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Abstract

Contrastive Language-Image Pretraining (CLIP) is a popular foundation model,
supporting from zero-shot classification, retrieval to encoders for multimodal large
language models (MLLMs). Although CLIP is successfully trained on billion-scale
image-text pairs from the English world, scaling CLIP’s training further to learning
from the worldwide web data is still challenging: (1) no curation method is available
to handle data points from non-English world; (2) the English performance from
existing multilingual CLIP is worse than its English-only counterpart, i.e., “curse
of multilinguality” that is common in LLMs. Here, we present Meta CLIP 2, the
first recipe training CLIP from scratch on worldwide web-scale image-text pairs.
To generalize our findings, we conduct rigorous ablations with minimal changes
that are necessary to address the above challenges and present a recipe enabling
mutual benefits from English and non-English world data. In zero-shot ImageNet
classification, Meta CLIP 2 ViT-H/14 surpasses its English-only counterpart by
0.8% and mSigLIP by 0.7%, and surprisingly sets new state-of-the-art without
system-level confounding factors (e.g., translation, bespoke architecture changes)
on multilingual benchmarks, such as CVQA with 57.4%, Babel-ImageNet with
50.2% and XM3600 with 64.3% on image-to-text retrieval. Code and model are
available at https://github.com/facebookresearch/MetaCLIP.

1 Introduction

Contrastive Language-Image Pre-training (CLIP) [1] has become an essential building block of
modern vision and multimodal models, from zero-shot image classification and retrieval to serving as
vision encoders in multimodal large language models (MLLMs) [2, 3, 4, 5]. CLIP and its majority
variants [6, 7] adopt an English-only setting, and Meta CLIP [7] introduces a scalable data curation
algorithm to meticulously extract a billion-scale English dataset that exhausts long-tailed concepts
in Common Crawl. The algorithm transforms the distribution of the raw Internet into controllable
and balanced training distribution defined by metadata (e.g., visual concepts composed by human
experts) and training distribution is known as one key contributor to performance. In contrast, popular
CLIP reproductions outsource such key contributor to external resources, e.g., OpenCLIP [6] trained
on LAION [8, 9] and DFN [10] rely on pretrained CLIP models for black-box filtering to keep only
high-confidence data. Such approaches resemble distillation of an existing CLIP teacher model and
produce intractable distributions owned by an outsourcing party.
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‡Work done when working at Meta.
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Figure 1: (Left) CLIP training suffers from the curse of multilinguality that the English performance
of a CLIP model trained on worldwide (i.e., English + non-English), billion-scale data is worse than
its English-only counterpart, even when applying our recipe on ViT-L/14; scaling to ViT-H/14 enables
non-English data helps English-only CLIP. (Right) English data also helps non-English CLIP.

Although being the most widely used “foundation” models, most CLIP variants, including the scalable
Meta CLIP, rely on English-only curation and thus discard the other, e.g., 50.9% [11] of non-English,
worldwide web data. To extend CLIP training and data to the worldwide web for the next level of
scaling, we inevitably have to handle these non-English image-text pairs—a barrier we refer to as the
worldwide scaling challenges, which are issues not yet being solved after years of attempts to train
CLIP on multilingual data:

Challenge #1: Lack of a fundamental data curation method to handle non-English data at scale.
Existing attempts either conduct no curation on the raw, non-English image-text pair data at all (e.g.,
distilling from English CLIP [12] or machine translation [13, 14]), or rely on proprietary and private
data sources (e.g., WebLI [15] that drives mSigLIP and SigLIP 2 [16, 17] is built from Google Image
Search [18]).

Challenge #2: Worse English performance than English-only CLIP. This is also known as curse
of multilinguality in text-only large language models (LLMs). For instance, mSigLIP is 1.5% worse
than its English-only counterpart, SigLIP, on ImageNet [16], while SigLIP 2 [17] prioritizes English
performance at the cost of even worse multilingual results than mSigLIP. Hence, disparate models
have to be used to optimize English and non-English performance at the same time.

This work. We present Meta CLIP 2, the first ever recipe developing CLIP with training from
scratch on native worldwide image-text pairs, without relying on outsourced resources, such as any
private data, machine translation, or distillation. We empirically show that the curse of multilinguality
in CLIP is the consequence of insufficient scaling due to the lack of a proper recipe for worldwide
data curation and model training. When metadata, data curation, model capacity, and training are
carefully designed and scaled jointly, we show that not only the performance trade-offs between
English and non-English data disappear, but the two become mutually beneficial. Achieving such
worldwide scaling is highly desirable, especially when English Internet data is exhausted soon [19].

Our Meta CLIP 2 recipe is built on top of English Meta CLIP, where overlapping with OpenAI
CLIP’s vanilla architecture is deliberately maximized. The overlap makes our findings generalizable
to CLIP and its variants, compared to system works (cf. [16, 17, 20]) aiming at state-of-the-art (SoTA)
performance with combination of all available techniques. Such combination involves confounding
factors or comparison on outsourced resources instead of CLIP itself. The Meta CLIP 2 recipe
introduces three principled innovations for scaling to worldwide. 1) Metadata. We scale the English
Meta CLIP metadata to 300+ languages on Wikipedia and multilingual WordNet. 2) Curation
algorithm. We build per-language substring matching and balancing to curate concept distribution
for non-English data similar to the English counterpart. 3) Training framework. We design the first
worldwide CLIP training framework, including an increase of seen image-text pairs during training
proportional to the increased data size from the added non-English data examples, and a study on
minimal viable model capacity to learn from worldwide scale data. As shown in Fig. 1, although a
ViT-L/14 (the largest model size used by OpenAI) still suffers the curse of multilinguality, ViT-H/14
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breaks the curse. English accuracy rises from 80.5% to 81.3% on ImageNet and surprisingly new
SoTA is set with minimal CLIP architecture changes for multilingual image-to-text retrieval (XM3600
64.3%, Babel-ImageNet 50.2%, and CVQA 57.4%).

Together, Meta CLIP 2 enables the following desirable results by nature. 1) Mutual benefits
from the English and non-English worlds. Non-English data now can better support an English-
only model and vice versa, which is critical in the era when English data is depleting. 2) Full
multilingual support. Meta CLIP 2 never drops image-text pairs simply by languages and yields
models outperforming all the previous multilingual systems, such as mSigLIP [16] and SigLIP 2 [17].
3) Native-language supervision. Models learn directly from alt-texts written by native speakers
rather than synthetic machine translations [21, 14]. 4) Cultural diversity. Meta CLIP 2 retains the
entire global distribution of images and thus inherits the comprehensive cultural and socioeconomic
coverage advocated by [21]. Such coverage improves geo-localization and region-specific recognition.
5) No-filter philosophy. With the curation algorithm designed towards worldwide data, Meta CLIP 2
removes the last filter (i.e., whether the alt-text is in English) in pipeline, achieving better diversity
and minimizing biases introduced by filters [21]. 6) Broader impacts on foundation data. This
work provides a foundational data algorithm designed for worldwide scale, and benefits not only
CLIP, but also efforts using CLIP data such as MLLM [2, 22], SSL (Web-DINO [23]) and image
generation (DALL-E [24] and diffusion models [25]).

