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Abstract

The advancements in Large Language Models (LLMs) have been hindered by
their substantial sizes, which necessitate LLM compression methods for practical
deployment. Singular Value Decomposition (SVD) offers a promising solution
for LLM compression. However, state-of-the-art SVD-based LLM compression
methods have two key limitations: truncating smaller singular values may lead to
higher compression loss, and the lack of update on the compressed weight after
SVD truncation. In this work, we propose SVD-LLM, a new SVD-based LLM
compression method that addresses the limitations of existing methods. SVD-LLM
incorporates a truncation-aware data whitening strategy to ensure a direct mapping
between singular values and compression loss. Moreover, SVD-LLM adopts a layer-
wise closed-form model parameter update strategy to compensate for accuracy
degradation under high compression ratios. We evaluate SVD-LLM on a total of
10 datasets and eight models from three different LLM families at four different
scales. Our results demonstrate the superiority of SVD-LLM over state-of-the-arts,
especially at high model compression ratios.

1 Introduction
Large Language Models (LLMs) have demonstrated remarkable capabilities in a wide range of tasks
such as natural language understanding and language generation [31, 9]. Despite such capabilities, the
democratization of LLMs is primarily restricted by their substantial resource demands [25, 26]. One
of the most effective techniques to reduce the resource demands of LLMs is model compression [32].
Compression techniques based on quantization [6, 15, 27], parameter pruning [16, 5], and knowledge
distillation [10, 11] specifically designed for LLMs have been intensively studied. Regardless of their
success, these techniques have their own constraints, such as hardware dependency and the need
for expensive retraining. Compared to those techniques, compression techniques based on low-rank
approximation, such as Singular Value Decomposition (SVD) are not limited by those constraints.

Despite these advantages, the potential of SVD for LLM compression has not been thoroughly
explored. A few SVD-based LLM compression methods such as ASVD [28] and FWSVD [12]
have recently been proposed. However, these methods exhibit severe performance degradation when
the model compression ratio2 is high. Such limitation can be attributed to two fundamental issues
involved in their approaches: ❶ Imprecise Data Preprocessing: although the data preprocessing
strategy proposed by ASVD reduces the negative impact of activation outliers, it does not establish
a direct relationship between singular values and the model compression loss. As a consequence,
truncating smaller singular values in SVD could lead to significant compression loss. ❷ Lack of

∗Corresponding author. Email: mizhang.1@osu.edu
2The compression ratio refers to the percentage of parameter reduction achieved through compression.
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Model Parameter Update after SVD Truncation: as the model compression ratio increases, the
number of singular values that need to be truncated in SVD increases as well. To compensate for
the accuracy degradation caused by truncating a large number of singular values, it is required to
update the remaining parameters in the compressed model. Unfortunately, existing SVD-based LLM
compression methods do not take such update into account, and thus fail to compensate for the
accuracy degradation under high model compression ratios.

In this paper, we propose a new SVD-based LLM compression method named SVD-LLM that effec-
tively addresses the two fundamental issues of the existing methods. SVD-LLM differs from existing
SVD-based LLM compression methods in two key aspects: ❶ Truncation-Aware Data Whiten-
ing: Supported by the theoretical proof, SVD-LLM incorporates a truncation-aware data whitening
technique that ensures a direct mapping between singular values and model compression loss. In
doing so, the proposed truncation-aware data whitening technique is able to identify which singular
values should be truncated to incur minimal model compression loss. ❷ Layer-Wise Closed-Form
Model Parameter Update: to compensate for accuracy degradation under high compression ratios,
SVD-LLM incorporates a layer-wise closed-form model parameter update strategy to progressively
update the compressed weights layer by layer.

We compare SVD-LLM with three SVD-based methods for LLM compression, including vanilla
SVD as well as state-of-the-art methods FWSVD and ASVD. To demonstrate the generability of
SVD-LLM, we conduct our evaluation on a total of 10 datasets and eight models from three different
LLM families (LLaMA, OPT, and Mistral) at four different scales (7B, 13B, 30B, and 65B). We
highlight six of our findings: (1) SVD-LLM consistently outperforms vanilla SVD, FWSVD, and
ASVD across all 10 datasets, three different LLM families, and four different scales and even exhibits
significant advantages under high compression ratios from 30% to 60%. (2) SVD-LLM also exhibits
superiority over the state-of-the-art in terms of compression speed. Specifically, when compressing
LLaMA-7B under 20% compression ratio on an A100 GPU, ASVD takes about 5.5 hours whereas
SVD-LLM completes the compression process in 15 minutes. (3) The independent performance of
either of the two key components of SVD-LLM still consistently surpasses the performance of the
current state-of-the-art SVD compression method under different compression ratios. (4) SVD-LLM
can benefit other LLM compression methods. Our evaluation results show that SVD-LLM is able
to further enhance the compression performance of well-recognized quantization (GPTQ [6]) and
parameter pruning-based (LLM-Pruner [16]) LLM compression methods. (5) SVD-LLM can ensure
inference speedup on both GPU and CPU. It is able to achieve at most 1.7x speedup on GPU and 1.5x
speedup on CPU under the 40% compression ratio. (6) Lastly, SVD-LLM brings additional benefit
beyond compressing the sizes of LLMs, and is also able to reduce the footprint of KV cache during
inference at runtime.

2 Related Work

Large Language Model Compression: LLMs in general contain billion-scale parameters. Applying
conventional model compression methods for LLMs is not feasible as they necessitate retraining. To
avoid retraining, post-training methods that do not involve retraining LLMs in the compression process
have been developed. In general, these methods can be grouped into four categories: unstructured
pruning, structured pruning, quantization, and low-rank approximation. Specifically, unstructured
pruning methods set the individual weights’ elements to zero without changing its shape. A notable
contribution is SparseGPT [5] which prunes the least important weight elements with the inversion
of the Hessian matrix. However, the irregular sparsification of unstructured pruning is difficult
to achieve the desired speedup or memory saving and can only demonstrate its best efficiency on
certain hardware architecture such as NVIDIA Ampere GPU. Unlike unstructured pruning, structured
pruning methods directly remove entire channels or other structured components from LLMs, making
them easier to implement on hardware. For example, LLM-Pruner [16] utilizes a small amount of
data to obtain the weight, parameter, and group importance of the coupled structure for pruning with
LoRA to recover precision. However, due to the great modification of the weight matrix in LLM, it
suffers from a great accuracy degradation, especially under high compression ratios. Quantization
methods, on the other hand, achieve model compression by reducing the precision of weight matrices
of an LLM. For example, GPTQ [6] uses layer-wise quantization and updates the weights with inverse
Hessian information. However, quantization has the drawback of only providing a limited range
of compression options, typically ranging from 3 to 8 bits. This limited range could prevent full
utilization of the available memory budget.
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Figure 1: Overview of SVD-LLM.

