
ML for Computer Architecture and Systems (MLArchSys), ISCA 2024

Allegro: GPU Simulation Acceleration for
Machine Learning Workloads

Euijun Chung, Seonjin Na, Hyesoon Kim
Georgia Institute of Technology

euijun@gatech.edu, seonjin.na@gatech.edu, hyesoon@cc.gatech.edu

Abstract—Current GPU simulators face challenges handling
large machine learning workloads like LLMs due to their slow
execution. To address this issue, we leverage our observations on
the massive number of GPU kernel calls inside these workloads.
Given the homogeneous nature and cache-unfriendly behavior of
these kernels, we demonstrate that they exhibit identically and
independently distributed (i.i.d.) execution times, thus allowing
us to apply statistical sampling approaches for accurate GPU
kernel sampling. In this paper, we introduce Allegro, a practical
methodology for GPU simulators aimed at substantially reducing
execution time while maintaining high accuracy comparable
to actual execution. Employing a statistical measure with a
recursive algorithm, we design an accurate kernel sampling
scheme, supported by a proof of theoretical error bounds. By
integrating Allegro into Macsim, we achieve a simulation speedup
of 983.96x on 7 of the latest ML workloads with an error rate
of 0.057%. Compared to the random sampling method, this
average error is 9.22x smaller with the speedup value fixed.
Additionally, we demonstrate that adjusting the error bound
enables the simulator to achieve greater speed enhancements with
only a marginal rise in error rate. This adaptability offered by
Allegro allows researchers to easily balance desired performance
and accuracy.

I. INTRODUCTION

Given the widespread adoption of large-scale Machine
Learning (ML) models and their applications, such as Large
Language Models (LLMs), their significant computational de-
mands have become a crucial problem [29]. Many researchers
are actively seeking methodologies to optimize the hardware
architecture of accelerators tailored for machine learning
workloads [21], or to resolve the hidden performance bottle-
necks in software perspective [8]. GPU’s extensive thread-level
parallelism has made them become the predominant accel-
erator for the ML workloads [24]. Consequently, researchers
are actively exploring faster and more energy-efficient GPU
architectures to meet the evolving demands of ML tasks.

The need for a precise and fast architectural simulator for
GPUs is also rising along with their demands. Architectural
simulators play an important role in both validating new ar-
chitectural designs and finding the hidden performance bottle-
necks in the processing pipeline. Macsim [23], AccelSim [22],
and MGPUSim [37] are the most widely used GPU simulators.
However, without any optimization techniques applied to the
simulators, they suffer from significant slowdowns on running
ML workloads, especially on the workloads using the latest
Deep Neural Network (DNN) models [2]. Table I shows the
relative slowdowns on these simulators compared to the real
GPU. Running the latest ML workloads on a simulator is

TABLE I
THROUGHPUT AND SLOWDOWN OF GPU SIMULATORS.

Real GPU Macsim GPGPU-Sim MGPUSim
Simulation

Rate (KIPS)
4103750 50.5 12.5 27

Relative
Throughput

328300 4.04 1 2.16

GPT-2:
Generate

100 tokens

0.925 sec 20.88 hrs 3.52 days 1.63 days

an important issue, as reducing the discrepancy between the
simulated and actual GPU usage is critical for accurately
validating new architecture designs.

A few previous works have been made to speed up architec-
tural simulations. However, methodologies designed for CPU
simulations [5], [13], [33] do not apply to GPU simulations
due to the incomparable amount of thread parallelism inherent
in GPUs. Studies on GPU simulations [2], [25], [28] have
indeed achieved speedups in GPU workloads. However, they
do not provide theoretical bounds for sampling error nor they
do not leverage the characteristics of GPU kernels utilized in
ML workloads to achieve a greater degree of speedup.

In this paper, we begin by analyzing the newest ML work-
loads, specifically focusing on state-of-the-art large language
models (LLMs), to identify key insights that can be leveraged
to enhance simulation acceleration. Subsequently, we intro-
duce Allegro, a statistic-based sampling approach designed to
accurately reduce the GPU simulation time of ML workloads.
In summary, our work makes the following contributions:

• This paper presents novel insights into the characteristics
of the latest ML workloads on GPUs, highlighting that
GPU kernels for ML exhibit high homogeneity and
identically and independently distributed (i.i.d.) execution
times, enabling the adoption of statistical approaches such
as the Central Limit Theorem (CLT) and other sampling
methods.

• We present methodologies demonstrating how statistical
theories can be applied to design a simple and accurate
measure, which we then utilize to propose Allegro’s sam-
pling algorithm. Additionally, we provide mathematical
proofs concerning the bounds of error in our approach.

• By executing 7 latest ML workloads, we validate that
Allegro achieves speedup with errors falling within the
given error bound and smaller than previous works. The

1

mailto:euijun@gatech.edu
mailto:seonjin.na@gatech.edu
mailto:hyesoon@cc.gatech.edu

achieved speedup reaches a maximum of 1486.66x, with
an average speedup of 983.96x, while maintaining the
error within 0.057%. Moreover, we integrated Allegro
into Macsim and successfully completed ML workloads.

II. BACKGROUNDS

A. Limitations of Current GPU Simulators

Table I presents the simulation rate and the relative slow-
down of various GPU simulators, along with the results from
a real GPU. The setup environment for experiments is shown
in Section V-A. The GPU simulator statistics are sourced from
papers (GPGPU-Sim and MGPUSim) [22], [37] or measured
directly (Macsim). Even though generating a single 100-token
length sentence with a GPT-2 model takes less than 1 second
on a real GPU, the same workload on a GPU simulator takes
around a few days, as shown in Table I. It is infeasible to run
GPU simulators with the latest ML workloads due to these
long simulation times. Therefore, performance optimization
techniques for GPU simulators are necessary.

B. Works on Accelerating Architectural Simulations

There have been numerous efforts to address this per-
formance slowdown. Works such as Simpoint [13], Barrier-
point [5], and similar methods [33] propose techniques to
accelerate CPU simulations. However, existing CPU solutions
are not applicable in the GPU domain due to the massive level
of thread parallelism of GPUs [2].

