 2017)—due to the discrete nature of its latent embedding space that facilitates
the analysis and interpretability of the learnt features, which distinguishes it from others (Kingma &
Welling, 2013). VQ-VAE consists of three main blocks: 1) an encoder that processes the input data
x to ze(x); 2) a latent embedding space {e} ∈ RK×D, with K vectors of dimensionality D, that
maps ze(x) onto zq(x) by estimating the nearest vector ei to ze(x); 3) a decoder that reconstructs
the final output x′ with a distribution p(x|zq(x)) over the input data (see the right panel in Figure 2).
The loss function is defined as follows,

L = log p(x|zq(x)) + ‖sg[ze(x)]− e‖22 + β‖ze(x)− sg[e]‖22, (2)

where sg denotes the stop gradient computation that is defined as the identity during the forward-
propagation, and with zero partial derivatives during the back-propagation to refrain its update. The
first term in Eq. 2 corresponds to the reconstruction loss incorporating both encoder and decoder;
the second term updates the embedding vectors; and the third term harmonies the encoder and
embedding vectors. The parameter β ∈ R is set to 0.5 in all our experiments.

2.2 COLOUR SPACES

We explored five colour spaces: RGB, LMS, CIE L*a*b*, DKL and HSV. The standard space in
electronic imaging is RGB that represents colours by three additive primaries in a cubic shape.
The LMS colour space corresponds to the response of human cones (long-, middle-, and short-
wavelengths) (Gegenfurtner & Sharpe, 1999). The CIE L*a*b* colour space (luminance, red-green
and yellow-blue axes) is designed to be perceptually uniform (CIE, 1978). The DKL colour space
(Derrington-Krauskopf-Lennie) models the opponent responses of rhesus monkeys in the early vi-
sual system (Derrington et al., 1984). The HSV colour space (hue, saturation, value) is a cylindrical
representation of RGB cube designed by computer graphics.

The input-output to our networks can be in any combination of these colour spaces. Effectively,
our VQ-VAE models, in addition to learning efficient representation, must learn the transformation
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function from their input to output colour space. It is worth considering that the original images in
explored datasets are in the RGB format. Therefore, one might expect a slight positive bias towards
this colour space given its gamut defines the limits of other colour spaces.

3 EXPERIMENTS

We trained several instances of VQ-VAEs with distinct sizes of embedding space {e} ∈ RK×D.
The training procedure was identical for all networks: trained with Adam optimiser (Kingma & Ba,
2014) (lr = 2 × 10−4) for 90 epochs. To isolate the influence of random variables, all networks
were initialised with the same set of weights and an identical random seed was used throughout all
experiments. We used ImageNet dataset (Deng et al., 2009) for training. This is a visual database
of object recognition in real-world images, divided into one thousand categories. The training set
contains 1.3 million images. At every epoch, we exposed the network to 100K images of size
224 × 224 of three colour channels. Figure B.1 reports the progress of loss function for various
ColourConvNets. A similar pattern of convergence can be observed for all trained networks.

To increase the generalisation power of our findings, we evaluated all networks on the validation-
set of three benchmark datasets: ImageNet (50K images), COCO (5K images), and CelebA (~20K
images). COCO is a large-scale object detection and segmentation dataset (Lin et al., 2014). CelebA
contain facial attributes of celebrities (Liu et al., 2015). We relied on two classes of evaluation1:
low-level (Theis et al., 2015), capturing the local statistics of an image; high-level (Borji, 2019),
assessing the global content of an image.

Low-level evaluation – We computed three commonly used metrics to measure the pixel-wise per-
formance of networks: (i) the colour difference CIE ∆E-2000 (Sharma et al., 2005), (ii) peak signal-
to-noise ratio (PSNR), and (iii) structural similarity index measure (SSIM) (Wang et al., 2004).

High-level evaluation – Pixel-wise measures are unable to capture the global content of an image
and whether semantic information remains perceptually intact. To account for this limitation, we
performed a procedure similar to the standard Inception Score (Salimans et al., 2016; Borji, 2019)
by feeding the reconstructed images to two pretrained networks (without fine-tuning) that perform
the task of object classification, ResNet50 (He et al., 2016), and scene segmentation, Feature Pyra-
mid Network—FPN (Kirillov et al., 2019). ResNet50 and FPN expect RGB inputs, thus non-RGB
reconstructions were converted to RGB. The evaluation for ResNet50 is the classification accuracy
on ImageNet dataset. The evaluation for FPN is the intersection over union (IoU) on COCO dataset.