SVD for LLM Compression: Singular Value Decomposition (SVD) is a widely used technique
to reduce matrix size by approximating a matrix with two smaller low-ranking matrices [8]. In
the context of LLM compression, only a few SVD-based LLM compression methods have been
proposed. Specifically, vanilla SVD only focuses on the compression of the original weight matrix
without considering the importance of the parameters, potentially giving a larger compression error.
To address this problem, [12] propose FWSVD, which introduces Fisher information to weigh the
importance of parameters. However, FWSVD requires a complex gradient calculation that demands
substantial resources for LLM compression. Another problem of vanilla SVD is the distribution of
activation can affect the compression error. To address this issue, [28] propose ASVD, which scales
the weight matrix by a diagonal matrix that represents the impact of input channels on the weights.
However, both FWSVD and ASVD do not establish a direct relationship between singular values and
compression loss. As a result, truncating the smaller singular values may lead to higher compression
loss. Moreover, as the compression ratio increases, it is necessary to update the compressed weight
due to truncating a great number of singular values. However, existing methods have no design for
this update and thus incur severe accuracy degradation under high compression ratios.

3 SVD-LLM
Figure 1 provides an overview of SVD-LLM. At a high level, SVD-LLM is a SVD-based post-training
LLM compression method. Specifically, following the standard procedure of post-training LLM
compression methods [5, 28, 27], SVD-LLM uses a random set of sentences as calibration data to
generate activation for truncation-aware data whitening and layer-wise closed-form update for model
compression. SVD-LLM whitens the activation through Cholesky decomposition, and performs SVD
to truncate the weight matrices to compress the LLM. Under high model compression ratios, SVD-LLM
performs a layer-wise closed-form update to progressively update the remaining weights layer by
layer after compression. In the following, we describe both truncation-aware data whitening and
layer-wise closed-form update in detail. The pseudocode is provided in Appendix A.2.

3.1 Truncation-Aware Data Whitening

Motivation: Due to high variance of the input activation, simply applying vanilla SVD for LLM
compression leads to severe accuracy degradation [28]. To address this issue, ASVD [28] formulates
LLM compression as an optimization problem with the following optimization objective:

O = min(||WX −W ′X||F ) (1)

where W is the weight matrix of the original LLM, X is the activation of W given an input, W ′ is
the compressed weight matrix, and L = ||WX −W ′X||F is the compression loss in the form of
Frobenius loss.

Specifically, ASVD extracts a diagonal matrix S0 from X where each element in the diagonal is
the absolute mean value of each channel. It then uses S0 to normalize X and converts WX into
(WS0)(S

−1
0 X). Subsequently, SVD is performed on WS0 to obtain the decomposed matrices U0,

Σ0, and V0. Lastly, ASVD truncates the smallest singular values in Σ0 to obtain the compressed
weight matrix W ′

0 = U0 × Trunc.(Σ0)× V0 × S−1
0 .

Although normalizing the activation improves the performance, ASVD does not establish a direct rela-
tionship between singular values and compression loss (a detailed proof is included in Appendix A.1).
To better illustrate this point, we show two concrete examples in Figure 2(a). In the first example
❶ where only one singular value is truncated, truncating the smallest singular value 0.1 results in a
higher compression loss (loss = 1.1) than truncating the second smallest singular value 0.9 (loss =
0.7). In the second example ❷ where multiple singular values are truncated, truncating the smallest
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Figure 2: Comparison of data whitening methods between ASVD and SVD-LLM.

two singular values 0.9 and 0.1 also leads to a higher loss (loss = 1.9) than truncating 2.4 and 0.1
(loss = 1.7). Hence, truncating the smallest singular values does not lead to minimal loss.

Key Design: The key idea of SVD-LLM is to incorporate a truncation-aware data whitening technique
that ensures a direct mapping between singular values and compression loss. To achieve this, SVD-LLM
enforces the whitened activation S−1X to be orthogonal such that each channel is independent of
each other, i.e., (S−1X)(S−1X)T = S−1XXT (S−1)T = I , where S is derived through Cholesky
decomposition [19]. Then we perform SVD on WS to obtain the decomposed matrices U,Σ, V ,
where U = [u1, u2, u3, ..., ur], Σ = diag(σ1, σ2, σ3, · · · , σr), and V = [v1, v2, v3, ..., vr]. Lastly,
the smallest singular values in Σ are truncated to obtain the compressed weight matrix W ′ =
U × Trunc.(Σ)× V T × S−1.

Figure 2(b) illustrates the effect of the proposed truncation-aware data whitening technique. In the
first example ❶ where only one singular value is truncated, the compression loss is equal to the
truncated singular value. In the second example ❷, the compression loss of truncating multiple
singular values is equal to the square root of the sum of their squares. As such, under the proposed
truncation-aware data whitening technique, truncating the smallest singular values leads to minimal
compression loss.

Below, we provide a theoretical proof on why the proposed truncation-aware data whitening technique
ensures a direct mapping between singular values and compression loss in the case of one singular
value (Theorem 3.2) and multiple singular values (Corollary 3.3).

Lemma 3.1. The Frobenius norm of matrix A with dimension m× n can be deduced into the square
root of the trace of its gram matrix, which is:

∥A∥F ≜

 n∑
j=1

m∑
i=1

|aij |2
 1

2

=
[
trace

(
ATA

)] 1
2 (2)

Using Lemma 3.1, we obtain the compression loss Li when truncating the ith singular value of
S−1X to reduce its rank for compression:

Li = ||(W −W ′)X||F = ||σiuiv
T
i S

−1X||F = σi trace(uiv
T
i S

−1XXT (S−1)T viu
T
i )

1
2 (3)

Since both U = [u1, u2, u3, ..., ur] and V = [v1, v2, v3, ..., vr] are orthogonal matrices, we have:

vTi vi = uT
i ui = I; vTi vj = uT

i uj = 0,∀i ̸= j; trace(viv
T
i ) = trace(uiu

T
i ) = 1 (4)

Theorem 3.2. If S is the Cholesky decomposition of XXT , the compression loss Li equals to σi.

