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Abstract

Accurately predicting user watch-time is crucial
for enhancing user stickiness and retention in
video recommendation systems. Existing watch-
time prediction approaches typically involve trans-
formations of watch-time labels for prediction
and subsequent reversal, ignoring both the natural
distribution properties of label and the instance
representation confusion that results in inaccurate
predictions. wo-stage method combining proto-
type learning and optimal transport for watch-time
regression prediction, suitable for any deep recom-
mendation model. Specifically, we observe that
the watch-ratio (the ratio of watch-time to video
duration) within same duration bucket exhibits
a multimodal distribution. To facilitate incorpo-
ration into models, we use a hierarchical vector
quantized variational autoencoder (HVQ-VAE)
to convert the continuous label distribution into
a high-dimensional discrete distribution, serving
as credible prototypes for calibrations. Based
on this, ProWTP views the alignment between
prototypes and instance representations as a Semi-
relaxed Unbalanced Optimal Transport (SUOT)
problem, where the marginal constraints of pro-
totypes are relaxed. And the corresponding opti-
mization problem is reformulated as a weighted
Lasso problem for solution. Moreover, ProWTP
introduces assignment and compactness losses
to encourage instances to cluster closely around
their respective prototypes, thereby enhancing the
prototype-level distinguishability. Finally, we con-
ducted extensive experiments, demonstrating our
consistent superiority in real-world application.
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1. Introduction
The rapid growth of online-video services (e.g. YouTube
and Hulu) and video-sharing platforms (e.g. TikTok and
Douyin) has driven the increasing demand for personalized
and high-quality content (Zhou et al., 2018; Tang et al.,
2023). In video recommendation systems, user watch-time
has become a key metric for measuring user engagement
(Covington et al., 2016; Tang et al., 2022; Li et al., 2024).
Accurately predicting user watch-time not only helps im-
prove user stickiness and retention but also optimizes con-
tent distribution and resource allocation, thereby driving the
growth of Daily Active Users (DAUs) on the platform (Lin
et al., 2023; Zhan et al., 2022; Wu et al., 2024).

Existing methods for Watch-time Prediction (WTP) usually
focus on designing specific loss functions or transforming
watch-time labels in particular ways to train the model,
aiming to improve performance. Weighted Logistic Regres-
sion (WLR) (Covington et al., 2016) treats WTP task as a
weighted binary classification problem, approximating the
expected watch-time by assigning weights to positive sam-
ples. Duration-Deconfounded Quantile-based (D2Q) model
(Zhan et al., 2022) divides videos into different groups based
on duration and employs traditional regression within each
group to estimate the transformed watch-time. Tree-based
Progressive Regression (TPM) (Lin et al., 2023) decom-
poses WTP into a series of ordinal classifications, leveraging
a tree structure to model conditional dependencies.

However, those methods struggle to consistently maintain
high predictive accuracy across different models. They
overlook the natural distribution properties of labels—we
observed that the watch ratio (i.e., the ratio of watch-time
to video duration) within the same video duration bucket
exhibits a pronounced multimodal distribution, as shown
in Fig.1(a), which has not yet been explicitly captured.
Moreover, model trained with watch-time supervision suf-
fers from instance representation confusion, as shown in
Fig.1(b), making it challenging to accurately differentiate
various patterns, consequently, limiting its predictive capa-
bility. To address the aforementioned issues, we propose
a two-stage method called ProWTP, which combines pro-
totype learning (Snell et al., 2017; Chang et al., 2022) and
optimal transport (Villani et al., 2009; Peyré et al., 2019;
Caffarelli & McCann, 2010; Chizat et al., 2018; Chapel

1



Calibrating Video Watch-time Predictions with Credible Prototype Alignment

0 1 2 3
Watch-ratio

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

Duration Buckets
Short
Medium
Long

(a) Watch-ratio distribution.

60 40 20 0 20 40 60
X

60

40

20

0

20

40

60

Y

(b) Representation confusion.

Watch-ratio dist.
VAE

Prototypes

Sampling

Reconstruct

𝒫

Instances

SUOT

(c) Core idea of ProWTP.

Figure 1. (a) Illustrates the watch-ratio distribution of three different video durations, demonstrating the multimodal nature. (b) Depicts the
instance representation confusion problem, where MLP serves as the deep recommendation model. (c) Shows the core idea of proposed
ProWTP.

et al., 2021), making it applicable to any deep recommen-
dation model. The core concept of ProWTP is illustrated
in Fig.1(c), wherein instance distributions are aligned with
credible label distributions to calibrate the instance represen-
tation space, thereby enhancing prediction accuracy. In the
first stage, we employ a Hierarchical Vector Quantised Vari-
ational Auto-Encoder (HVQ-VAE) (Van Den Oord et al.,
2017) to transform the one-dimensional continuous distribu-
tion of watch-ratio into a high-dimensional discrete distribu-
tion, generating credible prototypes that effectively capture
the patterns of multimodal distributions of different duration
buckets. Different from traditional prototype learning (Snell
et al., 2017; Yang et al., 2023; Chang et al., 2022), ProWTP
generates prototype vectors from label distributions, pro-
viding models with more precise and credible calibration
references. Subsequently, we model the alignment between
prototypes and instance representations as a Semi-relaxed
Unbalanced Optimal Transport (SUOT) problem (Chapel
et al., 2021), wherein the marginal constraints on the proto-
types are relaxed. By reformulating the SUOT with an l2
penalty term into a weighted Lasso regression problem, we
utilize a regularization path algorithm to compute the OT
plan (Chapel et al., 2021). Moreover, to further enhance the
model’s discriminative capability, we introduce the assign-
ment and compactness losses that encourage instances to
cluster around their respective prototypes. Our contributions
are summarized as follows:

• We propose a method named ProWTP for the WTP
task, which addresses the instance representation con-
fusion problem in deep recommendation models by
aligning label distributions with instance representa-
tion distributions through optimal transport, thereby
enhancing model prediction performance.

• We investigate the multimodal distribution properties
of watch-ratio across different video duration buckets
for the first time and utilize the hierarchy VQ-VAE to

transform these into credible high-dimensional proto-
type vectors, providing a more precise reference for
recommendation models calibration.

• We conducted extensive offline experiments on three
industrial datasets and the experimental results consis-
tently demonstrate the superiority of our approach.

2. Related Work
Watch-time Prediction. Watch-time prediction is a criti-
cal issue in industrial recommender systems, especially for
platforms focusing on short videos and movies. Despite
its significance, there are only a few papers that address
this area (Lin et al., 2023; Covington et al., 2016; Zhan
et al., 2022). A pioneering study (Covington et al., 2016)
in YouTube’s video recommendation sphere introduced the
Weighted Logistic Regression (WLR) technique for fore-
casting watch durations. It has since been established as a
leading method in related application areas. Nevertheless,
this approach is not directly applicable to full-screen video
recommendation systems and may encounter significant bias
issues due to its weighting strategy. D2Q (Zhan et al., 2022)
addresses duration bias by utilizing backdoor adjustment
techniques and models watch time through direct quantile
regression of viewing durations. Debiased and Denoised
watch time Correction (D2Co) (Zhao et al., 2023) and Coun-
terfactual Watch Model (CWM) (Zhao et al., 2024) leverage
causal inference frameworks, while Debiased Video Recom-
mendation (DVR) (Zheng et al., 2022) employs adversarial
learning to mitigate duration bias. SWAT (Yang et al., 2024)
leverages a user-centric statistical framework with behavior-
driven assumptions and bucketization techniques to model
watch time. However, those method fail to consider the
ordinal relationships and dependencies between different
quantiles. Additionally, since both approaches estimate
watch time using point estimations, they overlook the un-
certainty inherent in the predictions. Then, TPM (Lin et al.,
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2023) introduced the ordinal ranks of watch time and decom-
posed the problem into a series of conditional dependent
classification tasks organized into a tree structure.