Similar approaches optimized for GPUs have also been
proposed, including TBPoint [19], PKA [2], Photon [25], and
Sieve [28]. We categorized these solutions as well as other
GPU performance modeling techniques as follows.
Analytical models ([15], [16], [18], [27], [42]): Building
and employing an analytical model for evaluating GPU ar-
chitectures offers a fast and efficient approach. However, such
models may lack accuracy compared to cycle-level simula-
tions, as ensuring the accuracy of analytical models requires
regular updates to follow up on the design changes in new
GPU architectures. Additionally, such analytical models are
not capable of reflecting the impact of certain architectural
design changes, such as different cache replacement policies or
workload scheduling policies (e.g., warp and block scheduling
in GPUs).
Early stopping ([2], [28]): Early stopping simulations after
stabilization of IPC is another approach that can yield speedup
in simulations. However, in many GPU workloads, it is known
that IPCs do not remain stable during the entire workload
execution [25], and this may lead to significant errors in the
simulation results.
Workload Sampling ([2], [19], [25], [28]): Workload sam-
pling in GPU simulation has been a popular solution due to its
effectiveness and acceptable accuracy. TBPoint [19] is the first
paper to utilize clustering and sampling for GPU kernels to
achieve efficient and accurate sampling. However, this method
requires per-application tuning and does not provide sufficient
speedup for running modern ML workloads.

PKA [2] is a follow-up work that also employs cluster-
then-sample and early-stopping techniques on GPU kernels.
Although this work demonstrates that GPU kernel sampling
can yield simulation speedup for various GPU workloads, it
lacks sufficient speedup to run ML workloads and lacks any
theoretical explanations of the sampling errors.

Photon [25] and Sieve [28] are subsequent works after
PKA [2], and they demonstrate notable speedup on certain
workloads. However, these works still rely on empirical kernel
classification and sampling techniques.

To address these issues, we propose Allegro, an efficient and
accurate kernel sampling methodology for ML workloads. We
first focus on ML workloads and present several observations
indicating that statistical approaches can be applied to model
the sampling process. In Section III, we demonstrate that the
GPU kernels used in ML workloads are homogeneous and
have identically and independently distributed (i.i.d.) execution
times. Subsequently, we design an algorithm and a sampling
scheme that can accurately and effectively sample the GPU
kernels by leveraging these observations. We also prove that
the sampling error is theoretically bounded by the given error
bound.

III. OBSERVATIONS

In this paper, we define ML workloads on GPUs as work-
loads that utilize ML models, encompassing both inference
and training processes. Given the widespread adoption of
Python libraries in the ML field, we particularly focus on ML
workloads that utilize widely-used libraries such as Tensor-
Flow [11] and PyTorch [32], which leverage NVIDIA GPU
libraries such as cuDNN, cuBLAS, etc., under the abstraction
layer. While there are some pure C++/CUDA implementations
of ML models [3], [30], as they are not as commonly used
compared to other Python implementations, we focus on the
Python-front-end and NVIDIA library-based back-end ML
workloads.

A. High Homogeneity in ML Workloads

Modern ML models often employ a repeated block structure
across multiple layers. For example, ResNet50 [14] com-
prises 48 identical convolutional layers, while transformer-
based LLMs consist of multiple repetitions of the transformer
blocks that consist of a self-attention layer followed by fully
connected layers. Moreover, ML workloads typically involve
running the same model multiple times for batch iterations.
Consequently, we can expect ML workloads to exhibit homo-
geneity at the GPU kernel level as well.

By employing a GPU hardware profiler such as Nsight
Systems [31], we can unveil the kernel calls of ML workloads
inside NVIDIA’s CUDA libraries. Table II presents an example
of a list of kernels alongside the number of calls made
throughout the entire ResNet50 workload (refer to Table III for
more details). We observe that in ML workloads, the kernels
exhibit high repetition, as evidenced by the large number of
kernel calls.

2

TABLE II
TOP 5 TIME-CONSUMING GPU KERNELS IN RESNET50 [14] WORKLOAD.
THE WORKLOAD INVOLVES A LARGE NUMBER OF KERNEL CALLS, AND

EACH KERNEL IS OPTIMIZED FOR ”VOLTA” GPU ARCHITECTURE.

Kernel Name # Calls Total Time (ns)
cudnn infer volta scudnn winograd 128x... 19625 1185625785

explicit convolve sgemm 3925 964880834
cudnn infer volta scudnn winograd 128x... 7850 897755249

volta sgemm 128x64 nn 23550 709594145
winograd::generateWinogradTilesKernel 7850 595149925

0

50
00

10
00

0

15
00

0

20
00

00
20

40
60

80
10

0 L1 Hit Rate of Resnet50
Cache Flush On
Cache Flush Off

0

50
00

10
00

0

15
00

0

20
00

00
20

40
60

80
10

0 L2 Read Hit Rate of Resnet50
Cache Flush On
Cache Flush Off

0

10
00

00

20
00

00

30
00

00

0
20

40
60

80
10

0 L1 Hit Rate of GPT2
Cache Flush On
Cache Flush Off

0

10
00

00

20
00

00

30
00

00

0
20

40
60

80
10

0 L2 Read Hit Rate of GPT2
Cache Flush On
Cache Flush Off

0

50
00

10
00

0

15
00

00
20

40
60

80
10

0 L1 Hit Rate of Bert
Cache Flush On
Cache Flush Off

0

50
00

10
00

0

15
00

00
20

40
60

80
10

0 L2 Read Hit Rate of Bert
Cache Flush On
Cache Flush Off

Kernel Call ID (Ordered in Ascending order)

Ca
ch

e
hi

t r
at

e
(%

)

Fig. 1. L1 and L2 cache hit rate in Bert and ResNet50 workload, with cache
flushing between kernel calls on/off.

Moreover, it is well known that the kernel names suggest
they are highly optimized—some hand-coded, architecture-
specific, and compiler-optimized—for particular GPU archi-
tectures, such as the Volta architecture GPU from NVIDIA,
as indicated by the presence of ”volta” in the kernel names
[9]. This indicates that we should focus on the statistics that
we can collect at runtime, unlike previous works [2], [19],
[28] where they only collected statistics that are independent
of architecture, such as the number of dynamically executed
instructions or the number of memory requests.

B. Cache-Unfriendly Nature of ML Workloads

We also observe that ML workloads do not benefit much
from the GPU cache system between the kernel exit and the
kernel call. This means that since the memory footprint of
GPU kernels in ML workloads is very big, GPU kernels make
no use of the cache when they are launched because for the
following memory accesses the kernel will only experience
cache misses.