Proof. Since the whitening matrix S is the Cholesky decomposition of XXT , we have SST = XXT .
We can further infer Equation (3) to obtain:

Li = ||σiuiv
T
i S

−1X||F = σi trace(uiv
T
i S

−1XXT (S−1)T viu
T
i )

1
2 = σi trace(uiv

T
i viu

T
i )

1
2 = σi

(5)
Therefore, Li of truncating σi equals to the singular value σi itself.

Corollary 3.3. If S is the Cholesky decomposition of XXT , truncating the smallest singular values
leads to the lowest loss L compared to truncating others.

4



Proof. If we truncate σm+1, σm+2, σm+3, ..., σr in Σ for compression, the square of the loss L is:

L2 =

∣∣∣∣∣
∣∣∣∣∣

r∑
i=m+1

σiuiv
T
i S

−1X

∣∣∣∣∣
∣∣∣∣∣
2

F

=

r∑
j=m+1

r∑
i=m+1

σiσj trace(uiv
T
i S

−1XXT (S−1)T vju
T
j )

=

r∑
i=m+1

σ2
i trace(uiv

T
i S

−1XXT (S−1)T viu
T
i ) =

r∑
i=m+1

(Li)
2 =

k∑
i=1

(σi)
2

(6)

The squared loss L2 is equal to the sum of the squared singular values. Therefore, truncating the
smallest singular values σi achieves the lowest compression loss.

3.2 Layer-Wise Closed-Form Update

Motivation: Given the same calibration data as input, the compressed weight matrix W ′ generates
a new activation X ′ that is different from X generated by the original weight matrix W . As the
compression ratio increases, W needs to truncate a larger number of singular values to obtain W ′,
thus X ′ deviates further from X . Therefore, it becomes necessary to design a strategy for updating
W ′ to minimize ||WX ′−W ′X ′||F . However, existing SVD-based LLM compression methods have
no design of parameter update after compression, leading to less competitive performance at high
compression ratios.

Updated
Layer

Layer being
Updated 

New
Activation

Layer  i-1 x'i-1...

Layer  i

Update    

Figure 3: Layer-Wise Closed-Form Update.

Key Design: The key idea of SVD-LLM is to incor-
porate a layer-wise closed-form strategy to update
W ′ to minimize ||WX ′ −W ′X ′||F . Figure 3 il-
lustrates the overall process. To perform the update
in layer i, SVD-LLM uses the new activation X ′

i−1
from the previous layer i − 1 that has been up-
dated. To perform the update without destroying
the low-rank structure of W ′

i , SVD-LLM only up-
dates the matrix Ui to its closed-form solution U ′

i
while keeping Trunc.(Σ)i and Vi fixed as:

U ′
i = argmin

U ′
i

||WiX
′
i−1 −W ′

iX
′
i−1||F

= WiX
′
i−1D

T (DDT )−1, D = Trunc.(Σ)iV T
i S−1

i X ′
i−1

(7)

4 Experiments
Baselines. We compare SVD-LLM against three baselines including vanilla SVD as well as state-of-
the-art SVD-based LLM compression methods FWSVD [12] and ASVD [28].

Models and Datasets. To demonstrate the generability of our method, we evaluate the performance
of SVD-LLM and the baselines on eight models from three different LLM families (LLaMA-7B, 13B,
30B, 65B [23], LLaMA2-7B [24], OPT-6.7B [30], Vicuna-7B [3] and Mistral-7B [14]) and 10 datasets
including three language modeling datasets (WikiText-2 [18], PTB [17] and C4 [21]) and seven
classification datasets (OpenbookQA [20], WinoGrande [22], HellaSwag [29], PIQA [2], MathQA [1],
ARC-e, and ARC-c [4]) in zero-shot setting with LM-Evaluation-Harness framework [7].

Implementation Details. To ensure a fair comparison, we followed ASVD [28] to randomly select
256 samples from WikiText-2 as the calibration data. Since layer-wise closed-form update is intended
to mitigate the accuracy drop under higher compression ratios, we only apply it when the compression
ratios are at 40% and above. All of our experiments are conducted on Nvidia A100 GPUs.

4.1 Overall Performance
We evaluate the overall performance of SVD-LLM from four aspects: (1) performance under different
compression ratios, (2) performance on different LLMs, (3) performance on LLMs with larger scales,
and (4) performance with LoRA fine-tuning (See Appendix A.3). Some generated contents by the
compressed LLM are listed in Appendix A.4 to provide a more straightforward comparison.

Performance under Different Compression Ratios. First, we evaluate the performance of LLaMA-
7B compressed by SVD-LLM and the baselines under 20% to 60% compression ratios. Table 1
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Table 1: Zero-shot performance of LLaMA-7B compressed by SVD-LLM and baselines under 20%
to 60% compression ratio on three language modeling datasets (measured by perplexity (↓)) and
seven common sense reasoning datasets (measured by both individual and average accuracy (↑)). The
best performance is marked in bold. The relative performance gain compared to the best-performing
baseline is marked in green color inside bracket.

RATIO METHOD WikiText-2↓ PTB↓ C4↓ Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Average↑
0% Original 5.68 8.35 7.34 0.28 0.67 0.67 0.56 0.38 0.78 0.27 0.52

20%

SVD 20061 20306 18800 0.14 0.27 0.51 0.26 0.21 0.53 0.21 0.31
FWSVD 1727 2152 1511 0.15 0.31 0.50 0.26 0.23 0.56 0.21 0.32
ASVD 11.14 16.55 15.93 0.25 0.53 0.64 0.41 0.27 0.68 0.24 0.43

SVD-LLM 7.94 (↓29%) 16.22 (↓2%) 15.84 (↓1%) 0.22 0.58 0.63 0.43 0.29 0.69 0.24 0.44 (↑2%)

30%

SVD 13103 17210 20871 0.13 0.26 0.51 0.26 0.21 0.54 0.22 0.30
FWSVD 20127 11058 7240 0.17 0.26 0.49 0.26 0.22 0.51 0.19 0.30
ASVD 51 70 41 0.18 0.43 0.53 0.37 0.25 0.65 0.21 0.38

SVD-LLM 9.56 (↓81%) 26.39 (↓62%) 25.11 (↓39%) 0.20 0.48 0.59 0.37 0.26 0.65 0.22 0.40 (↑5%)