Optimal Transport. Optimal Transport (OT) (Villani et al.,
2009; Peyré et al., 2019) is a mathematical tool used to trans-
fer or match distributions. OT has been employed in a wide
range of tasks including generative adversarial training (Ar-
jovsky et al., 2017), clustering (Ho et al., 2017), domain
adaptation (Courty et al., 2017), and others. Partial Optimal
Transport (POT) (Caffarelli & McCann, 2010; Figalli, 2010)
is an extension of the classical OT problem, where only a
partial amount of mass is transported instead of transporting
all the mass between two distributions. To alleviate the com-
putational load of OT, the Sinkhorn algorithm (Cuturi, 2013)
was introduced as an efficient method for solving Sinkhorn
OT, and it was subsequently extended to POT (Benamou
et al., 2015). Previously, many methods (Flamary et al.,
2016; Damodaran et al., 2018) applied OT to domain adapta-
tion, aligning the distributions of source and target domains
in either input or feature spaces. They utilized mini-batch
OT to mitigate computational overhead but faced sampling
bias since mini-batch data only partially reflect the original
data distribution. To tackle these challenges, more robust
OT models, such as unbalanced and partial mini-batch OT,
have been developed to enhance performance (Nguyen et al.,
2022). Building on this, joint partial optimal transport was
designed to transport only a portion of the mass, mitigat-
ing negative transfer, and the method was later applied to
open-set domain adaptation (Xu et al., 2020). Additionally,
aligning source prototypes with target features has been
proposed as a solution to the problem of universal domain
adaptation (Yang et al., 2023).

Deep clustering with VAE. Variational Autoencoders
(VAEs) (Kingma, 2013) have emerged as a pivotal approach
in the domain of deep clustering for unsupervised learn-
ing tasks, effectively overcoming the limitations of tradi-
tional clustering methodologies that often struggle with
complex and high-dimensional data. By optimizing the
evidence lower bound (ELBO), VAEs facilitate the learn-
ing of data embeddings while integrating prior knowledge,
such as Gaussian Mixture Models (GMMs) (McLachlan
et al., 2019), for modeling latent variables. Notable contri-
butions in this field include the Variational Deep Embedding
(VaDE) (Jiang et al., 2016) framework, which combines
VAEs with GMMs, employing mixtures of Gaussian priors
to enhance clustering performance. GMVAE (Dilokthanakul
et al., 2016) addresses the problem of over-regularization
in VAE by employing the minimum information constraint.
LTVAE (Li et al., 2018) improves clustering by integrat-
ing a latent tree model into a VAE variant, introducing a
tree-structured layer of discrete latent variables optimized
via message passing. VAEIC (Prasad et al., 2020) jointly
learns the prior and posterior parameters, thus avoiding pre-

training. The Vector Quantized Variational Autoencoder
(VQ-VAE) (Van Den Oord et al., 2017) is an extension of
the traditional VAE framework, which introduces a discrete
latent space via a codebook of prototype vectors. In VQ-
VAE, continuous latent vectors are quantized by mapping
each to its closest prototype vector from the codebook, thus
discretizing the latent representation. Although the quanti-
zation process is non-differentiable, techniques such as the
Straight-Through Estimator (STE) (Yin et al., 2019) and
Gumbel-Softmax (Jang et al., 2016) enable end-to-end train-
ing by allowing gradient-based optimization. The prototype
vectors can serve as cluster centroids (Zheng & Vedaldi,
2023; Wu & Flierl, 2020), encapsulating essential informa-
tion about distinct data clusters. In addition, the semantically
rich prototypes learned by VQ-VAE can support various ap-
plications, such as conditional image generation (Esser et al.,
2021; Ramesh et al., 2022), multi-modal language model-
ing (Li et al., 2023; Zhan et al., 2024) and recommender
system (Liu et al., 2024; Rajput et al., 2024; Li & Sui, 2025).

3. Background
Optimal Transport. We consider two sets of data points,
denoted as {xi}ni=1 and {yj}mj=1, where the empirical
distributions are represented as µ =

∑n
i=1 µiδxi and

ν =
∑m

j=1 νjδyj
, respectively. Here,

∑n
i=1 µi = 1 and∑m

j=1 νj = 1, with δx indicating the Dirac delta func-
tion at location x. For simplicity in notation, we write
µ = (µ1, µ2, . . . , µn)

⊤ and ν = (ν1, ν2, . . . , νm)⊤, and
define the cost matrix as C ∈ Rn×m, where each element
is Cij = d(xi, yj). The Optimal Transport (OT), as defined
by (Villani et al., 2009; Peyré et al., 2019), is a mathemati-
cal framework that transports a probability measure µ into
another measure ν with a minimum cost C. This can be
formulated as the following linear programming problem:

OT(µ,ν) = min
T∈Π(µ,ν)

⟨T,C⟩, (1)

where ⟨·, ·⟩ is the Frobenius dot product, T ∈ Rn×m
≥0 is

the transport plan. Π(µ,ν) = {T ∈ Rn×m
≥0 |Tlm =

µ,TT ln = ν} denotes the polytope of matrices T.

Unbalanced Optimal Transport. However, the strict mass-
conservation constraints on the transport plan T might cause
dreadful degradation of performance in some applications.
These constraints can be alleviated by incorporating the
penalty of Π(µ,ν) into the objective function, which nat-
urally leads to the formulation of the Unbalanced Optimal
Transport (UOT) problem (Chizat et al., 2018; Chapel et al.,
2021):

UOTλ(µ,ν) = min
T≥0

⟨T,C⟩+λ1Φ(Tlm,µ)+λ2Φ(T
T ln,ν),

(2)
where Φ(·, ·) is a smooth divergence measure function, λ1

and λ2 are hyperparameters that represent the strengths of
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penalization. We also have an alternative formulation, which
relaxes one of the two constraints in (1). This is a Semi-
relaxed Unbalanced Optimal Transport (SUOT) problem
(Chapel et al., 2021), defined as the following:

SUOTλ(µ,ν) = min
T≥0,Tlm=µ

⟨T,C⟩+ λΦ(TT ln,ν) (3)

SUOT cast as regression. Let t = vec(T) and c = vec(C).
Next, we define matrices Hc and Hr, such that Hct com-
putes the column sums of the transport plan (i.e., T⊤1n),
and Hrt computes the row sums (i.e., T1m). The objec-
tive function for SUOT includes the transport cost ⟨C,T⟩
and the deviation penalty term λΦ(T⊤1n,ν), where Φ is
typically chosen as the squared Euclidean distance. Using
vectorization and matrix notation, the objective function
can be rewritten as c⊤t + λ∥Hct − ν∥22. Introducing the
variable γ = 1

λ , we reformulate the problem as:

min
t≥0

γcT t+ 0.5 ∗ ||Hct− ν||22, s.t.Hrt = µ, (4)

and as such be expressed as a non-negative penalized linear
regression problem, where Hct is regressed onto the target
distribution ν. By representing the SUOT problem in this
form, we can leverage efficient optimization algorithms
from regression analysis to solve it (Chapel et al., 2021).

