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Abstract

Contemporary theories model language pro-
cessing as integrating both top-down expec-
tations and bottom-up inputs. One major
prediction of such models is that the qual-
ity of the bottom-up inputs modulates ease
of processing—noisy inputs should lead to
difficult and effortful comprehension. We
test this prediction in the domain of read-
ing. First, we propose an information-
theoretic operationalization for the “quality”
of bottom-up information as the mutual in-
formation (MI) between visual information
and word identity. We formalize this pre-
diction in a mathematical model of reading
as Bayesian update. Second, we test our op-
erationalization by comparing participants’
reading times in conditions where words’ in-
formation quality has been reduced, either
by occluding their top or bottom half, with
full words. We collect data in English and
Chinese. We then use multimodal language
models to estimate the mutual information
between visual inputs and words. We use
these data to estimate the specific effect
of reduced information quality on reading
times. Finally, we compare how informa-
tion is distributed across visual forms. In
English and Chinese, the upper half con-
tains more information about word identity
than the lower half. However, the asymme-
try is more pronounced in English, a pattern
which is reflected in the reading times.

1 Introduction

During reading, individuals actively expend cog-
nitive effort to extract information. Many con-
temporary theories of language comprehension
in general, and reading in particular, model this
process as a rational integration of bottom-up
and top-down information (Legge et al., 1997,

Norris, 2006; Bicknell and Levy, 2010; Gibson
et al., 2013; Gauthier and Levy, 2023). Bottom-
up information refers to the perceptual input
(e.g., visual forms of words), while top-down
information includes the prior beliefs and expec-
tations about what messages or word-forms are
likely to be encountered, and is guided by the
reader’s linguistic and contextual knowledge. A
central prediction of such models is that the ease
of reading should be influenced by the quality
of the bottom-up information. In the modal-
ity of visual reading, visual signals that effec-
tively convey information about the intended
message are expected to facilitate fast and ef-
fortless comprehension. Conversely, degraded
visual signals—caused by factors such as light-
ing, occlusion, or visual interference—are likely
to increase processing effort and raise the likeli-
hood of errorful reading.

This prediction fits well within noisy channel
models of reading. In a noisy-channel model
(Shannon, 1948), a message is encoded and
sent over a channel, where it is potentially cor-
rupted. A receiver, at the other end of the chan-
nel, must decode the most probable intended
message given the received inputs. Previous
work has looked at the role of noise during read-
ing, demonstrating how noise over uncertain
inputs can lead to non-veridical interpretations
(Levy, 2008b; Gibson et al., 2013).

While intuitive, to the best of our knowledge,
this prediction has not been quantified within a
formal computational model of reading. That
is, although many theories of reading assume
that poorer sensory input leads to more effortful
processing, they have not derived or test this
relationship quantitatively. In this paper, we
aim to fill this gap by providing an information-



theoretically grounded, quantitative account of
how bottom-up input quality affects processing
effort. Our central proposal is that input qual-
ity can be formalized as the mutual information
(MI) between (visual) input and word identity.
From an information-theoretic perspective, a
signal is informative to the extent that it reduces
uncertainty about a target variable—in this case,
the identity of a word. We assume that greater
effort manifests in longer reading times, and
therefore predict that reductions in mutual infor-
mation should lead to systematic slowdowns in
reading.

This paper makes three contributions: First,
we instantiate the above operationalization of
visual input quality in reading under a formal
model of reading as a Bayesian update. Second,
we provide a quantitative estimate of the cost of
reduced input quality on processing effort. To
do so, we use multimodal language models to
estimate mutual information over a dataset of
partially masked word images. We then collect
human reading times on the same stimuli, us-
ing the MoTR paradigm (Wilcox et al., 2024),
which simulates eye-tracking, and can be used
to collect data over the web. We use these data
to estimate the relationship as a specific slow-
down in terms of nats of mutual information
per millisecond of processing time. Our data
suggest that the cost of reduced information is
not linear—small losses in MI can lead to dis-
proportionately large increases in reading time,
particularly in the upper ranges of a signal’s
informational range.

Our third contribution is to compare how in-
formation is distributed across visual forms of
words in two typologically distinct languages.
To that end, we collect data in both English and
Chinese. We find that, in both languages, the
upper half of a word contains more information
about word identity than the lower half. How-
ever, the asymmetry is more pronounced in En-
glish than in Chinese, a pattern that is reflected
in the reading times.