40%

SVD 52489 59977 47774 0.15 0.26 0.52 0.26 0.22 0.53 0.20 0.30
FWSVD 18156 20990 12847 0.16 0.26 0.51 0.26 0.22 0.53 0.21 0.30
ASVD 1407 3292 1109 0.13 0.28 0.48 0.26 0.22 0.55 0.19 0.30

SVD-LLM 13.11 (↓99%) 63.75 (↓98%) 49.83 (↓96%) 0.19 0.42 0.58 0.33 0.25 0.60 0.21 0.37 (↑23%)

50%

SVD 131715 87227 79815 0.16 0.26 0.50 0.26 0.23 0.52 0.19 0.30
FWSVD 24391 28321 23104 0.12 0.26 0.50 0.26 0.23 0.53 0.20 0.30
ASVD 15358 47690 27925 0.12 0.26 0.51 0.26 0.22 0.52 0.19 0.30

SVD-LLM 23.97 (↓99%) 150.58 (↓99%) 118.57 (↓99%) 0.16 0.33 0.54 0.29 0.23 0.56 0.21 0.33 (↑10%)

60%

SVD 105474 79905 106976 0.16 0.26 0.50 0.26 0.22 0.52 0.21 0.30
FWSVD 32194 43931 29292 0.15 0.26 0.49 0.26 0.22 0.53 0.18 0.30
ASVD 57057 45218 43036 0.12 0.26 0.49 0.26 0.21 0.51 0.18 0.29

SVD-LLM 53.74 (↓99%) 438.58 (↓99%) 345.49 (↓99%) 0.14 0.28 0.50 0.27 0.22 0.55 0.21 0.31 (↑7%)

Table 2: Perplexity (↓) of four different LLMs
including OPT-6.7B, LLaMA 2-7B, Mistral-7B,
and Vicuna-7B under 20% compression ratio on
WikiText-2. The relative performance gain com-
pared to the best-performing baseline is marked
in green color inside bracket.

METHOD OPT-6.7B LLaMA 2-7B Mistral-7B Vicuna-7B

SVD 66275 18192 159627 18644
FWSVD 14559 2360 6357 2758
ASVD 82 10.10 13.72 16.23

SVD-LLM 16.04 (↓80%) 8.50 (↓16%) 10.21 (↓26%) 6.78 (↓58%)

Table 3: Perplexity (↓) of LLaMA-7B, 13B, 30B,
65B under 20% compression ratio on WikiText-
2. Some baselines’ results are not available
due to running out of memory (OOM) during
model compression. The relative performance
gain compared to the best-performing baseline
is marked in green color inside bracket.

METHOD LLaMA-7B LLaMA-13B LLaMA-30B LLaMA-65B

SVD 20061 946.31 54.11 11.27
FWSVD 1630 OOM OOM OOM
ASVD 11.14 6.74 22.71 OOM

SVD-LLM 7.94 (↓29%) 6.61 (↓2%) 5.63 (↓75%) 6.58 (↓42%)

summarizes the results on all 10 datasets. As shown, SVD-LLM consistently outperforms vanilla SVD,
FWSVD and ASVD across all of the compression ratios. More importantly, compared to the low
compression ratio scenario in Table 1, SVD-LLM exhibits significant advantages over vanilla SVD,
FWSVD, and ASVD under high compression ratios. Specifically, under 30% compression ratio,
compared to the best-performing baseline (ASVD), SVD-LLM reduces the perplexity on WikiText-2,
PTB, and C4 by 81%, 62%, and 39%, respectively; When the compression ratio reaches 40% and
above, SVD-LLM reduces the perplexity by more than 96%. These results indicate that SVD-LLM is
more effective in compressing LLMs for more resource-constrained devices such as smartphones and
IoT devices. On the seven classification datasets, SVD-LLM performs better than the best-performing
baseline on most of the datasets and consistently achieves at least 2% higher average accuracy across
all the compression ratios.

Performance on Different LLMs. To examine the generability of SVD-LLM across different LLMs,
we compare the performance between SVD-LLM and the baselines on four different models, including
OPT-6.7B, LLaMA 2-7B, Mistral-7B, and Vicuna-7B under 20% compression ratio on WikiText-2
and the common sense reasoning datasets (See Appendix A.5). The result on WikiText-2 is shown
in Table 2, SVD-LLM consistently outperforms vanilla SVD, FWSVD, and ASVD across all four
LLMs. In addition, SVD-LLM exhibits more stable performance on different LLM families, especially
compared to vanilla SVD and FWSVD.

Performance on LLMs with Larger Scales. To examine the generability of SVD-LLM on LLMs
across different scales, we compare the performance between SVD-LLM and the baselines on LLaMA
series at four different scales – 7B, 13B, 30B, and 65B – under 20% compression ratio on WikiText-2.
As shown in Table 3, SVD-LLM consistently outperforms vanilla SVD, FWSVD, and ASVD across
all four model sizes. Moreover, both FWSVD and ASVD demand excessive memory resources,
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Table 6: Perplexity (↓) of compressed LLaMA-7B on WikiText-2. SVD-LLM (W) denotes the version
of SVD-LLM with truncation-aware data whitening only; SVD-LLM (U) denotes the version of SVD-LLM
with layer-wise closed-form update only; SVD-LLM (W+U) denotes the version of SVD-LLM with both
truncation-aware data whitening and layer-wise closed-form update. The relative performance gain
compared to ASVD is marked in green color.

METHOD 20% 30% 40% 50% 60%

ASVD 11.14 51 1407 15358 57057

SVD-LLM (W) 7.94 (↓29%) 9.56 (↓81%) 13.73 (↓99%) 26.11 (↓99%) 66.62 (↓99%)
SVD-LLM (U) 9.54 (↓14%) 12.98 (↓75%) 24.16 (↓99%) 72.13 (↓99%) 204 (↓99%)

SVD-LLM (W+U) 8.25 (↓26%) 9.95 (↓80 %) 13.11 (↓99%) 23.97 (↓99%) 53.74 (↓99%)

SVD-LLM 7.94 (↓29%) 9.56 (↓81%) 13.11 (↓99%) 23.97 (↓99%) 53.74 (↓99%)

causing out of memory (OOM) when compressing LLMs at larger scales even on an A100 GPU
due to memory-intensive operations for estimating the importance of weight matrices. In contrast,
SVD-LLM does not involve such estimation operations and thus avoids OOM.