2 Related Work

2.1 Evolution of CLIP and its Data Processing

CLIP [1] and its variants [26, 6, 16] learn versatile image and text representations that are generally
useful for downstream tasks [2, 27, 4]. Such multimodal contrastive learning and transformer archi-
tectures become standard components in vision and multimodal research. Data is a key contributor to
CLIP’s performance [28, 7]. Two major processing approaches for CLIP data emerge: curation5 from
scratch, and distillation from external resources. One key difference is that the former yields more
controllable distribution and the latter has intractable distribution owned by an outsourcing party.

Curation from scratch. OpenAI CLIP [1] curates a training dataset of 400M image-text pairs
from scratch and publicizes high-level curation guidance. Meta CLIP [7] makes OpenAI’s guidance
as a formal curation algorithm and scales the curation to 2.5B pairs. The algorithm is model-free,
no blackbox filtering, and fully transparent to enable training entirely from scratch on public data
source, where the data distribution is curated to align with metadata composed by human experts
(e.g., WordNet and Wikipedia).

Distillation from external resources. Distillation-based methods usually have good performance
and save compute by learning from teacher model’s knowledge [30]. However, in the context of
CLIP training the teacher is usually an external blackbox system, which introduces intractable bias.
For example, LAION-400M/5B [8, 31] (used by OpenCLIP [6]) relies on OpenAI CLIP-filter and
DFN [10] using a filter model trained on high-quality private data [32]. Recently, SigLIP [16] and
SigLIP 2 [17] learn from data source WebLI [15], which is derived from Google Image Search [18].

2.2 Vision Encoding

CLIP-style models are widely used as vision encoders in MLLM, where language supervision in
CLIP training helps to learn compact and semantic-rich visual representations. In contrast, traditional
visual representation learning is based on self-supervised learning (SSL) methods like SimCLR [33],
DINOv2 [34], and purely relies on the full visual signal without language bias. There are variants that
take advantage of both. SLIP [35] combines language and SSL supervision; LiT [36] trains a vision
encoder first and conducts language alignment later; Perception Encoder [20] shows early layers
of CLIP representation yields vision-driven features with less semantic alignment. Recently, Web-
DINO [23] shows SSL has better scalability on Meta CLIP curated large-scale data. In summary, CLIP
focuses on human-aligned representations optimized for compact models and efficient downstream
uses; SSL models aim to preserve all visual information as a general pretraining approach. We
envision more synergy from the two research lines due to complementarity.

5Here, “curation” refers to select and align training data distribution with human from raw data source,
excluding data filtering that is also referred to as curation in many works like DataComp [28, 29] and DFN [10].
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2.3 Multilingual CLIP Models

Due to the lack of open source curation for public worldwide data, initial attempts to multilingual CLIP
models are mainly distillation approaches. M-CLIP [13] and mCLIP [12] simply leverage existing
English-only CLIP as the vision encoder and trains a multilingual text encoder with low-quality
multilingual pairs. To incorporate non-English data, subsequent works [37, 14, 21] leverage machine
translation techniques, either translating non-English captions into English or vice versa. These
distillation-based models carry existing English CLIP bias or translation bias on nonhuman-captioned
data. mSigLIP [16] substantially advanced multilingual performance by leveraging multilingual data
from WebLI [15], which is an undisclosed dataset built with private data processing pipeline instead
of publicly available worldwide data curation algorithm.

However, mSigLIP and other multilingual CLIP models suffer from the curse of multilinguality, e.g.,
mSigLIP is 1.5% worse in ImageNet accuracy than its English-only counterpart SigLIP. Recently,
SigLIP 2 adopts a notably English-centric design of having 90% of its data in English, which is much
higher than mSigLIP. Mixed results are also observed [38] on English benchmarks when scaling
SigLIP from WebLI’s 10B to 100B raw data, suggesting the challenges of scaling WebLI beyond.

3 The Meta CLIP 2 Recipe

Our recipe of scaling CLIP to native worldwide data and training comprises three steps shown in
Fig. 2: (1) constructing worldwide metadata, (2) implementing worldwide curation algorithm, and
(3) building training framework for worldwide model. For generalizable recipe and findings, Meta
CLIP 2 is designed to maximize overlapping with OpenAI CLIP and Meta CLIP, and only adopts
necessary changes to learn from worldwide data.

2.3x seen pairs (Sec. 3.4)

Wikipedia
Worldwide Training 

English Training 

No language filter (Sec. 3.3)329 langs. (Sec. 3.2)

English 
Wikipedia

English

ScalingNon-English

All

WordNet

Multilingual 
WordNet

MetaCLIP

Scaling

MetaCLIP 2

Data Pool

English 
Metadata 

Worldwide 
Metadata 

OpenAI  
CLIPEnglish Curation

Worldwide Curation

Figure 2: Overview of Meta CLIP 2 recipe: scaling CLIP data and training to worldwide scope.

3.1 Revisit of Meta CLIP Algorithm

We revisit the original Meta CLIP algorithm to illustrate how English-based CLIP data is curated
with metadata constructed from human knowledge. The algorithm first constructs metadata M,
a list of high-quality visual concepts, from corpora written by human experts. M contains 500k
entries, a combination and deduplication of entities from four high-quality sources: 1) all English
WordNet Synsets, 2) Wikipedia English unigrams, and 3) bigrams, and 4) Wikipedia page titles.
Then, the algorithm performs substring matching on each alt-text (from a given image-text pair
in the data pool D) using metadata M to obtain a list matched_entry_ids. Global counting is
conducted to calculate the number of matches over D for each entry in M as entry_count. Finally,
the algorithm applies balancing to transform the raw image-text pair distribution into a distribution
that is balanced for head and tail concepts and ready for training, by associating each pair with a
sampling probability. Specifically, the count per entry is first converted into a probability of sampling
each entry, entry_prob, where tail entries (defined as entry_count < t) have a probability set to
1, and all the other head entries have t/entry_count as sampling probabilities. Each pair is then
sampled based on probabilities of matched entries in its alt-text. Here, t is a threshold to decide head
vs. tail entries and set to 20k in OpenAI CLIP; Meta CLIP raised t to 170k for scaling to billion
English pairs.
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3.2 Worldwide Metadata

We address the first challenge for worldwide scaling by constructing the missing metadata to cover
the non-English world. We maintain independent metadata per language since such design is intuitive
(e.g., the same word “mit” has different meaning in English and Germany), has better performance
(see ablation in Sec. 4.2.2), and is flexible for adding and curating a new set of languages in future.

Our metadata is from the same four sources as OpenAI CLIP and Meta CLIP, but beyond English.
Key changes are highlighted as follows. 1) Multilingual WordNet: we include all synsets from 31
languages. 2) Wikipedia Unigrams and 3) Bigrams: we process unigram and bigram from Wikipedia
dumps dated on May 2024, which include corpora in 329 languages. We clean the corpora into plain
text with WikiExtractor [39]. For most languages, we use space and punctuation to tokenize text into
words, and then count unigrams and bigrams (with PMI scoring described in Appendix A.2). For
languages without space separation (e.g., some Asian languages), we use open-source tokenizers
(see Table 7 in Appendix A.1) developed by local communities to properly split text into words and
meanwhile maintain the semantic integrity. 4) Wikipedia Titles: we use page titles from 40 random
dates of Wikipedia snapshots and rank these titles by click-through traffic for each language.