3.1 EMBEDDING SIZE

We first evaluated the influence of embedding size for four regimes of ColourConvNets whose input
colour space is the original RGB images. The low-level evaluation for ImageNet is reported in
Figure 3 and COCO Figure C.1. Across three metrics, the poor performance of rgb2hsv pops up
at low-dimensionality of the embedding vector (D = 8). This might be due to the circular nature
of hue. For the smallest and the largest embedding space, we observe no significant differences
between the four networks. However, for embedding spaces of 8 × 8 and 8 × 128 an advantage
appears for networks whose outputs are opponent colour spaces (DKL and CIE L*a*b).

Colour Difference ↓ PSNR ↑ SSIM ↑

Figure 3: Low-level evaluation for embedding spaces of different size (ImageNet validation-set).

The corresponding high-level evaluation is reported in Figure 4. The overall trend is much alike
for both tasks. The lowest performance occurs for rgb2hsv across all embedding spaces. Colour-

1For reproduction, the source code and all experimental data are available in the supplementary materials.
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ConvNets with an opponent output colour space systematically perform better than rgb2rgb, with
an exception for the largest embedding space (128 × 128) where all networks perform equally (de-
spite the substantial compression, 70% top-1 accuracy on ImageNet and 60% IoU on COCO). The
comparison of low- and high-level evaluation for the smallest embedding space (4× 128) (Figure 4
versus Figures 3 and C.1) demonstrates the importance of high-level evaluation. Although no differ-
ence emerges for the low-level measure, the classification and segmentation metrics are substantially
influenced by the quality of the reconstructed images in those four VQ-VAEs.

ImageNet (Accuracy ↑) COCO (IoU ↑)

Figure 4: High-level visual task evaluation. Left: ResNet50’s classification accuracy on recon-
structed images of ImageNet. Right: FPNS’s segmentation IoU on reconstructed images of COCO.

3.2 PAIRWISE COMPARISON

For the two embedding spaces with the largest differences (8× 8 and 8× 128) we conducted an ex-
haustive pairwise comparison across two regimes of colour spaces: sensory (RGB and LMS) versus
opponency (DKL and CIE L*a*b). HSV is excluded in these analysis due to the aforementioned
reason. Figure 5 presents the low-level evaluation results for ImageNet (COCO Figure C.2 and
CelebA Figure C.3). There is a clear tendency of better performance for ColourConvNets with an
opponent output colour space across all measures and datasets. Overall, the rgb2lab reconstructs
the highest quality images. In comparison to the baseline (i.e. rgb2rgb) both rgb2lab and rgb2dkl
obtain substantially lower colour differences, and higher PSNRs and SSIMs.

Colour Difference ↓ PSNR ↑ SSIM ↑

Figure 5: Low-level pairwise comparison of two groups of input-output colour spaces (ImageNet
validation-set). Figures are averaged over two embedding spaces 8× 8 and 8× 128.

The high-level evaluation results are reported in Figure 6. In agreement to previous findings, rgb2lab
performs best across both datasets and embedding spaces. Overall, ColourConvNets with an oppo-
nent output space show a clear advantage: rgb2lab and rgb2dkl obtain 5-7% higher accuracy and
IoU with respect to the baseline rgb2rgb.

4 PERFORMANCE ADVANTAGE

The main difference between two regimes of colour spaces (sensory versus opponency) is their
intra-axes correlation. The intra-axes correlation for RGB and LMS is very high, hence referred to
as correlated colour spaces. On the contrary, the intra-axes correlations for CIE L*a*b* and DKL
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ImageNet (Accuracy ↑) COCO (IoU ↑)
{e} ∈ R8×8 {e} ∈ R8×128 {e} ∈ R8×8 {e} ∈ R8×128

Figure 6: High-level pairwise comparison of sensory (RGB and LMS) versus opponency (DKL and
CIE L*a*b) input-output colour spaces of VQ-VAEs.

are very low, hence referred to as decorrelated colour spaces.2 In biological visual systems, the
retinal signal is transformed to opponency before transmitted to the visual cortex through the LGN
bottleneck (Zhaoping, 2006b). This transformation has been argued to boost the efficiency of in-
formation coding (Buchsbaum & Allan, 1983; Ruderman et al., 1998; Lee et al., 2001). Here, our
results show a similar phenomenon in deep autoencoders that compress information in their bottle-
neck. Contrary to this, the ImageNet classification performance was reported unaltered when input
images converted from RGB to CIE L*a*b* (Mishkin et al., 2017). This might be explained by the
lack of bottleneck constraint in their examined architecture, thus decorrelating colour representa-
tion leads to no extra advantage. Interestingly, we can observe this with ColourConvNets of largest
embedding space (128 × 128), suggesting decorrelation of colour signal become beneficial when
system is constrained in its information flow.