4.2 Compression Speed Evaluation
Besides compression performance, we also evaluate the compression speed of SVD-LLM and the
baselines. Specifically, we measured the GPU hours used for SVD-LLM and ASVD when compressing
LLaMA-7B under the 20% compression ratio on an A100 GPU. The results are shown in Table 4.
As shown, ASVD takes about 5.5 hours whereas SVD-LLM completes the compression process in
15 minutes, which is 32 times faster. When breaking down the time, most of the time consumed by
ASVD is dedicated to calculating the compression ratio of each weight matrix based on its estimated
importance through a search process. In contrast, SVD-LLM maintains a consistent compression ratio
among all weight matrices and thus gets rid of the time-consuming search process.

Table 4: Compression time of SVD-LLM and
ASVD on LLaMA-7B under 20% compression
ratio. The relative speedup is marked in green
color inside bracket.

METRIC
SVD-LLM ASVD

White Update Total Normalize Search Total
TIME 10min 5min 15min (↓95%) 5min 5.5h 5.5h
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Figure 4: Perplexity of LLaMA-7B under 20%
compression ratio using calibration data with
different number or sampled with different seeds
from WikiText-2.

Table 5: Performance of LLaMA-7B compressed
by SVD-LLM under 20% and 30% compression ra-
tios using calibration data randomly sampled from
WikiText-2 (by default in our paper) and C4. The
performance on WikiText-2, PTB, and C4 is re-
ported by perplexity (↓), while the performance
on OpenbookQA and HellaSwag are reported by
accuracy (↑). The relative performance drop (gain)
for data sampled from C4 compared to that sam-
pled from WikiText-2 is marked in red (green)
color inside bracket.

RATIO WikiText-2 PTB C4 Openb. HellaS.

Calibration data sampled from WikiText-2 (seed=3)

20% 7.94 16.22 15.84 0.22 0.43
30% 9.56 26.39 25.11 0.20 0.37

Calibration data sampled from C4 (seed=3)

20% 8.62(↑9%) 14.63(↓9%) 13.77(↓13%) 0.23(↑5%) 0.43
30% 10.67(↑12%) 25.07(↓5%) 22.37(↓10%) 0.22(↑9%) 0.42(↑14%)

4.3 Ablation Study
Modular Sensitivity Study: We conduct ablation studies to evaluate the separate contributions of
the two key components (truncation-aware data whitening and layer-wise closed-form update) of
SVD-LLM. Let SVD-LLM (W) denote the version of SVD-LLM with truncation-aware data whitening
only; SVD-LLM (U) denote the version of SVD-LLM with layer-wise closed-form update only; and
SVD-LLM (W+U) denote the version of SVD-LLM with both truncation-aware data whitening and
layer-wise closed-form update. The results are shown in Table 6. We have three observations. (1) Both
SVD-LLM (W) and SVD-LLM (U) consistently outperform ASVD across all the compression ratios.
Notably, when the compression ratio is at and above 40%, both variants reduce the perplexity by more
than 99% compared to ASVD. (2) Under 20% and 30% compression ratios, SVD-LLM (W) achieves
the lowest perplexity compared to SVD-LLM (U) and SVD-LLM (W+U). (3) Under 40%, 50% and 60%
compression ratios, SVD-LLM (W+U) achieves the lowest perplexity compared to SVD-LLM (W) and
SVD-LLM (U), highlighting the importance of combining both truncation-aware data whitening and
layer-wise closed-form update when compression ratio goes high.

7



Table 7: Perplexity (↓) of LLaMA-7B compressed
by GPTQ w/ and w/o SVD-LLM on WikiText-2. The
relative performance gain of combined compression
compared to GPTQ-3bit is marked in green color
inside bracket.

METRIC GPTQ-4bit GPTQ-3bit SVD-LLM + GPTQ-4bit

Memory 3.9 GB 2.8 GB 2.1 GB
Perplexity 6.21 16.28 13.29 (↓18%)

Table 8: Perplexity (↓) of LLaMA-7B com-
pressed by LLM-Pruner w/ and w/o SVD-LLM
on WikiText-2. The relative performance gain
of combined compression compared to LLM-
Pruner under 40% compression ratio is marked
in green color.

METRIC LLM-Pruner-30% LLM-Pruner-40% LLM-Pruner-30%
+ SVD-LLM

Memory 9.8 GB 8.8 GB 8.8 GB
Perplexity 9.88 12.21 10.58 (↓13%)

Calibration Data Analysis: We next analyze the impact of calibration data used for both truncation-
aware data whitening and layer-wise closed-form update on the compression performance. Figure 4
and Table 5 summarize the performance of compressed LLaMA-7B when changing three key
characteristics of the calibration data, the number of the calibration data, the seed used to randomly
sample the calibration data, and the data set from which the calibration data is sampled. As shown,
changing any of the three characteristics only causes a tiny disturbance of less than 15% to the final
performance, demonstrating that SVD-LLM is less sensitive to the design of the calibration data to
compress LLM.

4.4 Benefits to other LLM Compression Methods
SVD-LLM is orthogonal to other LLM compression methods including quantization and parameter
pruning. In this experiment, we combine SVD-LLM with quantization and parameter pruning-based
LLM compression methods that are widely recognized by the community to examine how SVD-LLM
could further enhance their performance.

Integrate SVD-LLM with Quantization. We select GPTQ [6] as the quantization method. Specifically,
we compress LLaMA-7B by GPTQ-4bit combined with SVD-LLM, and compare the compressed
model against LLaMA-7B compressed by GPTQ-3bit. As shown in Table 7, combining GPTQ-4bit
with SVD-LLM achieves a perplexity that is 18% lower than GPTQ-3bit even with a smaller memory
footprint (2.1 GB vs. 2.8 GB). This result demonstrates that compared to directly quantizing using
smaller number of bits, GPTQ achieves better compression performance with the help of SVD-LLM.

Integrate SVD-LLM with Parameter Pruning. We select LLM-Pruner [16] as the parameter pruning
method. Specifically, we compress LLaMA-7B by LLM-Pruner under 30% compression ratio
combined with SVD-LLM, and compare the compressed model against LLaMA-7B compressed by
LLM-Pruner under 40% compression ratio. As shown in Table 8, LLM-Pruner achieves better
compression performance when used in conjunction with SVD-LLM. In particular, with the same
memory footprint of 8.8 GB, combining LLM-Pruner under 30% compression ratio with SVD-LLM
achieves a perplexity that is 13% lower than LLM-Pruner under 40% compression ratio.