To investigate this behavior, we conducted an experiment
to compare the effect of the cache system in a GPU, with the
ResNet50, GPT-2, and Bert workloads (refer to Table III). We

180 185 190 195 200
0

100

200

300

400

Resnet50: max_pool

590 595 600 605 610 615
0

250

500

750

1000

1250

Resnet50: winograd

150 200 250 300
0

200

400

600

800

Resnet50: sgemm_128x64_nn

50 75 100 125 150 175
0

500

1000

1500

2000

2500

3000

Resnet50: bn_fw_inf

450 500 550 600 650 700 750 800
0

10

20

30

40

GPT2: elementwise_grid_stride

15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0
0

50

100

150

200

250

300
GPT2: unrolled_elementwise

12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
0

100

200

300

400
Bert: Softmax

0 100 200 300 400 500 600 700
0

2000

4000

6000

8000

10000

12000
Bert: SelectLargeIndex

Kernel Execution Time (us)

Ke

rn
el

 C
al

ls

Fig. 2. Kernel execution time histograms of GPU kernels in ResNet50, GPT-
2, and Bert workload. The workload and kernel name are on the top of each
graph. The red dotted line shows the ideal normal distribution. We can observe
very narrow execution time distributions in most of the GPU kernels.

measured the L1 and L2 cache hit rates under two conditions:
1) when the GPU cache is flushed between every kernel call,
and 2) when the GPU cache remains intact (baseline).

Figure 1 depicts the L1 and L2 cache hit rates of each
kernel called within the Bert and ResNet50 workloads. Each
kernel’s cache hit rate is sorted in ascending order for better
visualization.

We observe that the L1 cache hit rate shows a very small dif-
ference between the two cache scenarios, where the cache flush
between the kernel calls is On/Off. In the case of ResNet50,
even the L2 hit rates show a similar trend, suggesting that
the L2 cache does not significantly contribute to running the
workload.

These results suggest that the majority of cache hits occur
due to memory access locality within the kernel itself, rather
than due to the locality between kernels. Consequently, the
GPU cache does not substantially benefit consecutive kernels
by leveraging data stored in the cache to reduce execution
times.

Although some workloads show a difference in L2 cache
statistics, we empirically discovered that such a difference in
L2 cache hit rate does not greatly affect the execution time

3

ML
Workload

10 - 100M
Kernels

HW
Profiler

IV-(A)
Kernel

Partitioning

IV-(B)
K-means

Clustering

IV-(C)
Kernel

Sampling

IV-(D)
Trace

Generation

IV-(D)
Sampled

Simulation

IV-(A)
HW Profiling

Kernel 3

Kernel N

…

Cluster 0 Reduced
ML

Workload

~ 1000x
Speedup

…

Cluster 1

Cluster 2

Cluster 3

Cluster M

Sampling
Algorithm

GPU
Simulation

Trace

GPU
Simulator

Kernel name,
gridSize, blockSize Kernel Sampling Information

Execution Time

Kernel 2

Kernel 1

Fig. 3. Allegro’s GPU kernel sampling methodology.

distribution of kernels, due to the long latency of L2 memory
in GPUs. We will discuss about this issue more in the section
III-C.

Hence, we can infer that the execution times of kernels
are independent, as the kernels’ execution order does not
significantly affect subsequent kernel execution times. Addi-
tionally, even if the same kernel is launched multiple times,
the cache’s impact on kernel execution is minimal, resulting
in uniform execution times irrespective of launch location
or preceding kernels. In summary, this implies that kernels
launched multiple times exhibit identically and independently
distributed (i.i.d.) execution time.

C. Analysis on Kernel Execution Time Histogram

We utilize Nsight-Systems to visualize the distribution of
kernel execution times. We first partition the profiled kernels
into kernel groups based on their name, blockSize, and grid-
Size, so that we can plot a histogram of execution time. We
observed that the histograms exhibit 1) a single narrow peak
with a very small standard deviation divided by the mean
(σ/µ), or 2) multiple discrete peaks of narrow distributions.
The example histograms are shown in Figure 2.

Since most of the GPU kernels’ execution time distribution
in the histogram has discrete and spread-out peaks, we can em-
ploy 1-D k-means clustering to separate them into subgroups,
ensuring that each group contains only one narrow peak in
the histogram. Then, since each kernel subgroup comprises
a high number of kernels with very narrow distributions, we
can apply the sampling methodology to significantly shorten
simulation times while maintaining high accuracy.

In Section IV, we will demonstrate how we can exploit
the fact that the execution times of kernels in a subgroup are
identically and independently distributed (i.i.d.) by leveraging

the Central Limit Theorem (CLT). We will introduce a measure
named mmin, representing the minimum number of samples
required to ensure the error bound. Furthermore, we will
outline an algorithm with a scheme for sampling the kernels
to accurately predict the total execution time.

Although we observed the effects of the L2 cache in
some workloads like GPT-2 and BERT (Figure 1), we could
not observe the impact of L2 caches in the execution time
histogram (Figure 2), as the histogram of GPT-2 and Bert
were not very different from the ones of ResNet50. As shown
in the histograms of all three workloads, kernel execution time
distributions were very discrete and narrow. Therefore, we
assumed that such L2 cache hit rate discrepancy in Figure 1
is negligible for our method of using execution time statistics
in sampling.

Although we observed the effects of the L2 cache in some
workloads like GPT-2 and BERT (Figure 1), these effects were
not evident in the execution time histograms. The histograms
for GPT-2 and BERT were not significantly different from
those of ResNet50. As shown in the histograms for all three
workloads, kernel execution time distributions were very dis-
crete and narrow. Therefore, we assumed that the L2 cache hit
rate discrepancy in Figure 2 is negligible for our method of
using execution time statistics in sampling.

IV. ALLEGRO’S METHODOLOGY

Figure 3 is an overall diagram of how Allegro performs
kernel sampling to accelerate the GPU simulation. We first
cluster the GPU kernels into groups based on their name, grid
size, and block size. Then, we further subdivide each group
with 1-D k-means clustering so that every kernel within a
group exhibits a homogeneous execution time.

4

We sample mmin kernels from each group, where the value
of mmin varies for each group. This mmin value is a number
that is obtained from the error bound calculation, such that
the total estimated execution time falls within a specified error
bound. The exact equation and the theory behind it are shown
in Theorem 2. Following the sampling process, we generate
simulation traces only for the sampled kernels and execute the
simulation accordingly. In this way, we can drastically reduce
the number of GPU kernels in a GPU simulation, achieving a
high degree of speedup.