4. Proposed Method: ProWTP
Let U = {u1, ..., u|U|} and V = {v1, ..., v|V|} denote the
set of users and videos, respectively, where |U| is the num-
ber of users and |V| is the number of items. The user-item
historical interactions are represented by D = {(xi, yi)|x =
(u, v), u ∈ U , v ∈ V}Ni=1, where N is the number of sam-
ples and y ∈ R∗ denotes the watch-time. The target is to
learn a deep recommendation model f(X; Θf ) and a regres-
sor g(f(X; Θf ); Θg) to predict the watch-time y of user u
on video v, where Θf and Θg is the parameters of f and g,
respectively.

4.1. Overview

The proposed ProWTP is a two-stage method, as shown
in Fig. 2. In the first stage, we employ a Hierarchical
Vector Quantised Variational AutoEncoder (HVQ-VAE)
P(P|Y ), which consists of three components: 1) Encoder
E(·; ΘE) : Y → Rd maps the one-dimensional continuous
watch-ratio distribution w ∈ RL into a d-dimensional space,
generating the initial representation E(w; ΘE) ∈ Rd; 2)
Codebook P ∈ RC×K×d: quantizes the high-dimensional
feature into a discrete space, capturing the multimodal char-
acteristics; 3) Decoder D(·; ΘD): Rd → Ŷ decodes the
quantized prototype back into the continuous distribution
w, ensuring the reconstruction capability of the prototypes.
In the second stage, the prototypes P and Semi-Relaxed Un-
balanced Optimal Transport (SUOT) modules are integrated

to regularize the training of the recommendation model
f(·; Θf ) : X → Rd and calibrate the instance representa-
tion space, thereby producing accurate instance representa-
tions h for prediction by the regressor g(·; Θg) : H → R∗.

4.2. Credible Prototypes Generation with HVQ-VAE

Currently, most prototype learning researches (Snell et al.,
2017; Chang et al., 2022) typically rely on pre-trained mod-
els, where prototypes are generated by clustering the hidden
representations for subsequent tasks. However, we argue
that such prototypes often contain noise and potential er-
rors, limiting their capacity in calibrating original models.
Therefore, we propose to generate prototypes directly from
the distribution of the prediction target Y. As shown in
Fig. 1(a), when we partition user historical behaviors into
{1, 2, ..., D} buckets based on video duration, we observe
that the watch-ratio (i.e., the ratio of user’s watch-time to
video duration) within each bucket exhibits a distinct mul-
timodal distribution. This indicates that user’s behavior is
statistically clustered and regular. However, these multi-
modal distributions are one-dimensional long sequences,
making it challenging to directly extract high-dimensional
discrete representations.

Pre-processing. To solve this problem, we first sample L
(L >> D) one-dimensional distributions w = (y1, ..., yn)
from each multimodal distribution. Using this sampling
strategy, we transform the original one-dimensional mul-
timodal distributions into D ∗ L one-dimensional near-
Gaussian distributions w of length n, thereby making the
data more suitable for neural networks and effectively re-
ducing the difficulty of training.

Credible Prototypes Generation. We observed in Fig. 1(a)
that the peaks at the same positions across different dura-
tion buckets exhibit similar means but varying variances.
Then, we hypothesize that w sampled from the same po-
sitions in these buckets can be grouped into equal means
but varied variances clusters. Inspired by Vector Quan-
tised Variational AutoEncode (VQ-VAE) (Van Den Oord
et al., 2017), we propose a Hierarchical VQ-VAE approach
that first identifies the closest cluster and then indexes the
nearest vector within that cluster. Specifically, we take the
one-dimensional distribution w into the encoder E(·; ΘE)
to obtain latent representation E(w). Subsequently, the
HVQ-VAE maintains a codebook P ∈ RC×K×d, where C
and K are the number of cluster and the number of proto-
type, respectively, pij ∈ Rd is a prototype vector. We can
assume that prototype vectors within the same cluster share
similar means but allow for different variances.

Next, we select the cluster c by computing the distance
between E(w) and each cluster center p̃i, where p̃i is ob-
tained by target attention (Zhou et al., 2018; Vaswani, 2017)
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Figure 2. The framework of proposed ProWTP, which contains two phases: credible prototypes generation and distribution alignment. In
the first stage, HVQ-VAE is used to encode the watch-ratio distribution into high-dimensional discrete representations, which serve as
prototypes for calibration. In the second stage, semi-relaxed unbalanced optimal transport (SUOT) is employed to align the instance
distribution with the prototypes, thereby calibrating the instance space.

between E(w) and P:

c = argmini||p̃i − E(w)||2,

where p̃i =
∑
j

softmax (pij · E(w)) · pij .
(5)

Within the selected cluster c, we find the prototype vector
pc,k that has the minimum distance to E(w) and map it to
the discrete vector z:

z = pc,k, where k = argmin
j

||pc,j − E(w)||2 (6)

Finally, we input z into the decoder D(·) to reconstruct w.
In HVQ-VAE, the presence of the argmin operation hampers
gradient propagation. To address this issue, we employ the
Straight-Through Estimator (STE) (Bengio et al., 2013; Van
Den Oord et al., 2017) during training, with the loss function
defined as follows:

LHVQ-VAE = ||w −D(E(w) + sg[z− E(w)])||22
+ ||sg[E(w)]− z||22 + β||E(w)− sg[z]||22

(7)

Here, sg[·] denotes the stop-gradient operation, which halts
gradient flow during backpropagation, and β is a hyperpa-
rameter that balances the reconstruction loss and the embed-
ding update. Through this approach, we transform the one-
dimensional continuous w distribution into discrete high-
dimensional prototype vectors, thereby providing credible
calibration for subsequent models.

4.3. distribution alignment

As illustrated in Fig. 1(b), we posit that the inaccuracies of
recommendation models within the WTP task stem from
instance representation confusion. This confusion hampers
the model’s ability to effectively differentiate between vari-
ous user behavior patterns, thereby adversely affecting pre-
dictive performance. To address this issue, it is imperative
to utilize the generated credible prototypes P to calibrate
the instance representation f(x), thereby reducing repre-
sentation confusion and enhancing the model’s predictive
accuracy.

Transport Matrix Calculation. First, we conceptualize
the instance representations f(x) and the prototypes P as
two probability distributions, with the objective of mapping
the instance representation distribution α = 1

nb
1nb

to the
prototype representation distribution β = 1

CK1CK through
optimal transport (Villani et al., 2009; Peyré et al., 2019;
Chapel et al., 2021). Specifically, we construct the instance
representation set H = {h1,h2, . . . ,hnb

} ⊆ Rd, where
each instance representation hi is obtained by L2 normaliza-
tion of the model output f(xi), i.e. hi = f(xi)/||f(xi)||2,
and nb is the mini-batch size. The prototype set P =
{p1,p2, . . . ,pCK} ⊆ Rd is derived from the original pro-
totype set P through a learnable linear transformation Wp.
To quantify the discrepancy between instances and proto-
types, we define the cost matrix C ∈ Rnb×CK , where each
element ci,k represents the cosine distance between instance
hi and prototype pk, i.e. C = 1−HT ∗P.
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To achieve distribution alignment, we adopt the optimal
transport method. However, traditional optimal transport re-
quires all the mass from β is transported to α, meaning that
each prototype must be fully mapped to the instances. This
strict marginal constraint is not applicable in our scenario,
especially in a mini-batch setting, where it is unreasonable
to allocate samples for every prototype, as certain prototypes
may not correspond to any instances in the current batch.
Therefore, we model the alignment between instances and
prototypes as a Semi-relaxed Unbalanced Optimal Transport
(SUOT) problem (Chapel et al., 2021):

T∗ = SUOTλ(α,β) = min
T≥0,TlCK=α

⟨T,C⟩+λ||TT lnb
−β||22,
(8)

where λ controls the strengths of penalization. By intro-
ducing an l2 penalty term into the objective, we allow the
marginal constraints on the prototype side to be relaxed,
transforming the hard constraints TT lnb

= β into soft one.
To optimize this problem, (Chapel et al., 2021) reformu-
lated it as a weighted Lasso regression and solved it with a
regularization path algorithm.

