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Abstract

Firms’ algorithm development practices are often homogeneous. Whether firms1

train algorithms on similar data or rely on similar pre-trained models, the result is2

correlated predictions. In the context of personalized pricing, correlated algorithms3

can be viewed as a means to collude among competing firms, but whether or not this4

conduct is legal depends on the mechanisms of achieving collusion. We investigate5

the precise mechanisms through a formal game-theoretic model. Indeed, we find6

that (1) higher correlation diminishes consumer welfare and (2) as consumers7

become more price sensitive, firms are increasingly incentivized to compromise8

on the accuracy of their predictions in exchange for coordination. We demonstrate9

our theoretical results in a stylized empirical study where two firms compete10

using personalized pricing algorithms. Our results demonstrate a new mechanism11

for achieving collusion through correlation, which allows us to analyze its legal12

implications. Correlation through algorithms is a new frontier of anti-competitive13

behavior that is largely unconsidered by US antitrust law.14

1 Introduction15

Firms increasingly use algorithms for personalized pricing, charging some consumers more than16

others for the same good or service based on their perceived willingness to pay [58, 33, 4]. For17

example, a recent lawsuit against DoorDash alleged that the company charges Apple users more in18

delivery fees [50] and travel websites use browser information to charge US-based customers more19

[39]. Rather than targeting prices to individuals, a strategy called “first-degree price discrimination,”20

firms segment consumers based on their characteristics and charge different prices to each segment,21

i.e., “third-degree price discrimination” [55, 47]. Today, firms use machine learning to segment22

consumers into more targeted categories [17]. For example, ridesharing competitors Uber and Lyft23

offer discounts to a subset of consumers based on algorithmic segmentation (see Figure 7).24

Competing firms seek accurate personalized prices in order to better predict customers’ willingness to25

pay. Offering a low price to a consumer willing to pay more means missing surplus value; offering a26

high price to a consumer unwilling to pay it means missing a sale altogether. However, if personalized27

prices are correlated between firms, firms are insulated from the competitive cost of their mistakes: if28

a firm failed to offer a discount, a correlated competitor is likely to also not offer a discount to that29

consumer [13]. In other words, firms can benefit from correlated prices.30

The rise of algorithmic pricing makes correlated predictions easier to achieve than ever.1 Correlated31

predictions can occur when firms deploy algorithms made with “shared components” such as al-32

gorithms trained on similar datasets, aimed at similar benchmarks, or based on similar pre-trained33

1When we refer to “correlated algorithms”, we mean algorithms that make correlated errors. Two fully
independent algorithms with high accuracy will naturally be correlated with each other, but we are concerned
with predictions that are even more correlated than the independent state of affairs.
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models [8]. In other words, model development practices can be and indeed are fairly homogeneous.34

At the extreme, firms can adopt the same algorithm from a third party, creating an “algorithmic35

monoculture” with perfect predictive correlation across firms [30].36

When firms benefit from correlated predictions, we might expect consumer welfare to be harmed.37

This naturally raises questions about how antitrust laws, which are designed to protect consumers38

from collusion, apply in a regime of algorithmic competition. Specifically, (when) does algorithmic39

correlation constitute illegal collusion on prices?40

Correlation and competition law. An agreement between competitors to fix prices is per se illegal in41

the US, meaning that no further inquiry is needed as to the action’s effect on the market or the parties’42

intent in reaching such an agreement [48, 53]. However, if multiple firms choose similar pricing43

models because they are the best models for business purposes – without intention to correlate – they44

are unlikely to be in violation of competition law. Actions such as changing prices in response to45

the market conditions are typically considered “parallel business behavior” and are not per se illegal46

without proof of intent to form an agreement or intent to reach supra-competitive prices [49, 32].47

In the absence of explicit agreement to collude, courts often consider “plus factors” that can tip48

the scales from acceptable business behavior to illegal conduct. For example, evidence that firms49

act against their own economic self-interest is a common plus factor [31]. Critically, which pricing50

model would serve a firm’s economic self-interest may depend on the model choices of other firms. A51

firm might profit from deploying a worse-performing model, apparently against its own self-interest,52

because it aligns with a competitor. Does this raise concerns about illegal conduct [28]? At this53

level of analysis, it remains unclear if or when adopting correlated algorithms constitutes illegal54

collusion—motivating the need for a formal model to capture the mechanisms at play.55

Our contributions. We build a game-theoretic model of competition between two firms who use56

algorithms to price-discriminate. We find that, indeed, firms can benefit from correlating with57

competitors when consumers are sufficiently price sensitive (Theorem 4.2). We quantify this value as58

a trade-off between correlation and predictive performance.2 Firms are sometimes willing to give59

up performance in exchange for correlation (Theorem 5.3), which is of concern because consumers60

are always worse off (more likely to pay higher prices) when competing firms’ algorithms are more61

correlated (Theorem 4.1). We also conduct empirical analyses demonstrating that firms choosing62

different model classes or choosing to share training data may lead to correlated models in equilibrium.63

Our findings allow us to develop insights about how current antitrust laws must evolve in the era64

of digital markets. In particular, the specter of frictionless algorithmic price correlation without65

overt communication should raise concerns about a new frontier of anti-competitive behavior. While66

the Federal Trade Commission (FTC) has brought multiple recent cases against parties using the67

same pricing algorithm to allegedly maintain inflated prices for hotel stays [51], rent [52], and pork68

[54], these cases involve traditional plus factors such as parties expressing their interest to collude in69

writing. Our work suggests the possibility of new plus factors such as broadcasting choice of model70

as an invitation to collude. We discuss these legal implications in Section 7.71

In sum, we analyze algorithmic homogenization as a novel mechanism for collusion, which sets72

us apart from existing works on algorithmic collusion that often focus on reinforcement learning73

algorithms that can naturally find collusive equilibria [29, 41, 15, 22, 2]. Specifically, our results74

do not require assumptions about the particular learning dynamics of competing algorithms: even75

in the absence of threats of pricing retaliation or adaptive learning, the mere reduction of strategic76

uncertainty via correlated predictions is enough to drive higher prices in equilibrium.77

2 Related Work78

Homogeneity and monoculture. Our work builds on recent work in machine learning on “al-79

gorithmic monoculture”, namely the state of affairs in which “many decision-makers rely on the80

same algorithm" and in doing so correlate their behavior [30]. Existing literature focuses on how81

monoculture harms the welfare of those who are subject to correlated algorithmic errors and face82

“homogeneous outcomes” [8, 27, 40]. Our work spotlights the harm to consumers that comes from83

higher prices in the context of personalized pricing.84

2Though in practice firms may not directly face this trade-off, we compare correlation with performance
because both are ways in which firms can extract more surplus from consumers. See Section 5.2 for a discussion.

2



Economic models of oligopoly pricing. We consider competition under a duopoly, which has been85

extensively studied in the economics literature. The works most related to ours are game-theoretic86

models of duopolies under Bayesian uncertainty [36, 11, 56, 25, 44, 1]. Much of this literature87

considers whether firms have incentives to collude by sharing information with one another. Whether88

a model will suggest that firms are rewarded for sharing information depends on a variety of modeling89

choices including whether firms compete over production quantity [14] or price [6]. In our model,90

as in these information-sharing models, firms’ information is parameterized by its performance and91

degree of correlation. This allows us to reason about strategic decisions firms make regarding shared92

data, model components, or predictive algorithms.93

Personalized pricing. A growing body of empirical, theoretical, and legal literature considers how94

personalized pricing interacts with concepts like competition and privacy [5, 18, 10, 20, 59, 12, 42].95

Most related to our work are theoretical models of personalized pricing in the context of competition.96

Both Rhodes and Zhou [43] and Baik and Larson [3] consider models of competition in personalized97

pricing under first-degree price discrimination. In contrast, our model is designed to provide insights98

when firms have imperfect but potentially correlated information.99

Algorithmic collusion. The spirit of modern antitrust law is to promote competition. There100

is generally broad consensus that an open and free market economy – which at its core fosters101

competition – benefits consumers by lowering prices, spurring innovation, and increasing the quality102

of goods and services [45, 37, 24, 9]. In the United States, antitrust enforcement relies on three sets of103

federal laws: the Sherman Act, the Clayton Act, and the FTC Act, each prohibiting different actions104

that harm competition. In this work, we will focus our attention to the parts of the Sherman Act and105

the FTC Act that are intended to delineate which forms of collusion among competitors are illegal.106