We adopt a statistical approach to propose the method for
clustering, aiming to ensure that the sampled simulation result
closely approximates the outcome of the full simulation within
a small error bound.

A. GPU Kernel Profiling and Partitioning

First, we profile the provided ML workload using a GPU
hardware profiler, extracting various statistics including exe-
cution time, kernel name, block size, and grid size for each
kernel. We then partition the kernels into groups based on
their kernel name, block size, and grid size. Subsequently, we
calculate the mean and variance of execution times for each
kernel group.

B. GPU Kernel Clustering

From our observation, we noticed that some kernel groups
have multiple peaks in the execution time histogram, which
means that even if the kernel has the same name and gridblock
size, each kernel may have been used in a different context
of the workload. Therefore, we need to split the kernel group
into subgroups with homogeneous distribution.

To provide a metric for whether a group of kernels needs to
be split or not, we exploit the Central Limit Theorem (CLT).
The number of samples that we should take depends on the
variance of execution time relative to the mean. The following
section describes how we designed this metric, so we can
recursively apply 1-D K-Means clustering with k = 2 to split
the kernels afterwards.

Let K be an arbitrary set of N GPU kernels with the same
name and grid/block size, and let µ and σ2 be the mean and
variance of the execution time of kernels in K. Assume we
are sampling m kernels from K. For any given i ∈ {1, ...,m},
we define a random variable Xi to be the execution time of
i-th sampled kernel.

We can assume that the sequence of random variables
{X1, X2, ..., Xm} are independent and identically distributed
(i.i.d.) because we observed that the impact of GPU caches are
negligible in ML workloads and thus the execution time of a
GPU kernel is uniform throughout the full run. We predict the
sum of the execution time of every kernel in K as NX̄ where
E[Xi] = X̄ . To calculate the error between µ and NX̄ , we
use the CLT.

Theorem 1 (Central Limit Theorem). Let {X1, X2, ..., Xm}
be a sequence of m i.i.d. random variables having a dis-
tribution with mean µ and variance σ2. Then, the sampled
mean X̄ = 1

mΣm
i=0Xi converges to a random variable having

Algorithm 1 GPU Kernel Partitioning and Clustering
1: (input) K0: List of Kernels from the workload
2: (input) ϵ: Error bound for sampling, default = 5%.
3: (input) mTh: Threshold value compared with mmin to determine

whether to cluster the group or not. default = 50.
4: (output) C: Group of kernel groups, the output of this algorithm.
5: function ALLEGRO()
6: M : Map from keys to kernel groups. Global Instance.
7: PARTITION KERNEL()
8: for (key,Ki) ∈M do
9: CLUSTER KERNEL({Ki})

10: end for
11: end function
12: function PARTITION KERNEL()
13: for k ∈ K0 do
14: key ← strcat(k.name,k.gridSize,k.blockSize)
15: M [key].add(k)
16: end for
17: end function
18: function CLUSTER KERNEL(K) // K: group of kernel groups
19: for Ki ∈ K do
20: µ← mean(Ki), σ ← stdev(Ki)
21: mmin ← max{⌈(1.96σ/µϵ)2⌉, 30}
22: if mmin ≤ mTh then C.add(Ki)
23: else {K′,K′′} ←kmeans_clustering(Ki, k=2)
24: CLUSTER KERNEL({K′,K′′})
25: end if
26: end for
27: end function

a normal distribution with mean µ and variance σ2/m as
m → ∞.

By using CLT and Lemma 4 in the Appendix (Sec. VIII-A),
we can approximate that NX̄ follows a normal distribution
N(Nµ,N2σ2/m) := N(µ̃, σ̃2). Then, we can use Theorem
2 below to obtain mmin, the minimum number of samples to
ensure the error of NX̄ is within the error bound ϵ under 95%
confidence.

Theorem 2. For a random variable NX̄ , which follows a
normal distribution of N(Nµ,N2σ2/m) := N(µ̃, σ̃2), the
minimum number of samples to ensure the error between NX̄
and µ̃ is smaller than the error bound ϵ for 95% confidence
is as follows:

mmin := max

{⌈(
1.96

ϵ

σ

µ

)2
⌉
, 30

}
.

Proof. Proof in the Appendix (Section VIII-A).

We utilize mmin as a metric for each kernel group to assess
whether the kernels within the group exhibit homogeneous
execution times. The overall algorithm for both the partitioning
and clustering process is depicted in Algorithm 1.

C. GPU kernel sampling

To predict the total execution time of the whole workload,
we apply Algorithm 1 to every kernel group in the workload.
Assume we split kernels into k groups {K1,K2, ...,Kk}, and
we sample m1,m2, ...,mk kernels from each group, using the

5

error bound ϵ for all groups. Each mi is derived from the
mmin of Theorem 2.

Let Y ∗ be the ground-truth total execution time, X̄i be
the average execution time of the sampled kernels from Ki,
and Ni be the number of kernels in Ki. Note that X̄i’s
are normal and mutually independent, i.e., X̄i ∼ N(µi, σ

2
i)

for ∀i ∈ {1, ..., k}. Then, we predict the total execution
time as Y =

∑i=1
k NiX̄i, and according to Lemma 4, the

random variable Y also follows a normal distribution, i.e.,
Y ∼ N(

∑k
i=1 Niµi,

∑k
i=1 N

2
i

σ2
i

mi
).

In Theorem 3, we ensure that the error of our prediction
also falls within the same error bound ϵ with 95% certainty.

Theorem 3. If the error between NiX̄i and Niµi is
bounded by ϵ with 95% confidence, the error between Y ,
the prediction for total execution time, and its ground-truth
Y ∗ =

∑k
i=1 Niµi, is also bounded by ϵ.

In other words, the error e between Y and Y ∗ is constrained
by the following inequality:

e =

∣∣∣∣Y − Y ∗

Y ∗

∣∣∣∣ =
∣∣∣∣∣∣
1.96

√∑k
i=1 N

2
i

σ2
i

mi∑k
i=1 Niµi

∣∣∣∣∣∣ ≤ ϵ.

Proof. Proof in the Appendix (Section VIII-A).

D. Trace Generation and Simulation Execution

We implemented Algorithm 1 in conjunction with Macsim’s
trace generation tool [7] to produce traces for the sampled
GPU simulation. Macsim is capable of executing NVIDIA
GPU simulations with SASS-Assembly in trace-driven mode.
By utilizing the sampled trace alongside the sampling informa-
tion, we generated simulation statistics to predict the outcome
of the original workload. All seven latest ML workloads listed
in Table III were successfully executed on Macsim. Detailed
performance results and error analysis will be discussed in the
evaluation section.