Previous works in the literature (Foster et al., 2008; Malo, 2019) have measured the decorrelation
characteristics of colour opponent spaces in information theoretical analysis and demonstrated their
effectiveness in encoding natural images. The understanding of how a complex visual system, driven
by error minimisation strategy (Laparra et al., 2012), might utilise these properties at the system level
is of great interest (Lillicrap & Kording, 2019). We hypothesised that an efficient system distributes
its representation across all resources instead of heavily relying on a few components (Laughlin,
1981). To measure this, the histogram of embedding vectors across all images of ImageNet (50K)
and COCO (5K) were computed. A zero standard deviation in the frequency of selected vectors
means embedding vectors are equally used by the network. Figure 7 reports the error rate as a
function of this measure. A significant correlation emerges in both datasets, suggesting a more
uniform contribution of embedding vectors enhances visual encoding in VQ-VAEs. This matches
the neural model of histogram equalisation (Pratt, 2007; Bertalmı́o, 2014) and is consistent with the
efficient coding theory for the biological visual system (Barlow, 1961; Zhaoping, 2006a).

5 INTERPRETING THE EMBEDDING SPACE

Comprehension of the features learnt by a DNN remains a great challenge to the entire community
(Lillicrap & Kording, 2019). Generative models and in particular variational autoencoders are no
exceptions. Strategies on the interpretation of the latent space structure include interpolation in
latent space arithmetic operations on learnt features (Radford et al., 2015; Bojanowski et al., 2017;
Kim et al., 2018). In practice, however, these approaches require explicit human supervision, a
cumbersome task due to the often large dimensionality of the latent space. Here, we borrowed
the “lesion” technique, commonly practised in the neuroscience community (Vaidya et al., 2019),
and applied it to the embedding space by silencing one vector at a time (i.e. setting its weights to
zero). This procedure is referred to as “ablation” in the learning community and it has been useful
in dissecting classification DNNs (Sandler et al., 2018) and GANs (Bau et al., 2020). To measure
the consequences of vectors’ lesion, we analysed the ColourConvNets’ embedding space with three
distinct methods: (i) single features, (ii) linear transformation and (iii) hue-shift.

2We computed these correlations r in all images of ImageNet dataset (hundred-random pixels per image).
RGB: rRG ≈ 0.90, rRB ≈ 0.77, rGB ≈ 0.89; LMS: rLM ≈ 1.00, rLS ≈ 0.93, rMS ≈ 0.93; L*a*b*:
rL∗a∗ ≈ −0.14, rL∗b∗ ≈ 0.13, ra∗b∗ ≈ −0.34; DKL: rDK ≈ 0.01, rDL ≈ 0.14, rKL ≈ 0.61.
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ImageNet COCO

Figure 7: Error rate as a function of the difference in frequency of selected vectors in the embedding
space. A value of zero in the x-axis indicates all embedding vectors are equally used by the model.
Higher values of x indicate that the model relies heavily on certain vectors.

5.1 SINGLE FEATURES

To visualise the encoded representation by each embedding vector, we sampled from the embedding
space an example of spatial size 2× 2 with all cells set to the same vector index. Figure 8 shows the
reconstructed images for all network combinations with embedding space {e} ∈ R8×128 (Figure D.1
for {e} ∈ R8×8). The input colour space is the same in each row, and the output space is the
same in each column. An interesting column-wise feature appears. Networks with an identical
output colour space share a similar set of hues arranged in a different order. The order within the
embedding space of VQ-VAEs is arbitrary and changing it does not impact the network’s output.
This is an interesting phenomenon suggesting: (i) the colour representation in network’s embedding
space is an attribute of its output colour space, and (ii) the colour transformation T is performed by
encoder before reaching the embedding space. This is an exciting line of investigation for feature
studies to systematically explore whether the concept of unique hues and colour categories (Witzel
& Gegenfurtner, 2018; Siuda-Krzywicka et al., 2019) emerge in machine colour representation.

rgb2rgb rgb2lms rgb2dkl rgb2lab

e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7
lms2rgb lms2lms lms2dkl lms2lab

e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7
dkl2rgb dkl2lms dkl2dkl dkl2lab

e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7
lab2rgb lab2lms lab2dkl lab2lab

e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7

Figure 8: The reconstruction output by selecting a single vector of the entire embedding space. All
models are VQ-VAE of K=8 and D=128.