In general, legal scholars consider three mechanisms for algorithmic collusion. First, an algorithm107

can be a tool that aids humans in explicitly sustaining cartel-like behavior. Second, an algorithm108

can be a hub that coordinates actions or be the sole algorithm used among competitors. Third,109

highly sophisticated algorithms can learn each other’s behaviors and achieve supra-competitive prices110

without explicit communication. From the first to third category, the likelihood that the behavior is111

illegal decreases or, at best, the action becomes more likely to fall into a contested grey area [46].112

This is because humans become less involved in achieving collusion, making it harder to prove an113

intent or conspiracy to agree to fix prices. Absent proof of intent to form an agreement, firms are114

considered to engage in tacit collusion, which is generally not illegal without plus factors.115

Recent legal scholarship has raised concerns about the potential for algorithms to facilitate tacit116

collusion. Various works have proposed legal and legislative pathways to expand the powers of117

regulatory agencies [32] or methods to more effectively screen and audit for tacit collusion [35, 26].118

However, the mechanisms for algorithmic tacit collusion have not been extensively studied. Several119

theoretical papers have found collusive outcomes under the third mechanism for algorithmic collusion,120

where reinforcement learning models compete in a repeated pricing setting [29, 41, 15, 22, 2]. In the121

repeated-game setting, it is well-known that collusive equilibria exist [23] since players can credibly122

threaten future retaliation. Past works have shown that standard learning paradigms can find such123

collusive equilibria. Our work, in contrast, studies the existence of collusive equilibria in the long-run124

given algorithms are ex ante correlated, meaning threats are not necessary to sustain them.125

3 Model126

We consider a duopoly model where two firms sell identical goods. For each consumer, a firm decides127

whether to offer a default price Hr or a discounted price Lr.3 Both firms incur the same unit costs C,128

leading to a per-unit profit of H = Hr −C and L = Lr −C when pricing high and low, respectively.129

Without loss of generality, we assume that C = 0. We ignore consumers whose valuation V for the130

good is less than L, and we define θ to be the fraction of consumers with valuation at least H .4 We131

will use τH and τL to refer to consumers with valuations at least or strictly less than H respectively.5132

3This is consistent with pricing via “couponing” [e.g., 18], a strategy according to which firms target offers
of fixed discounts (e.g., 20% off) to consumers.

4We treat H and L as exogenous to this model. We interpret H as a posted price (e.g., the nominal fare
offered by a ride-sharing app) and L as a fixed discount (e.g., a coupon) on that posted price.

5While a more sophisticated model might directly estimate consumer willingness to pay, firms in practice
simplify continuous prediction problems into discrete ones [38] and collect data at discrete price points [17].
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Firm 2

H L

[τH ] Firm 1
H (H2 ,

H
2 ) (σH, (1− σ)L)

L ((1− σ)L, σH) (L2 ,
L
2 )

Firm 2

H L

[τL] Firm 1
H (0, 0) (0, L)

L (L, 0) (L2 ,
L
2 )

Table 1: Payoff matrices for both firms when the consumer is willing to pay the high price (τH , top) and low
price (τL, bottom). Within each cell, we denote (Firm 1 payoff, Firm 2 payoff).

Consumer behavior. Consumers can purchase from either firm. Under perfect Bertrand competition,133

each consumer would simply choose to purchase the lower-priced good. The economics literature134

often relaxes the perfect competition assumption such that firms that price higher experience non-zero135

demand [see, e.g., 57]. This may be because firms have finite supply, meaning consumers are forced136

to purchase at a higher price when the low price goods sell out, or because some consumers are lazy137

and take the first price they encounter that is below their valuation. We parameterize this model as138

follows: When a consumer of type τH is offered a price Lr by one firm and Hr by the other, they139

purchase at price Hr with probability σ ∈ [0, 0.5] and Lr with probability 1− σ. Thus, for larger140

values of σ, consumers are less price-sensitive.141

We assume that consumers never pay a price above their valuation and always make a purchase as142

long as at least one firm offers a price below their valuation. Further, when a consumer is offered143

two identical prices, they choose a firm to purchase from uniformly at random. An intuitive example144

of this consumer behavior is riders choosing between ridesharing apps. When prices are the same,145

potential riders are indifferent between two rideshare services (i.e., they do not have brand loyalty).146

However, when prices differ and consumers are willing to pay the higher price, σ models the friction147

consumers face in comparing the two options. Perhaps some consumers check both apps to shop for148

the lowest price, but others choose one app at random and take the first price below their valuation.149

Firms’ utility and information structure. Our consumer choice model yields the payoff matrices150

for the two firms for each consumer type shown in Table 1. Note that from firms’ perspective,151

their utilities are with respect to unit profit as opposed to sale price. We will denote Ui(·; τ) as152

the utility/payoff for firm i for a given action profile and for a consumer’s type τ ∈ {τL, τH}. For153

example, U1((H,L); τH) = σH and U2((H,L); τH) = (1− σ)L.154

Firms do not have perfect information and their algorithmic predictions make mistakes. We as-155

sume that when a consumer arrives with features x, each firm produces an algorithmic predic-156

tion p1(x), p2(x) ∈ {0, 1}, segmenting users into types {τL, τH}. For simplicity, we assume the157

algorithm has equal true positive and true negative rates, which we will denote a1 for firm 1:158

P[p1(x) = 1 | τH ] = P[p1(x) = 0 | τL] = a1. We define the same quantity for firm 2 and will refer159

to a as the model’s performance. We will drop x and simply refer to the algorithmic prediction as160

p1, p2.161

An important feature of our model is that p1 and p2 need not be independent conditioned on user162

type. If, for example, both firms purchase data from a third party, their predictions may be correlated.163

Throughout the paper, the terms “correlated predictions” and “correlated algorithms” strictly mean164

that algorithms make correlated errors. Two fully independent algorithms with high accuracy will165

naturally be correlated with each other, but we are concerned with algorithms that become even more166

correlated than the independent state of affairs. In the extreme case of algorithmic monoculture, firms167

use the same model, i.e.., their predictions are identical regardless of accuracy. We parameterize168

their correlation by ρ ∈ [0, 1], where ρ = 0 implies independence (p1 ⊥⊥ p2 | τ ) and ρ = 1 implies169

maximal correlation.6 When a1 = a2, ρ = 1 if and only if p1 = p2 deterministically. For now, we170

treat ρ as exogenous; we will consider strategic choices impacting ρ in Section 5. We assume all171

parameters are known to both firms.7 In total, our model has five free parameters (see Table 2).172

Equilibrium concept. A firm’s strategy space is simple: for each binary prediction (p ∈ {0, 1})173

given by the algorithm, set a price {L,H}. This results in 4 possible (pure) strategies. Because all174

parameters are known, firms know the joint distribution on p1, p2, τ . Our analysis will focus on Bayes175

Nash Equilibria (BNE). We do not require that firms price based on the algorithm’s predictions; for176

some parts of the parameter space, firms may ignore the algorithm and either always or never offer177

the discount. We will focus on the region where both firms follow their algorithms at equilibrium178

(i.e., price-discriminate), formally: s∗(p) = H if p = 1, L if p = 0.179

6When a1 ̸= a2, p1 and p2 cannot be perfectly correlated. See Appendix A for a formal definition of ρ.
7This assumption is especially common in oligopolies with few players that interact with each other frequently.
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The strategy profile (s∗, s∗) (both firms price-discriminate) is an equilibrium if and only if the180

conditions below hold:181

E
p2,τ

[U1((H, s∗(p2)); τ) | p1 = 1] ≥ E
p2,τ

[U1((L, s
∗(p2)); τ) | p1 = 1]

E
p2,τ

[U1((L, s
∗(p2)); τ) | p1 = 0] ≥ E

p2,τ
[U1((H, s∗(p2)); τ) | p1 = 0].

Parameter Interpretation

θ ∈ [0, 1] Frac. of consumers w/ demand ≥ Hr

a1, a2 ∈ [0.5, 1] Model performance for firms 1 & 2
σ ∈ [0, 0.5] Consumers’ indifference to price
ρ ∈ [0, 1] Degree of model correlation or ho-

mogenization

Table 2: List of free parameters in the model.