Training objectives. To calibrate the sample space, we
aim for the instance representations to cluster tightly around
their corresponding prototypes, necessitating a reduction in
the distance between each sample and its assigned proto-
type. Each row of the transportation matrix T represents
the allocation relationship of sample xi to the prototypes,
with the row sums equal to 1

C×K . After multiplying by the
constant C × K, each row of T can be viewed as a soft
pseudo-label summing to 1. Therefore, we can define the
calibration loss through the cross-entropy loss:

Lassign = − 1

nb

nb∑
i=1

C∗K∑
k=1

ti,k log
exp (hT

i ∗ pk/τ)∑C∗K
j=1 exp (hT

i ∗ pj/τ)
(9)

where τ is the temperature parameter that controls the
smoothness of the softmax function. By minimizing
Lassign, we can decrease the distance between samples and
their corresponding prototypes, thereby better calibrating
instance representations within the prototype space, reduc-
ing representation confusion, and enhancing the model’s
predictive performance.

To further shape the instance space, we hope for instances
assigned to the same prototype to be closer together in the
representation space, thereby forming tighter clusters. This
necessitates promoting similarity among samples under the
same prototype. To achieve this, we first define the set of
instances associated with each prototype k:

S+
k = {i|ti,k >

1

nb

∑
j

tj,k}, (10)

which includes those samples under prototype pk whose
transport value ti,k exceed the average level, indicating

that these samples should be close to each other in the in-
stance representation space. Inspired by contrastive learning
(Khosla et al., 2020), we designed a compact loss to en-
courage samples under the same prototype to cluster more
closely in the representation space:

Lcompact =− 1

CK

CK∑
k=1

nb∑
i,j=1

I(i, j ∈ S+
k ) · I(i ̸= j)

· log exp(hT
i hj/τ)

nb∑
i′,j′=1

exp(hT
i′hj′/τ)

,
(11)

where I(·) is the indicator function, and τ controls the
smoothness. By minimizing the compact loss, we not only
help reduce instance representation confusion but also en-
hance the model’s ability to capture fine-grained features,
ultimately improving prediction performance. Additionally,
to address computational efficiency issues arising from mul-
tiple loops, we randomly sample 20% of the instances from
the mini-batch for the calculations. Finally, We incorporate
the labels yi to define the MSE loss:

Ltask =
1

N

N∑
i=1

(g(

CK∑
k=1

ti,kpk)− yi)
2, (12)

Compared to original prediction, ProWTP reshapes instance
representations f(xi) in the credible prototype space P by
utilizing the transport matrix T to weight and combine pro-
totype vectors, subsequently feeding these representations
into the regressor g(·; Θg) for prediction. This approach
effectively captures the inherent structure of the instance
representation space, enhancing the model’s robustness and
leading to more accurate predictions.

5. Experiment
5.1. Setup

Dataset. We adopt two public datasets Wechat (collected
from Wechat App) and Kuairand (Gao et al., 2022) (from
Kuaishou App), one private dataset Short-video (from our
App) for offline experiments. We split each dataset into
training, validation and test set by the ratio of 6:2:2.

Baselines. We evaluate the performance of proposed
ProWTP in comparison with the following baselines that
represent the popular method in WTP tasks: Traditional Re-
gression, Weighted Logistic Regression (WLR) (Covington
et al., 2016), Ordinal Regression (OR) (Crammer & Singer,
2001), Duration-Deconfounded Quantile (D2Q) (Zhan et al.,
2022), Tree-based Progressive Model (TPM) (Lin et al.,
2023). Sine all meth ods are model-agnostic, Debiased
Video Recommendation (DVR) (Zheng et al., 2022), and
Counterfactual Watch Model (CWM) (Zhao et al., 2024),
we implement them on the MLP (Taud & Mas, 2018).
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Table 1. Overall performance of different methods. Boldface means the best-performed methods. Higher XAUC and XGAUC indicate
better performance, while lower MAE and RMSE are better.

Model Metrics TR WLR OR D2Q TPM DVR CWM ProWTP

WeChat

RMSE 30.39 30.24 28.96 29.12 28.85 28.91 28.78 28.47
MAE 20.53 20.16 20.05 20.12 19.97 20.05 19.90 19.84

XAUC 0.5985 0.6047 0.6078 0.6094 0.6107 0.6109 0.6115 0.6183
XGAUC 0.5409 0.5538 0.5575 0.5616 0.5645 0.5628 0.5654 0.5730

KuaiRand-Pure

RMSE 42.41 42.17 41.44 41.65 40.82 40.97 40.75 40.45
MAE 28.09 27.98 27.69 27.82 24.58 26.08 24.54 24.43

XAUC 0.7176 0.7081 0.7145 0.7189 0.7203 0.7201 0.7209 0.7290
XGAUC 0.6907 0.6885 0.6945 0.6990 0.7024 0.6998 0.7026 0.7048

Short-video

RMSE 30.59 30.22 29.18 29.35 29.02 29.18 29.00 28.67
MAE 11.46 11.29 11.07 11.15 10.82 11.08 10.76 10.69

XAUC 0.5744 0.5788 0.5705 0.5814 0.5831 0.5822 0.5848 0.5929
XGAUC 0.5537 0.5603 0.5609 0.5622 0.5667 0.5643 0.5681 0.5731

Evaluation. To evaluate the performance of each model, we
use four widely adopted metrics (Zhan et al., 2022) : MAE,
RMSE, XAUC, and XGAUC.

Training details. We set the embedding dimension of all
features to 64. For TR and OR, models are implemented
on MLP with three hidden layers and ReLU (Glorot et al.,
2011) as the activation function. For other baseline methods,
we adopt the experimental design and parameter settings de-
scribed in the original papers. We optimize all models using
Adam optimizer (Kingma & Ba, 2014) with the batch size
of 512 on both two datasets. To avoid overfitting, We set the
dropout rate (Srivastava et al., 2014) to 0.2 and employ an
early stopping mechanism (Prechelt, 2002) with a patience
of 10 epochs. Among them, the learning rate is searched
in {1e-3, 1e-4, 1e-5}, and β is tuned from 0.0 to 0.2 with
increments of 0.05. K is searched in {4, 8, 12, 16, 20, 24}.