4.5 Benefits of Inference Speedup
SVD-LLM is capable to achieve inference speedup. To demonstrate this advantage, we measure the
number of tokens that the original LLaMA-7B and its compressed version by SVD-LLM can generate
on average per second with different batch size and sequence length. Figure 5 show the results
on the GPU and CPU. As shown, SVD-LLM consistently ensures an acceleration in the generation
speed across all the compression ratios illustrated in the figure. More importantly, this enhancement
becomes more significant as the batch size increases and the sequence length decreases, resulting in a
maximum speedup of 1.7x on GPU and 1.5x on CPU under the 40% compression ratio, where the
model performance remains acceptable according to Table 1. These results highlight the effectiveness
of SVD-LLM in improving the efficiency of LLM for real-world usage.

4.6 Benefits of KV Cache Compression
SVD-LLM is able to not only compress LLMs but also compress the runtime KV cache at the same
time. Specifically, instead of keeping the original intermediate state matrix m = WX with shape
M × L inside the KV cache, after decomposing and compressing W into WuW

T
v , SVD-LLM only

needs to store m′ = WT
v X with shape r×L. Therefore, the size of the KV cache can be compressed

to r
M of the original. Moreover, since Wu is already stored as the weight matrix in the decomposed

LLM, the original intermediate state matrix can still be recovered by m = Wum
′ without accuracy

drop. Therefore, SVD-LLM provides a unified solution that combines model compression and KV
cache compression into a single process. This is different from existing quantization or parameter
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Figure 5: Throughput (Tokens/sec) of original LLaMA-7B and its compressed version by SVD-LLM
under 20%, 40%, 60% and 80% compression ratio on single A100 GPU (Figure (a),(b)) and single
AMD EPYC 7643 CPU (Figure (c),(d)). Figure (a),(c) is the comparison with different batch size
while sequence length = 32, Figure (b), (d) is the comparison with different sequence length while
batch size = 64.
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Figure 6: Peak memory to generate 128 tokens with batch size of 32 using LLaMA-7B compressed
by SVD-LLM under different compression ratios w/ and w/o KV-cache compression. The difference
between the blue and yellow bars marked in red indicates the reduced footprint of the KV cache.

pruning-based LLM compression methods that need to be combined with other techniques for
compressing both weights and KV cache..

In our last experiment, we evaluate this benefit on KV cache compression brought by SVD-LLM. This
is a new avenue since KV cache compression has not been evaluated in previous LLM compression
studies. Specifically, we measure the peak memory footprint during inference when generating 128
tokens with batch size of 32 using LLaMA-7B compressed by SVD-LLM under different compression
ratios w/ and w/o considering KV cache compression. The results are illustrated in Figure 6 where
the difference between the blue and yellow bars marked in red represents the reduced footprint of the
KV cache. As shown, SVD-LLM is able to effectively reduce the footprint of KV cache. Therefore,
the peak memory during inference at runtime across all the compression ratios.

5 Conclusion
In this paper, we presented SVD-LLM, a SVD-based LLM compression method. SVD-LLM proposes
a novel truncation-aware data whitening strategy to guide which singular values to be truncated
with minimal compression loss. It also introduces a layer-wise closed-form model parameter update
scheme to compensate for accuracy degradation under high compression ratios. We have demonstrated
the effectiveness of SVD-LLM on 10 datasets and seven models from three LLM families at four scales
and have shown its superiority over state-of-the-arts. We also show its effectiveness in further
enhancing the performance of other LLM compression methods.

9



References
[1] Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh

Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based
formalisms. In NAACL-HLT (1), pages 2357–2367. Association for Computational Linguistics,
2019.

[2] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning
about physical commonsense in natural language. In AAAI, pages 7432–7439. AAAI Press,
2020.

[3] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL
https://lmsys.org/blog/2023-03-30-vicuna/.

[4] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning
challenge. CoRR, abs/1803.05457, 2018.

[5] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. In ICML, volume 202 of Proceedings of Machine Learning Research, pages
10323–10337. PMLR, 2023.

[6] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: accurate post-training
quantization for generative pre-trained transformers. CoRR, abs/2210.17323, 2022.

[7] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/
10256836.

[8] G.H. Golub, Alan Hoffman, and G.W. Stewart. A generalization of the eckart-young-mirsky
matrix approximation theorem. Linear Algebra and its Applications, 88-89:317–327, 1987.
ISSN 0024-3795. doi: https://doi.org/10.1016/0024-3795(87)90114-5. URL https://www.
sciencedirect.com/science/article/pii/0024379587901145.

[9] Roberto Gozalo-Brizuela and Eduardo C. Garrido-Merchán. A survey of generative AI applica-
tions. CoRR, abs/2306.02781, 2023.

[10] Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Knowledge distillation of large language
models. CoRR, abs/2306.08543, 2023.

[11] Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alex Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger
language models with less training data and smaller model sizes. In ACL (Findings), pages
8003–8017. Association for Computational Linguistics, 2023.

[12] Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language
model compression with weighted low-rank factorization. In ICLR. OpenReview.net, 2022.

[13] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR.
OpenReview.net, 2022.

[14] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825,
2023.

10

https://lmsys.org/blog/2023-03-30-vicuna/
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836
https://www.sciencedirect.com/science/article/pii/0024379587901145
https://www.sciencedirect.com/science/article/pii/0024379587901145


[15] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. AWQ: activation-
aware weight quantization for LLM compression and acceleration. CoRR, abs/2306.00978,
2023.

[16] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In NeurIPS, 2023.

[17] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large
annotated corpus of english: The penn treebank. Comput. Linguistics, 19(2):313–330, 1993.

[18] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In ICLR (Poster). OpenReview.net, 2017.

[19] Carl Dean Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.

[20] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? A new dataset for open book question answering. In EMNLP, pages 2381–2391.
Association for Computational Linguistics, 2018.

[21] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

[22] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In AAAI, pages 8732–8740. AAAI Press, 2020.

[23] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023.

[24] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models. CoRR, abs/2307.09288, 2023.

[25] Zhongwei Wan, Xin Wang, et al. Efficient large language models: A survey. arXiv preprint
arXiv:2312.03863, 2023.

[26] Xin Wang, Zhongwei Wan, Arvin Hekmati, Mingyu Zong, Samiul Alam, Mi Zhang, and
Bhaskar Krishnamachari. Iot in the era of generative ai: Vision and challenges. arXiv preprint
arXiv:2401.01923, 2024.