The samples reconstructed with a single embedding vector are not perfectly uniform (some small
spatial variation is visible in Figure 8). To better understand the spatio-chromatic aspect of the
encoded information, we again drew a sample of spatial size 2 × 2 from the embedding space; this
time instead of setting all elements to a single vector, we combined two vectors in different spatial
directions. The resulting reconstruction for the rgb2lab is illustrated in Figure 9. The embedding
space spatial direction is relayed to the networks reconstructed images although the degree of it
depends on the pair of embedding vectors. For instance, the horizontal combination of e0 − e7
results in two stripes of colour, while e0 − e2 turn into three stripes. This is naturally due to the
fact that embedding vectors encode beyond chromatic information, but also the distinct nature of
spatio-chromatic combination the decoder learns.
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Figure 9: The reconstruction by a pairwise combination of embedding vectors in different spatial
directions. ColourConvNet rgb2lab with K=8 and D=128. In all cases a sample of spatial size 2× 2
was drawn from the embedding space. Horizontal: the top elements set to vector ei and bottom ej .
Diagonal: the principal diagonal ei and off-diagonal ej . Vertical: the left elements ei and right ej .

5.2 LINEAR TRANSFORMATION

Three exemplary reconstructions by rgb2dkl network are illustrated in Figure 10 (for other Colour-
ConvNets refer to Sec. D.2). Panel A corresponds to the full embedding space and B–D show
examples of reconstructions with distinct vector lesions causing clear visible effects. In B, only the
lightness of bright pixels is reduced (attend to pixels outside the window and around light bulbs). In
C & D, lesioning e0 and e2, turns reddish and blueish pixels into achromatic. This is in agreement
to colour of rgb2dkl e0 and e2 in Figure 8.

We hypothesised that the changes induced by a lesion could be approximated by a linear transfor-
mation mapping the pixel distribution of the full reconstruction onto the lesion image. To compute
these transformations, we used a multi-linear regression finding the best linear fit for the 1% of most
affected pixels. The resulting 3 × 3 matrix is a linear transformation in CIE L*a*b colour space.
We have illustrated the result of applying these linear transformations on the right side of Figure
10. Panel E corresponds to the full RGB cube (essentially the CIE L*a*b* planes limited by RGB
gamut). In F–H the very same points are plotted transformed by the model of lesioned vector.

Overall, lesions are closely approximated by a linear transformation: on average accounting for
97% of the total variance in the lesion effect (the lowest bound was 86%). This visualisation offers
an intuitive interpretation of the learnt representation within the embedding space. In the images
of the second row (panel B), contrast in bright pixels is reduced and colour is little modified. We
can observe this in its corresponding CIE L*a*b* planes (e.g. attend the a*b* plane in F where the
overall chromaticity structure is retained). In C, red pixels turn grey also evident in its corresponding
CIE L*a*b* planes (panel G) where red coordinates are collapsed.

The geometrical properties of a transformation can be captured by the relative norms of its eigen-
values. For instance, zero-value eigenvalues indicate the extreme case of a singular matrix, corre-
sponding to a linear transformation projecting a three-dimensional space onto lower dimensions. We
quantified this by defining a singularity index (Philipona & O’regan, 2006). Consider a transforma-
tion matrix T approximating the lesion effect on the image colour distribution. Let λ1, λ2 and λ3
be the three eigenvalues of T , such that ‖λ1‖ > ‖λ2‖ > ‖λ3‖. The singularity index is defined as:
SI = 1 − λ3

λ1
. This index captures the essence of these transformations. On the one hand, the low

value of SI in F suggests the global shape of colour space is retained while its volume is reduced.
On the other hand, high values of SI in panels G and H indicate the near collapse of a dimension.

