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Abstract001

Contemporary theories model language pro-002
cessing as integrating both top-down expec-003
tations and bottom-up inputs. One major004
prediction of such models is that the qual-005
ity of the bottom-up inputs modulates ease006
of processing—noisy inputs should lead to007
difficult and effortful comprehension. We008
test this prediction in the domain of read-009
ing. First, we propose an information-010
theoretic operationalization for the “quality”011
of bottom-up information as the mutual in-012
formation (MI) between visual information013
and word identity. We formalize this pre-014
diction in a mathematical model of reading015
as Bayesian update. Second, we test our op-016
erationalization by comparing participants’017
reading times in conditions where words’ in-018
formation quality has been reduced, either019
by occluding their top or bottom half, with020
full words. We collect data in English and021
Chinese. We then use multimodal language022
models to estimate the mutual information023
between visual inputs and words. We use024
these data to estimate the specific effect025
of reduced information quality on reading026
times. Finally, we compare how informa-027
tion is distributed across visual forms. In028
English and Chinese, the upper half con-029
tains more information about word identity030
than the lower half. However, the asymme-031
try is more pronounced in English, a pattern032
which is reflected in the reading times.033

1 Introduction034

During reading, individuals actively expend cog-035

nitive effort to extract information. Many con-036

temporary theories of language comprehension037

in general, and reading in particular, model this038

process as a rational integration of bottom-up039

and top-down information (Legge et al., 1997;040

Norris, 2006; Bicknell and Levy, 2010; Gibson 041

et al., 2013; Gauthier and Levy, 2023). Bottom- 042

up information refers to the perceptual input 043

(e.g., visual forms of words), while top-down 044

information includes the prior beliefs and expec- 045

tations about what messages or word-forms are 046

likely to be encountered, and is guided by the 047

reader’s linguistic and contextual knowledge. A 048

central prediction of such models is that the ease 049

of reading should be influenced by the quality 050

of the bottom-up information. In the modal- 051

ity of visual reading, visual signals that effec- 052

tively convey information about the intended 053

message are expected to facilitate fast and ef- 054

fortless comprehension. Conversely, degraded 055

visual signals—caused by factors such as light- 056

ing, occlusion, or visual interference—are likely 057

to increase processing effort and raise the likeli- 058

hood of errorful reading. 059

This prediction fits well within noisy channel 060

models of reading. In a noisy-channel model 061

(Shannon, 1948), a message is encoded and 062

sent over a channel, where it is potentially cor- 063

rupted. A receiver, at the other end of the chan- 064

nel, must decode the most probable intended 065

message given the received inputs. Previous 066

work has looked at the role of noise during read- 067

ing, demonstrating how noise over uncertain 068

inputs can lead to non-veridical interpretations 069

(Levy, 2008b; Gibson et al., 2013). 070

While intuitive, to the best of our knowledge, 071

this prediction has not been quantified within a 072

formal computational model of reading. That 073

is, although many theories of reading assume 074

that poorer sensory input leads to more effortful 075

processing, they have not derived or test this 076

relationship quantitatively. In this paper, we 077

aim to fill this gap by providing an information- 078
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theoretically grounded, quantitative account of079