Analogous conditions must hold for182

player 2. Intuitively, expected util-183

ity when both firms follow the algo-184

rithm’s recommendation (both when185

p1 = 1 and when p1 = 0) must be186

higher than when one firm deviates.187

We are only interested in the condi-188

tions where (s∗, s∗) is a BNE because189

firms should follow the algorithm if190

they adopt it in the first place. In Ap-191

pendices D and E, we expand on our model by investigating settings where consumers have brand192

loyalty to a firm and where n firms compete in a market.193

Importantly, we note that BNE captures the long-run behavior of firms’ algorithmic choices rather194

than the outcome of a single static pricing round. We never specify how firms might converge to195

that equilibrium, unlike previous works [29, 41, 15, 22, 2] that model reinforcement learning or196

repeated-game dynamics. Collusive equilibria always exist in repeated games (as folk theorems197

suggest [23]), but do not necessarily exist in our setting. Further, while these works specify conditions198

for convergence, our equilibrium concept uniquely allows us to isolate the precise mechanism that199

yields supra-competitive prices: the degree of correlation between competing algorithms.200

4 Main Results201

We find that (1) consumers are worse off as algorithms become more correlated; and (2) firms exhibit202

stronger preferences for correlation as consumers are price sensitive.203

(1) Consumers are always worse off when pricing algorithms are correlated. When firms’ pricing204

strategies are correlated (e.g., they price identically), consumers have less choice and must accept205

the given price or forgo the good. Conversely, when firms price independently, consumers are more206

likely to have the option to choose a lower price. We formalize this in Theorem 4.1.207

Theorem 4.1. Fix σ, a1, a2, θ, and H/L. For all ρ such that (s∗, s∗) is a BNE, consumer welfare is208

decreasing in ρ.209

All proofs can be found in Appendix B. Our next few results describe when firms benefit by choosing210

correlated algorithms (and thereby harming consumers).211

(2) Higher consumer price sensitivity leads to a stronger firm preference for correlation. As212

consumers become more price sensitive (σ decreases), firms increasingly prefer to use more correlated213

algorithms over independent ones.214

Theorem 4.2. Suppose, for fixed θ, a1, a2, and R = H/L, (s∗, s∗) is a BNE when ρ = ρA and215

ρ = ρB , with ρB > ρA. Assuming both a1, a2 < 1, firms have higher utility under ρB when216

σ < σ∗(θ,R), where σ∗(θ,R) = Rθ−1
2θ(R−1) . Otherwise, firms have weakly higher utility under ρA.217

Intuitively, when consumers are more price sensitive, firms have a higher risk in pricing H because218

they may get undercut by their competitor and only attain a minority of the market. In these219

situations, firms prefer correlation because there is no risk of undercutting; both firms receive similar220

prediction and therefore price similarly. On the other hand, conditioned on pricing low, firms prefer221

independence: a firm would rather be undercutting its competitor than pricing identically. The balance222

between these two competing forces—a preference for correlation when pricing high and a preference223

for independence when pricing low—determine whether a firm prefers correlation overall.224

The tension between these forces is mediated by σ, which determines the relative risk from being225

undercut. Indeed, in Figure 1 we observe that within the gradient region (where both independent and226

correlated models are equilibria), preference for correlation monotonically decreases (from blue to227
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Independent
Correlated

Figure 1: Regions where firms following the algorithm’s recommendation is a Bayes Nash Equilibrium (BNE)
for independent models only (ρ = 0, light gray), identical models only (ρ = 1, dark gray), and both (gradient).
The gradient represents the difference in firm utility when ρ = 1 relative to ρ = 0; blue (red) signifies positive
(negative) difference. Columns represent two values of θ ∈ {0.5, 0.75}, while rows represent two values of
H/L ∈ {2, 4}. The x-axis in each subfigure is σ and the y-axis is a = a1 = a2.

red) as σ increases. In the extreme case when σ = 0.5 (consumers are completely price insensitive),228

firms always prefer independence. When a firm predicts pi = 1 and prices H accordingly, there is229

zero risk in being undercut: the firm receives 0.5H if τ = τH and 0 otherwise, regardless of their230

opponent’s price. However, when a firm predicts pi = 0 and prices L, they would in fact prefer that231

their opponent prices H so that they guarantee a sale when the consumer’s valuation is low (τ = τL).232

5 Strategic Choices in Algorithm Development233

We have shown that correlation can raise firm utility. Next, we examine its impact on strategic234

decisions in algorithm development before price competition, illustrating one possible strategic235

choice among many.236

5.1 Model237

Two firms choose between two model development processes: (1) collecting their own training data,238

yielding a model pi with performance ai, or (2) purchasing training data from the same vendor,239

producing a model pc with performance ac. When both firms buy data, their models are correlated at240

ρ = ρc > 0. If a firm collects its own data, we assume their model’s errors are independent of their241

competitor’s (ρ = ρ0 = 0), though in practice, independent data may not guarantee uncorrelated242

errors. More broadly, any shared component in model development—not just data procurement—can243

induce correlation. For example, our experiments in Section 6 allow firms to choose between model244

classes with varying levels of correlation. To summarize, firms have the following payoff matrix:245

Firm 2

pc pi

Firm 1
pc Eρc(pc, pc) Eρ0(pc, pi)

pi Eρ0
(pi, pc) Eρ0

(pi, pi)

where, for instance, Eρc(pc, pc) =(
Epc,pc,τ ;ρ=ρc [U1((s

∗(pc), s
∗(pc)); τ)] ,

Epc,pc,τ ;ρ=ρc [U2((s
∗(pc), s

∗(pc)); τ)]
)

We are interested in analyzing conditions under which equilibria exist. Two possible equilibria are246

(1) both firms choose algorithm pc with correlation ρc, and (2) both firms choose algorithm pi with247

independent outcomes ρ = ρ0 = 0. From hereon, we will refer to scenario (1) and (2) respectively248

as “correlated” and “independent”, ignoring that other actions can also lead to independence.249

Formally, the following conditions must hold for correlation or independence to be Pure Nash250

Equilibria (PNE):251

correlated in equilibrium: E1
ρc
(pc, pc) ≥ E1

ρ0
(pi, pc) and E2

ρc
(pc, pc) ≥ E2

ρ0
(pc, pi)

independent in equilibrium: E1
ρ0
(pi, pi) ≥ E1

ρ0
(pc, pi) and E2

ρ0
(pi, pi) ≥ E2

ρ0
(pi, pc).

As in the previous section, we focus on the strategy s∗ of price-discriminating. As such, an additional252

condition for equilibrium is that (s∗, s∗) is a BNE in the downstream second-stage game.253
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Figure 2: Regions where firms using both correlated models and independent models are Pure Nash Equilibra
(first-stage game). An additional condition is that firms following the algorithm’s recommendation must be a
Bayes Nash Equilibrium (second-stage game). The x-axis is the performance of the correlated algorithm ac, and
the y-axis is the performance of the independent algorithm ai. The gradient represents the difference in firm
utility when ρ = ρc (correlated) at performance ac relative to the utility at ρ = 0 (independent) at performance
ai; blue (red) signifies positive (negative) difference. All subfigures show parameters for which firms have a
preference for correlation at ac = ai as per Theorem 4.1, with H/L = 3, θ = 0.75.

5.2 Results254

Our main result shows that under certain conditions, firms may prefer correlation over independence,255

even when the correlated algorithm performs worse. Crucially, the following theorems apply only in256

parameter spaces where firms adopt the price-discriminating strategy s∗.257

Lemma 5.1. When ai > ac, both firms choosing independence is always a PNE.258

We next establish the conditions under which both firms correlating are in equilibrium, which comes259

from Theorem 4.2.260

Corollary 5.2 (Corollary to Thm 4.2). For ai = ac and σ < σ∗(θ,R), correlating is strictly a PNE.261

With Lemma 5.1 and Corollary 5.2 in hand, we can now state our final result.262

Theorem 5.3. For σ < σ∗(θ,R) and any ac, there exists ai such that both correlation and in-263

dependence are PNE and firms have higher utility under correlation than under independence.264

265

Theorem 5.3 says that given a preference for correlation at ai = ac, there are settings where firms266

derive strictly higher utility from an equilibrium with correlated but less accurate models. We will267

demonstrate this effect in Section 6.268

Figure 2 shows the various regions where both correlation and independence are PNE. All subfigures269

depict model parameters where firms prefer correlation at ai = ac. As expected, all subfigures have a270

region at ai = ac+ϵ, ϵ > 0 where correlation is still preferred to independence despite having a lower271

performance (blue gradient region). It seems that higher price sensitivity and a higher correlation272

option tend to increase the valid region of ϵ. For example, when θ = 0.75, H/L = 3, σ = 0.1, and273

ρc = 1, firms would rather correlate at a performance of ac = 0.6 than have a much more informative274

independent model of ai = 0.72.275

Trade-off between correlation and performance. While firms may not have direct information about276

a model’s correlation with competitors, development practices can still favor correlation. Beyond277

simply measuring predictive performance, firms typically A/B test new models when deploying them.278