3.3 Curation Algorithm

Next, we scale curation to worldwide data language-by-language. The curation algorithm is detailed
below and summarized in pseudo-code as Algorithm 1. First, we conduct language identification
(LID) [40] to classify the language of the alt-text from an image-text pair, and choose language-
specific metadata to match concepts. The sets of languages covered by LID and metadata sources
(e.g., Wikipedia) are usually different, so we first establish a mapping between one language in
LID to a unique set of languages in metadata entries. The languages in the metadata mapped to the
same language in LID are merged into one group. This ends with a dictionary representation of
metadata, M, where the keys are each language in LID and the values are the combined metadata of
each group of languages. We also include a key “other” for metadata of languages that cannot be
associated with any language in LID. Each alt-text (text) in D is applied with LID for predicting its
language (text.lang). After that, as in the Meta CLIP algorithm summarized in Sec. 3.1, we run
substring matching with metadata corresponding to predicted languages: matched_entry_ids =
substr_match(text, M[text.lang]), and aggregate global count, the number of matches of
each entry, in entry_counts.

With counts calculated, we balance occurrence of concepts across pairs. In data curation for English
CLIP described above, a threshold t is designed to limit the matches per metadata entry, where entries
with matches fewer than t are defined as tail entries (or concepts) and otherwise head. Image-text
pairs from head concepts are downsampled by a sampling probability derived from t to balance
training data distribution. Thus, t depends on the size of raw data pool (e.g., a larger pool has higher
counts for the same entry). OpenAI CLIP sets t to 20k for 400M pairs; Meta CLIP [7] tunes t to 170k
for scaling the training dataset to 2.5B and keeping the same ratio, 6% of matches from tail concepts,
that OpenAI CLIP leverages to obtain the 400M pairs. For worldwide data, the data size and the
counts of matches differ greatly across languages, so t should be language-dependent. Applying a
single threshold t to all languages yields suboptimal performance, e.g., a larger t for a language with
fewer pairs may yield too many pairs of head concepts and dilutes tail concepts in the curated data
(see Sec. 4.2.2).

To derive t for each language, we leverage the invariance assumption adopted in Meta CLIP algorithm
design, the percentage of tail matches (i.e., 6%), and apply it across languages. With this assumption,
we determine t in two steps. (1) From ten to p: we calculate the global tail proportion p for all
languages, based on matches of English tail entries decided by ten. (2) From p to tlang: for each
non-English language, we reversely find the language-specific threshold tlang based on the calculated
p to ensure the same tail proportion across all languages. Detailed implementation of these two steps
is shown as the t_to_p() and p_to_t() functions in Algorithm 1. With tlang, entry_counts is
converted to entry_probs similarly as in Meta CLIP but for each language.

Putting everything together, Algorithm 1 takes raw image-text pairs D, metadata M, and an arbitrary
threshold for English ten as input, and outputs a curated dataset of balanced and diverse training pairs,
D∗, with three stages. Stage 1 performs language-specific substring matching for each alt-text, text,
based on LID results and corresponding metadata, and obtains match counts, entry_counts, for
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each language and entry. Stage 2 computes thresholds tlang from ten. Stage 3 samples image-text
pairs based on matched entries in text with probabilities entry_probs. Pairs matched with tail
entries are always selected (i.e., probability = 1.0); pairs with head entries have sampling probabilities
tlang / entry_counts[lang]. Sampled pairs compose D∗(see efficient implementation details in
Appendix A.3).

Algorithm 1: Pseudo-code of Meta CLIP 2 Curation Algorithm in Python/NumPy.

"""
Input:
D(list) raw (image, text) pairs: each text is assigned with a language "text.lang" by LID;
M(dict) worldwide metadata: key->language code; value(list)->metadata for that language;
t_en(int) English threshold on counts of head/tail entry cutoff: OpenAI CLIP->20k, Meta CLIP

->170k;

Output:
D_star(list): curated image-text pairs;
"""

# helper functions to compute t for each language.
def t_to_p(t, entry_count):

return entry_count[entry_count < t].sum() / entry_count.sum()

def p_to_t(p, entry_count):
sorted_count = np.sort(entry_count)
cumsum_count = np.cumsum(sorted_count)
cumsum_prob = cumsum_count / sorted_count.sum()
return sorted_count[(np.abs(cumsum_prob - p)).argmin()]

# Stage 1: sub-string matching.
entry_counts = {lang: np.zero(len(M[lang])) for lang in M}
for image, text in D:

# call substr_match which returns matched entry ids.
text.matched_entry_ids = substr_match(text, M[text.lang])
entry_counts[text.lang][text.matched_entry_ids] += 1

# Stage 2: compute t for each langauge.
p = t_to_p(t_en, entry_counts["en"]); t = {}
for lang in entry_counts:

t[lang] = p_to_t(p, entry_counts[lang])

# Stage 3: balancing via indepenent sampling per language.
entry_probs = {}
for lang in entry_counts:

entry_counts[lang][entry_counts[lang] < t[lang]] = t[lang]
entry_probs[lang] = t[lang] / entry_counts[lang]

D_star = []
for image, text in D:

for entry_id in text.matched_entry_ids:
if random.random() < entry_probs[text.lang][entry_id]:

D_star.append((image, text))
break

3.4 Training Framework

Adopting data prepared with worldwide curation in current CLIP training framework addresses the
first challenge, but curse of multilinguality still exists as shown in Fig. 1. Thus, we further design the
worldwide CLIP training framework. To make our framework and findings generalizable to CLIP
and its variants, our framework follows OpenAI/Meta CLIP’s training setting and model architecture
with three additions: (1) a multilingual text tokenizer, (2) scaling seen training pairs, and (3) study of
minimal viable model capacity. The first is required to support worldwide languages and discussed in
Sec. 4.2.2 for various choices; details of the latter two are described below.

Scaling seen pairs. Expanding from an English-only dataset and distribution to worldwide naturally
increases the number of available image-text pairs. Training CLIP for worldwide distribution with the
same number of seen pairs as English CLIP downsamples English training pairs and harms English
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performance. Hence, we scale seen pairs proportionally to the growth of data size from non-English
pairs, to ensure the amount of English seen pairs unchanged during the worldwide CLIP training.
This is achieved by increasing the global training batch size, which encourages cross-lingual learning,
and meanwhile keeping the other training hyperparameters unchanged. We choose a 2.3× scaling of
global batch to reflect that English pairs constitute 44% of our training data. We ablate other choices
of global batch size in Sec. 4.2.1.

Minimal viable model capacity. Lastly, we study the minimal model expressivity to enable
learning on extra seen pairs and break the curse of multilinguality. As in Fig. 1, we find that even a
ViT-L/14 (largest model provided by OpenAI) suffers from the curse due to deficient capacity, and
ViT-H/14 is the inflection point to break the curse (strong performance improvement in both English
and non-English tasks).

4 Experiment

4.1 Dataset and Training Setup

Following Meta CLIP pipeline, we collect 5B image-text pairs sourced from the Internet that are
publicly available. After LID, there are about 44% of alt-texts are in English, which are on par with
the scale of English-only data from Meta CLIP [7]. For generalizable recipe and findings, we base
our training setup on OpenAI CLIP’s ViT-L/14 and Meta CLIP ViT-H/14, except changes necessary
for enabling worldwide capability, as described in Sec. 3.4 and ablated in later subsections. The full
details can be found in Table 8 and Appendix B.