how bottom-up input quality affects processing080

effort. Our central proposal is that input qual-081

ity can be formalized as the mutual information082

(MI) between (visual) input and word identity.083

From an information-theoretic perspective, a084

signal is informative to the extent that it reduces085

uncertainty about a target variable—in this case,086

the identity of a word. We assume that greater087

effort manifests in longer reading times, and088

therefore predict that reductions in mutual infor-089

mation should lead to systematic slowdowns in090

reading.091

This paper makes three contributions: First,092

we instantiate the above operationalization of093

visual input quality in reading under a formal094

model of reading as a Bayesian update. Second,095

we provide a quantitative estimate of the cost of096

reduced input quality on processing effort. To097

do so, we use multimodal language models to098

estimate mutual information over a dataset of099

partially masked word images. We then collect100

human reading times on the same stimuli, us-101

ing the MoTR paradigm (Wilcox et al., 2024),102

which simulates eye-tracking, and can be used103

to collect data over the web. We use these data104

to estimate the relationship as a specific slow-105

down in terms of nats of mutual information106

per millisecond of processing time. Our data107

suggest that the cost of reduced information is108

not linear—small losses in MI can lead to dis-109

proportionately large increases in reading time,110

particularly in the upper ranges of a signal’s111

informational range.112

Our third contribution is to compare how in-113

formation is distributed across visual forms of114

words in two typologically distinct languages.115

To that end, we collect data in both English and116

Chinese. We find that, in both languages, the117

upper half of a word contains more information118

about word identity than the lower half. How-119

ever, the asymmetry is more pronounced in En-120

glish than in Chinese, a pattern that is reflected121

in the reading times.122

2 Formal Model123

2.1 Reading as Bayesian Update124

Following an extensive prior literature (Norris,125

2006; Bicknell and Levy, 2010; Gauthier and126

Levy, 2023), we model word recognition as a 127

Bayesian update process. We model compre- 128

hension as being over words drawn from a vo- 129

cabulary w ∈ W , where W is a variable that 130

ranges over words. We refer to a word at a par- 131

ticular timestep, t as wt and the random variable 132

ranging over words at this timestep as W t. We 133

assume that readers intake individual samples of 134

input e ∈ R, where E is a variable ranging over 135

samples1. These can be either a patch of visual 136

input for visual reading or a haptic percept in the 137

case of braille. Following previous work (Bick- 138

nell and Levy, 2010), we model the process of 139

reading as one of sequential word identification 140

given input e and a previous context of words 141

w<t. In such models, readers are assumed to ra- 142

tionally integrate their prior expectations about 143

a word, P (wt | w<t), with the likelihood of the 144

observed input, P (ei | wt,w<t). Instead of a 145

single sample, we assume that readers integrate 146

evidence over k samples. The rational update 147

process we use to model reading is therefore: 148

P (wt | e1:k,w<t) ∝ (1) 149

P (wt | w<t)×
k∏

i=1

P (ei | wt,w<t) 150

This tells us how readers update beliefs about 151

a word given inputs and priors. But reading is a 152

dynamic process. How do readers choose when 153

to move on to the next word? We propose that 154

readers draw samples until the uncertainty about 155

the current word reaches a threshold, ϕ, at which 156

point they move on. We quantify uncertainty as 157

the entropy of the posterior distribution. That is, 158

sampling continues until: 159

H(P (wt | e1:k,w<t)) ≤ ϕ (2) 160

However, given a particular actual input w∗ 161

we cannot be certain how many samples a reader 162

draws or what information each sample contains. 163

Therefore, for a given piece of text, we predict 164

readers to move on when the expected entropy 165

falls below this threshold, where the expectation 166

is taken over uncertain inputs: 167

EE1:k
[H(W t | E1:k,w<t)] ≤ ϕ (3) 168

1For simplicity, we model inputs as continuous and
univariate. However, we acknowledge that inputs may be
more aptly modeled as multivariate and see this as an easy
extension of the formal presentation given here.

2



where k now represents the expected number169

of samples. Although we assume that reading170

does take place given a context, for the rest171

of this section, we will drop the word-context172

term, w<t. We note that it would be easy to add173

this term back into the subsequent equations as174

a conditioning variable without changing the175

overall model.176

2.2 Quality of Bottom-Up Evidence177

Here, we are primarily interested in how the178

quality of the inputs impacts the reading process.179

We model the quality of the inputs as the mutual180

information between the inputs and the word181

identities, i.e., as I(W ;E). That is, high-quality182

inputs do a better job of reducing uncertainty183

over words. For a given word-identification step,184

we can write the mutual information between185

a word and the total number of samples drawn186

as I(W ;E1:k). Using the chain rule of mutual187

information (Cover, 1999) and assuming that188

the samples E are drawn i.i.d. and, furthermore,189

that there is conditional independence between190

samples, given W , we can make the following191

simplifications:2192

I(W ;E1:k) =
k∑

i=1

I(W ;Ei | E1:i−1) (4a)193

i.i.d. samples =

k∑
i=1

I(W ;Ei) (4b)194

= k × I(W ;E) (4c)195

How is the mutual information between in-196

puts and words related to the reading process, as197

described above? We assume that taking sam-198

ples and processing these samples takes cogni-199

tive effort. Following previous work, we also200

assume a link between effort and time (Levy,201

2008a; Hale, 2001). Therefore, the more sam-202

ples, k, a reader needs to take in order to reduce203

uncertainty, the longer it will take them to read204

a given word.205

We can now link the quality of inputs to our206

reading process through the definition of mutual207

information:208

I(W ;E1:k) = H(W )−H(W | E1:k) (5)209

2For more discussion of these assumptions, see Ap-
pendix A.