V. EVALUATION

A. Experiment Environment Setups

We used NVIDIA RTX 2080 GPU to evaluate our sam-
pling methodology along with Nsight-systems [31] as GPU
hardware profiler. Table III shows the list of ML workloads
that are used in this paper. For more information about the
workloads, check the Appendix (Section VIII-B).

B. Allegro’s Pre-processing Overhead

The performance overhead introduced by Allegro is negligi-
ble and operates as a one-time cost. While hardware profiling
and sampling indeed add performance overhead, they are only
incurred during trace generation for GPU simulation and are
not incurred during actual simulation execution.

In comparison to the time required for trace generation, the
time taken for GPU hardware profiling is negligible, being
over x1000 less than the trace generation. Additionally, the
sampling process itself is also very efficient—we conducted
tests on workloads consisting of several million to 50 million

TABLE III
LIST OF ML WORKLOADS USED IN THIS PAPER, ALONG WITH THE

NUMBER OF GPU KERNELS AND A SHORT DESCRIPTION.

Name # Kernels Workload Description
Bert 1858800 Performing sequence classification on 10,000

premise/hypothesis pairs using the BERT-
Medium-MNLI model.

Bloom 51834362 Generating 1,000 sentences, each with a length
of 100 tokens, using the Bloom model.

Deit 792850 Classifying 3,925 ImageNet datasets using
the Data-efficient image Transformer (DeiT)
model.

Gemma 9079126 Generating 1,000 sentences, each with a length
of 100 tokens, from the GEMMA language
model.

GPT-2 34981000 Generating 1,000 sentences, each with a length
of 100 tokens, from the GPT-2 model.

Olmo-bitnet 2544766 Generating 10 sentences, each with a length of
100 tokens, from the OLMo-Bitnet language
model.

ResNet50 2812741 Classifying 13,400 ImageNet datasets using
the ResNet50 model.

be
rt

blo
om de

it

ge
mm

a
gp
t2

olm
o-b
itn
et

res
ne
t50

ge
om
ea
n

0
500

1000
1500
2000
2500

Sp
ee

du
p

1% 3% 5% 10% 25%

Fig. 4. Allegro’s speedup for GPU simulations, using different error bounds
from ϵ = 1% to ϵ = 25%.

kernel calls, and the splitting, clustering, and sampling proce-
dure only took a few minutes to complete. As the sampling
information file is generated alongside the simulation traces,
there is no additional performance overhead during GPU
simulation execution.

C. Speedup and Error Validation of Allegro

First, we evaluated how the error bound ϵ affects the
speedup of the GPU simulation. We varied the value of ϵ to
1%, 3%, 5%, 10%, and 25% and measured the speedup for
each ML workload.

Figure 4 illustrates how the speedup value changes as the
error bound is increased. We observe that when ϵ = 5%,
Allegro can achieve a geometric mean speedup of 983.96x
in the given workload simulations, or even more when a
larger error bound is used. It is also important to note that
the speedup does not scale linearly due to the requirement of
sampling at least 30 kernels to satisfy the CLT (Theorem 1).

Figure 5 shows the measured error for each given error
bound ϵ. When ϵ = 5%, Allegro achieves a geometric mean
error of 0.057% in predicting the total execution time of the
workloads.

Note that the actual error of the total execution time is
considerably smaller than the specified error bound ϵ. Also,

6

be
rt

blo
om de

it

ge
mm

a
gp
t2

olm
o-b

itn
et

res
ne
t50

ge
om

ea
n

0.01

0.10

1.00

Er
ro
r (

%
)

1% 3% 5% 10% 25%

Fig. 5. Measured error of Allegro for various error bounds from ϵ = 1% to
ϵ = 25%.

be
rt

blo
om de

it

ge
mm

a
gp
t2

olm
o-b

itn
et

res
ne
t50

ge
om
ea
n

0.0
0.2
0.4
0.6
0.8
1.0

Er
ro
r (
%
)

3.8 2.0 1.1

random allegro

Fig. 6. Error validation for various GPU Simulation optimization methods.

since the actual error is much smaller than the error bound,
increasing the error bound does not significantly affect the
actual error. This is because the randomness involved in the
clustering stage accounts for most of the actual error. This
suggests that there still exists more room to reduce the number
of samples, thereby providing more opportunity to enhance the
amount of speedup achieved.

We also compared the accuracy of Allegro against other
sampling methods. For the baseline, we employed random
kernel sampling, where we randomly sampled kernels from
the entire workload until we achieved the same degree of
speedup as Allegro. For instance, if Allegro achieved a 100x
speedup on a certain workload, the baseline will randomly
sample kernels until the sum of the execution times of the
sampled kernels is 1% of the total execution time of the
whole workload. Since the baseline method does not utilize
information from the profiler as Allegro does, we expect the
random sampling to have a larger error than Allegro.

We compare the error of the two sampling methods while
constraining the amount of speedup. For Allegro, we set ϵ =
5%, and the random sampling method also aimed for the same
speedup achieved by Allegro with this error bound.

We can observe from Figure 6 that Allegro achieves the
highest accuracy on a constrained amount of speedup. In this
experiment, Allegro achieved a geomean error of 0.088%,
whereas the random sampling achieved a geomean error of
0.81%, which is 9.22 times bigger than our method.

VI. DISCUSSION

A. Limitations of GPU Kernel Sampling

We examined scenarios in which the sampling method of
Allegro may not achieve notable speedup or where its error
could surpass the theoretical prediction. In this section, we
provide three categories of workload scenarios where Allegro
may encounter its limitations.
Cases of Insufficient Speedup: In certain scenarios, Allegro,
or the GPU kernel sampling methodology in general, may
not achieve a satisfactory level of simulation speedup. If the
number of samples is relatively too large compared to the
number of kernels in the entire workload, or if the workload
itself contains a very small number of kernels, Allegro may
not be able to achieve the high degree of speedup observed in
ML workloads.

For example, in non-ML GPU workloads like the Rodinia
benchmark suite [6], benchmarks such as backprop or
lavaMD comprise fewer than 10 GPU kernels. In such cases,
Allegro cannot generate a significant level of speedup in GPU
simulations. This is because as shown in Theorem 2, Allegro
requires more than 30 samples of kernels from each kernel
cluster. Thus, kernel clusters containing fewer than 30 kernels
would not benefit from Allegro’s sampling approach.