4.2 Evaluation

We first present the main ablations of Meta CLIP 2 on a wide range of English and multilingual zero-
shot transfer benchmarks, along with other multilingual CLIP baselines for comparison (Sec. 4.2.1);
then we conduct a comprehensive ablation study on the variants of metadata, curation and tokenizer
(Sec. 4.2.2). Lastly, we evaluate the embedding quality of Meta CLIP 2 on downstream tasks for
culture diversity (Sec. 4.3) and building MLLM (Sec. 4.4). Additionally, we conduct analysis on
embedding alignment and uniformity [41] (Sec. 4.5) and distillation (Sec. 4.6).

English Benchmarks Multilingual Benchmarks

Model ViT
Size (Res.) Data Seen

Pairs
IN
val

SLIP 26
avg.

DC 37
avg.

Babel
-IN

XM3600
T→I I→T

CVQA
EN LOC

Flicker30k
-200

T→I I→T

XTD-10
T→I I→T

XTD-200
T→I I→T

XLM-CLIP[6] H/14(224) LAION-5B 32B (2.5×) 77.0 69.4 65.5 34.0 50.4 / 60.5 56.1 / 48.2 43.2 / 46.2 87.1 / 88.4 42.5 / 45.2
mSigLIP[16] B/16(256) WebLI(12B) 40B (3.0×) 75.1 63.8 60.8 40.2 44.5 / 56.6 51.8 / 45.7 34.0 / 36.0 80.8 / 84.0 37.8 / 40.6
mSigLIP[16] SO400M(256) WebLI(12B) 40B (3.0×) 80.6 69.1 65.5 46.4 50.0 / 62.8 56.8 / 49.8 39.9 / 42.0 85.6 / 88.8 42.5 / 45.2
SigLIP 2[17] SO400M(256) WebLI(12B) 40B (3.0×) 83.2 73.7 69.4 40.8 48.2 / 59.7 58.5 / 49.0 36.6 / 40.3 86.1 / 87.6 40.3 / 44.5

Meta CLIP[7] L/14(224) English(2.5B) 13B (1.0×) 79.2 69.8 65.6 - - - - - - - - - - -
H/14(224) English(2.5B) 13B (1.0×) 80.5 72.4 66.5 - - - - - - - - - - -

Meta CLIP 2 L/14(224) English 13B (1.0×) 79.5 69.5 66.0 - - - - - - - - - - -
Worldwide 29B (2.3×) 78.8 67.2 63.5 44.2 45.3 / 58.2 59.2 / 55.1 41.9 / 45.8 82.8 / 85.0 41.9 / 44.8

Meta CLIP 2 H/14(224)

English 13B (1.0×) 80.4 72.6 68.7 - - - - - - - - - - -
Non-Eng. 17B (1.3×) 71.4 63.1 61.7 49.9 46.9 / 59.9 59.8 / 56.8 47.5 / 50.5 83.2 / 85.7 46.6 / 49.2

Worldwide 13B (1.0×) 79.5 71.1 67.2 47.1 49.6 / 62.6 59.9 / 56.0 49.1 / 52.1 85.2 / 87.1 47.0 / 49.7
Worldwide 29B (2.3×) 81.3 74.5 69.6 50.2 51.5 / 64.3 61.5 / 57.4 50.9 / 53.2 86.1 / 87.5 48.9 / 51.0

Table 1: Main ablation: Meta CLIP 2 breaks the curse of multilinguality when adopting ViT-H/14,
with seen pairs scaled (2.3×) proportional to the added non-English data. Meta CLIP 2 outperforms
mSigLIP with fewer seen pairs (72%), lower resolution (224px vs. 256px), and comparable architec-
tures (H/14 vs. SO400M). We grey out baselines those are SoTA-aiming systems with confounding
factors. Here, numbers of seen pairs are rounded to the nearest integer (e.g., 12.8B->13B).

4.2.1 Main Ablation

We first ablate the effects of scaling seen training pairs and minimal viable model capacity that break
the curse of multilinguality, with the following two groups of 6 training runs. Two trainings are in
ViT-L/14 on worldwide curated data and its English portion, where global batch size and seen pairs
are set to 2.3× and 1.0× compared to OpenAI CLIP and Meta CLIP setting (i.e., 1.0× has 12.8B seen
pairs, or 400M for 32 epoches as in OpenAI CLIP). Four runs are on ViT-H/14 with different subsets
of curated data to demonstrate the effects of English data helping multilingual performance and vice
versa. We denote each run based on subsets trained with and corresponding seen pairs: 1) Worldwide
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(2.3×) with the full-fledged worldwide curated data; 2) Worldwide (1.0×) with 1) downsampled; 3)
English (1.0×) with English portion of 1); 4) Non-English (1.3×) with the non-English portion.

We adopt the following two groups of zero-shot transfer benchmarks and discuss the limitations
in Appendix G: 1) English-only benchmarks on ImageNet (IN val) [42], SLIP 26 tasks (SLIP
26 avg.) [35], and DataComp 37 tasks (DC 37 avg.) [28]; 2) multilingual benchmarks on Babel-
ImageNet (Babel-IN) [43] (averaged zero-shot classification on IN with classes and prompts trans-
lated into 280 languages), XM3600 [44] (multilingual text-to-image, T→I, and image-to-text, I→T,
retrieval with an averaged recall@1 on 36 languages), CVQA [45] (multilingual multi-choice vi-
sual question answering with English and local averaged answer accuracy), Flickr30k-200 [46]
(Flickr30k test set translated into 200 languages), XTD-10 [47] (multilingual image-text retrieval
on MSCOCO [48] averaged Recall@1 over 7 languages), and XTD-200 [46] (XTD10 translated
into 200 languages). In Table 1, we observe that Meta CLIP 2 on ViT-H/14 with worldwide data
and scaled seen pairs consistently outperforms its counterparts English (1.0×) and Non-English
(1.3×), on both English and multilingual tasks, effectively breaking the “curse of multilinguality”.
The curse still exists in non-scaled seen pairs, Worldwide (1.0×) or smaller ViT-L/14 model even
with Worldwide (2.3×)). We further provide gradient conflict analysis to help understand the root of
the curse in Appendix C.

Although SoTA is non-goal for Meta CLIP 2, its full recipe demonstrates strong performance with
fewer seen pairs (72% of SigLIP series) and lower resolution (224px vs mSigLIP’s 256). Meta
CLIP 2 surpasses mSigLIP on IN, SLIP 26, and DC 37, and the recent SigLIP 2 on the latter
two. More significantly, Meta CLIP 2 sets many SoTA multilingual benchmarks, e.g., Babel-IN
(+3.8%), XM3600 (+1.1%/+1.5%), CVQA (+3%/+7.6%), Flicker-30k-200 (+7.7%/+7%), and XTD-
200 (+6.4%/+5.8%). SigLIP 2 prioritizes English (90% of its training data in English), while it is
worse than mSigLIP on multilingual tasks and Meta CLIP 2 on most English benchmarks except IN.
We also provide per-language analysis in Appendix D, cross-lingual translation in Appendix F.