5.2. Results

Comparison with baselines. We compare ProWTP with
several baseline methods on two real-world industrial-grade
datasets, and the results are shown in Tab. 1. ProWTP
achieves the best performance across all evaluation met-
rics. In contrast, the TR method performs the worst on both
datasets, likely because it directly regresses on watch-time
without leveraging the distributional characteristics of the
data. WLR and OR show some improvement over TR, but
the gains are limited. The D2Q, by addressing duration
bias, improves prediction accuracy, and TPM further en-
hances performance through its tree-structured modeling
of dependencies and uncertainties. ProWTP outperforms
all baselines in four metrics, particularly with significant
improvements in RMSE and XAUC. This demonstrates that
ProWTP effectively alleviates instance representation con-
fusion by aligning the credible prototype distribution with
the instance distribution, improving model’s accuracy.

Impact of different modules in ProWTP. We further con-
duct ablation studies to demonstrate the effectiveness of
the key components of ProWTP and the results are shown
in Tab. 2. Specifically, we compare ProWTP to its five
variants: (1) w/o HVQ-VAE, means that prototypes are no
longer generated from label distributions but are randomly
initialized as parameters within the neural network. (2)
w/o Lassign means the assign loss is removed. (3) w/o
Lcompact means the compact loss is further removed. (4)
w/o SUOT indicates that SUOT is no longer used for dis-
tribution alignment, and instead, the the linear combination
of prototypes is directly computed for prediction. (5) w/o
ProWTP means the approach degenerates into traditional re-
gression (TR). The results indicate that removing any single
module leads to a performance decline, demonstrating that
each component of ProWTP is crucial for improving model
performance. Removing HVQ-VAE results in a significant
drop in performance, highlighting that transforming label
distributions into credible prototypes effectively enhances
the model’s performance. The impact of removing SUOT is
also particularly notable, indicating that SUOT helps better
align the distributions of instances and prototypes, thereby
improving predictive capabilities. Moreover, the two loss
functions effectively constrain the learning of the instance
space, ensuring instances are tightly clustered around the
corresponding prototype, which enhances the model’s dis-
criminative ability.

Different prototype generation methods. To further val-
idate the effectiveness of using HVQ-VAE for generating
credible prototypes, we compare three different generation
strategies: VQ-VAE, Kmeans, and Random. As shown
in Tab. 3, the performance of VQ-VAE saw a slight de-
crease, indicating that the hierarchically generated proto-
types from HVQ-VAE exhibit a better clustering structure,
making it easier for instance representations to align with
them. Kmeans generates prototypes by clustering the in-
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Table 2. Ablation results of different modules in ProWTP.

Model Wechat KuaiRand-Pure
RMSE MAE XAUC XGAUC RMSE MAE XAUC XGAUC

ProWTP 28.47 19.84 0.6183 0.5730 40.45 24.43 0.7290 0.7048
ProWTP w/o HVQ-VAE 29.12 20.23 0.6128 0.5690 41.08 24.87 0.7233 0.7010

ProWTP w/o Lassign 29.45 20.65 0.6112 0.5678 41.35 25.01 0.7205 0.6998
ProWTP w/o Lcompact 29.38 20.51 0.6130 0.5684 41.12 24.92 0.7221 0.7004

ProWTP w/o SUOT 29.90 20.89 0.6108 0.5665 42.00 25.50 0.7185 0.6980
w/o ProWTP 30.39 20.51 0.5979 0.5406 42.41 28.09 0.7174 0.6905

Table 3. Ablation study on different prototype generation methods.
Prototypes
generation

Wechat KuaiRand-Pure
RMSE MAE XAUC XGAUC RMSE MAE XAUC XGAUC

HVQ-VAE 28.47 19.84 0.6183 0.5730 40.45 24.43 0.7290 0.7048
VQ-VAE 28.82 20.04 0.6164 0.5713 40.72 24.52 0.7259 0.7024
Kmeans 29.07 20.28 0.6132 0.5683 41.22 24.98 0.7236 0.7018
Random 29.12 20.23 0.6128 0.5690 41.08 24.87 0.7233 0.7010

Table 4. Ablation study on different distribution alignment methods.
Distribution
alignment

Wechat KuaiRand-Pure
RMSE MAE XAUC XGAUC RMSE MAE XAUC XGAUC

SUOT 28.47 19.84 0.6183 0.5730 40.45 24.43 0.7290 0.7048
OT 28.82 20.15 0.6164 0.5705 40.85 24.65 0.7252 0.7023

UOT 29.46 20.58 0.6137 0.5688 41.20 24.93 0.7225 0.7000
w/o alignment 29.90 20.89 0.6108 0.5665 42.00 25.50 0.7185 0.6980

stance representations directly, but its performance drops
due to being more susceptible to noise and potential errors.
The Random method performs the worst, as it fails to pro-
vide a credible reference for calibrations, thereby affecting
the model’s predictive performance.

Different distribution alignment methods. We also com-
pare different alignment strategies, as shown in Tab 4. The
SUOT approach, which relaxes the marginal constraints on
the prototype side, yielded the best performance. In con-
trast, OT requires strict transportation of the entire mass, but
since not all prototypes in a mini-batch can be assigned to in-
stances, it limits performance. UOT also saw a performance
decline due to some instances not being assigned. SUOT’s
flexible allocation mechanism more effectively enhances
model performance.
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Figure 3. Impact of the number of prototypes K on two datasets.

Impact of the number of prototypes K. In Fig 3, we
illustrate the impact of varying the number of prototypes
K on model performance. As the number of prototypes
increases, performance improves accordingly. However,
defining too many prototypes results in slight performance
fluctuations, likely due to the introduction of noise.

6. Conclusion
In this paper, we propose a two-stage method, ProWTP, for
watch-time prediction (WTP) tasks, applicable to any deep
recommendation model. This method aligns label distri-
butions with instance representation distributions through
prototype learning and optimal transport to calibrate the in-
stance space, thereby improving the accuracy. Specifically,
we employ HVQ-VAE to transform continuous watch-ratio
labels into high-dimensional discrete distributions, which
serve as credible prototypes. Then, the alignment between
prototypes and instance representations is modeled as a
SUOT problem, where the marginal constraints are relaxed
and the problem is reformulated as a weighted Lasso regres-
sion for solution. Additionally, we introduce assign loss
and compact loss to encourage instances to cluster tightly
around their respective prototypes. Finally, extensive exper-
iments demonstrate the significant advantages of ProWTP
in practical applications.
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Impact Statement
This work introduces ProWTP, a calibrated watch-time pre-
diction framework that aligns model representations with
credible label-derived prototypes using semi-relaxed unbal-
anced optimal transport. It brings clear practical benefits
to industrial video recommendation systems by improv-
ing prediction accuracy, reducing representation confusion,
and better modeling the multimodal nature of user behav-
ior. These improvements can enhance user experience, con-
tent exposure fairness, and platform efficiency. However,
like all engagement optimization techniques, ProWTP may
raise concerns about potential over-personalization or rein-
forcement of addictive behaviors. Nonetheless, since the
method focuses on improving calibration fidelity rather than
increasing engagement directly, we believe its responsible
deployment can lead to more transparent and equitable rec-
ommendation systems.
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A. Appendix
A.1. explanations on instance representation confusion.

A.1.1. MATHEMATICAL EXPLANATION

Proposition A.1. In WTP task, let the instance representation of a sample (x, y) be f(x), with its ideal center being
µy = E[f(x) | y], where y is the ground-truth. The degree of instance representation confusion is defined as the distance
between the instance representation and the ideal center, d(f(x), µy) = ∥f(x)− µy∥. Then, the model’s prediction error
∆x = |y − ŷ| is predominantly correlated with the degree of instance representation confusion d(f(x), µy).