However, as Allegro operates orthogonal of other
simulation-speedup techniques, such as early stopping in PKA
[2] or the use of analytical models in GPUMech [18], there
remains further potential to accelerate GPU simulation even
after the adoption of Allegro in the simulators.
Cases of Non-i.i.d. Kernels: Allegro’s sampling methodology
runs under the assumption that the execution time of kernels is
independent and identically distributed (i.i.d.). In certain GPU
workloads, this assumption may not hold, as the performance
of GPU kernels may be influenced by other factors such as
GPU cache.

We’ve identified two scenarios where we cannot guarantee
the independent and identically distributed (i.i.d.) nature of
kernel execution times. First, the independence assumption
of kernel execution times may be compromised when the
execution time of each kernel is influenced by preceding
kernels due to GPU caches, leading to inter-dependencies in
execution times between kernels. Second, contention on inter-
connections between other components such as DRAM, CPU,
or other GPUs in multi-GPU systems may result in varying
execution times depending on the workload phase. Although
these scenarios didn’t manifest in our tested ML workloads
due to their homogeneity and single-GPU environment, it’s
essential to further investigate how we can quantify workload
homogeneity to ensure the i.i.d. nature of kernels.
Reduced number of memory requests: In scenarios where
GPU simulations require full memory traces, kernel sampling
methods may not be a suitable way to expect precise simula-
tion results. For instance, when employing ML workloads to
analyze how the workload populates architectural components
such as memory, cache, TLB, etc., sampling the small number
of kernels and only running them may not let the simulator

7

adequately capture the memory access patterns. This limitation
arises due to the significantly reduced number of memory
requests compared to running the full workload, potentially
leading to incomplete or inaccurate insights into the architec-
tural behavior. Therefore, excessively speeding up simulations
using Allegro may compromise the fidelity of the detailed
behaviors expected in the simulation.

B. Future works

Leveraging Analytical Models for Further Speedup: De-
signing an analytical model to reduce the workload size after
sampling may be a good follow-up work after Allegro. We can
further exploit homogeneity and the statistics obtained from
hardware profiling to design such an analytical model. Since
there exist similar previous works [2], [19] that utilize methods
to accelerate simulation after applying sampling, Allegro can
also benefit from analogous approaches.
Power estimation on RTL simulations: Workload sampling
can offer significant benefits for tasks such as power estima-
tion, particularly in the context of RTL design and simulations.
For instance, collecting statistics related to power usage often
doesn’t necessitate a full workload simulation. By deploying
a methodology similar to Allegro on RTL simulators, power
measurements can be conducted more efficiently on RTL
design and optimization processes.

VII. CONCLUSION

We present Allegro as a novel GPU kernel sampling ap-
proach for accelerating GPU simulations on ML workloads
characterized by homogeneity and repetition. By utilizing
statistical methods to design a sampling scheme, Allegro
achieved an average speedup of 983.96x on 7 of the latest
ML workloads with an error rate of 0.057%, and achieved
9.22x smaller error in the comparison with the random sam-
pling method. Despite Allegro’s limitations with non-uniform
or non-ML workloads, its robust mathematical foundation,
compatibility with other acceleration methods, and substantial
performance improvement set the stage for Allegro for broader
adoption and application.

VIII. APPENDIX

A. Proofs for Theorems and Lemmas

Theorem 2. For a random variable NX̄ which follows a
normal distribution of N(Nµ,N2σ2/m) := N(µ̃, σ̃2), the
minimum number of samples to ensure the error between NX̄
and µ̃ is smaller than the error bound ϵ for 95% confidence
is as follows:

mmin := max

{⌈(
1.96

ϵ

σ

µ

)2
⌉
, 30

}
.

Proof. If we assume normal distribution for NX̄ , error bound
of NX̄ for 95% confidence is calculated as P (µ̃ − 1.96σ̃ ≤
NX̄ ≤ µ̃+ 1.96σ̃) = 0.95.

If we aim for a 5% bound on the error e :=
∣∣∣ (NX̄−µ̃)

µ̃

∣∣∣
with the same level of certainty, we can derive the following
inequality:

e =

∣∣∣∣ (NX̄ − µ̃)

µ̃

∣∣∣∣ = ∣∣∣∣ (µ̃+ 1.96σ̃)− µ̃

µ̃

∣∣∣∣ = 1.96
σ

µ
√
m

≤ 0.05,

and therefore m should satisfy the following condition:

m ≥
(
1.96

0.05

σ

µ

)2

. (1)

Inequality (1) suggests that if the number of samples m is
large enough such that the inequality holds, the error between
µ̃ and NX̄ is less than 5% for 95% chance.

It is empirically well-known that the Central Limit Theorem
(CLT) becomes useful when the sample size m is equal to or
greater than 30 [38]. Hence, we define mmin, the minimum
number of samples required to ensure the error bound, as
Equation (2) with an arbitrary error bound ϵ > 0.

mmin := max

{⌈(
1.96

ϵ

σ

µ

)2
⌉
, 30

}
(2)

We also apply a ceiling function to ensure mmin is a natural
number.

Theorem 3. If the error between NiX̄i and Niµi is
bounded by ϵ with 95% confidence, the error between Y ,
the prediction for total execution time, and its ground-truth
Y ∗ =

∑k
i=1 Niµi, is also bounded by ϵ.

In other words, the error e between Y and Y ∗ is constrained
by the following inequality:

e =

∣∣∣∣Y − Y ∗

Y ∗

∣∣∣∣ =
∣∣∣∣∣∣
1.96

√∑k
i=1 N

2
i

σ2
i

mi∑k
i=1 Niµi

∣∣∣∣∣∣ ≤ ϵ.

Proof. For ∀i ∈ {1, ..., k}, mi ≥ (1.96ϵ
σi

µi
)2 from Inequality 1.

Then, by reordering each side we can get µ2
i ≥ (1.96ϵ)2

σ2
i

mi
.

By summing up the both side for all i’s from 1 to k, we
obtain

∑
i N

2
i µ

2
i ≥ (1.96ϵ)2

∑
i
N2

i σ
2
i

mi
.

Since Ni ≥ 0 and µi ≥ 0, (
∑

i Niµi)
2 ≥

∑
i N

2
i µ

2
i holds.