Ablation Steps Metadata Alt-texts IN Babel-IN XM3600
T→I I→T

CVQA
EN LOCAL

1: English CLIP English English 67.5 - - - - -
2: remove English filter English all, in 1 set 66.9 - - - - -
3: no language isolation all, in 1 set all, in 1 set 62.1 31.2 37.8 49.7 49.8 45.8
4: language isolation with tlang = ten all, by lang. all, by lang. 61.1 31.5 37.9 49.4 49.0 46.5
5: language specific tlang all, by lang. all, by lang. 64.7 31.5 38.1 50.0 50.3 46.6

Table 2: Ablation study of metadata and alt-texts combination on ViT-B/32 using English 1.0× and
Worldwide 1.0× with mT5 tokenizer. tlang/ten are the count thresholds for each language/English.

4.2.2 Ablation on Metadata, Curation, and Tokenizer

We further ablate the transition from metadata and curation focuses solely on English to their
worldwide equivalents using the ViT-B/32 encoder for efficiency. We evaluate zero-shot transfer on
IN for English and Babel-IN, XM3600 and CVQA for multilingual. As in Table 2, starting from
English-only CLIP, we first remove the English filter on alt-texts so that all alt-texts are curated
by English metadata, resulting in 0.6% drop on IN, indicating English isolation separating text
or metadata by LID before matching is important. Then, we replace English metadata using all
metadata merged without separation, yielding even worse English performance but start building up
multilingual capability. Next, we isolate substring matching and curate alt-text language-by-language,
with the same ten over all languages. This further lowers English performance since ten is too high for
non-English and let head data dominate curation. Lastly, we compute tlang, to keep the same ratio of
head-to-tail concepts for each language. This improves English and non-English performance, while
curse of multilinguality remains unresolved in ViT-B/32 until the main ablation described above.

Tokenizer Vocab. Size IN val Babel-IN avg. XM3600
T→I I→T

CVQA
EN LOCAL

mT5 (mSigLIP) [49] 250k 64.7 31.5 38.1 50.0 50.3 46.6
Gemma (SigLIP 2) [50] 256k 63.7 26.1 36.1 47.8 48.3 44.0
XLM-Roberta [51] 250k 64.0 31.1 38.0 49.8 49.8 46.1
XLM-V [52] 900k 64.7 32.7 40.0 51.4 50.4 47.4

Table 3: Ablation study of various multilingual tokenizers with ViT-B/32 and Worldwide 1.0×.
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To minimize changes in model architecture, we only swap the English tokenizer for a multilingual
one. Four popular tokenizers are studied on our zero-shot benchmarks. As shown in Table 3, the
XLM-V vocabulary yields the strongest performance in both the English and non-English world.

Model Data Seen Pairs Dollar Street
Top-1 Top-5 GLDv2 GeoDE

mSigLIP [16] WebLI(12B) [15] 40B (3.0×) 36.0 62.5 45.3 94.5
SigLIP 2 [17] WebLI(12B) [15] 40B (3.0×) 36.7 61.9 48.5 95.2

Meta CLIP 2

English 13B (1.0×) 37.2 63.3 52.8 93.4
Non-English 17B (1.3×) 35.7 61.3 68.6 91.7
Worldwide 13B (1.0×) 37.2 63.7 65.8 94.3
Worldwide 29B (2.3×) 37.9 64.0 69.0 93.4

Table 4: Zero-shot classification accuracy on cultural diversity benchmarks. Meta CLIP 2 models
are in ViT-H/14 and mSigLIP/SigLIP 2 are in ViT-SO400M. mSigLIP/SigLIP 2 are SoTA-aiming
systems with many factors changed and thus greyed out.

4.3 Cultural Diversity

Following protocols in [21] and [38], we perform zero-shot classification and few-shot geo-
localization on a range of geographically diverse benchmarks. Specifically, we include zero-shot
classification with Dollar Street [53], GeoDE [54], and GLDv2 [55] in Table 4, and few-shot geo-
localization [21] on Dollar Street, GeoDE and XM3600 in Fig. 3. We find that only changing the
training data distribution, from 13B English to 13B worldwide pairs, yields significantly better perfor-
mance, and scaling to 29B worldwide pairs improves further, except for the on-par, probably saturated
performance in GeoDE. Fig. 3 shows similar trend for evaluating on few-shot geo-localization.
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Figure 3: Few-shot geo-localization accuracy on cultural diversity benchmarks.

4.4 Building Multi-modal LLM with Meta CLIP 2
We evaluate the efficacy of Meta CLIP 2 being used as a vision encoder in downstream multilingual
MLLMs with a frozen-encoder setup [56], with details in Appendix E. Table 5 shows that switching
the frozen vision encoder from mSigLIP to Meta CLIP 2 consistently improves MLLM performance
over the wide range of evaluation, including both English and multilingual tasks. Scaling Meta
CLIP 2 from 13B to 29B seen pairs shows better results. These results show that curating worldwide
data not only enhances retrieval or classification but also transfers to MLLMs.

Culture Understanding Captioning Short VQA Multi-subject Reasoning
Model Data Seen Pairs CVQA MaRVL XM100 xGQA MaXM xMMMU M3Exam

(ViT Size) en mul en mul en mul en mul en mul en mul en mul
mSigLIP [16]

(SO400M) WebLI [15] 40B (3.0×) 63.2 55.8 86.8 82.9 30.5 16.4 63.5 59.5 51.4 52.1 45.4 44.7 57.6 49.1

Meta CLIP 2
(H/14)

English 13B (1.0×) 46.0 55.9 88.1 83.7 30.1 16.6 64.2 60.2 54.5 53.5 43.4 43.4 59.3 48.5
Non-Eng. 17B (1.3×) 52.3 57.7 86.5 82.8 30.0 16.4 64.3 60.5 53.3 50.4 45.7 45.0 57.6 49.1

Worldwide 13B (1.0×) 67.1 59.4 87.7 83.5 30.3 16.3 64.1 60.2 52.9 52.9 47.2 45.4 59.6 47.5
Worldwide 29B (2.3×) 67.5 59.9 88.1 83.8 30.3 16.8 64.3 60.3 53.3 50.3 46.4 45.9 58.9 50.4

Table 5: Multilingual MLLM tasks from PangeaBench [56].

We also observed the English-only Meta CLIP 2 performs much worse on CVQA (translated) English
benchmark, indicating the importance of training on non-English data. Interestingly, while some
tasks like CVQA and M3Exam show clear improvement trends after adding non-English data, some
other tasks, e.g. XM100, xGQA and MaXM, exhibit similar performances after switching from
English-only to multilingual models. This indicates these benchmarks can be insensitive to the
improvement on culturally diverse visual features, but rely more on language ability of MLLMs.
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4.5 Alignment and Uniformity

Following [41], we further measure the embeddings quality across different CLIP models. To avoid
various unknown biases from different benchmarks, we use 5k holdout image-text pairs not used in
our training and report alignment and uniformity scores, where alignment measures the relevance of
an image and a text and uniformity measures how images distributed in vision encoder’s embedding
space. Note that we have no control on whether these 5k pairs are leaked in other baselines. From
Fig. 4, we can see that Meta CLIP 2 exhibits good scores in both alignment and uniformity (lower is
better), whereas mSigLIP or SigLIP 2 may have non-trivial bias on our collected holdout data.
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Figure 4: Alignment and uniformity scores [41] calculated on our collected 5k holdout data, WW
indicates worldwide data.