Proof :

In a regression model for WTP task, suppose the predicted value is given by ŷ = ReLU(Wf(x) + b), and the true value y is
a function represented by a ideal center µy = E[f(x) | y] and a noise term ϵ:

y = ReLU(Wµy + b) + ϵ, (13)

where W ∈ R1×d and b ∈ R are the model parameters, and f(x) ∈ Rd is the instance representation of the input x. The
noise ϵ is independent and identically distributed Gaussian noise with zero mean, unrelated to the instance representation,
i.e., ϵ ∼ N (0, σ2).

Starting with the model and true value definitions, the error can be rewritten as:

∆x = |y − ŷ| = |ReLU(Wµy + b) + ϵ− ReLU(Wf(x) + b)|. (14)

We assume that the ideal center µy lies within the activation region, meaning that Wµy + b ≥ 0. This assumption holds
because, in WTP task, the ground-truth y ≥ 0. Thus, we only need to consider two cases based on the value of Wf(x) + b
for each sample:

(1) Case 1: Wf(x) + b ≥ 0

In the linear activation region of ReLU, the output simplifies to:

∆x = |(Wµy + b+ ϵ)− (Wf(x) + b)|. (15)

Further simplifying:
∆x = |W (µy − f(x)) + ϵ|. (16)

The squared error is:
∆2

x = (W (µy − f(x)))2 + 2ϵW (µy − f(x)) + ϵ2. (17)

Taking the expectation, assuming ϵ is independent of f(x) and E[ϵ] = 0:

E[∆2
x] = (W (µy − f(x)))2 + E[ϵ2]. (18)

Since E[ϵ2] = σ2, we have:
E[∆2

x] = (W (µy − f(x)))2 + σ2. (19)

Thus, the expectation of the squared error is dominated by (W (µy − f(x)))2, and we get:

(W (µy − f(x)))2 = ∥W∥2 · ∥f(x)− µy∥2. (20)

Therefore:
E[∆2

x] ∝ ∥f(x)− µy∥2. (21)

(2) Case 2: Wf(x) + b < 0
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In the non-activation region of ReLU, if Wf(x) + b ≤ 0, then:

ŷ = 0. (22)

In this case, the error is:
∆x = |y|. (23)

Combining both cases, the expected squared error is:

E[∆2
x] =P (Wf(x) + b ≥ 0) ·

(
∥W∥2 · ∥f(x)− µy∥2 + σ2

)
+ P (Wf(x) + b < 0) · y2.

(24)

When most instances satisfy Wf(x) + b > 0 (i.e., the ReLU activation region dominates), the expected error is primarily
determined by ∥f(x)− µy∥. We conducted experiments and found that instances located in the non-activation region of
ReLU account for approximately 1% to 2% of the total training data.

A.1.2. DIFFERENT MODEL ANALYSIS

In this paper, we identify instance representation confusion as the main reason for the inability of existing methods to
achieve accurate predictions. In Appendix A.1.1, we provide a mathematical explanation of the phenomenon. In this section,
we conduct a visualization study on the relationship between instance representations f(x) and prediction errors ∆ across
different values.

To simplify the analysis, we focus on three sample groups with true values y ∈ [0, 0.1), y ∈ [1.0, 1.1), and y ∈ [2.0, 2.1).
For each sample x, the prediction error of the model f(·) is denoted as ∆. We define the ideal center uy as the average
instance representation f(x) of samples with ∆ < 0.01. The degree of instance representation confusion is measured by the
L2 distance ||f(x)− uy||.

The analysis results for each model include five figures: (a) The correlation between prediction error and the degree of
confusion. (b) A t-SNE visualization of instance representations f(x) for all three sample groups with (∆ < 0.3). (c)(d)(e)
The visualization of instance representations f(x) and ideal centers uy for high-error samples (∆ > 0.3) in y ∈ [0, 0.1),
y ∈ [1.0, 1.1) and y ∈ [2.0, 2.1) respectively.

From Figure (a), it can be observed that both TR and ProWTP align with the conclusion of Appendix A.1.1, where the
prediction error ∆ is positively correlated with the degree of confusion. From the distribution of black scatter points, TR
exhibits a significantly higher level of confusion, while ProWTP effectively mitigates this confusion by reducing the distance
between instances and reliable prototypes.

From Figure (b), even when the prediction error ∆ < 0.3, the instance representations of TR struggle to form well-defined
clusters, with instances of different types mixed together. In contrast, ProWTP achieves clear clustering among instances
with small errors, and instances of different types are distinctly separated.

In Figures (c), (d), and (e), for points with larger errors, darker colors indicate higher ∆ values and greater distances from
the ideal center. This further supports the conclusion in Appendix A.1.1. Additionally, compared to TR, ProWTP shows
significantly fewer points with large errors (i.e., fewer dark-colored points), effectively reducing instance representation
confusion. This demonstrates that the root cause of reducing prediction errors lies in learning better instance representations.

A.2. More details of Pre-processing and Prototype generations.

Our goal is to transform the ground-truth Y of the entire dataset into high-dimensional vectors, referred to as prototypes, for
downstream tasks. The generation process is divided into four steps, as shown in Fig. 6 :

1. Partitioning Y . The ground-truth Y is an N × 1 vector, where N is the size of the dataset. Directly generating prototypes
from this vector is challenging. We observe that watch-ratio in different duration buckets exhibit distinct multi-modal
distributions. Thus, Y is first divided into D unequal-length multi-modal distributions based on video durations.

2. Fitting Gaussian Mixture Models (GMMs). Even after partitioning, the watch-ratio distributions remain as long
one-dimensional continuous arrays, making direct modeling still difficult. To address this, we fit D GMMs to these
distributions, where the number of components C corresponds to the number of peaks in the distribution.
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Figure 4. Traditional Regression (TR) on Wechat.
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Figure 6. The details of Pre-processing and Prototype generations.

3. Random Sampling. For each GMM, C sets of means, variances and weights {(µj , σj , θj)}Cj=1 are obtained. The
sampling process is as follows:

• Data for each peak is sampled randomly to form a distribution w = (y1, y2, . . . , yn) of length n, with the sampling
range defined as [µ− i · σ, µ+ i · σ], where i follows a Gaussian distribution N(µ

′
, σ

′
).

• To ensure that the overall sampled distribution matches the original distribution, the number of samples for each peak is
determined by the weights θ. Specifically, when generating L near-Gaussian distributions from the current multi-modal
distribution, the allocation of L is governed by θ, where the number of samples generated for each peak is ⌊θ · L⌋.

This sampling strategy significantly simplifies subsequent learning while adhering to the semantic of Prototypes, where each
Prototype represents the center of a peak.

4. Generating Credible Prototypes. For each bucket, L distributions w are sampled, resulting in D × L distributions.
These are fed into the HVQ-VAE for training, and the codebook weights from HVQ-VAE are considered as Prototypes.

In Fig. 7 and 8, we present a comparison of the overall distribution of 100 sampled w values (orange) and the original
watch-ratio distribution (blue) across different durations on the WeChat and our Short-video datasets, respectively. The
red dashed lines indicate the means of the GMM. It can be observed that the distributions exhibit typical multimodal
characteristics, and the sampled distributions successfully preserve the original distribution’s shape and features.
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Figure 7. Comparison of Sampled Distribution and Original Watch-Ratio Distribution on WeChat.