Having developed a seemingly more accurate model, a firm might run an A/B test that reveals that279

it leads to lower profits, since it happens to correlate less with a competitor. Thus, market signals280

suffice to enable firms to trade off accuracy for correlation.281

6 Empirical Study282

We demonstrate our theoretical results in a stylized game between two firms that predict income283

based on demographic attributes. We use ACSIncome data [16], which contains US Census data284

from 2018. The task is to predict whether an individual earns over $50,000, which aligns with pricing285

via “couponing” [18].286

6.1 Setup: Different Model Classes287

To further illustrate strategic choices in our model, we consider how firms select different model288

classes. In Appendix C.2, we conduct experiments varying the degree to which firms train their289

models on shared data. Our experiment involves two firms. Each firm chooses between a better290
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for a given firm deploying a logistic regression (LR) or random forest (RF) model. Since both firms 1 and 2
face the same model options, their results are identically distributed. [Right] Correlation between both firms’
models when they both use logistic regression (LR-LR) or both use random forests (RF-RF). Error bars indicate
95% confidence intervals over 15 seeds. (b) Utility when both firms use logistic regression models (LR-LR)
subtracted by utility when both firms use random forests (RF-RF). Greater than 0 indicates a preference for
correlation at the expense of predictive performance. x-axis varies the proportion of H (high price) to L (low
price), and line colors indicate different values of σ, where a lighter color means higher consumer sensitivity to
price. Shaded region indicates 95% confidence intervals over 15 seeds.
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Figure 4: Best response matrices for the two firms where the action space is to deploy a logistic regression (LR)
or random forest (RF) model, over five model parameters. Best response for Firms 1 and 2 are highlighted in
blue and red. Nash equilibria exist when both blue and red are highlighted in the same box (e.g., (LR, LR) in
the middle subfigure). When both (LR, LR) and (RF, RF) are equilibria, a yellow square indicates higher firm
utility between the two. Grey boxes are “invalid” regions because (s∗, s∗) would not have been a BNE in the
downstream game where firms compete on prices. These results use the average firm utility over 15 seeds.

performing (random forests) and worse performing (logistic regression) model. However, logistic291

regression – despite having worse performance – has lower variance, meaning that it is likely to be292

more correlated when the opposing firm also chooses the same model class. We will show empirically293

that firms may prefer to sacrifice predictive performance in exchange for correlation.294

Both firms train and test on Census data in California. The test set is 30% of the data (n = 58, 700)295

and is fixed across both firms. We randomly split half of the remaining 70% as the training set for296

Firm 1, and the other half for Firm 2, each having 35% of the entire data to train (n = 68, 482). We297

repeat the training data splits over 15 random seeds.298

Figure 3(a) shows the performance and correlation for both firms when using a logistic regression299

(LR) and a random forest (RF) model. RF outperforms LR across many metrics: accuracy, precision,300

recall, true negative rate, and area under ROC curve. This is by design – our goal is to simulate a301

scenario where firms have a choice between a more correlated model with worse performance (LR)302

and a better performing but less correlated model (RF). See Appendix C.1 for details.303

6.2 Results304

Preference for correlation. Figure 4 shows best response matrices for both firms choosing between305

LR or RF, over various values of σ and H/L. Cells with a blue and red cross indicate a Pure Nash306

Equilibrium (PNE) for that action profile. When H/L is too low or too high, firms will never choose307

to follow their algorithms to begin with (grey cells) because always pricing low or high will give a308

higher expected utility. When H/L is moderate, less correlation (RF, RF) is always a PNE as per309

Theorem 5.1. More correlation (LR, LR) is a PNE under the condition outlined in Corollary 5.2.310

Finally, when both (LR, LR) and (RF, RF) are PNE, the difference in performance between LR311

and RF are small enough such that (LR, LR) is higher in utility (yellow cell) than (RF, RF) as per312

Theorem 5.3. This preference for correlation (LR, LR) occurs when H/L is large and σ is low313

(consumers are more price sensitive), as Figure 3(b) illustrates. As per Theorem 4.2, correlation is314
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most beneficial to firms when there is a high risk of being undercut by the opponent; therefore, firms315

would rather have certainty about the other firm’s actions than a better performing model.316

Firms prefer lower variance models under competition. Lower variance models have less predic-317

tive multiplicity [7], and thus predictive errors are more correlated. Our empirical study suggests that318

competing firms are pushed to adopt simpler (higher bias, lower variance) models on the margins.319

7 Discussion320

Taken together, our results suggest that firms will sometimes prefer a less accurate personalized321

pricing algorithm when doing so allows them to better correlate their behavior with their competitors322

(Theorem 5.3) and this behavior reduces consumer welfare (Theorem 4.1). Furthermore, firms are323

more likely to prefer correlated algorithms when consumers are price sensitive (Theorem 4.2) and the324

consumers most likely to suffer are those to whom the price matters most.325

Correlation is a mechanism to reduce competition and sustain higher prices. When firms make326

up a duopoly, using more correlated algorithms allows firms to reduce competition, which increases327

prices. When algorithms are not correlated, firms naturally attempt to undercut their opponent in328

order to extract more surplus, so the high price equilibrium cannot be sustained. This undercutting329

will continue to lower prices until firms reach a new equilibrium.330

Models can become correlated when any part of the development pipeline is homogeneous, such331

as using similar pre-trained models, lower variance models (Section 6), or training on similar data332

(Appendix C.2). We empirically demonstrate that these settings lead to higher prices.333

We note several limitations. Our findings and discussions on antitrust law apply specifically to334

algorithmic pricing. Moreover, our stylized model is intended to illustrate the possibility of correlated335

outcomes occurring under reasonable conditions. Future work may attempt to investigate more336

mechanisms or even empirically investigate this possibility in real-life markets.337

7.1 Legal Implications338

Our results add to the growing body of work suggesting that the ease of collusion that algorithmic339

price-setting facilitates may support a revision of traditional anti-trust standards [34, 21, 32].340

Publicly signaling models may invite collusion. Mazumdar [32] suggests that adopting a pricing341

algorithm that “broadcasts” its intentions can signal an invitation to collude. While there is little342

precedent for firms publicly committing to a model, our findings suggest this may pose a risk.343

In particular, our model suggests that publicly adopting a less accurate model could be considered an344

invitation to collude. Assume that both correlated models (LR, LR) and independent models (RF,345

RF) are equilibria (e.g., middle subfigure of Figure 2), and firms initially use (RF, RF). In order346

for firms to reach the collusive outcome of (LR, LR) without explicit communication or agreement,347

one firm must unilaterally switch to LR, sacrificing its own utility (by leaving an equilibrium) in348

the hope that its competitor will follow. This costly action functions as a signal—demonstrating a349

willingness to reduce competition despite short-term losses. Antitrust law should determine whether350

public announcement of model choice can be an anti-competitive “plus factor” in the same way that351

public announcement of intent to price high can be anti-competitive.352

Choosing a less accurate model is not the only way to collude by correlating. Among equally accurate353

models, a firm selecting the model most correlated with a competitor would not necessarily constitute354

a “plus factor” since choosing a best-in-class model aligns with a firm’s economic self-interest. As355

discussed, however, intent to achieve supracompetitive prices is sufficient to establish illegal collusion.356

Thus, choosing a correlated model may be concerning if firms intended to reduce competition.357

Intentional choice of correlated models as a frontier of competition law. Intention to collude on358

prices has long been a cornerstone of anti-trust law. We propose that intentionally adopting correlated359

algorithms can constitute illegal collusion, just as intent to coordinate on higher prices does. Previous360

legal cases alleging algorithmic collusion like RealPage [52] and AgriStats [54] , have relied on a361

hub-and-spoke structure, where firms share information centrally, receive price recommendations,362

and face enforcement for deviations. Our model demonstrates that horizontal collusion can occur363

without a central coordinator—firms merely need to knowingly homogenize.364
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A Model (Continued)490

A.1 Correlation Parameter491

We parameterize correlation between two models p1 and p2 with ρ ∈ [0, 1], see Table 3 for the joint492

distribution on P[p1, p2, τ ]. Note that in the case where ρ = 1 and a1 = a2, we are modeling a493

scenario where both firms are using the same algorithm (i.e., monoculture).494

τ p1 p2 P[p1, p2, τ ]
τH 1 1 θ[a1a2 + ρ(min(a1, a2)− a1a2)]
τH 1 0 θ[a1(1− a2)− ρ(min(a1, a2)− a1a2)]
τH 0 1 θ[(1− a1)a2 − ρ(min(a1, a2)− a1a2)]
τH 0 0 θ[1− a1 − a2 + a1a2 + ρ(min(a1, a2)− a1a2)]
τL 1 1 (1− θ)[1− a1 − a2 + a1a2 + ρ(min(a1, a2)− a1a2)]
τL 1 0 (1− θ)[(1− a1)a2 − ρ(min(a1, a2)− a1a2)]
τL 0 1 (1− θ)[a1(1− a2)− ρ(min(a1, a2)− a1a2)]
τL 0 0 (1− θ)[a1a2 + ρ(min(a1, a2)− a1a2)]

Table 3: Joint distribution P[p1, p2, τ ].