Plugging in the equality from 4c, and the defi- 210

nition of conditional entropy,3 we rearrange the 211

terms to get: 212

EE1:k
[H(W | E1:k)] = H(W )− k × I(W ;E)

(6)
213

That is, the expected entropy of the posterior 214

distribution, given uncertain inputs, is a function 215

of the entropy over words, the number of sam- 216

ples taken, and the mutual information between 217

the samples and the words. 218

For our model of reading, we are interested 219

in when the entropy of the posterior distribution 220

is approximately ϕ. In particular, we are inter- 221

ested in how many samples must be drawn to 222

reach this threshold, as this determines the effort 223

(and therefore the time) required to reduce un- 224

certainty enough to move on to the subsequent 225

word. Substituting in our threshold parameter 226

in and rearranging the terms, we have: 227

k ≈ H(W )− ϕ

I(W ;E)
(7) 228

The number of samples required to reach the 229

threshold grows with the entropy of the distri- 230

bution over W . Likewise, it decreases with 231

the mutual information between W and E. Be- 232

cause we assume a link between the number of 233

samples, effort and time, this leads us to the 234

following two predictions: 235

Prediction 1 Top-Down Processing & En- 236

tropy: As the entropy of a word-position W 237

increases, average reading time increases. 238

Prediction 2 Bottom-up Processing & Mutual 239

Information: As the mutual information be- 240

tween words W and their visual representations 241

E decreases, average reading time increases. 242

In fact, Prediction 1 has already been investi- 243

gated by Pimentel et al. (2023), whose results 244

confirm our prediction. Pimentel et al. refer 245

to the entropy over the next word, given a set 246

of previous words H(W t | w<t) as a word’s 247

contextual entropy. They find that as word-level 248

contextual entropy increases, so too does read- 249

ing time. For the rest of this paper, therefore, 250

we are interested in testing Prediction 2, namely 251

3That is: H(X | Y ) = EY [H(X | Y )].
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Unoccluded Upper half visible Lower half visible

Figure 1: Example showing a screen from a MoTR
trial with our three different reading conditions.