Thus, (
∑

i Niµi)
2 ≥ (1.96ϵ)2

∑
i
N2

i σ
2
i

ni
.

Taking the square root on each side preserves the inequality
direction because both sides are non-negative.

∑
i

Niµi ≥
1.96

ϵ

√∑
i

N2
i σ

2
i

ni

Given that ϵ > 0, we can obtain the original inequality,
which infers that the error e is bounded by the error bound ϵ.

e =

∣∣∣∣∣∣
1.96

√∑k
i=1 N

2
i

σ2
i

mi∑k
i=1 Niµi

∣∣∣∣∣∣ ≤ ϵ.

8

Lemma 4. Let {X1, X2, ..., Xm} be mutually independent
normal random variables, i.e., X1 ∼ N(µ1, σ

2
1), X2 ∼

N(µ2, σ
2
2), and so on. Then, for any a1, a2, ..., am ∈ R, the

linear combination Y = a1X1 + a2X2 + ... + amXm also
follows a normal distribution of

Y ∼ N(Σm
i=1aiµi, Σm

i=1a
2
iσ

2
i).

Proof. A set of n independent normal random variables is
equivalent to an n × 1 vector having a multivariate normal
distribution with a diagonal covariance matrix. We define a
random vector x as follows: x = [X1 X2 ... Xn]

T ∼ N(µ,Σ)
where µ = [µ1 µ2 ... µn]

T and Σ = diag(σ2
1 , σ

2
2 , ..., σ

2
n).

Let a constant matrix A = [a1 a2 ... an] and a vector
b = 0. Then, by applying the linear transformation theorem
for the multivariate normal distribution [1], [36], the linear
combination Y = Ax+ b also follows a normal distribution,
i.e., Y = Ax+ b ∼ N(Aµ, AΣAT).

Therefore, Y = Ax + b = [a1 .. an][X1 ... Xn]
T + 0 =

Σn
i=1aiXi and

Y ∼ N([a1 ... an][µ1 ... µn]
T ,

[a1 ... an]diag(σ
2
1 , ..., σ

2
n)[a1 ... an]

T)

= N(Σn
i=1aiµi,Σ

n
i=1a

2
iσ

2
i).

B. ML Model Specifications

We downloaded every ML model in Table III from Hugging-
face [20]. Below are the URLs to Huggingface repositories of
the models and datasets that we used for the ML workloads.

• Image Dataset [17]: We used Imagenette, a smaller subset
of 10 easily classified classes from Imagenet [10]. Link:
https://huggingface.co/datasets/frgfm/imagenette

• Bert [4]: Pytorch pre-trained model converted
from the official Google BERT repository’s
tensorflow implementation. Trained on MNLI. Link:
https://huggingface.co/prajjwal1/bert-medium-mnli

• Bloom [35]: 8-bit quantized BLOOM model. Link:
https://huggingface.co/ybelkada/bloom-1b7-8bit

• Deit [40], [41]: Small sized Data-efficient Image Trans-
former. Link: https://huggingface.co/facebook/deit-small-
distilled-patch16-224

• Gemma [39]: 2B base version of the Gemma model by
Google. Link: https://huggingface.co/google/gemma-2b

• GPT-2 [34]: GPT-2 model by OpenAI. Link:
https://huggingface.co/openai-community/gpt2

• Olmo-bitnet [12]: 1-bit transformer [26] implemen-
tation of Olmo (Open Language Model). Link:
https://huggingface.co/NousResearch/OLMo-Bitnet-1B

• ResNet50 [14]: Convolutional neural network with resid-
ual blocks. Link: https://huggingface.co/microsoft/resnet-
50

REFERENCES

[1] “Proof: Linear transformation theorem for the multivariate normal
distribution,” https://statproofbook.github.io/P/mvn-ltt, 2024.

[2] C. Avalos Baddouh, M. Khairy, R. N. Green, M. Payer, and T. G.
Rogers, “Principal kernel analysis: A tractable methodology to simulate
scaled gpu workloads,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
724–737. [Online]. Available: https://doi.org/10.1145/3466752.3480100

[3] BaiduResearch, “Deepbench,” https://github.com/baidu-research/
DeepBench.

[4] P. Bhargava, A. Drozd, and A. Rogers, “Generalization in nli: Ways
(not) to go beyond simple heuristics,” 2021.

[5] T. E. Carlson, W. Heirman, K. Van Craeynest, and L. Eeckhout, “Bar-
rierpoint: Sampled simulation of multi-threaded applications,” in 2014
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2014, pp. 2–12.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing.”
Piscataway, NJ, USA: IEEE, 2009, pp. 44–54.

[7] E. Chung, “Trace generation tool for macsim,” https://github.com/
ejchung0406/gpu-trace-generate, 2024.

[8] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré, “FlashAttention: Fast
and memory-efficient exact attention with IO-awareness,” in Advances
in Neural Information Processing Systems, 2022.

[9] M. Davies, I. McDougall, S. Anandaraj, D. Machchhar, R. Jain,
and K. Sankaralingam, “A journey of a 1,000 kernels begins
with a single step: A retrospective of deep learning on gpus,”
in Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 2, ser. ASPLOS ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 20–36. [Online].
Available: https://doi.org/10.1145/3620665.3640367

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[11] T. Developers, “Tensorflow,” Mar. 2024. [Online]. Available: https:
//doi.org/10.5281/zenodo.10798587

[12] D. Groeneveld, I. Beltagy, and P. W. et al., “Olmo: Accelerating the
science of language models,” arXiv preprint, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:267365485

[13] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program phase analysis,” J. Instr. Level Parallelism,
vol. 7, 2005. [Online]. Available: https://api.semanticscholar.org/
CorpusID:11937761

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[15] S. Hong and H. Kim, “An analytical model for a gpu architecture with
memory-level and thread-level parallelism awareness,” in Proceedings
of the 36th Annual International Symposium on Computer Architecture,
ser. ISCA ’09. New York, NY, USA: Association for Computing
Machinery, 2009, p. 152–163. [Online]. Available: https://doi.org/10.
1145/1555754.1555775

[16] S. Hong and H. Kim, “An integrated gpu power and performance
model,” SIGARCH Comput. Archit. News, vol. 38, no. 3, p. 280–289,
jun 2010. [Online]. Available: https://doi.org/10.1145/1816038.1815998

[17] J. Howard, “Imagenette: A smaller subset of 10 easily classified
classes from imagenet,” March 2019. [Online]. Available: https:
//github.com/fastai/imagenette

[18] J.-C. Huang, J. H. Lee, H. Kim, and H.-H. S. Lee, “Gpumech: Gpu
performance modeling technique based on interval analysis,” in 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture,
2014, pp. 268–279.