B Proofs495

B.1 Consumer Welfare and Proof of Theorem 4.1496

Before proving the theorem, we will introduce some additional notation. Let W ((·); τ) denote497

consumer welfare under the action profile (·) and demand state τ . We define consumer welfare as498

the consumer valuation of the good subtracted by the cost of the good. As such, we define two499

additional variables VL, VH to be consumers’ expected valuation under τL and τH , respectively. Let500

δL = VL − Lr and similarly for δH = VH −Hr. By definition, δL, δH ≥ 0 – otherwise, consumers501

will not purchase the good. Consumer welfare under the various actions and demand states can be502

summarized in Table 4.503

τH
Firm 2

H L

Firm 1 H δH δH + (1− σ)(Hr − Lr)

L δH + (1− σ)(Hr − Lr) δH + (Hr − Lr)

τL
Firm 2

H L

H 0 δL
L δL δL

Table 4: Consumer welfare under all action possibilities and both demand states (τH , τL).

Proof. We will denote expected consumer welfare for a given value of ρ as504

E
p1,p2,τ ;ρ

[W ((s∗(p1), s
∗(p2)); τ)].

Our goal is to show that505

d

dρ
E

p1,p2,τ ;ρ
[W ((s∗(p1), s

∗(p2)); τ)] < 0.

Our approach will be to show that increasing ρ increases the likelihood that p1 = p2, which in turn506

reduces consumer welfare. First, observe that507

E
p1,p2,τ ;ρ

[W ((s∗(p1), s
∗(p2)); τ)] = E

p1,p2,τ ;ρ
[W ((s∗(p1), s

∗(p2)); τ) | p1 = p2] Pr
p1,p2,τ ;ρ

[p1 = p2]

+ E
p1,p2,τ ;ρ

[W ((s∗(p1), s
∗(p2)); τ) | p1 ̸= p2] Pr

p1,p2,τ ;ρ
[p1 ̸= p2].

We will show that508

E
p1,p2,τ ;ρ

[W ((s∗(p1), s
∗(p2)); τ) | p1 = p2]
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and509

E
p1,p2,τ ;ρ

[W ((s∗(p1), s
∗(p2)); τ) | p1 ̸= p2]

do not depend on ρ.510

E
p1,p2,τ ;ρ

[W ((s∗(p1), s
∗(p2)); τ) | p1 = p2] = E

p1,p2,τ ;ρ
[W ((s∗(p1), s

∗(p2)); τ) | p1 = p2, τ = τH ] Pr
p1,p2,τ ;ρ

[τH | p1 = p2]

+ E
p1,p2,τ ;ρ

[W ((s∗(p1), s
∗(p2)); τ) | p1 = p2, τ = τL] Pr

p1,p2,τ ;ρ
[τL | p1 = p2]

= W ((s∗(p1), s
∗(p2)); τH) Pr

p1,p2,τ ;ρ
[τH | p1 = p2]

+W ((s∗(p1), s
∗(p2)); τL) Pr

p1,p2,τ ;ρ
[τL | p1 = p2]

Note that by definition, Prp1,p2;ρ[p1 = p2 | τ = τH ] = Prp1,p2;ρ[p1 = p2 | τ = τL] =511

Prp1,p2,τ ;ρ[p1 = p2]. Therefore,512

Pr
p1,p2,τ ;ρ

[τ = τL | p1 = p2] =
Prτ ;ρ[τ = τL] Prp1,p2;ρ[p1 = p2 | τ = τL]

Prp1,p2;ρ[p1 = p2]
= 1− θ

Pr
p1,p2,τ ;ρ

[τ = τH | p1 = p2] =
Prτ ;ρ[τ = τH ] Prp1,p2;ρ[p1 = p2 | τ = τH ]

Prp1,p2;ρ[p1 = p2]
= θ

This implies513

E
p1,p2,τ ;ρ

[W ((s∗(p1), s
∗(p2)); τ) | p1 = p2] = θW ((s∗(p1), s

∗(p2)); τH) + (1− θ)W ((s∗(p1), s
∗(p2)); τL).

A similar argument shows that Ep1,p2,τ ;ρ[W ((s∗(p1), s
∗(p2)); τ) | p1 ̸= p2] does not depend on ρ.514

Next, we will show that that515

E
p1,p2,τ

[W ((s∗(p1), s
∗(p2)); τ) | p1 = p2] ≤ E

p1,p2,τ
[W ((s∗(p1), s

∗(p2)); τ) | p1 ̸= p2], (1)

meaning that consumers have higher expected utility when offered different prices. Because τ is516

independent of the event p1 = p2, we can analyze each τ ∈ {τL, τH} separately. For τH ,517

E
p1,p2

[W ((s∗(p1), s
∗(p2)); τH) | p1 = p2, τ = τH ]− δH = Pr

p1,p2

[p1 = p2 = 1 | p1 = p2, τ = τH ](W ((H,H); τH)− δH)

+ Pr
p1,p2

[p1 = p2 = 0 | p1 = p2, τ = τH ](W ((L,L); τH)− δH)

= Pr
p1,p2

[p1 = p2 = 1 | p1 = p2, τ = τH ] · 0

+ Pr
p1,p2

[p1 = p2 = 0 | p1 = p2, τ = τH ](Hr − Lr)

=
1− a1 − a2 + (1− ρ)a1a2 + ρmin(a1, a2)

1− a1 − a2 + 2(1− ρ)a1a2 + 2ρmin(a1, a2)
(Hr − Lr)

≤ 1

2
(Hr − Lr)

because a1 and a2 are both at least 0.5. Similarly,518

E
p1,p2

[W ((s∗(p1), s
∗(p2)); τH) | p1 ̸= p2, τ = τH ]− δH = (1− σ)(Hr − Lr)

≥ 1

2
(Hr − Lr)

since σ ≤ 0.5, meaning519

E
p1,p2

[W ((s∗(p1), s
∗(p2)); τH) | p1 = p2, τ = τH ] ≤ E

p1,p2

[W ((s∗(p1), s
∗(p2)); τH) | p1 ̸= p2, τ = τH ],

(2)
Next, observe that520

E
p1,p2

[W ((s∗(p1), s
∗(p2)); τL) | p1 = p2, τ = τL] ≤ E

p1,p2

[W ((s∗(p1), s
∗(p2)); τL) | p1 ̸= p2, τ = τL]

(3)
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simply because the left hand side is at most δL and the right hand side is deterministically δL.521

Combining (2) and (3) and using the fact that τ is independent of the event p1 = p2 proves (1). As a522

result,523

d

dρ
E

p1,p2,τ ;ρ
[W ((s∗(p1), s

∗(p2)); τ)] =
d

dρ

(
E

p1,p2,τ
[W ((s∗(p1), s

∗(p2)); τ) | p1 = p2] Pr
p1,p2,τ ;ρ

[p1 = p2]

+ E
p1,p2,τ

[W ((s∗(p1), s
∗(p2)); τ) | p1 ̸= p2]

(
1− Pr

p1,p2,τ ;ρ
[p1 = p2]

))
=

(
E

p1,p2,τ
[W ((s∗(p1), s

∗(p2)); τ) | p1 = p2]

− E
p1,p2,τ

[W ((s∗(p1), s
∗(p2)); τ) | p1 ̸= p2]

)
d

dρ
Pr

p1,p2,τ ;ρ
[p1 = p2]

=

(
E

p1,p2,τ
[W ((s∗(p1), s

∗(p2)); τ) | p1 = p2]

− E
p1,p2,τ

[W ((s∗(p1), s
∗(p2)); τ) | p1 ̸= p2]

)
· d

dρ
1− a1 − a2 + (1− ρ)a1a2 + ρmin(a1, a2)

≤ 0,

where the last line follows by (1) and using the fact that524

d

dρ
1− a1 − a2 + (1− ρ)a1a2 + ρmin(a1, a2) ≥ 0.

This inequality is strict as long as a1, a2 < 1 (otherwise ρ has no impact on the joint distribution of525

p1, p2, τ ).526

B.2 Proof of Theorem 4.2527

Proof. The following condition for Firm 1 must hold for them to prefer prefer ρ = ρB over ρ = ρA:528

E
p1,p2,τ ;ρ=ρB

[U1((s
∗(p1), s

∗(p2)); τ)] > E
p1,p2,τ ;ρ=ρA

[U1((s
∗(p1), s

∗(p2)); τ)].