whether the quality of bottom-up evidence, mod-252

eled as mutual information between words and253

visual information, affects word-by-word read-254

ing times. We outline our methods to do so in255

the following section.256

3 Methods257

3.1 Materials258

We use a portion of the OneStopQA dataset259

(Berzak et al., 2020). This dataset contains260

Guardian news articles, along with high-quality261

reading comprehension questions, which are262

linked to individual spans in the text. We se-263

lected three articles for inclusion in our study.264

One member of our research team with previ-265

ous experience in English-Chinese translation266

hand-translated these texts and their associated267

questions into Mandarin. This translated corpus,268

which we term the Chinese OneStopQA, will269

be released along with the publication of this270

article.271

Creating Noisy Words To create noised read-272

ing conditions, we occluded (i.e., masked with273

white) either the upper or lower half of every274

word in the dataset. There are potentially many275

ways to noise text. Other options were occlud-276

ing the first half or second half of words, as277

well as Gaussian noise. Previously, Pimentel278

et al. (2021) found that the beginnings of words279

carry more information than their end. However,280

we were worried that entirely removing some281

letters or characters would make reading too282

difficult or frustrating for our participants, and283

that the removal of letters or characters demands284

very careful handling. Removing upper or lower285

half retains some information about each char- 286

acter. In addition, unlike simply adding Gaus- 287

sian noise, upper and lower half occlusion al- 288

lowed us to investigate where information was 289

localized in English and Chinese orthographic 290

systems. Our strategy lead to two additional 291

research questions: 292

Sub Research Question 1 Is information split 293

up differentially between the upper and lower 294

halves of orthographic words? 295

Sub Research Question 2 Does the location 296

of information in upper vs. lower half of or- 297

thographic words differ between languages? 298

3.2 Data Collection 299

Mouse Tracking for Reading (MoTR) To 300

test our main predictions, we need a way of 301

measuring (average) human reading times in our 302

different conditions. To do so, we use Mouse 303

Tracking for Reading (MoTR; Wilcox et al., 304

2024). In a MoTR trial, a blurred text is pre- 305

sented on a screen. A small region around the 306

tip of a user’s mouse brings the text into focus. 307

Participants move the mouse in order to incre- 308

mentally reveal and read the text. Participant 309

mouse location is recorded and used as a proxy 310

for gaze location. The time-stamped x/y coor- 311

dinates are then turned into incremental word- 312

by-word reading times, similar to reading times 313

in an eye-tracking while reading experiment. As 314

with eye-tracking, there are several ways to com- 315

pute reading times. For our main analysis, we 316

use gaze duration, which is the total amount of 317

time a user spent revealing a word during their 318

first pass. Wilcox et al. (2024) show that MoTR 319

reading times are strongly correlated with eye- 320

tracking and self-paced-reading times MoTR 321

has been used to collect data in English and 322

Russian (Oğuz et al., 2025), but not in Chinese. 323

Participants We recruited 54 English and 57 324

Chinese speakers on Prolific, requiring a mini- 325

mum approval rate of 98% and the correspond- 326

ing language to be their first and native language. 327

Participants were compensated 3.75 GBP for a 328

median reading time of 25 minutes. 329

Procedure Each participant read the article 330

paragraphs presented screen by screen, with 331

each screen randomly assigned to one of three 332
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conditions: upper-half occluded (i.e., lower-half333