2 Formal Model
2.1 Reading as Bayesian Update

Following an extensive prior literature (Norris,
2006; Bicknell and Levy, 2010; Gauthier and

Levy, 2023), we model word recognition as a
Bayesian update process. We model compre-
hension as being over words drawn from a vo-
cabulary w € VV, where IV is a variable that
ranges over words. We refer to a word at a par-
ticular timestep, ¢ as w; and the random variable
ranging over words at this timestep as 1/ ;. We
assume that readers intake individual samples of
input e € R, where F is a variable ranging over
samples'. These can be either a patch of visual
input for visual reading or a haptic percept in the
case of braille. Following previous work (Bick-
nell and Levy, 2010), we model the process of
reading as one of sequential word identification
given input e and a previous context of words
w . In such models, readers are assumed to ra-
tionally integrate their prior expectations about
a word, P(w; | w~), with the likelihood of the
observed input, P(e; | wy, w-;). Instead of a
single sample, we assume that readers integrate
evidence over &k samples. The rational update
process we use to model reading is therefore:

P(wy | 1.k, Wey) (1)
k
P(w; | wey) X H P(e; | w, wey)
i=1

This tells us how readers update beliefs about
a word given inputs and priors. But reading is a
dynamic process. How do readers choose when
to move on to the next word? We propose that
readers draw samples until the uncertainty about
the current word reaches a threshold, ¢, at which
point they move on. We quantify uncertainty as
the entropy of the posterior distribution. That is,
sampling continues until:

H(P(w; | e, wa) <0 (@)

However, given a particular actual input w*
we cannot be certain how many samples a reader
draws or what information each sample contains.
Therefore, for a given piece of text, we predict
readers to move on when the expected entropy
falls below this threshold, where the expectation
is taken over uncertain inputs:

Eg, JHW, | Ex,wo)] <o (3)

"For simplicity, we model inputs as continuous and
univariate. However, we acknowledge that inputs may be
more aptly modeled as multivariate and see this as an easy
extension of the formal presentation given here.



where k& now represents the expected number
of samples. Although we assume that reading
does take place given a context, for the rest
of this section, we will drop the word-context
term, w—,. We note that it would be easy to add
this term back into the subsequent equations as
a conditioning variable without changing the
overall model.

2.2 Quality of Bottom-Up Evidence

Here, we are primarily interested in how the
quality of the inputs impacts the reading process.
We model the quality of the inputs as the mutual
information between the inputs and the word
identities, i.e., as /(1//; ). That is, high-quality
inputs do a better job of reducing uncertainty
over words. For a given word-identification step,
we can write the mutual information between
a word and the total number of samples drawn
as [(W; Eq.;). Using the chain rule of mutual
information (Cover, 1999) and assuming that
the samples E are drawn i.i.d. and, furthermore,
that there is conditional independence between
samples, given IV, we can make the following
simplifications:?

A,
I(W;Ew) =Y I(W;Ei | Ei1)  (4a)
=1

]‘,,

i.i.d. samples = Z I(I/V; El) (4b)
=1
=kx I(W;E) (4c)

How is the mutual information between in-
puts and words related to the reading process, as
described above? We assume that taking sam-
ples and processing these samples takes cogni-
tive effort. Following previous work, we also
assume a link between effort and time (Levy,
2008a; Hale, 2001). Therefore, the more sam-
ples, k, a reader needs to take in order to reduce
uncertainty, the longer it will take them to read
a given word.

We can now link the quality of inputs to our
reading process through the definition of mutual
information:

I(W;Eqy,) =H(W)—-H(W

Ei) (5

2For more discussion of these assumptions, see Ap-
pendix A.

Plugging in the equality from 4c, and the defi-
nition of conditional entropy, we rearrange the
terms to get:

Eg,, [H(W

Ei)] = H(W) -k x I(W; E)
(6)

That is, the expected entropy of the posterior
distribution, given uncertain inputs, is a function
of the entropy over words, the number of sam-
ples taken, and the mutual information between
the samples and the words.