For ease of notation, let A = min(a1, a2)− a1a2 and let ∆ρ = ρB − ρA > 0. We will see that the529

probabilities cancel out when subtracting ρ = ρB to ρ = ρA, leaving only the A and ∆ρ terms:530 ∑
p1∈{0,1}

∑
p2∈{0,1}

∑
τ∈{τH ,τL}

U1[(s
∗(p1), s

∗(p2); τ ] [P[p1, p2, τ ; ρ = ρB ]− P[p1, p2, τ ; ρ = ρA]] > 0

HθA∆ρ

2
−HσθA∆ρ +

L(1− θ)A∆ρ

2
− L(1− θ)A∆ρ − Lθ(1− σ)A∆ρ +

LθA∆ρ

2
> 0

1

2
A∆ρ[Hθ(1− 2σ) + L(2σθ − 1)] > 0

We can derive the same exact inequality for firm 2. When min(a1, a2)− a1a2 ̸= 0 (or, when both
a1, a2 < 1), we get

σ <
Hθ − L

2θ(H − L)
.

We can further show that lower σ monotonically increases preference for correlation:531

∂

∂σ
A∆ρ[Hθ(1− 2σ) + L(2σθ − 1) = 2A∆ρθ(L−H),

which is always negative because L < H by definition.532

15



B.3 Proof of Theorem 5.1533

Proof. The main intuition behind this proof is that an algorithm with performance ai can simulate an534

algorithm with lower performance ac. Recall that we define s∗ to be the optimal strategy of following535

the algorithm. Let s∼∗ be the strategy of doing the opposite of the algorithm’s recommendations. We536

define s′ to be the following strategy:537

s′(ai) =

{
s∗(ai), w.p. q
s∼∗(ai), w.p. 1− q,

where q = ac+ai−1
2ai−1 . The strategy s′(ai) is equivalent in expectation to s∗(ac) in terms of firm utility.538

To see this, we will prove that the conditional distribution P[τ |s′(ai)] is equivalent to P[τ |s∗(ac)]:539

P[τ = τH |s′(ai) = 1] = P[τ = τH |s∗(ac) = 1]

P[s′(ai) = 1|τ = τH ]P[τH ]

P[s′(ai) = 1|τ = τH ]P[τH ] + P[s′(ai) = 1|τ = τL]P[τL]
=

P[s∗(ac) = 1|τ = τH ]P[τH ]

P[s∗(ac) = 1|τ = τH ]P[τH ] + P[s∗(ac) = 1|τ = τL]P[τL]

and540

P[τ = τH |s′(ai) = 0] = P[τ = τH |s∗(ac) = 0]

P[s′(ai) = 0|τ = τH ]P[τH ]

P[s′(ai) = 0|τ = τH ]P[τH ] + P[s′(ai) = 0|τ = τL]P[τL]
=

P[s∗(ac) = 0|τ = τH ]P[τH ]

P[s∗(ac) = 0|τ = τH ]P[τH ] + P[s∗(ac) = 0|τ = τL]P[τL]
.

Based on the Bayes’ Rule expansion above, it suffices to prove the following equivalences:541

P[s′(ai) = 1|τ = τH ] = P[s∗(ac) = 1|τ = τH ] (4)

P[s′(ai) = 1|τ = τL] = P[s∗(ac) = 1|τ = τL] (5)

Proof of (4):542

P[s′(ai) = 1|τ = τH ] = qP[s∗(ac) = 1|τ = τH ] + (1− q)P[s∼∗(ac) = 1|τ = τH ]

= qP[s∗(ac) = 1|τ = τH ] + (1− q)P[s∗(ac) = 0|τ = τH ]

= qai + (1− q)(1− ai) =
ac + ai − 1

2ai − 1
ai +

ai − ac
2ai − 1

(1− ai) =
ac(2ai − 1)

2ai − 1
= ac

= P[s∗(ac) = 1|τ = τH ]

Proof of (5):543

P[s′(ai) = 1|τ = τL] = qP[s∗(ac) = 1|τ = τL] + (1− q)P[s∼∗(ac) = 1|τ = τL]

= qP[s∗(ac) = 1|τ = τL] + (1− q)P[s∗(ac) = 0|τ = τL]

= (1− q)ai + q(1− ai) =
ai − ac
2ai − 1

ai +
ac + ai − 1

2ai − 1
(1− ai) =

(2ai − 1)(1− ac)

2ai − 1
= 1− ac

= P[s∗(ac) = 1|τ = τL]

Note that the space of possible accuracies is a ≥ 0.5 for an algorithm to be useful. When ac = 0.5,544

ai > 0.5 by assumption of the Theorem and therefore q is never undefined. Then,545

E1
ρ0
[(s∗(ai), s

∗(ai))] ≥ E1
ρ0
[(s′(ai), s

∗(ai))] = E1
ρ0
[(s∗(ac), s

∗(ai))],

and similarly for Firm 2.546

547

16



B.4 Proof of Corollary 5.2548

Proof. We will show that the condition for a strict preference for correlation (in the second-stage
game) is equivalent to correlation being strictly in equilibrium (in the first-stage game). We first start
with the preference correlation in the proof for Theorem 4.2:

E
p1,p2,τ ;ρ=ρB

[U1((s
∗(p1), s

∗(p2)); τ)] > E
p1,p2,τ ;ρ=ρA

[U1((s
∗(p1), s

∗(p2)); τ)].

Since this condition is for any ρA < ρB , we will let ρB = ρc and ρA = 0. Further, we will change549

the p notation to ac and ai where relevant, since ai = ac by assumption.550

E
ac,ac,τ ;ρ=ρc

[U1((s
∗(ac), s

∗(ac)); τ)] > E
ai,ac,τ ;ρ=0

[U1((s
∗(ai), s

∗(ac)); τ)],

which is equivalent to the condition that both firms using correlated models is in equilibrium; this551

strict inequality implies a strict equilibrium. Symmetric argument applies for Firm 2.552

B.5 Proof of Theorem 5.3553

Proof. First, both firms using independent algorithms is always a PNE when ai > ac as per Theo-554

rem 5.1.555

We will next state what is needed to prove the theorem. When firms have a preference for correlation556

at ai = ac, both firms using correlated algorithms should be a PNE when ai = ac + ϵ, for small557

enough ϵ:558

∃ ϵ > 0 s.t. E1
ρc,s∗(ac, ac) > E1

ρ0,s∗(ai + ϵ, ac) (6)

On top of that, firms also prefer correlated algorithms over independence at ai = ac + ϵ, for small559

enough ϵ:560

∃ ϵ > 0 s.t. E1
ρc,s∗(ac, ac) > E1

ρ0,s∗(ai + ϵ, ai + ϵ). (7)

The proofs for (6) and (7) come from Corollary 5.2, which states that when firms strictly prefer
correlation at ai = ac, correlating is δ-strictly a PNE:

∃ δ > 0 s.t. E1
ρc,s∗(ac, ac) ≥ E1

ρ0,s∗(ai, ac) + δ,

We define the following shorthand:561

A E1
ρc,s∗(ac, ac)

B E1
ρ0,s∗(ai, ac)

C(ϵ) E1
ρ0,s∗(ai + ϵ, ac)

D(ϵ) E1
ρ0,s∗(ai + ϵ, ai + ϵ)

Put another way, Corollary 5.2 states that562

∃ δ > 0 s.t. A ≥ B + δ (8a)
A ≥ C(ϵ) + δ (8b)
A ≥ D(ϵ) + δ (8c)

at ϵ = 0 and ai = ac because B = C(ϵ = 0) = D(ϵ = 0). Since C(ϵ) and D(ϵ) are continuous in ϵ,563

(6) and (7) are true by (8b) and (8c).564

565

C Experiments (continued)566

C.1 Additional Details for Model Multiplicity Setup567

We chose the following model hyperparameters to simulate a higher performance for random forests568

compared to logistic regression:569
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Model Hyperparameters

Logistic Regression ℓ1-penalty, saga solver
Random Forest · # trees = 9

· min # samples in each leaf = 7
· weight: 1.2x for negative class

All unspecified hyperparameters use the default values set by scikit-learn. All experiments (including570

the ones outlined in the following Section) were run using a Apple Silicon M2 chip with 16GB. They571

only require CPUs and are not computationally expensive – any modern computer can easily run572

these experiments.573

C.2 Additional Experiments: Data Procurement574

C.2.1 Setup575

Our experiment involves two firms who may independently choose to correlate with each others’576

models by using overlapping datasets. Firm 1 trains on Census data in Texas while Firm 2 trains577

on Census data in Florida. They both have the option to purchase supplementary data of worse578

quality from a third-party, which in this case is Census data from California whose labels have been579

perturbed 25% of the time. In doing so, we are giving firms the choice of correlating their models at580

the expense of predictive accuracy.581

In order to smoothly interpolate between independence and correlation, we define a parameter γ; for582

instance, Firm 1 can use the training data (1− γ) TX + γ CA, and similarly for Firm 2. If both firms583

use γ = 0, there is no overlap in training data and their resulting models will be the least correlated.584