5.3 HUE SHIFT

We further quantified the impact of vector lesion by computing the difference in CIE L*a*b* be-
tween the full reconstructed image and lesioned one. The average difference over all pixels for
rgb2dkl is illustrated in Figure 11 (refer to Sec. D.3 for other ColourConvNets). The results of hue
shift analysis restate the interpretation of learnt representation. For instance, the direction of shift
in e0 is limited to the first quadrant of the chromaticity plane (red pixels). The e1 vector largely
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Figure 10: The lesion effect visualisation for the rgb2dkl {e} ∈ R8×128. Left, reconstructed images
by A: the full model; B–D: the lesion embedding space. Right, scatter plots of pixels in CIE L*a*b*
coordinates of E: the entire RGB cube; F–H: after applying the linear model to the RGB cube.

encodes the low-luminance information (the negative direction in the L* axis). The e2 vector pre-
dominantly influences the blue pixels (the negative direction in the b* axis). Similar colours emerge
for rgb2dkl e0, e1 and e2 in Figure 8.
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Figure 11: Average hue shifts for rgb2dkl {e} ∈ R8×128 in CIE L*a*b* coordinates. Black- and
red-bars indicate significant impact on the luminance- or chromatic-channels respectively.

6 CONCLUSION

We proposed the unsupervised colour conversion task to investigate colour representation in deep
networks. We studied the impact of colour on the encoding capacity of autoencoders, specifically
VQ-VAEs whose feature representation is constrained by a discrete bottleneck. The comparison of
several ColourConvNets exhibits advantage for a decorrelated output colour space. This is evident
qualitatively and measured quantitatively with five metrics. We discussed this benefit within the
framework of efficient coding and histogram equalisation. These findings might contribute to our
understanding of why the brain’s natural network has developed the opponent representation. We
further explored the networks’ internal representation by means of three methods. Our analyses
suggest: (i) the colour transformation is performed at the encoding stage prior to reaching the em-
bedding space, (ii) despite the spatio-chromatic nature of the constituent vectors, many manifest a
clear effect along one colour direction that can be modelled by a parsimonious linear model.
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Dan Cireşan, Ueli Meier, Jonathan Masci, and Jürgen Schmidhuber. Multi-column deep neural
network for traffic sign classification. Neural networks, 32:333–338, 2012.

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image denoising by
sparse 3-d transform-domain collaborative filtering. IEEE transactions on image processing : a
publication of the IEEE Signal Processing Society, 16:2080–95, 09 2007.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Andrew M Derrington, John Krauskopf, and Peter Lennie. Chromatic mechanisms in lateral genic-
ulate nucleus of macaque. The Journal of physiology, 357(1):241–265, 1984.
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A QUALITATIVE COMPARISON

Along with the quantitative evaluations reported in the manuscript, the benefits of utilising a decorre-
lated colour space for the network’s output can be appreciated qualitatively (see Figure A.1). These
are representative samples from the COCO dataset Lin et al. (2014). The Jupyter-Notebook scripts in
the supplementary materials provide more examples3. Overall, the rgb2dkl and rgb2lab VQ-VAEs
generate more coherent images. For instance, in the first row of Figure A.1, the rgb2rgb output
contains a large amount of artefacts on walls and ceilings. In contrast, the output of rgb2dkl and
rgb2lab are sharper.

Original rgb2rgb rgb2dkl rgb2lab

Figure A.1: Qualitative comparison of three VQ-VAEs of K=8 and D=128.

3The weights of all trained networks and image outputs of lesion study exceed the 100MB upload limit,
but they are publicly available for interested readers under this link https://www.dropbox.com/sh/
e1l3p3uot94q0fy/AADg0rmxyiC3UNifTtqIpg2Pa?dl=0 .
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B LOSS FUNCTION

The loss function (Eq. 2) is computed in ColourConvNets’ output colour space between the ground-
truth and network’s output. Figure B.1 reports the evolution of losses for all VQ-VAEs of K=8 and
D=128. The convergence of losses is comparable across all networks regardless of their input-output
colour space.

Figure B.1: Evolution of losses for VQ-VAEs of K=8 and D=128. In each panel, the ColourConvnets
have the same output space. Across panels, curves of the same colour have the same input space.

C LOW-LEVEL EVALUATION

Colour Difference ↓ PSNR ↑ SSIM ↑

Figure C.1: Low-level evaluation for embedding spaces of different size (COCO validation-set).

Colour Difference ↓ PSNR ↑ SSIM ↑

Figure C.2: Low-level pairwise comparison of two groups of input-output colour spaces (COCO
validation-set). Figures are averaged over two embedding spaces 8× 8 and 8× 128.