visible), lower-half occluded (i.e., upper-half334

visible), or unoccluded (see Figure 1). In addi-335

tion to reading texts and answering comprehen-336

sion questions, we asked participants to rate the337

ease of reading after finishing all the trials.338

3.3 Mutual Information Estimation339

In Section 2, our model concerns words, W ,340

and (visual) evidence sampled by the reader,341

E. However, we do not have direct access to342

this evidence. Instead, as a proxy for our visual343

evidence, we estimate the mutual information344

between words W and their orthographic rep-345

resentations, representation o ∈ Rd, where the346

random variable O ranges over representations347

of different words. Following Pimentel et al.348

(2020), we decompose the mutual information349

as350

I(W ;O) = H(W )−H(W | O) (8a)351

≈ Hθ(W )−Hθ(W | O) (8b)352

and separately estimate each term.353

We estimate unconditional entropy Hθ(W )354

with a maximum likelihood estimation of the355

unigram distribution of Chinese characters and356

English words. We take the 9, 933 unique Chi-357

nese characters included in the modern Chinese358

character database 4, and the 60, 384 English359

words in the SUBTLEXus database (Brysbaert360

and New, 2024), and look up their frequencies361

using the Python library wordfreq (Speer, 2022)362

that supports both languages and aggregates363

data from multiple large-scale corpora, includ-364

ing subtitles, Wikipedia, news, fiction, and web365

content. Normalizing the frequencies, we ob-366

tain the empirical distribution pθ(w) and from367

it we can directly compute the entropy Hθ(W ).368

The empirical entropies are 5.59 and 7.12 nats369

for Chinese characters and English words.370

We estimate the conditional entropy371

Hθ(W | O) in two stages. First, we compute372

the word-entropy conditioned on a specific or-373

thographic representation, Hθ(W ;O = o) for374

every word in our vocabulary. We refer to this375

as the pointwise conditional entropy. We com-376

pute this value by taking the expectation of the377

4https://lingua.mtsu.edu/chinese-computing/

information content, or surprisal of the word 378

given its orthographic representation ιθ(w | o), 379

where ιθ(·) = − log pθ(·). Given a model with 380

parameters θ that can produce our probability 381

distribution of interest, that is, pθ(w | o), the 382

pointwise conditional entropy is calculated as: 383

Hθ(W | o) ≈
∑
w∈W

pθ(w | o)ιθ(w | o) (9) 384

We then estimate conditional entropy as the 385

expectation of the pointwise conditional en- 386

tropy with respect to O, following the identity 387

H(W | O) = EO[H(W | O = o)]. We take 388

the expectation over a set of held-out test sam- 389

ples: 390

Hθ(W | O) ≈ 1

N

N∑
n=1

Hθ(W | on) (10) 391

where on is the nth orthographic representation 392

in the test set. 393

We note that using these methods, we can 394

estimate not only the mutual information 395

I(W ;O), but also its half-pointwise variant, 396

also called the information gain (IG), for a 397

particular orthographic representation, where 398

IG(W ;o) = H(W ) − H(W | o). While 399

our formal prediction is made in terms of 400

mutual information, in Section 4.3, we use 401

IG to investigate the relationship between 402

information contained in individual visual 403

inputs and their respective reading times. 404

In recent work, similar methods have been 405

used to study the relationship between words (as 406

represented by text) and prosody, or the melody 407

of speech (Wolf et al., 2023; Regev et al., 2025; 408

Wilcox et al., 2025). However, these previous 409

works learn distributions over real-valued vari- 410

ables that represent pitch. We wish to learn 411

distributions over discrete w-valued variables 412

pθ(w | o). To obtain this distribution, we use 413

multimodal language models, which we fine- 414

tune to produce conditionalized distributions 415

over words, given visual inputs. We do so with 416

the following methods: 417

Fine-Tuning Data We adapt the Python li- 418

brary TRDG 5 to generate images of Chinese 419

5https://github.com/Belval/TextRecognitionDataGenerator
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Figure 2: Results of our fine-tuned Qwen2.5 model
for the Chinese character 美 (“beautiful”) and the
English word hear.

characters and English words from text, apply-420

ing upper-, lower-half occlusion to create our421

different experimental conditions. We random-422

ized font selection to enhance visual variability423

and added a small amount of Gaussian noise424

to the image backgrounds (Li et al., 2025). We425

generated 16, 800 Chinese character images and426

44, 800 English word images for each of the427

three occlusion conditions as tuning data.428

Predictive Multimodal Models We use three429

different model settings: First, we evaluate the430

pre-trained multimodal model Qwen2.5-VL-7B-431

Instruct6 in a zero-shot setting. Qwen2.5-VL-432

7B is an open-source vision-language model de-433

veloped by Alibaba, designed for high-accuracy434

multimodal analysis with enhanced visual un-435

derstanding and text-image alignment (Wang436

et al., 2024; Bai et al., 2025). As top- and437

bottom-half occluded words are likely out-of-438

distribution with respect to the model’s training439

data, we do not expect the mutual information440

estimate to be tight in this setting. For a bet-441

ter estimate, we then fine-tune Qwen2.5-VL-442

7B on our task-specific data to improve its per-443

formance. To complement the estimate from444

the pre-trained model, we also train a separate445

transformer-based OCR model (TransOCR) (Yu446

et al., 2023), from scratch, to perform the same447

prediction task. The model combines a ResNet448

encoder with a Transformer decoder for charac-449

ter recognition. Full training configurations and450

prompt designs for the Qwen and TransOCR451

6https://huggingface.co/Qwen/Qwen2.5-VL-7B-
Instruct

models are provided in Appendix B and Ap- 452

pendix C, respectively. 453

To give a visual sense of how our models 454

perform, Figure 2 shows sample images in our 455

three experimental conditions, along with the 456

predictions of the fine-tuned Qwen2.5 model. 457

4 Results 458

4.1 Human Reading Results 459

We show human reading times in Figure 3(a). 460

In both languages, reading full words resulted 461

in the shortest average reading times, as pre- 462

dicted. Interestingly, both languages follow a 463

Full < Upper < Lower pattern, with lower-half 464

visibility leading to the longest times. To quan- 465

tify these effects, we fit linear mixed-effects 466

models with visibility condition as a fixed ef- 467

fect, using sliding contrasts to compare Up- 468

per vs. Full and Lower vs. Upper. Ran- 469

dom intercepts were included for subjects and 470

items. In Chinese, both contrasts were signif- 471

icant: β = 36.45ms and β = 16.28ms. In 472

English, the effects were larger: β = 54.64ms 473

and β = 90.06ms7. All effects were statisti- 474

cally significant at p < 0.001. 475

These results can be interpreted as implying 476

a visual asymmetry in both languages between 477

ease of processing with respect to just upper 478

and lower halves of words. The asymmetry 479

is stronger in English, where the lower half 480

leads to greater slowdowns. Participants’ sub- 481

jective ratings confirm this asymmetric pattern 482

and further show that English lower halves are 483

perceived as harder to read than Chinese ones 484

(Appendix D). 485

4.2 Mutual Information Results 486

Figure 3(b) shows the information gain (IG) 487

between word identity and visual input across 488

the three visibility conditions, estimated by 489

Qwen2.5-VL-7B-Instruct (zero-shot and fine- 490

tuned) and TransOCR. Visually, these results 491

show a decreasing IG trend among the Full, 492

Upper, and Lower conditions. To test this sta- 493

tistically, we fit linear mixed-effects models for 494

7Gaze duration was calculated for Chinese characters
and English words, which may account for the generally
longer reading times in English.
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Figure 3: (a) Mean gaze durations measured in human reading under three visibility conditions. Boxes
represent the interquartile range (middle 50%), center lines indicate the median, and whiskers show the
overall data spread. Grey lines trace each participant’s mean across conditions. EN: English; ZH: Simplified
Chinese (b) Information gain (IG) between word identity and visual form under the three conditions, obtained
with Qwen2.5 and TransOCR models.