Conversely, when both firms use γ = 1, their training data is identical and their models will be the585

most correlated.586

We randomly sample n = 200, 000 datapoints from TX, FL, and CA in order to standardize the587

effect of γ. We then further sample γ proportion of each dataset to ensure that all training data used588

have exactly n observations. We run this experiment over 15 random seeds, and over γ ∈ [0, 1] in589

0.1 increments. Both firms train the same model class (random forests) and have the same test data:590

Census data from Illinois.591

C.2.2 Results: Second-Stage Game592

Figure 5(a) shows the predictive accuracy for both firms and the correlation between both firms as593

γ varies. As expected, accuracy monotonically decreases and correlation monotonically increases594

as γ increases since firms use more and more of the same lower-quality training data. We observe595

a significant decrease in accuracy for both firms when γ = 1, presumably because both models no596

longer receive the more predictive signal from their original training data.597

Figure 5(b) shows the difference in utility between γ at the x-axis and γ = 0 (independent datasets).598

When this difference is above 0 (blue dashed line), firms have a preference for correlation at that599

γ value. We observe such a preference for correlation when consumers are more price sensitive600

(lower σ) and when the ratio between the H and L prices is larger, as per Theorem 4.2. Firms prefer601

correlation even when accuracy marginally decreases (subfigure (a)); this happens particularly when602

there is a high risk of being undercut, making correlating especially beneficial even at the expense of603

predictive accuracy. However, firms no longer prefer correlation when the trade-off in accuracy is too604

high (e.g., Firm 1 in γ = 1). We note that firms are asymmetric: because their models’ accuracies605

differ at various γ, they do not always prefer correlation in the same way, but the general trends606

remain.607

C.2.3 Results: First-Stage Game608

We also model firms’ decision to correlate at a particular γ. In particular, Figure 6 shows the best609

response matrices for both firms in choosing various values of γ, over various model parameters610

(H/L, σ). Cells with a red and blue cross indicate a Pure Nash Equilibrium. In general. higher611

correlation (γ) is only in equilibrium for higher H/L and lower σ, which reflect the same trends612

as the second-stage game. For example, When H/L = 6, σ = 0.1, the sole equilibrium exists at613
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Figure 5: (a) [Left] Correlation between both firms’ models in the empirical study across various values of γ.
γ = 0 (1) corresponds to no overlap (full overlap) in training data. [Middle and Right] Accuracy of Firm 1
and 2’s models over various values of γ. Error bars are 95% confidence intervals over 15 seeds. (b) Difference
in utility between γ at the x-axis and γ = 0 (no overlap in training data) for the empirical study, over various
values of H/L and σ. Top and bottom rows correspond to Firm 1 and 2’s utilities, respectively. Shaded regions
indicate 95% confidence intervals over 15 seeds.
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Figure 6: Best response matrices for the two firms in the empirical study, over three select model parameters.
γ = 0 means no overlap in training data (least correlated) while γ = 1 indicates identical training data (most
correlated). Best response for Firms 1 and 2 are highlighted in blue and red, respectively. Nash equilibria
exist when both blue and red are highlighted in the same box (e.g., (0, 0) in the left subfigure). Grey boxes are
“invalid” regions because following the algorithm would not have been a BNE in the downstream game where
firms compete in prices. These results use the average firm utility over 10 seeds.

(0.9, 0.7). When H/L increases to 10, equilibrium is at (1, 1). We note, however, that in extreme614

H/L values, certain regions are “invalid” in the sense that firms would not follow the algorithm in615

the downstream second-stage game (grey cells).616

C.3 Additional Results617

Firms choose to correlate, even when algorithms are uninformative. Figure 1 displays regions618

where firms following the algorithm’s recommendation is a BNE for independent models only (light619

gray) and correlated models only (dark gray). When a = 0.5, independent models are never in620

equlibrium because the algorithms are as good as random. However, when a = 0.5 and models are621

correlated, firms may still choose to follow the algorithm. This region is more likely to be in low σ622

regimes – where there is the highest risk in being undercut by one’s opponent – and therefore there is623

value in coordinating actions despite the model having no predictive power.624
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Figure 7: Examples of discounts offer to potential riders on Uber (left) and Lyft (middle). Rightmost figure
explains Uber’s “flash promo” offering.

D Extension: Asymmetric Market Power625

In this section, we relax the assumption that consumers are indifferent to firms when firms offer the626

same price. In particular, we will introduce a parameter γ ∈ [0, 1] that controls consumers’ preference627

toward Firm 1. We will also reparameterize σ ∈ [0, 1], still capturing price sensitivity. For example,628

in the context of Uber and Lyft, γ specifies the proportion of people who check Uber before Lyft.629

Of the people who check Uber first, a σ proportion are price-insensitive, meaning that they would630

still choose Uber even when Lyft offers a lower price. When γ = 0.5, we model the same consumer631

behavior as in the original model. The payoff matrices are summarized in Table 5.632

Firm 2

H L

[τH ] Firm 1
H (γH, (1− γ)H) (γσH, (1− γσ)L)

L ((1− σ + γσ)L, (1− γ)σH) (γL, (1− γ)L)

Firm 2

H L

[τL] Firm 1
H (0, 0) (0, L)

L (L, 0) (γL, (1− γ)L
Table 5: Payoff matrices for both players when the consumer is willing to pay the high price (τH , top) and low
price (τL, bottom). Within each cell, we denote (Firm 1 payoff, Firm 2 payoff).

20



0.0 0.2 0.4 0.6 0.8 1.00.00

0.25

0.50

0.75

H/L = 2

 = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

 = 0.75

0.0 0.2 0.4 0.6 0.8 1.00.00

0.25

0.50

0.75

H/L = 4

0.0 0.2 0.4 0.6 0.8 1.0

  =  Price Sensitivity H/L = Ratio of High to Low Price  = % Population Willing to Pay H

Independent
Same alg.
One or both prefer
independence
Prefer correlation

Figure 8: Regions where firms following the algorithm’s recommendation is a Bayes Nash Equilibrium (BNE)
for independent models only (ρ = 0, light gray), identical models only (ρ = 1, dark gray), and both (gradient).
The blue region denotes where both firms have higher utility under ρ = 1, while the red region is where at least
one firm has higher utility under ρ = 0. Columns represent two values of θ ∈ {0.5, 0.75}, while rows represent
two values of H/L ∈ {2, 4}. The x-axis in each subfigure is γ and the y-axis is σ. We fix a = a1 = a2 = 0.9.

Results. Our main result is that asymmetry lessens the impact of homogenization. Figure 8 shows633

regions where using fully independent algorithms (light gray) and the same algorithm (dark gray)634

are BNE. When both are BNE, blue indicates that both firms have higher utility when using the635

same algorithm, and red otherwise. As γ increases, firm 1 increasingly prefers correlation because636

they benefit from pricing similarly to their opponent (since consumers are increasingly loyal to firm637

1). Firm 2 increasingly prefers independence as γ increases for the same reason; firm 2 would like638

opportunities to undercut firm 1 since consumers prefer firm 1 when they price similarly. As a result,639

the region where both firms prefer correlation exist within a ball around γ ∈ [0.5− ϵ, 0.5 + ϵ] for640

some ϵ.641

E Extension: n Firms642

We now extend our model to capture a market with n competing firms. Let p1, . . . , pn be the predic-643

tions of n players. For simplicity, we assume that firms have two choices: to use a fully independent644

algorithm (ρ = 0) or to use the same (fully correlated) algorithm (ρ = 1). In Appendix E.4, we645

extend this to the setting in which firms can be partially correlated. We will also assume that all firms646

have the same model performance a.647

Fix n firms. Let k ≤ n be a “coalition” of firms who choose to employ the same algorithm, while648

the remaining n− k firms are fully independent. Since all firms have the same accuracy, it does not649

matter which k players we assign as part of the coalition. Hence, we will let Ωk denote the joint650

distribution over n-bit vectors in which the first k coordinates are identical, the last n−k are mutually651

independent and independent from the first k. We explicitly define the joint distribution below:652

P(p1, . . . , pk, pk+1, . . . , pn|τH) = az(1− a)1−z
n∏

i=k+1

api(1− a)1−pi

P(p1, . . . , pk, pk+1, . . . , pn|τL) = a1−z(1− a)z
n∏

i=k+1

a1−pi(1− a)pi

where a = P(pi = 1|τH) = P(pi = 0|τL) as in the main text, and z = p1 = p2 = · · · = pk since the653

first k firms predict the same outputs almost surely. In other words, whenever p1, . . . , pk are different654

from each other, the joint probability is 0.655

E.1 Firm Utility656

Let nℓ and nh be the number of players that price low and high, respectively, such that n = nℓ + nh.657
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All other firms but i
All same as i Some different

[τH ] Firm i
H H/n σH/nh

L L/n (1− σ)L/nℓ

All other firms but i
All same as i Some different

[τL] Firm i
H 0 0
L L/n L/nℓ

Table 6: Payoff matrices for firm i when the consumer is willing to pay the high price (τH , left) and low price
(τL, right).