[19] J.-C. Huang, L. Nai, H. Kim, and H.-H. S. Lee, “Tbpoint: Reducing
simulation time for large-scale gpgpu kernels,” in 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, 2014, pp.
437–446.

[20] Huggingface, “Huggingface,” https://huggingface.co/.
[21] N. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai, N. Patil,

S. Subramanian, A. Swing, B. Towles, C. Young, X. Zhou, Z. Zhou, and
D. A. Patterson, “Tpu v4: An optically reconfigurable supercomputer
for machine learning with hardware support for embeddings,”

9

https://statproofbook.github.io/P/mvn-ltt
https://doi.org/10.1145/3466752.3480100
https://github.com/baidu-research/DeepBench
https://github.com/baidu-research/DeepBench
https://github.com/ejchung0406/gpu-trace-generate
https://github.com/ejchung0406/gpu-trace-generate
https://doi.org/10.1145/3620665.3640367
https://doi.org/10.5281/zenodo.10798587
https://doi.org/10.5281/zenodo.10798587
https://api.semanticscholar.org/CorpusID:267365485
https://api.semanticscholar.org/CorpusID:11937761
https://api.semanticscholar.org/CorpusID:11937761
https://doi.org/10.1145/1555754.1555775
https://doi.org/10.1145/1555754.1555775
https://doi.org/10.1145/1816038.1815998
https://github.com/fastai/imagenette
https://github.com/fastai/imagenette
https://huggingface.co/

in Proceedings of the 50th Annual International Symposium on
Computer Architecture, ser. ISCA ’23. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589350

[22] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-sim:
An extensible simulation framework for validated gpu modeling,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 473–486.

[23] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and T. Pho,
“Macsim: A cpu-gpu heterogeneous simulation framework user guide.”

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’12. Red Hook, NY, USA: Curran Associates Inc.,
2012, p. 1097–1105.

[25] C. Liu, Y. Sun, and T. E. Carlson, “Photon: A fine-grained sampled
simulation methodology for gpu workloads,” in Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO ’23. New York, NY, USA: Association for Computing
Machinery, 2023, p. 1227–1241. [Online]. Available: https://doi.org/10.
1145/3613424.3623773

[26] S. Ma, H. Wang, L. Ma, L. Wang, W. Wang, S. Huang, L. Dong,
R. Wang, J. Xue, and F. Wei, “The era of 1-bit llms: All large language
models are in 1.58 bits,” 2024.

[27] D. Moolchandani, J. Kundu, F. Ruelens, P. Vrancx, T. Evenblij, and
M. Perumkunnil, “Amped: An analytical model for performance in
distributed training of transformers,” in 2023 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), 2023,
pp. 306–315.

[28] M. Naderan-Tahan, H. SeyyedAghaei, and L. Eeckhout, “Sieve: Strat-
ified gpu-compute workload sampling,” in 2023 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2023, pp. 224–234.

[29] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman,
N. Akhtar, N. Barnes, and A. Mian, “A comprehensive overview of
large language models,” 2024.

[30] NVIDIA, “Fastertransformer,” https://github.com/NVIDIA/
FasterTransformer.

[31] NVIDIA, “Nvidia nsight systems,” https://developer.nvidia.com/nsight-
systems.

[32] A. Paszke, S. Gross, and F. M. et al., “Pytorch: An imperative style,
high-performance deep learning library,” 2019.

[33] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,
“Pinpointing representative portions of large intel ® itanium ® programs
with dynamic instrumentation,” in 37th International Symposium on
Microarchitecture (MICRO-37’04), 2004, pp. 81–92.

[34] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[35] T. L. Scao and A. F. et al., “Bloom: A 176b-parameter open-access
multilingual language model,” 2023.

[36] J. e. a. Soch, “Statistical proofs,” https://zenodo.org/records/10495684,
2024.

[37] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway,
Y. Bao, S. Hance, C. McCardwell, V. Zhao, H. Barclay, A. K.
Ziabari, Z. Chen, R. Ubal, J. L. Abellán, J. Kim, A. Joshi, and
D. Kaeli, “Mgpusim: enabling multi-gpu performance modeling and
optimization,” in Proceedings of the 46th International Symposium
on Computer Architecture, ser. ISCA ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 197–209. [Online].
Available: https://doi.org/10.1145/3307650.3322230

[38] E. Tanis and R. V. Hogg, Probability and Statistical Inference, 1977.
[39] G. Team, T. Mesnard, and C. H. et al., “Gemma: Open models based

on gemini research and technology,” 2024.
[40] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and

H. Jégou, “Training data-efficient image transformers and distillation
through attention,” 2021.

[41] B. Wu, C. Xu, X. Dai, A. Wan, P. Zhang, Z. Yan, M. Tomizuka,
J. Gonzalez, K. Keutzer, and P. Vajda, “Visual transformers: Token-
based image representation and processing for computer vision,” 2020.

[42] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Performance modeling
and scalability optimization of distributed deep learning systems,” in
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’15. New York,

NY, USA: Association for Computing Machinery, 2015, p. 1355–1364.
[Online]. Available: https://doi.org/10.1145/2783258.2783270

10

https://doi.org/10.1145/3579371.3589350
https://doi.org/10.1145/3613424.3623773
https://doi.org/10.1145/3613424.3623773
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://zenodo.org/records/10495684
https://doi.org/10.1145/3307650.3322230
https://doi.org/10.1145/2783258.2783270

	Introduction
	Backgrounds
	Limitations of Current GPU Simulators
	Works on Accelerating Architectural Simulations

	Observations
	High Homogeneity in ML Workloads
	Cache-Unfriendly Nature of ML Workloads
	Analysis on Kernel Execution Time Histogram

	 Allegro's Methodology
	GPU Kernel Profiling and Partitioning
	GPU Kernel Clustering
	GPU kernel sampling
	Trace Generation and Simulation Execution

	Evaluation
	Experiment Environment Setups
	Allegro's Pre-processing Overhead
	Speedup and Error Validation of Allegro

	Discussion
	Limitations of GPU Kernel Sampling
	Future works

	Conclusion
	Appendix
	Proofs for Theorems and Lemmas
	ML Model Specifications

	References