each language–model pair, with visibility con-495

dition as a fixed effect and including a random496

intercept for item. As in the human reading497

analysis, we used sliding contrasts to compare498

our three conditions.499

In Chinese, all models showed significant IG500

reductions when only the upper half was visi-501

ble (Qwen2.5-Zeroshot: β = −4.55; Qwen2.5-502

Finetuned: β = −1.85; TransOCR: β = −0.99503

nats), and IG from fine-tuned models dropped504

further when viewing changed from Upper505

to Lower (Qwen2.5-Finetuned: β = −0.37;506

TransOCR: β = −1.01 nats). In English,507

the zero-shot model showed the largest over-508

all drop (Upper vs. Full: β = −1.46; Lower509

vs. Upper: β = −2.11 nats), while fine-tuned510

models showed smaller but consistent reduc-511

tions (Qwen2.5-Finetuned: β = −0.12, −0.47;512

TransOCR: β = −0.08, −0.35 nats). All ef-513

fects were statistically significant at p < 0.001.514

Panels (a) and (b) of Figure 3, taken together,515

reveal a clear pattern: as visual input degrades516

from Full to Upper to Lower, as measured by517

IG, reading times increase as well. We also ob-518

tained the mutual information I(W ;O) from519

the Qwen2.5 and TransOCR models, although520

we did not use them in our analysis above.521

The mutual information I(W ;O) estimates are522

given in Appendix E.523

4.3 Word-Level Relationship 524

In this section, we test the relationship between 525

reading time and informational quality at the 526

word level. To do so, we fit linear mixed-effects 527

models with reading time of an orthographic 528

representation as the dependent variable and its 529

IG as a fixed effect. We also included frequency, 530

surprisal, contextual entropy, and (in English) 531

word length as additional fixed effects, as well 532

as by-subject and by-item random intercepts. 533

We find a significant effect of IG on read- 534

ing time across all models and measures, with 535

a consistent negative effect: the higher the in- 536

formational quality of the input, the faster it is 537

read. In Chinese, all three IG estimates were 538

significant predictors of reading time: Qwen2.5- 539

Zeroshot (β = −7.53 ms), Qwen2.5-Finetuned 540

(β = −10.19 ms), and TransOCR (β = −4.97 541

ms). In English, the effects were even larger: 542

Qwen2.5-Zeroshot (β = −23.67 ms), Qwen2.5- 543

Finetuned (β = −51.48 ms), and TransOCR 544

(β = −66.42 ms). All effects were statistically 545

significant at p < 0.001. 546

4.4 Nonlinear Relationship Between 547

Information Quality and Reading Time 548

While our linear regression models show that 549

informational quality affects reading time, it 550

makes (arguably strong) assumptions about the 551

functional form of this relationship. In order to 552
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Figure 4: Relationship between informational quality of individual words (information gain; IG) and reading
time slowdown. Solid blue lines are smoothed GAM fits; shaded regions show bootstrapped 95% confidence
intervals. Red tick marks along the bottom (rug plots) indicate the distribution of IG data points. Reading
times are aligned to end at zero at the highest MI end to emphasize relative reading time reductions.