4.6 Distillation ViT-H/14 into Smaller Models

To reduce the inference cost while maximizing performance, we distill the ViT-H/14 model into
the smaller models such as ViT-L/14. Our results in Table 6 demonstrate that although the teacher
model, ViT-H/14, is considerably large, its knowledge can be effectively compressed into a smaller
ViT-L/14 student through distillation. The distilled model trained on worldwide data performs better
than the from scratch worldwide model on all benchmarks and the English-only model in most cases,
while still suffering the curse of multilinguality on ImageNet. More models, including ViT-S/16,
ViT-M/16, ViT-B/32, ViT-B/16, ViT-bigG/14, and their corresponding text encoders using the smaller
mT5 tokenizer, are available on the official website.

English Benchmarks Multilingual Benchmarks

Training ViT
Size (Res.) Data Seen

Pairs
IN
val

SLIP 26
avg.

DC 37
avg.

Babel
-IN

XM3600
T→I I→T

CVQA
EN LOC

Flicker30k
-200

T→I I→T

XTD-10
T→I I→T

XTD-200
T→I I→T

From Scratch L/14(224) English 13B (1.0×) 79.5 69.5 66.0 - - - - - - - - - - -
Worldwide 29B (2.3×) 78.8 67.2 63.5 44.2 45.3 / 58.2 59.2 / 55.1 41.9 / 45.8 82.8 / 85.0 41.9 / 44.8

Distilled L/14(224) Worldwide 29B (2.3×) 79.2 70.9 67.4 45.7 47.5 / 60.2 59.8 / 56.5 46.8 / 49.2 83.9 / 86.0 45.0 / 47.2

Table 6: Distillation into smaller models: we show that the distilled ViT-L/14 can be close to the
performance of its English counterpart.

5 Conclusion

We present Meta CLIP 2, the first CLIP trained with worldwide image-text pairs from scratch.
Existing CLIP training pipelines, designed primarily for English, cannot straightforwardly generalize
to a worldwide setting without incurring an English performance degradation due to lack of curation
for worldwide data or the “curse of multilinguality”. Our careful study suggests that the curse can be
broken by scaling metadata, curation, and training capacity, where English and non-English world
benefit each other. Specifically, Meta CLIP 2 (ViT-H/14) surpasses its English-only counterpart on
zero-shot IN (80.5% → 81.3%) and sets new SoTA on multilingual benchmarks such as XM3600,
Babel-IN and CVQA with one single model. We envision our findings along with the fully open-
sourced metadata, curation and training code encourage the community to move beyond English-
centric CLIP and embrace the worldwide multimodal web.
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A Implementation Details for Metadata and Curation

A.1 Unigram and Bigram Tokenizer for Special Languages

Most modern languages around the world adopt writing systems that use “spaces” to separate words,
except for some of the Asian languages, known as “scriptio continua”[57]. We find several open
source tokenizers for many of these languages developed by local communities, as shown in Table 7,
in order to properly split text into words while preserving semantic integrity. Note these tokenizers
are only used to process Wikipedia dump labeled with the listed wiki codes (e.g., not on alt-texts’
substring matching).

Wiki Code Tokenizer Name URL
bo,dz Tibetan Tokenizer https://github.com/OpenPecha/Botok
ja,ryu Japanese Tokenizer https://github.com/SamuraiT/mecab-python3

km Khmer Tokenizer https://github.com/phylypo/segmentation-crf-khmer
lo Lao Tokenizer https://github.com/wannaphong/LaoNLP

my Myanmar Tokenizer https://github.com/ThuraAung1601/mmCRFseg
th Thai Tokenizer https://github.com/Querela/thai-segmenter

zh,zh_classical,zh_yue Chinese Tokenizer https://github.com/ckiplab/ckip-transformers

Table 7: Tokenizers for special languages.

A.2 Fix on Ranking Bigram with Raw PMI

Although Meta CLIP follows OpenAI’s description on ranking bigrams by point-wise mutual infor-
mation (PMI), we observed that raw PMI for bigrams overemphasizes extremely rare pairs (e.g., a
bigram appearing only once as a typo), yielding unintuitive high scores. For example “AAAAAB
CCCCCB” appears high. To mitigate this, we (i) temper rarity by multiplying PMI with a sublinear
count factor and (ii) subtract a baseline using a lower-percentile PMI threshold that roughly marks
the onset of meaningfulness.

Let c(w1, w2) be the bigram count, i.e., the times that w1 and w2 co-exist adjacently in the corpus,
c(w) the unigram count, and N the total token count in the corpus. We define

PMI(w1, w2) = log
p(w1, w2)

p(w1), p(w2)
= log

c(w1, w2)N

c(w1)c(w2)
.

Let PMI30% denote the 30th percentile of the empirical PMI distribution over all observed bigrams in
a language (a baseline for “starts-to-be-meaningful” associations). Our final bigram score is

Score(w1, w2) =
[
c(w1, w2)+1]0.7 ×

(
PMI(w1, w2)− PMI30%

)
.

This new formulation down-weights spurious high-PMI, low-count bigrams while preserving genuine
high-frequency associations; the percentile shift suppresses background noise from weakly associated
pairs. After replacing bigram ranking with the new scoring metric, we got the following top-5
bigrams: “United States”, “of the”, “New York”, “such as”, “has been”.

A.3 Scaling Curation

Worldwide scaling of data curation significantly increases time and space complexity due to storing
metadata across hundreds of languages. To efficiently handle this complexity, we leverage several
efficient implementations:

• Efficient String Matching: We adopt the Aho-Corasick algorithm 6,7, which utilizes prefix
trees (tries), for rapid substring matching. The matching speed is about 2k times faster than
Meta CLIP’s brute-force implementation, enabling matching with million-scale metadata.

6https://en.wikipedia.org/wiki/Aho-Corasick_algorithm
7https://pypi.org/project/pyahocorasick
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• Lazy Metadata Loading: We pre-build and store the metadata into an Aho-Corasick
automaton for each language separately, loading these automaton dynamically and only
when encountering a new language for alt-text during processing, thereby minimizing the
total number of languages encountered for each shard of data and saving re-compiling time
for automation on a new shard.

• Memory Management for Probabilities: To address memory constraints during sampling
for balancing, we utilize memory-mapped file loading (mmap) to efficiently access counts
per entry across all languages, preventing out-of-memory errors caused by loading all the
counts from different languages.

Mitigation and Benchmark Deduplication We run a state-of-the-art safety classifier to remove
NSFW contents (e.g., adult, sexual, violence) from training data. We also apply face detector to
remove human biometrics and personally identifiable information from data. To avoid benchmark
leakage, we remove any overlap with ImageNet evaluation sets by performing deduplication using
64-bit hashes. These hashes are generated by applying random projection to feature embeddings
from a similarity search model, reducing them to 64 dimensions followed by sign-based quantization.

B Training Setup

To remove confounding factors and generalize our findings, we follow OpenAI CLIP and Meta CLIP
training setup with changes for worldwide scaling, detailed in Table 8.

Hyperparameter OpenAI CLIP / Meta CLIP Meta CLIP 2
Activation Function QuickGELU QuickGELU
Seen Pairs 12.8B 29B (2.3×)
Batch Size 32768 75366 (2.3×)
Learning Rate 4.0e-4 (L/14, H/14) 4.0e-4 (H/14)
Warm-up 2k 2k

Table 8: Hyperparameters of OpenAI CLIP / Meta CLIP vs Meta CLIP 2.