A.3. The Relationship Between Multimodal Distributions, Prototypes, and User Behavior.

The watch-ratio distribution exhibits distinct multi-modal characteristics, reflecting different user behavior patterns during
video consumption: ”scroll” (the first peak) indicates that users skim past the video after watching the cover for about
1 second, showing a lack of interest; ”like” (the second peak) represents users who watch most of the video and show
moderate interest; and ”very like” (subsequent peaks) suggests users who are highly engaged with the content and may even
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Figure 8. Comparison of Sampled Distribution and Original Watch-Ratio Distribution on our Short-video.

re-watch it multiple times. This clustering behavior helps watch-time prediction models quickly identify specific intervals,
thereby reducing prediction errors.

However, multi-modal distributions are typically long one-dimensional sequences, making direct modeling challenging for
capturing behavior patterns effectively. Prototype learning addresses this issue by dividing the multi-modal distribution
into several sub-distributions and generating multiple semantic centers in high-dimensional space for each sub-distribution.
This approach significantly simplifies computation and learning complexity, breaking down the complex multi-modal
distribution into more manageable local structures. Consequently, Prototype enables watch-time prediction models to
more accurately capture the characteristics of different user behavior patterns, improving global prediction performance of
duration distributions and effectively supporting recommendation systems in WTP tasks.
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Figure 9. The Relationship Between Multimodal Distributions, Prototypes, and User Behavior.
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A.4. Computational Complexity Discussion

Stage I: prototype generations. The computational complexity of HVQ-VAE primarily arises from the cluster selection
and prototype selection. For a single sample, the cluster selection involves computing the attention-weighted cluster centers,
with a time complexity of O(C ·K + C), where C is the number of clusters, K is the number of prototypes per cluster.
Within the selected cluster, prototype selection further incurs a complexity of O(K). Overall, the time complexity for a
single sample is O(C ·K + C +K), and the space complexity is dominated by the static storage of the codebook, which is
O(C ·K · d), and d is the prototype vector dimension.

Importantly, HVQ-VAE is completely independent, and its spatio-temporal complexity does not affect the training and
inference time of ProWTP. When the distribution of watch ratios is sufficiently large, the resulting prototype distribution
is stable. Furthermore, we observed that for a well-established video recommendation APP, the watch-ratio distribution
remains largely unchanged and consistent across multiple months.

As shown in Figure 10, we randomly sampled 200,000 users from our APP (a short-video platform) and extracted their
historical behavior on the 1st day of each month from January to November 2024. The data were divided into D = 15
buckets based on video duration. We then computed the Wasserstein Distance between the watch-ratio probability density
distributions of each month and November, as well as the Kolmogorov-Smirnov test with p < 0.05 between their cumulative
empirical distributions. The results indicated no significant distribution shifts across multiple months.

Even in extreme scenarios where user behavior undergoes notable adjustments, we only need to resample the watch-ratio
distributions for each duration buckets, perform offline retraining, and update the weights of ProWTP. This process incurs
minimal computational overhead.
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Figure 10. Mean Differences in Watch-ratio Distributions Between November and January-October.

Stage II: Distribution alignment. ProWTP is a model-agnostic method that adds only an additional prototype layer
compared to the baseline, resulting in a space complexity of O(CKd). During the inference phase, the OT module is
removed, and the final value is computed as a linear combination of similarities to each prototype, which is then input
into the regressor. The time complexity of this process is O(CK), where C and K are small constants, ensuring that the
time overhead remains negligible. The training time complexity comes from four parts. OT optimization operates on
a transportation matrix of size nb × CK, where nb is the mini-batch size and CK is the number of prototypes, with a
complexity of O(I ·nb·CK) for I iterations. The calibration loss, which computes softmax and cross-entropy for each sample
across all prototypes, has a complexity of O(nb · CK). The compact loss, which encourages tighter clustering of instance
representations under the same prototype, involves sampling 20% of the instances and computing pairwise similarities, with
a complexity of O(0.04 · CK · |S+

k |2). Additionally, the prototype-weighted prediction calculation incurs an additional
O(nb · CK). Thus, the overall training time complexity for a batch is O(I · nb · CK + 2 · nb · CK + 0.04 · CK · |S+

k |2).
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We trained on WeChat data with a batch size of 512 using an RTX 4090 GPU. Tab. 5 compares the training time per batch for
ProWTP under different sampling frequencies and the corresponding changes in RMSE, along with the inference efficiency
of different models. It can be observed that ProWTP’s inference efficiency does not significantly increase compared to the
baseline. However, as the sampling ratio increases, the training time for ProWTP grows noticeably, while the performance
improvement shows diminishing marginal returns.

Table 5. Time cost (s) per batch of different models on Wechat.

Model TR D2Q ProWTP
Sample ratio - - 0% 10% 20% 30% 50% 100%

Train cost 0.011 0.013 0.049 0.058 0.061 0.075 0.092 0.121
RMSE 30.39 29.12 29.38 28.91 28.47 28.22 28.05 28.04

Infer cost 0.003 0.003 0.004

A.5. Datasets.

1) Wechat: This dataset was adopted in WeChat Big Data Challenge1, which records the behavior of users on short videos
in two weeks. We divide the duration into D = 5 buckets. The user id, device id, video id, author id, duration level and
multi-model content feature vectors are used as our feature inputs.

2) Kuairand-Pure: Constructed from the recommendation logs of the video-sharing mobile app, Kuaishou (Gao et al.,
2022), the dataset contains millions of intervened interactions about 27,285 users and 7,551 items in 4 weeks. Similarly, we
discretize the duration into D = 5 buckets in this dataset, and the user id, video id, tab, music id, author id, duration level
and user active degree will serve as input features in our experiments.

3) Short-video: We collected behavioral logs of 200,000 active users from a short-video platform on November 1, 2024.
The data was divided into D = 15 buckets based on video duration. In our experiments, we used the following features as
inputs: user id, video id, tag id, author id, and duration level.

Table 6. Statistical Information of datasets.
Data #user #video #interaction #duration

WeChat 20,000 96,428 7,210,290 5

Kuairand-Pure 27,285 7,551 1,231,181 5

Short-video 200,000 4,832,885 30,000,000 15

A.6. Baseline Details.

To evaluate the effectiveness of our proposed method, we compare it with the following methods that are pivotal in leveraging
Watch-time prediction:

• TR (Traditional Regression): This method adopts a straightforward regression approach, using watch time as the
label. It is trained to minimize the Mean Squared Error (MSE).

• WLR (Weighted Logistic Regression) (Covington et al., 2016): As implemented in YouTube’s system, this method
learns a logistic regression model, reweighted by watch times, and uses the learned odds to estimate watch time during
prediction.

• OR (Ordinal Regression) (Crammer & Singer, 2001): This method, based on ordinal regression techniques, empha-
sizes the relative order of watch times, fitting the data to predict categorical watch time levels.

• D2Q (Duration-Deconfounded Quantile) (Zhan et al., 2022): Representing a state-of-the-art approach in watch time

1https://algo.weixin.qq.com/2021/problem-description
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prediction, this model addresses duration bias through backdoor adjustment and fits duration-dependent quantiles of
watch time using MSE.

• TPM (Tree-based Progressive Model) (Lin et al., 2023): This approach uses a tree-structured series of classification
tasks, considering ordinal ranks and prediction variance, and incorporates backdoor adjustment to mitigate bias, offering
a nuanced and comprehensive approach to enhancing watch time prediction in video recommender systems.