For our model of reading, we are interested
in when the entropy of the posterior distribution
is approximately ¢. In particular, we are inter-
ested in how many samples must be drawn to
reach this threshold, as this determines the effort
(and therefore the time) required to reduce un-
certainty enough to move on to the subsequent
word. Substituting in our threshold parameter
in and rearranging the terms, we have:

. H(W)—¢

I(W; E) @

The number of samples required to reach the
threshold grows with the entropy of the distri-
bution over I//. Likewise, it decreases with
the mutual information between W and E. Be-
cause we assume a link between the number of
samples, effort and time, this leads us to the
following two predictions:

Prediction 1 Top-Down Processing & En-
tropy: As the entropy of a word-position W
increases, average reading time increases.

Prediction 2 Bottom-up Processing & Mutual
Information: As the mutual information be-
tween words W and their visual representations
F decreases, average reading time increases.

In fact, Prediction 1 has already been investi-
gated by Pimentel et al. (2023), whose results
confirm our prediction. Pimentel et al. refer
to the entropy over the next word, given a set
of previous words H (W, | w-;) as a word’s
contextual entropy. They find that as word-level
contextual entropy increases, so too does read-
ing time. For the rest of this paper, therefore,
we are interested in testing Prediction 2, namely

*Thatis: H(X | Y) = Ey[H(X | Y)].
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Figure 1: Example showing a screen from a MoTR
trial with our three different reading conditions.

whether the quality of bottom-up evidence, mod-
eled as mutual information between words and
visual information, affects word-by-word read-
ing times. We outline our methods to do so in
the following section.

3 Methods

3.1 Materials

We use a portion of the OneStopQA dataset
(Berzak et al., 2020). This dataset contains
Guardian news articles, along with high-quality
reading comprehension questions, which are
linked to individual spans in the text. We se-
lected three articles for inclusion in our study.
One member of our research team with previ-
ous experience in English-Chinese translation
hand-translated these texts and their associated
questions into Mandarin. This translated corpus,
which we term the Chinese OneStopQA, will
be released along with the publication of this
article.

Creating Noisy Words To create noised read-
ing conditions, we occluded (i.e., masked with
white) either the upper or lower half of every
word in the dataset. There are potentially many
ways to noise text. Other options were occlud-
ing the first half or second half of words, as
well as Gaussian noise. Previously, Pimentel
et al. (2021) found that the beginnings of words
carry more information than their end. However,
we were worried that entirely removing some
letters or characters would make reading too
difficult or frustrating for our participants, and
that the removal of letters or characters demands
very careful handling. Removing upper or lower

half retains some information about each char-
acter. In addition, unlike simply adding Gaus-
sian noise, upper and lower half occlusion al-
lowed us to investigate where information was
localized in English and Chinese orthographic
systems. Our strategy lead to two additional
research questions:

Sub Research Question 1 Is information split
up differentially between the upper and lower
halves of orthographic words?

Sub Research Question 2 Does the location
of information in upper vs. lower half of or-
thographic words differ between languages?

3.2 Data Collection

Mouse Tracking for Reading (MoTR) To
test our main predictions, we need a way of
measuring (average) human reading times in our
different conditions. To do so, we use Mouse
Tracking for Reading (MoTR; Wilcox et al.,
2024). In a MoTR trial, a blurred text is pre-
sented on a screen. A small region around the
tip of a user’s mouse brings the text into focus.
Participants move the mouse in order to incre-
mentally reveal and read the text. Participant
mouse location is recorded and used as a proxy
for gaze location. The time-stamped x/y coor-
dinates are then turned into incremental word-
by-word reading times, similar to reading times
in an eye-tracking while reading experiment. As
with eye-tracking, there are several ways to com-
pute reading times. For our main analysis, we
use gaze duration, which is the total amount of
time a user spent revealing a word during their
first pass. Wilcox et al. (2024) show that MoTR
reading times are strongly correlated with eye-
tracking and self-paced-reading times MoTR
has been used to collect data in English and
Russian (Oguz et al., 2025), but not in Chinese.

Participants We recruited 54 English and 57
Chinese speakers on Prolific, requiring a mini-
mum approval rate of 98% and the correspond-
ing language to be their first and native language.
Participants were compensated 3.75 GBP for a
median reading time of 25 minutes.

Procedure Each participant read the article
paragraphs presented screen by screen, with
each screen randomly assigned to one of three



conditions: upper-half occluded (i.e., lower-half
visible), lower-half occluded (i.e., upper-half
visible), or unoccluded (see Figure 1). In addi-
tion to reading texts and answering comprehen-
sion questions, we asked participants to rate the
ease of reading after finishing all the trials.