C Analysis on Cross-Lingual Gradient Conflicts

We hypothesize that the primary cause of the “curse of multilinguality” is insufficient model capacity
to acquire new capabilities (e.g., concepts, domains, and languages) without harming existing ones.
A practical indicator of this phenomenon is language interference inside the model. Inspired by
PCGrad [58], originally proposed for multitask learning and later extended to multilingual XLM
settings [59], we design a gradient conflict analysis to diagnose interference. Concretely, using
XM3600 (36 languages), we compute gradients from model checkpoints and measure cross-lingual
interference via cosine similarity between gradients from English examples and those from each
non-English language, then average across all non-English languages. All checkpoints are pretrained
on the Worldwide 29B schedule; we report the midway (epoch 16) and final (epoch 32) checkpoints.

Gradient Similarities Worldwide (29B)
ViT-L/14 ViT-H/14

Midway (Epoch 16) 0.508 0.688
Final (Epoch 32) 0.546 0.697

Table 9: Average cosine similarity of gradients (English vs. each non-English language, then averaged)
on XM3600. Higher is better (fewer gradient conflicts).

We observe that smaller models (L/14) exhibit lower similarities—i.e., stronger interference and
gradient conflicts—than larger ones (H/14) throughout training. With more conflicts, L/14 spends
valuable optimization steps mitigating cross-lingual disagreement rather than learning semantics,
leading to degraded English performance when trained on multilingual data versus English-only.
In contrast, H/14 shows consistently higher similarities even early in training, suggesting reduced
conflict that allows the model to jointly learn from English and non-English data. This alleviates
interference, enables positive transfer, and could be the potential reason why it breaks the curse of
multilinguality.
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D Correlation Between Training Data Volume and Performance Among
Languages

We examine XM3600 zero-shot retrieval for the top-10 languages by training volume versus the
remaining languages. We have the following observations: (1) Volume effect exists. Top-10
languages average 62.6/75.6 (T→I/I→T) versus 47.2/59.9 for others, indicating a clear volume effect
on average. (2) English is not best. Despite the largest volume, English lags behind German (the
best among all listed; 69.2/83.6). (3) Strong tail performers exist. 18 non-top-10 languages (e.g.,
it, hu, ro, uk) exceed 50% on both directions, showing that factors beyond raw volume matter.

What is beyond the volume effect? We hypothesize two additional drivers: (i) linguistic/cultural
proximity (benefiting from transfer with closely related or culturally overlapping languages), and (ii)
structural characteristics/expressiveness of the language (e.g., morphology, tokenization efficiency,
domain overlap with pretraining corpora). These factors can amplify or dampen the benefit of volume
during multilingual pretraining.

Language Text→Image Image→Text
en 51.6 62.2
es 57.2 72.5
fr 67.1 78.5
zh 61.1 72.6
ru 67.8 79.9
ja 65.1 79.9
id 65.8 78.3
pt 60.4 72.6
de 69.2 83.6
vi 61.1 76.2
Avg (Top-10) 62.6 75.6

Language Text→Image Image→Text
ar 47.4 60.8
bn 39.4 47.1
cs 51.0 66.1
da 61.0 75.1
el 52.1 68.4
fa 56.9 70.3
fi 59.3 73.7
fil 24.8 36.7
hi 26.1 41.8
hr 57.3 72.9
hu 63.9 76.5
it 64.0 78.2
he 60.8 76.2
ko 54.8 70.1
mi 0.5 1.2
nl 53.2 66.9
no 57.7 73.2
pl 61.4 75.9
quz 2.5 6.5
ro 64.8 77.8
sv 57.6 73.8
sw 10.0 16.6
te 26.1 37.1
th 57.7 71.4
tr 55.7 68.4
uk 60.0 74.7
Avg (Non–Top-10) 47.2 59.9

Table 10: XM3600 Recall@1 (higher is better). Left: top-10 languages by training volume. Right:
languages outside the top-10.

E Setup and Details of MLLM Evaluation

While zero-shot classification and retrieval benchmarks demonstrate the standalone capabilities of
Meta CLIP 2, real-world applications often require grounding in generative models. Thus, we conduct
the experiment of using Meta CLIP 2 model as vision encoder in MLLM in Sec. 4.4. Here, we
provide more details about the settings and task details.

E.1 Training Setup

For evaluation, we leverage the open-sourced MLLM [56] implementation and apply exact the same
model setup except that we vary the vision backbone with each vision encoder to be evaluated. The
MLLM is trained as the following. First, a vision-language connector is trained to align the vision

18



encoder features to the language backbone. Then, we fine-tune the MLLM with 6M samples spanning
39 languages. We followed the same training recipe, including learning rate 1e-3 and batch size 128
for vision-language connector training, and learning rate 2e-5 and batch size 512 for finetuning. Both
stages are coupled with a cosine learning rate scheduler with warmup ratio of 0.03. For evaluating
the quality of embeddings from vision encoder, we make one change in the training that during the
finetuning stage, we freeze the vision backbone, while all weights are finetuned in the original setting.

E.2 Task Details

The trained MLLM models with varying vision encoders are then evaluated on PangeaBench [56],
which includes following tasks:

Culture Understanding: CVQA evaluates model’s capability in cultural reasoning using visual
questions with diverse global contexts across 31 languages and 13 scripts [45]. Unlike our embedding-
only experiment in Table 1, here we follow the generative setting to select answers based on the
MLLM’s output probabilities. MaRVL tests cross-lingual visual reasoning with culturally grounded
entailment tasks in multiple non-English languages [60].

Captioning: XM100 is a compact multilingual captioning benchmark with 100 diverse images
selected from XM3600 across 36 languages for efficient and diverse evaluation [44].

Short VQA: xGQA extends the GQA dataset to multilingual settings to measure cross-lingual VQA
performance [61]. MaXM offers multilingual VQA tasks covering different scripts and question types
to test model understanding beyond English [62].

Multi-subject Reasoning: xMMMU is a translated subset of MMMU validation questions into
six languages to evaluate academic reasoning in a multilingual setup. M3Exam poses real-world
multimodal exam questions across subjects, requiring both visual and textual comprehension [63].

F Cross-Lingual Translation Capability

We probe whether the model acquires cross-modal translation behavior without explicit supervision.
Given an image that visually depicts the Chinese character “狗” (“dog”), we compute cosine simi-
larities between the image embedding and candidate text prompts across languages, then rank the
candidates. As expected, the exact Chinese character “狗” yields the highest score. Notably, the
Japanese word “いぬ” (dog) ranks highest within Japanese candidates and achieves a substantially
higher similarity than English “dog,” suggesting stronger cross-lingual coupling between Chinese
and Japanese scripts.

Word Description Cosine Sim.
狗 “dog” in Chinese (exactly visualized on image) 0.54325
犬 “dog” in Chinese, literary/ancient usage 0.04636
猫 “cat” in Chinese 0.00025
豺 “jackal” / ‘wild dog” in Chinese 0.03427
狼 “wolf” in Chinese 0.01405
dog English “dog” 0.08239
diagram Unrelated word 0.00143
cat English “cat” 0.00005
puppy English “puppy” 0.02826
hound English “hound” 0.05586
いぬ “dog” in Japanese 0.19320
ねこ “cat” in Japanese 0.00064

Table 11: Cosine similarities between the image of the character “狗” and multilingual text prompts.
Higher is better.