• DVR (Debiased Video Recommendation) (Zheng et al., 2022): This methods provides unbiased recommendation of
micro-videos with varying duration, and learn unbiased user preferences via adversarial learning.

• CWM (Counterfactual Watch Model) (Zhao et al., 2024): This methods proposes to use counterfactual reasoning to
mitigate duration bias.

A.7. Metrics.

Root Mean Square Error (RMSE). This metric measures the average magnitude of errors between generated values and
actual values, which is formulated as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (25)

where yi is the actual value of the i-th sample and ŷi is the predicted value.

Mean Absolute Error (MAE). This metric is used to evaluate the average discrepancy between generated and real data; the
calculation is as follows:

MAE =
1

n

n∑
i=1

|yi − ŷi|. (26)

XAUC (Zhan et al., 2022). This is an extension of the standard AUC, applied to continuous values. Given a pair of samples
(i, j), if the predicted watch-time values ŷi and ŷj are in the same order as their true values yi and yj , the score is 1;
otherwise, the score is 0. We uniformly sample such pairs from the test set, and the XAUC is computed as the average score
over all pairs. The formal definition is:

XAUC =
1

|S|
∑

(i,j)∈S

I [(ŷi > ŷj) = (yi > yj)] , (27)

where S represents the set of all sampled pairs, and I(·) is the indicator function, which returns 1 if the predicted order
matches the true order, and 0 otherwise. XAUC intuitively measures how well the ranking induced by the predicted watch
times aligns with the true ranking. A higher XAUC indicates better model performance.

XGAUC (Zhan et al., 2022). This is a weighted version of XAUC. It computes XAUC for each user individually, and then
averages the XAUC values with weights proportional to the sample size of each user. The formal definition is:

XGAUC =

∑
u Nu · XAUCu∑

u Nu
, (28)

where u represents a user, Nu is the number of samples for user u, XAUCu is the XAUC score for user u. XGAUC measures
the overall ranking consistency across users, with the weight adjusted based on the number of samples per user. A higher
XGAUC indicates better model performance across users.

In WTP tasks, MAE and RMSE are used to measure how close the predicted watch times are to the actual values, focusing
on the accuracy of the predictions. XAUC and XGAUC, on the other hand, evaluate how well the predicted rankings of
watch times match the true rankings, emphasizing the importance of the order of predictions. Both metrics are crucial:
accurate predictions (measured by MAE and RMSE) ensure precision, while correct rankings (measured by XAUC and
XGAUC) are essential for delivering relevant recommendations. In recommendation systems, maintaining the correct
ranking is often as important, if not more so, than predicting the exact values, making both aspects vital for optimizing user
satisfaction and overall model performance.
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A.8. The derivation of LHVQ−V AE .

The loss function LHVQ−V AE is designed to optimize both the encoder and decoder networks, while preserving the discrete
nature of the latent space.

LHVQ-VAE =
∥∥w −D

(
E(w) + sg[z− E(w)]

)∥∥2
2

+
∥∥sg[E(w)]− z

∥∥2
2
+ β

∥∥E(w)− sg[z]
∥∥2
2
.

(29)

This function consists of three key components, explained as follows:

Reconstruction loss:
||w −D(E(w) + sg[z− E(w)])||22 (30)

This part measures the squared Euclidean distance between the decoder output D(·) and the original input w, assessing
the model’s ability to reconstruct the data. Here, E(w) represents the encoder output of the input w, and z is the nearest
prototype vector. The stop-gradient operation sg[·] prevents gradients from passing through, ensuring that the codebook
is only updated through the second term. During forward propagation (when calculating the loss), this simplifies to
D(E(w) + z−E(w)) = D(z), and during backpropagation (when calculating the gradients), since z−E(w) provides no
gradients, it also simplifies to D(E(z)).

Quantization Loss:
||sg[E(w)]− z||22 (31)

This loss encourages the prototype vector z to move closer to the encoder output E(w). The stop-gradient operation is
applied to E(w) to prevent gradients from propagating through this term to the encoder, thus only updating the codebook.

Commitment Loss:
β||E(w)− sg[z]||22 (32)

This term encourages the encoder output E(w) to commit to the chosen codebook vector z. The weight factor β adjusts
the importance of this loss relative to the other components. By increasing the encoder’s commitment to its quantized
representation, this term improves the model’s stability and efficiency.

A.9. Results on different duration buckets.

A.10. Results on different duration buckets.

Table 7. Results on different duration buckets.
Duration
bucket

Wechat KuaiRand-Pure
RMSE MAE XAUC XGAUC RMSE MAE XAUC XGAUC

0 8.57 6.87 0.6118 0.5273 7.82 5.57 0.6922 0.6365
1 13.13 10.53 0.6084 0.5334 16.40 12.37 0.6689 0.6085
2 20.15 16.19 0.6088 0.5289 28.79 21.45 0.6941 0.6245
3 31.95 26.00 0.5930 0.5261 43.62 32.03 0.6786 0.6167
4 48.97 40.34 0.5795 0.5203 69.09 48.40 0.6614 0.6153

A.11. Training Loss.

L = Ltask + Lassign + β ∗ Lcompact, (33)

where β is the hyper-parameter ranged from (0.0, 0.2].

A.12. Why OT?

Assuming the instance representation is hi and the prototype set is {pk}C∗K
k=1 , the weight between hi and each prototype pi

is defined as:

αi,k =
exp (hT

i ∗ pk/τ)∑C∗K
j=1 exp (hT

i ∗ pj/τ)
. (34)
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We consider the three different alignment methods:

• SUOT calculates a transport matrix T based on the relationship between prototypes and instances, and uses ti,k ∈ T
to guide the learning of α. This approach considers global distribution alignment, offering strong robustness and
interpretability.:

Lassign = − 1

nb

nb∑
i=1

C∗K∑
k=1

ti,k logαi,k. (35)

• L2 distance directly aligns two representations, focusing on point-wise alignment without considering the global
distribution. This makes it susceptible to the influence of outliers.:

Lassign = ||hi −
C∗K∑
k=1

αi,k ∗ pk||2. (36)

• w/o alignment directly uses the linear combination
∑C∗K

k=1 α ∗ pk for prediction without Lassign.

Tab. 4 and 8 compare the results of different alignment methods, showing that SUOT achieves the best performance, which
demonstrates the effectiveness of OT-based alignment. Fig. 11 provides a case study where we visualize the weight matrix
α of a batch (nb = 512, C ∗K = 80) from the WeChat dataset. It can be observed that the α learned by OT alignment
maintains the same sparsity as the transport matrix T. In contrast, the α from other methods is very dense, treating the
prototypes as mere representation anchors to enhance the overall representation, while ignoring whether instances should
actually match their corresponding prototypes.

Table 8. Different distribution alignment methods.
Distribution
alignment

Wechat KuaiRand-Pure
RMSE MAE XAUC XGAUC RMSE MAE XAUC XGAUC

SUOT 28.47 19.84 0.6180 0.5727 40.44 24.33 0.7288 0.7045
L2 distance 29.37 20.35 0.6129 0.5683 41.28 24.91 0.7208 0.7006

w/o alignment 29.90 20.89 0.6108 0.5665 42.00 25.50 0.7185 0.6980
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Figure 11. A case study on the weights α for different alignment methods.
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