get a better sense of how these two variables are553

related, we visualize them together in Figure 4.554

We used generalized additive models (GAMs).555

GAMs are models that allow for non-linear re-556

lationships between predictor and response vari-557

ables. We fit GAMs to predict reading times558

with smooth terms for IG, controlling for fre-559

quency, surprisal, contextual entropy, and (for560

English) word length. We applied bootstrap561

smoothing over 20 resamples and computed562

confidence intervals for the estimated effects.563

We observe a consistent trend across both lan-564

guages and all three models: reading time re-565

mains relatively stable at lower IG estimates but566

decreases rapidly as IG increases.567

5 Discussion568

Turning back to our main prediction, we argue569

that our results provide strong evidence that vi-570

sual quality, as measured by mutual information,571

or information gain, impacts ease of process-572

ing. First, we find a consistent ordering, both573

in terms of reading times and mutual informa-574

tion, across our three experimental conditions.575

Second, we find a significant effect of the spe-576

cific mutual information, or information gain,577

of individual words on reading times. While578

intuitive, the idea that bottom-up informational579

quality impacts ease of reading has not been580

quantified within a formal framework of read- 581

ing. Our methods and experiments provide a 582

specific estimate for the relationship between 583

visual informational quality and reading times, 584

which in English is between 25−66ms/bit and 585

in Chinese 5−10ms/bit. However, these num- 586

bers should be taken only as rough estimates, as 587

the exact functional form may not be linear. 588

Turning now to our two sub research ques- 589

tions outlined in section 3.1: Interestingly, we 590

find that information is not distributed evenly 591

between the top and bottom half of words. Both 592

English and Chinese place more information 593

about word identity in the top half of their or- 594

thographic systems, a feature which we argue 595

is reflected in the quicker reading times for our 596

Upper condition. Interestingly, Pimentel et al. 597

(2021) find similar informational asymmetries 598

between the beginnings and ends of words, us- 599

ing an even wider set of languages. Exploring 600

whether their asymmetry in reading times and 601

extending our results to more languages is an im- 602

portant direction for future research. Finally, we 603

find some suggestive evidence that this asym- 604

metry is stronger in English, reflected in the 605

larger effect sizes for the Upper vs. Lower con- 606

trast in our reading data. Future work should 607

investigate such differences in greater detail. 608
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6 Limitations609

There are several limitations with the present610

work. In our formal model, we made two611

assumptions—that visual samples of a given612

word E are drawn i.i.d. during reading, and613

that visual inputs are conditionally independent614

from each other given W . These assumptions615

are strong, however, they are compatible with616

a “simple but fast” approach to reading. We617

discuss them in more detail in Appendix A.618

Another limitation concerns our approach to619

estimating mutual information between word620

identity and orthographic representation in Chi-621

nese. We used characters, rather than lexical622

words, as the unit of analysis. This choice was623

motivated by two considerations: first, the aver-624

age word length in our OneStopQA Chinese625

dataset is approximately 1.4 characters; sec-626

ond, Chinese characters, unlike English letters,627

carry substantial visual and semantic complex-628

ity. As such, characters may serve as a more629

suitable unit for modeling bottom-up visual pro-630

cessing in Chinese, analogous to words in En-631

glish. Nonetheless, using lexical words might632

produce slightly different estimates of mutual in-633

formation. Future work could examine whether634

similar patterns hold when words are used in-635

stead of characters.636

One other limitation of the present work has637

to do with the languages studied. While we638

chose two languages that were topologically dis-639

tinct, and used different types of orthographic640

systems, they represent only two language sam-641

ples. Extending to more languages will be im-642

portant to generalize the conclusions of this643

work.644
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A Assumptions of Formal Model 764

In this appendix, we discuss our two assump- 765

tions about our samples of evidence, E, namely 766

that they are drawn i.i.d., and that they are con- 767

ditionally independent of each other, given W . 768

First, given these two assumptions, we walk 769

through the step from 4a to 4b. First, we have 770

by the definition of mutual information: 771

I(W ;Ei | E1:i−1) (11) 772

=
k∑

i=1

I(W ;Ei | E1:i−1) (12) 773

=
k∑

i=1

H(Ei | E1:i−1)−H(Ei | W,E1:i−1)

(13)

774

Assuming that the samples E are drawn inde- 775

pendently of each other, we have, for the first 776

term in this sum that H(E | E1:i−1) = H(E). 777

That is, the previous samples don’t influence 778

the entropy of the current sample. Further- 779

more, assuming conditional independence be- 780

tween the samples, given W , we have that 781

H(E | W,E1:i−1) = H(E | W ). Therefore, 782

we can rewrite as: 783

=
k∑

i=1

H(Ei)−H(Ei | W ) (14) 784

=
k∑

i=1

I(Ei;W ) (15) 785

which, given the symmetry of mutual informa- 786

tion, is what we have in 4b. 787

Regarding our assumptions, the first one 788

means that we model the reader as not making 789

their decision about what to sample next based 790

on information about previous samples within a 791

given word. The second assumption means that 792

if the reader knows the word’s identity, then pre- 793

vious samples will not necessarily help them to 794

predict what will be sampled next. We believe 795

that both of these (especially the first one) are 796

somewhat strong assumptions. However, they 797
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are compatible with the view that readers adopt798