E.2 First-stage and Second-stage game658

We now define our equilibria of interest. For every k, we establish the following conditions:659

Second stage game (Deciding to use the algorithm). The Bayes Nash Equilibrium condition is:660

E
p−i∼Ωk,τ

[Ui((H, s∗(p−i)); τ) | pi = 1] ≥ E
p−i∼Ωk,τ

[Ui((L, s
∗(p−i)); τ) | pi = 1], ∀i

E
p−i∼Ωk,τ

[Ui((L, s
∗(p−i)); τ) | pi = 0] ≥ E

p−i∼Ωk,τ
[Ui((H, s∗(p−i)); τ) | pi = 0], ∀i,

where p−i denotes the predictions of all n firms save for firm i.661

First stage game. We analyze whether or not the k coalition is stable, given that in the downstream662

second-stage game firms follow the algorithm. Let C := {1, . . . , k} be the set of firms that use the663

same algorithm, and I := {k + 1, . . . , n} be the set of firms that are fully independent. We define664

VI(k) to be the utility of a firm that uses an independent model, and VC(k) as the utility of a firm in665

the coalition using the same algorithm, i.e.,666

VI(k) = E
p∼Ωk,τ

[Ui(s
∗(p); τ)], i ∈ I

VC(k) = E
p∼Ωk,τ

[Ui(s
∗(p); τ)], i ∈ C

The Nash equilibrium condition is:667

VI(k) ≥ VC(k + 1) (9a)
VC(k) ≥ VI(k − 1). (9b)

In other words, players not in the coalition should have higher utility being independent and not join668

the coalition. Players in the coalition should be satisfied with staying in the coalition compared to669

their option of leaving.670

Special case when k = 0 and k = n. Note that when k = 0, only condition (9a) applies. It is671

always an equilibrium, since if no one is using the fully correlated algorithm, no player can strictly672

increase their utility by switching from being fully independent to fully correlated. k = 1 can also be673

an equilibrium, but only if none of the n − 1 independent players strictly benefit by choosing the674

correlated algorithm. When k = n, only condition (9b) applies.675

E.3 Results676

Figure 9 shows regions where firms using their algorithm are in equilibrium for both the first and677

second stage games, for varying number of competing firms n and model parameters. We note first678

that the regions k > 1 are disjoint. This is because the first-stage conditions (Equations (9b) and (9a))679

are monotonic in k and thus create disjoint regions.680

Larger coalitions (k) are only stable when consumers are price sensitive and are willing to pay681

the high price. For example, in Figure 9, the red (k = 4) and purple (k = 5) regions exist only when682

σ is low and θ is high. Intuitively, this makes sense because the larger the coalition, the more risk683

there is; deviating means potentially being able to undercut the coalition when they make a mistake.684

Large coalitions are therefore most valuable/preferable when consumers are incredibly price sensitive685

and most consumers are willing to pay the high price to begin with.686
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Figure 9: Regions where firms are in equilibrium for both the first and second-stage games, for various coalition
sizes k. From top to bottom, each row represents an increasing number of competing firms n. Columns represent
different model parameters H/L and a.

With many competing firms, correlation is only stable with high-performing models and high687

price differentiation. For example, in Figure 9, the n = 4, 5 settings only have significant colored688

regions when a = 0.9 and H/L = 5, 7 (the highest options). The intuition is that at high H/L (e.g.,689

7), there is lower risk of being undercut since a firm will still get 7 times the surplus when they make690

the sale. Also, when firms have a highly accurate model, they make fewer mistakes and hence have691

fewer chances of being undercut. Hence, they can correlate without fear of being undercut.692

E.4 Modeling Correlations in Full Generality: Gaussian Copula693

In our analysis above, we restricted firm interactions to either be fully correlated or fully independent694

with each other. We also required that there exists only one coalition, and that firms employ algorithms695

with the same accuracy. Here, we provide a model that relaxes all three restrictions.696

Assume that n firms are divided into m disjoint clusters Cj , j ∈ [m]. The main idea is that (1)697

correlations are constant within each cluster; and (2) we are only modeling pairwise correlations698

for all players and no higher order terms. In particular, we introduce correlation parameters ρg and699

ρCj , for all j ∈ [m], which denote inter-cluster correlations and within-cluster correlations in Cj ,700

respectively. Mapping back to our analysis above, we had k of n players form one cluster with701

ρC1
= 1 and the remaining n− k players form singleton clusters where the within-cluster correlation702

is trivial and ρg = 0.703

We will model each binary outcome pi using a latent Gaussian variable Zi:704

pi | τH =

{
1, Zi ≤ ti
0, Zi > ti

pi | τL =

{
1, Zi > ti
0, Zi ≤ ti

where ti = Φ−1(ai). This way, we still preserve the property that P(pi = 1|τH) = P(pi = 0|τL) =705

ai. To model the joint distribution, we first define a multivariate normal distribution Z ∼ N(0,Σ),706

where Σ is 1 in the diagonals, ρCk
for pairs within cluster Ck, and ρg for pairs in different clusters.707
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For example, if n = 3 and firms 1 and 2 are in a coalition, then the covariance matrix Σ will be8:708 [
1 ρC1

ρg
ρC1

1 ρg
ρg ρg 1

]

Let the probability distribution function (PDF) of Z be ϕΣ. Then, we let709

P(p1, . . . , pn|τ) =
∫
B1

· · ·
∫
Bn

ϕΣ(z1, . . . , zn)dz1 . . . dzn.

where710

Bi =

{
(−∞, ti] if pi = 1

[ti,∞) if pi = 0
if τ = τH Bi =

{
(−∞, ti] if pi = 0

[ti,∞) if pi = 1
if τ = τL

This ensures that all combinations of p1, . . . , pn gives probabilities that sum up to one.711

E.4.1 Converting ρ from binary space to Gaussian space712

Ideally, we would like to specify ρg and ρCk
in binary space because it is our outcome of interest.713

However, as described above, the ρ need to in the covariance matrix of the multivariate normal.714

This means we need a way to translate from ρbinary to ρgaussian. Since we are only modeling pairwise715

correlations, this mapping can be done for every pair of players. In particular, we will use the716

polychoric correlation approach [19], which establishes a relationship between the correlation of two717

ordinal variables, each assumed to represent latent bivariate Gaussian variables.718

ρbinary ≃
∫ ti
−∞

∫ tj
−∞ ϕρgaussian(zi, zj)dzidzj − aiaj√

ai(1− ai)aj(1− aj)
,

where ϕρgaussian is the joint bivariate normal PDF with correlation ρgaussian. We leave analyses involving719

these more complex interactions to future work.720

8Note that by definition of the multivariate normal, the associated covariance matrix Σ must be positive
semi-definite, which is generally not satisfied if ρC = 1 and ρg = 0. We can set ρC = 1− ϵ for some small
ϵ > 0 as an approximation for ρC = 1 in order to satisfy the positive semi-definite condition.
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Answer: [Yes]772
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• Inversely, any informal proof provided in the core of the paper should be complemented783

by formal proofs provided in appendix or supplemental material.784

• Theorems and Lemmas that the proof relies upon should be properly referenced.785
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Justification: We discuss out experiment setup thoroughly in Section 6.1, which aligns with791

the provided code in the supplementary material.792

Guidelines:793

• The answer NA means that the paper does not include experiments.794
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of a large language model), releasing of a model checkpoint, or other means that are807

appropriate to the research performed.808

• While NeurIPS does not require releasing code, the conference does require all submis-809

sions to provide some reasonable avenue for reproducibility, which may depend on the810

nature of the contribution. For example811

(a) If the contribution is primarily a new algorithm, the paper should make it clear how812

to reproduce that algorithm.813
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the architecture clearly and fully.815
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Question: For each experiment, does the paper provide sufficient information on the com-892
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the experiments?894

Answer: [Yes]895
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• If the authors answer NA or No, they should explain why their work has no societal928
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• Depending on the country in which research is conducted, IRB approval (or equivalent)1030
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