[27] Guangxuan Xiao, Ji Lin, Mickaël Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models.
In ICML, volume 202 of Proceedings of Machine Learning Research, pages 38087–38099.
PMLR, 2023.

[28] Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. ASVD:
activation-aware singular value decomposition for compressing large language models. CoRR,
abs/2312.05821, 2023.

[29] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In ACL (1), pages 4791–4800. Association for Computational
Linguistics, 2019.

11



[30] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam
Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke
Zettlemoyer. OPT: open pre-trained transformer language models. CoRR, abs/2205.01068,
2022.

[31] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models. CoRR, abs/2303.18223, 2023.

[32] Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression
for large language models. CoRR, abs/2308.07633, 2023.

12



A Appendix.

A.1 The compression error of ASVD

The previous state-of-the-art method ASVD introduced a diagonal scaling matrix S0 that modifies
the weight matrix to reflect the varying significance of different input channels. The linear layer is
formulated as Y = (WS0)S

−1
0 X . The compression is made by keeping the largest m singular value

of WS0:

WS0 ≈
m∑
i=1

σ′
iu

′
iv

′T
i

The resulting activation is expressed as:
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which is still a complex function that involves the activation X , the diagonal matrix S0, the singular
vector v′i and the singular value σ′

i. As a result, compression error is not directly related to the singular
value, and the conventional SVD compression by truncating the smallest singular values may lead to
suboptimal compression error.

A.2 Pseudocode for SVD-LLM

Algorithm 1 shows the pseudocode of SVD-LLM. Before compression, SVD-LLM randomly collects a
small amount of sentences as the calibration data C, it then runs the truncation-aware data whitening
process as shown in Algorithm 2 to obtain the set of whitening matrix SetS for the weight to compress.
After that, it runs the SVD and truncation with SetS on each weight matrix in the LLM. Instead of
directly finishing the whole compression, it stores the decomposed matrices and further utilizes these
matrices to run the layer-wise closed-form update as shown in Algorithm 3.

A.3 Performance with LoRA Fine-Tuning.

LoRA [13] is a common fine-tuning technique for LLM. It has been applied with pruning-based LLM
compression methods such as LLM-Pruner [16] to mitigate accuracy drop after pruning. LoRA can
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Algorithm 1 Pseudocode for SVD-LLM

1: Input: M : Original LLM
2: Output: M ′: Compressed LLM by SVD-LLM
3: procedure SVD-LLM(M )
4: Randomly collect several sentences as the calibration data C
5: SetS ← TRUNCATION-AWARE DATA WHITENING(M,C)
6: SetSV D ← ∅ ▷ Initialize the set of decomposed matrices for the weight to compress
7: SetW ←M ▷ Obtain the set of weights in M to compress
8: for W in SetW do
9: S ← SetS(W ) ▷ Extract the whitening matrix of current weight W

10: U,Σ, V ← SVD(WS) ▷ Apply singular value decomposition on W
11: Σ1 ← Trunc.(Σ) ▷ Truncate the smallest singular values in Σ
12: SetSV D ← (U,Σ1, V ) ∩ SetSV D ▷ Store the decomposed matrices of the weight in the

set
13: end for
14: M ′ ← LAYER-WISE CLOSED-FORM UPDATE(M,C,SetS ,SetSV D)
15: return M ′

16: end procedure

Algorithm 2 Pseudocode for Truncation-Aware Data Whitening

1: Input: M : Original LLM
2: Input: C: Calibration Data
3: Output: SetS : Set of whitening matrices for the weight to compress in M
4: procedure TRUNCATION-AWARE DATA WHITENING(M,C)
5: SetS ← ∅ ▷ Initialize the set of whitening matrices
6: SetW ←M ▷ Obtain the set of weights in M to compress
7: for W in SetW do
8: X ←M(W,D) ▷ Obtain the input activation of the weight matrix W
9: S ← Cholesky_Decomposition(XXT ) ▷ Apply cholesky decomposition on XXT

10: SetS ← S ∪ SetS ▷ Store the whitening weight matrix in the set
11: end for
12: return SetS
13: end procedure

also be combined with SVD-based LLM compression methods by modifying the forward pass of a
linear layer as:

Y = W ′
uW

′
vX (8)

where W ′
u = Wu + BuAu, W ′

v = WT
v + BvAv, and Au, Bu, Av, and Bv are low-rank weights

fine-tuned using LoRA.

To examine the performance of SVD-LLM in combination with LoRA, we follow the same configura-
tion used in LLM-Pruner [16] to fine-tune LLaMA-7B compressed by SVD-LLM and ASVD under
the compression ratios from 20% to 80% with LoRA. The results are shown in Table 9. We have
three observations. (1) Comparing SVD-LLM with SVD-LLM + LoRA, under the compression ratio
between 20% and 50%, the accuracy enhancement brought by LoRA is limited; as the compression
ratio increases, LoRA plays a more significant role in improving the performance of SVD-LLM. (2)
Compared to ASVD + LoRA, SVD-LLM + LoRA consistently achieves better accuracy across all
the compression ratios. In particular, under 70% compression ratio, the perplexity of SVD-LLM +
LoRA is 75% lower than that of ASVD + LoRA. (3) Finally, even without LoRA, SVD-LLM is able to
achieve perplexity comparable to ASVD + LoRA, especially under the compression ratios between
20% and 60%.