a simple, but fast, sampling strategy, in which799

prior evidence from samples does not determine800

future sampling behavior. Given that reading801

happens at a very quick timescale, where word802

identification takes potentially only tens of mil-803

liseconds, such a “simple but fast” approach is804

not unreasonable.805

B Qwen2.5-VL-7B-Instruct806

Fine-Tuning Details807

We fine-tune Qwen2.5-VL-7B-Instruct using808

QLoRA with 4-bit quantization and LoRA809

adapters applied to attention projection layers810

with rank 8, α = 16, and dropout 0.05. The811

model is trained for up to 100 epochs. Early812

stopping is applied based on validation loss.813

The training will terminate if no improvement814

for three consecutive epochs. AdamW (learning815

rate 2e-4), batch size 4, gradient accumulation816

of 8, and gradient clipping of 1.0. Training817

data consists of system and user prompts with818

bottom-half character images; the model pre-819

dicts a single Chinese character. We formatted820

the input using Qwen’s chat template and com-821

puted the loss on the assistant tokens. Image822

inputs are processed using the Qwen processor.823

Training is conducted on a single GPU (RTX824

3090 Ti). Each training sample consists of a825

fixed system prompt and a task-specific user826

prompt. For example, for the lower-half recog-827

nition task, the templates used are as follows:828

Chinese prompt829

<system prompt> 你是一个善于识830

别汉字的智能助手。图片只展示831

了一个汉字的下半部分，请你根832

据下半部分准确识别该汉字，只833

回答一个汉字。834

<user prompt> 这张图片显示的是835

一个汉字的下半部分，上半部分836

被遮挡住了。请根据可见部分判837

断这是什么汉字，只回答一个汉838

字，不要包含其他内容。这个汉839

字是：840

English prompt841

<system prompt> You are a help-842

ful assistant that can identify En-843

glish words in images. The image 844

will show only the lower half of an 845

English word, with the upper half 846

masked. Identify the word accurately 847

based on the visible portion. Please 848

answer with a single word, and do not 849

include any other text. 850

<user prompt> The image contains 851

the lower half of an English word. 852

The upper half is masked. What is 853

the word in the image? Please answer 854

with a single word, and do not include 855

any other text. The word is: 856

C TransOCR Training Details 857

We trained the Transformer-based OCR model 858

(TransOCR) for character recognition using the 859

PyTorch framework. The model takes grayscale 860

images resized to 32×256 pixels as input and 861

is trained to predict character sequences in an 862

autoregressive manner. Training was conducted 863

using the Adadelta optimizer (ρ = 0.9, weight 864

decay = 1e-4) with an initial learning rate of 1.0 865

and a batch size of 16. The loss function was 866

standard cross-entropy over predicted character 867

classes. We applied early stopping with a pa- 868

tience of 5 epochs based on validation accuracy. 869

All models were trained on two NVIDIA 870

GPUs (RTX 3090 Ti) with multi-GPU support 871

(DataParallel), and model checkpoints were 872

saved at each epoch. The best-performing 873

model was selected based on validation accu- 874

racy. 875

During inference, character predictions were 876

generated step-by-step. At every step, the model 877

outputs a probability distribution over the char- 878

acter vocabulary via a softmax layer. The con- 879

ditional entropy is computed using the standard 880

formula H(p) = −
∑N

i=1 pi log pi, where pi is 881

the predicted probability of the i-th character, 882

given the input image. 883

D Self-Rated Ease of Reading 884

In both Chinese and English, participants over- 885

whelmingly rated the upper half of words as 886

easier to read. This asymmetry was more pro- 887

nounced in English, where 91% of participants 888

preferred the upper half, compared to 75% in 889

Chinese. 890
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Figure 5: Self-rated ease of reading across visibility
conditions. Participants were asked to judge whether
the upper or lower half of words was easier to read.

E Mutual information estimates (nats)891

Model Full Upper Lower

Qwen2.5-Zeroshot 5.42 0.27 0.32
Qwen2.5-Finetuned 5.57 3.62 3.27
TransOCR 5.26 4.09 3.17

Table 1: Mutual information I(W ;O) in Chinese.

Model Full Upper Lower

Qwen2.5-Zeroshot 6.99 5.74 3.86
Qwen2.5-Finetuned 7.11 7.01 6.66
TransOCR 7.07 7.00 6.68

Table 2: Mutual information I(W ;O) in English.
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