We make the following observations: (1) Cross-modal alignment reflects cross-lingual relations.
The strong scores for “狗” and “いぬ” indicate the model maps visual text to semantically equivalent
words across languages. (2) Script proximity matters. Japanese scores exceed English for this
example, plausibly due to closer linguistic/script overlap with Chinese. (3) Robustness amid noise.
Despite inevitable Internet-scale noise and partial misalignment between OCR-like visual tokens and
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alt-text, the model still exhibits emergent cross-lingual translation behavior—supporting the premise
that remaining faithful to natural data distributions can mitigate noise effects.

G Limitation on Benchmark

High-quality benchmarks are essential for researchers to understand the efficacy of proposed changes.
After decades of meticulous efforts, the community has established reliable and diverse datasets to
enable research advancement in vision and multimodal areas [64, 42, 1]. However, these datasets
consist mainly of content scraped from North America and Western Europe (NA+EU) and focus
on English [65, 66]. It is a long and resource-intensive endeavor to build similar benchmarks for
unbiased and comprehensive evaluation of worldwide data and resulting representations, for the world
outside NA+EU or English-speaking community, due to the complexity of covering diverse concepts
across geo-locations, cultures, and languages. XM3600 [44] aims to build geographically diverse
datasets by selecting images from Open Images Dataset [67] based on metadata of GPS coordinates,
but later research [21] suggests Open Images Dataset is biased towards Western images or specific
activities (e.g., tourism). GeoDE [54] recruits human workers on crowdsourcing platform to collect
geographically diverse images for predefined object classes. Crowdsourcing is an economic way to
collect human annotations, but the demographic background and proficiency of the workers are not
guaranteed, nor is the quality of the collected data. Few efforts such as CVQA [45] attempt to scale
annotation and control quality simultaneously by utilizing experts in machine learning community
or existing materials as seeds. These efforts offer relatively unbiased evaluation with reasonable
coverage in capabilities (e.g., cultural diversity, multimodal problem solving for exam questions
across countries) of interests. We believe benchmarks of similar quality but built for evaluating more
general and comprehensive capabilities will reveal the true potential of worldwide data and resulting
representations developed in this work.

H Licenses for Existing Assets

Below we list the licenses for all existing assets used in this work, including code, models, and
datasets.

• Meta CLIP Code:
– License: CC-BY-NC
– URL: https://github.com/facebookresearch/MetaCLIP

• Wikipedia Dumps:
– License: CC BY-SA 4.0
– URL: https://dumps.wikimedia.org/

• WordNet:
– License: WordNet License 3.0
– URL: https://wordnet.princeton.edu/

• Multilingual WordNet:
– License: WordNet License 3.0
– URL: https://omwn.org/

• Models Used for Evaluation:
– XLM-CLIP

* License: MIT
* URL: https://huggingface.co/laion/CLIP-ViT-H-14-frozen-xlm-
roberta-large-laion5B-s13B-b90k

– mSigLIP-SO400M
* License: Apache 2.0
* URL: https://huggingface.co/google/siglip-so400m-patch16-256-i18n

– mSigLIP-B/16
* License: Apache 2.0
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* URL: https://huggingface.co/timm/ViT-B-16-SigLIP-i18n-256
– SigLIP 2-SO400M

* License: Apache 2.0
* URL: https://huggingface.co/timm/ViT-SO400M-14-SigLIP2

• Code and Data for Evaluation:
– CLIP benchmark, including Flickr30k-200, XTD-10, XTD-200

* License: MIT
* URL: https://github.com/LAION-AI/CLIP_benchmark

– DataComp evaluation

* License: MIT
* URL: https://github.com/mlfoundations/datacomp

– SLIP evaluation

* License: MIT
* URL: https://github.com/facebookresearch/SLIP

– Pangea, including the MaRVL, XM100, xGQA, xMMMU, M3Exam datasets.

* License: Apache 2.0
* URL: https://github.com/neulab/Pangea

– XM3600

* License: CC BY 4.0
* URL: https://google.github.io/crossmodal-3600/

– CVQA

* License: CC BY-SA 4.0
* URL: https://cvqa-benchmark.org/

– GLDv2

* License: CC BY 4.0
* URL: https://github.com/cvdfoundation/google-landmark

– Babel-ImageNet

* License: BabelNet Non-Commercial License and MIT license
* URL: https://github.com/gregor-ge/Babel-ImageNet

– ImageNet

* License: non-commercial research and educational purposes, detailed in https:
//www.image-net.org/download.php

* URL: https://www.image-net.org
– Dollar Street

* License: CC BY-SA 4.0
* URL: https://www.kaggle.com/datasets/mlcommons/
the-dollar-street-dataset

– GeoDE

* License: CC BY 4.0
* URL: https://geodiverse-data-collection.cs.princeton.edu/

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In Sec. 3, we introduce the metadata construction and scalable curation algo-
rithm that enable our models to learn from 300+ languages without relying on translation or
private data. In Sec. 4, we demonstrate that our approach breaks the curse of multilinguality
by scaling model capacity and seen training pairs, showing mutual benefits between English
and non-English performance. We also provide comprehensive ablations (Sec. 4.2.2) on
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metadata, curation, multilingual tokenizers, and additional downstream evaluations on cul-
tural diversity tasks (Sec. 4.3). Taken together, the contributions and scope outlined in the
abstract and introduction are fully supported by the methodology and analysis throughout
the paper and appendix.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Sec. 1, we discussed explicitly that the goal of this paper is to offer
generalizable recipes and comparable results to mainstream CLIP architectures. Pushing
SoTA performance is not the direct goal and we encourage the community to adopt our
recipe for their own CLIP system. More details are discussed in Appendix G.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all the experiment details in Sec. 3, 4.2 and Appendix A. We
further provide the source code in supplemental material to make the results reproducible
and verifiable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide the source code on https://github.com/facebookresearch/
MetaCLIP with descriptions and instructions. We use open-access public data from the
Internet and the open benchmarks for evaluation. We disclose all the experiment details in
Sec. 4 and Appendix A, B, for reproducing the experiment results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We disclose all the experiment details in Sec. 4, Appendix A (data curation
details), and Appendix B (training details) for reproducing the experiment results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In our experiment, we run the training of ViT-B/32 model for three times report
the standard deviation for ImageNet accuracy in Appendix B. For larger models that take
weeks to train, i.e. ViT-L/14 and ViT-H/14, we only run the experiment once because it is
difficult and expensive to repeat the large-scale pretraining.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Discussed in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, this research conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We include the discussion of broader impacts in the end of introduction.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: As discussed in Appendix A.3, we use safety classifier to remove NSFW,
CSAM and human face content when processing the training data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite assets, such as code, data, and models, by their papers or repositories
and follow licenses and terms properly. More details about the licenses of used assets are
discussed in Appendix H.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, check https://github.com/facebookresearch/MetaCLIP for de-
tails.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only fine-tune LLMs and test them on the standard MLLM benchmarks
to evaluate the feature quality of our visual encoders for solving standard VQA tasks, as
described in Sec. 4.4 and Appendix E. Otherwise, we do not use LLM in developing any
other components in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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