A.4 Generated Content from the Compressed Model

We also compare some examples of sentences generated by LLaMA-7B compressed with SVD-LLM
and ASVD in Table 10. As shown, the sentences generated by the model compressed by SVD-LLM
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Algorithm 3 Pseudocode for Layer-Wise Closed-Form Update

1: Input: M : Original LLM
2: Input: C: Calibration Data
3: Input: SetS : Set of whitening matrices for the weight to compress in M
4: Input: SetSV D: Set of decomposed matrices for the weight to compress in M
5: Output: M ′: Compressed LLM by SVD-LLM
6: procedure LAYER-WISE CLOSED-FORM UPDATE(M,C,SetS ,SetSV D)
7: M ′ ←M ▷ Initialize M ′ with M
8: SetL ←M ′ ▷ Obtain the set of encoder and decoder layers in M ′

9: X ′ ←M ′(C) ▷ Obtain the input activation of the first layer in M ′

10: for L in SetL do
11: SetW ← L ▷ Obtain the set of weights in L to compress
12: for W in SetW do
13: S ← SetS(W ) ▷ Extract the whitening matrix of current weight W
14: U,Σ1, V ← SetSV D(W ) ▷ Obtain the decomposed matrices of W from SetSV D

15: U ′ = WX ′X ′T (S−1)TV Σ1(Σ1V
TS−1X ′X ′T (S−1)TV Σ1)

−1 ▷ Closed-form
16: Wu ← U ′(Σ1)

1/2,Wv ← S−1V (Σ1)
1/2 ▷ Obtain two low-rank matrices

17: L(W )← L(Wu,Wv) ▷ Replace W with Wu and Wv in L
18: end for
19: X ′ ← L(X ′) ▷ Use the compressed layer to calculate the new input activation X ′ for the

next layer
20: end for
21: return M ′

22: end procedure

Table 9: Perplexity of LLaMA-7B compressed by SVD-LLM and ASVD (w/ and w/o LoRA) on
WikiText-2.

METHOD 20% 30% 40% 50% 60%

ASVD 11.14 51 1407 15358 57057
ASVD + LoRA 7.37 10.16 14.86 21.83 44.81

SVD-LLM 7.94 9.56 13.11 23.97 53.74
SVD-LLM + LoRA 8.28 9.14 10.65 13.26 17.93

exhibit better fluency, relevance, and informativeness compared to that compressed by ASVD. More
importantly, when the compression ratio is increased to 30%, the previous state-of-the-art method
ASVD completely loses its generation ability. In contrast, even when the compression ratio is up to
40%, SVD-LLM is still capable of generating complete sentences.

A.5 More Experiments on compressing different LLMs

We also evaluate the performance of different LLMs, including OPT-6.7B, LLaMA 2-7B, Mistral-7B,
and Vicuna-7B under 20% compression ratio on seven common sense reasoning datasets. The results
are shown in Table 11. SVD-LLM performs better than the best-performing baseline in most of the
datasets across different LLMs and even achieves 32% higher average accuracy on OPT-6.7B.
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Table 10: An example of contents generated by the compressed LLaMA-7B by SVD-LLM and and
under different compression ratios. The input is marked in bold and the normal texts are the generated
sentences.

RATIO SVD-LLM ASVD

Original Building a website can be done in 10 simple steps: Step 1: Register an domain name; Step 2: Get a hosting package;
Step 3: Develop a website; Step 4: Design the website; Step 5: Make the website live; Step 6: Perform on-page SEO; Step
7: Promote the website; Step 8: Evaluate the results; Step 9: Improve the website; Step 10: Build a website repeat ...

20% Building a website can be done in 10 simple steps: 1)
Identifying an appropriate theme. 2 ) Determining which
types of Web site would be of interest and which could
be implemented with minimal overhead and resources. 3
) Identify the audience 4 ) Choose Web site software. 5 )
Select Web site developers. 6 ) Design Web site 7 ) Identify
Web site technology 8 ) Design Web site layout 9 ) Define
Web site aesthetics and 10 ) Define Web site access controls
...

Building a website can be done in 10 simple steps: 1,
Build up your website. You will need to select a name for
your website. As a beginner, it is a good idea to select
your company name or product name as your website
name. You can use your real company or product name or
you can create an unusual business name. This will make
the name of your business name consistent throughout
your website. 2, Decide on your business name. You
will be choosing the official name of your business for all
activities that represent your business. This includes your
business name, products, your website, and any ...

30% Building a website can be done in 10 simple steps: 1.
Preliminaries and planning 2. Designing 3. Prototyping 4.
Production 5. Operation...

Building a website can be done in 10 simple steps: To:
With A Web You Are Into 2 Zim 40 Wh I M T If Y As An
Onl You Orwice There W Os You Hcimp ...

40% Building a website can be done in 10 simple steps: 2 days
of website plan. If you want to set a web site. This is the
1st step. In the 2 days . It wants the company to develop
a website to help the investors and investors. He will have
another investor. He wants to help others. The company is
working to grow, and create a name for some investors and
investors. 100 million US dollars It is used to build a hotel
and a hotel. In order to obtain their cooperation, investors,
investors, investors in .

Building a website can be done in 10 simple steps:
Front 1222ED825333 3333333333333333etennenn een-
neenneSecondinjustanyanojunatajin ...

Table 11: Zero-shot performance comparison of OPT-6.7B, LLaMA 2-7B, Vicuna-7B, Mistral-
7B compressed by SVD-LLM and baselines under 20% compression ratio on seven common sense
reasoning datasets (measured by both individual and average accuracy (↑)). The best performance is
marked in bold. The relative performance gain compared to the best-performing baseline is marked
in green color inside bracket.

LLM METHOD Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Average↑

OPT-6.7B

SVD 0.14 0.27 0.51 0.25 0.23 0.54 0.21 0.31
FWSVD 0.15 0.26 0.49 0.26 0.20 0.52 0.21 0.30
ASVD 0.14 0.40 0.51 0.30 0.20 0.59 0.22 0.34

SVD-LLM 0.24 0.60 0.60 0.45 0.28 0.73 0.24 0.45 (↑32%)

LLaMA 2-7B

SVD 0.15 0.27 0.49 0.26 0.23 0.52 0.20 0.30
FWSVD 0.12 0.25 0.49 0.25 0.22 0.52 0.21 0.30
ASVD 0.25 0.31 0.60 0.41 0.32 0.72 0.23 0.41
SVD-LLM 0.26 0.50 0.60 0.41 0.26 0.66 0.23 0.41 (↑0%)

Mistral-7B

SVD 0.14 0.25 0.52 0.26 0.23 0.54 0.20 0.30
FWSVD 0.15 0.28 0.52 0.26 0.21 0.53 0.21 0.31
ASVD 0.21 0.51 0.58 0.42 0.25 0.50 0.26 0.39

SVD-LLM 0.17 0.55 0.58 0.36 0.25 0.67 0.21 0.40 (↑3%)

Vicuna-7B

SVD 0.15 0.26 0.50 0.26 0.23 0.52 0.20 0.30
FWSVD 0.14 0.27 0.49 0.26 0.22 0.53 0.20 0.30
ASVD 0.21 0.53 0.55 0.39 0.30 0.41 0.23 0.37

SVD-LLM 0.23 0.51 0.58 0.40 0.28 0.67 0.22 0.41 (↑11%)
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