D INTERPRETING THE EMBEDDING SPACE

D.1 SINGLE FEATURES

The hues obtained from single vectors of VQ-VAE with K=8 and D=8 is reported in Figure D.1.
The effect observed for larger ColourConvNets (i.e. networks with an identical output colour space
sharing a similar set of hues arranged in a different order) is less evident here. This might be due to
the dimensionality of the embedding space. This regime consists of vectors of 8 elements, whereas
in the previous regime (Figure 8) the dimensionality of vectors is 128.
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Colour Difference ↓ PSNR ↑ SSIM ↑

Figure C.3: Low-level pairwise comparison of two groups of input-output colour spaces (CelebA
validation-set). Figures are averaged over two embedding spaces 8× 8 and 8× 128.

rgb2rgb rgb2lms rgb2dkl rgb2lab

e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7
lms2rgb lms2lms lms2dkl lms2lab

e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7
dkl2rgb dkl2lms dkl2dkl dkl2lab

e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7
lab2rgb lab2lms lab2dkl lab2lab

e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7 e0 e1 e2 e3 e4 e5 e6 e7

Figure D.1: The reconstruction output by selecting a single vector of the entire embedding space.
All models are VQ-VAE of K=8 and D=8.

D.2 LINEAR MODELLING OF VECTOR LESIONS

In order to understand the features learnt by the colour conversion networks, we exercised the “le-
sion” technique. It consists of silencing the embedding space’s vectors one at a time. We explored
whether a vector lesion can be modelled by a simple linear transformation. We estimated the trans-
formation matrix that maps the pixel distribution of the full reconstruction onto the lesion image
(refer to Section 4 in the manuscript). To our surprise, this simple parsimonious modelling can
capture a large portion of the vector’s encoding. We present qualitative results for VQ-VAEs with
K = 8 and D = 128 in the colour conversion networks rgb2dkl (Figure D.2), rgb2lab (Figure D.3)
and rgb2rgb (Figure D.4).

The top row of Figure D.2 illustrated three examples from the COCO dataset reconstructed with
the full model of rgb2dkl. The following rows depict the reconstruction output of lesion technique
exercised on each embedding vector ei (the “Lesion output” column), alongside with the linear
modelling estimation (the “Linear model” column) obtained by applying the linear transformation
to the full reconstructed image. On the bottom right corner, we have reported the fitness of the
mode, correlation in the CIE L*a*b* colour coordinates (r) between the colour pixels of the lesion
output and the linear model. The overall fitness is very high for such a simple model. Even in cases
with lower correlations, we can observe that the model captures well the characteristics of the lesion
output. For instance, the indoor scene for e0 obtains r = 0.81, however, it can be appreciated that
the linear model accounts well for the disappearance of red pixels in the lesion output. This is also
evident in the kite picture of e2 where blue pixels have vanished or the bench picture of e5 with
green pixels.

Naturally, there are limits to this linear modelling. For instance, the excess of chromaticity (pink and
blue colours) in the indoor scene of e6 is not fully captured by its linear model. The most extreme
can be observed in the kite picture of e3 for the rgb2lab model (Figure D.3) where the non-linear
nature of lesion output is not accounted for in the linear model. Nevertheless, these parsimonious
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Figure D.2: The linear modelling of vector lesion for rgb2dkl VQ-VAE of K=8 and D=128. The
denoted r on the bottom right corner of an image is the measure of transformations’ fitness.

transformations reveal great details about the information encoded by each vector deserving more
thorough investigation in future studies.

In Figure D.5 we have illustrated the impact of each linear transformation applied to the entire RGB
cube. This gives an intuitive idea of what each vector performs in a simple glance. Absence of some
vectors results in the collapse of a chromatic direction. Others shear, shrink or expand the colour
space.

D.3 HUE SHIFT

We quantified the chromatic shifts (in CIE L*a*b*) between the reconstructed image of full embed-
ding space and lesion one. The differences computed for all pixels over a hundred random images
from the COCO dataset are illustrated in Figure D.6.
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Figure D.3: The linear modelling of vector lesion for rgb2lab VQ-VAE of K=8 and D=128. The
denoted r on the bottom right corner of an image is the measure of transformations’ fitness.
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Figure D.4: The linear modelling of vector lesion for rgb2rgb VQ-VAE of K=8 and D=128. The
denoted r on the bottom right corner of an image is the measure of transformations’ fitness.
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Figure D.5: The impact of vector lesion on RGB cube plotted in CIE L*a*b* coordinate,
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Figure D.6: Average hue shifts in CIE L*a*b* colour space for each vector lesion. Numbers in the
x-axis denote the indices of the embedding vectors. All networks are of {e} ∈ R8×128. Black- and
red-bars indicate significant impact on the luminance- or chromatic-channels respectively.
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