3.3 Mutual Information Estimation

In Section 2, our model concerns words, W,
and (visual) evidence sampled by the reader,
E. However, we do not have direct access to
this evidence. Instead, as a proxy for our visual
evidence, we estimate the mutual information
between words I and their orthographic rep-
resentations, representation o € R, where the
random variable O ranges over representations
of different words. Following Pimentel et al.
(2020), we decompose the mutual information
as

I(W;0) =H(W)—H(W | O)
~ Hy(W) — Hy(W | O)

(8a)
(8b)

and separately estimate each term.

We estimate unconditional entropy H,(11)
with a maximum likelihood estimation of the
unigram distribution of Chinese characters and
English words. We take the 9,933 unique Chi-
nese characters included in the modern Chinese
character database *, and the 60, 384 English
words in the SUBTLEXus database (Brysbaert
and New, 2024), and look up their frequencies
using the Python library wordfreq (Speer, 2022)
that supports both languages and aggregates
data from multiple large-scale corpora, includ-
ing subtitles, Wikipedia, news, fiction, and web
content. Normalizing the frequencies, we ob-
tain the empirical distribution pg(w) and from
it we can directly compute the entropy Hy(11).
The empirical entropies are 5.59 and 7.12 nats
for Chinese characters and English words.

We estimate the conditional entropy
Hy(W | O) in two stages. First, we compute
the word-entropy conditioned on a specific or-
thographic representation, Hy(1/; O = o) for
every word in our vocabulary. We refer to this
as the pointwise conditional entropy. We com-
pute this value by taking the expectation of the

“https://lingua.mtsu.edu/chinese-computing/

information content, or surprisal of the word
given its orthographic representation ¢4 (w | 0),
where 1y(-) = —log py(+). Given a model with
parameters ¢ that can produce our probability
distribution of interest, that is, pp(w | o), the
pointwise conditional entropy is calculated as:

Hy(W o)~ Y po(w | o)s(w o) (9)

weWw

We then estimate conditional entropy as the
expectation of the pointwise conditional en-
tropy with respect to O, following the identity
H(W | O) = Eg[H(W | O = o)]. We take
the expectation over a set of held-out test sam-
ples:

N
1 7 n
Hy(W | 0) ~ NE "Hy(W | o™)

n=1

(10)

where 0" is the n'" orthographic representation
in the test set.

We note that using these methods, we can
estimate not only the mutual information
I(W;0), but also its half-pointwise variant,
also called the information gain (IG), for a
particular orthographic representation, where
IG(W;0) = H(W) — H(W | o). While
our formal prediction is made in terms of
mutual information, in Section 4.3, we use
IG to investigate the relationship between
information contained in individual visual
inputs and their respective reading times.

In recent work, similar methods have been
used to study the relationship between words (as
represented by text) and prosody, or the melody
of speech (Wolf et al., 2023; Regev et al., 2025;
Wilcox et al., 2025). However, these previous
works learn distributions over real-valued vari-
ables that represent pitch. We wish to learn
distributions over discrete w-valued variables
po(w | o). To obtain this distribution, we use
multimodal language models, which we fine-
tune to produce conditionalized distributions
over words, given visual inputs. We do so with
the following methods:

Fine-Tuning Data We adapt the Python li-
brary TRDG 3 to generate images of Chinese

>https://github.com/Belval/TextRecognitionDataGenerator
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Figure 2: Results of our fine-tuned Qwen2.5 model
for the Chinese character 28 (“beautiful”) and the
English word hear.

characters and English words from text, apply-
ing upper-, lower-half occlusion to create our
different experimental conditions. We random-
ized font selection to enhance visual variability
and added a small amount of Gaussian noise
to the image backgrounds (Li et al., 2025). We
generated 16, 800 Chinese character images and
44,800 English word images for each of the
three occlusion conditions as tuning data.

Predictive Multimodal Models We use three
different model settings: First, we evaluate the
pre-trained multimodal model Qwen2.5-VL-7B-
Instruct® in a zero-shot setting. Qwen2.5-VL-
7B is an open-source vision-language model de-
veloped by Alibaba, designed for high-accuracy
multimodal analysis with enhanced visual un-
derstanding and text-image alignment (Wang
et al., 2024; Bai et al., 2025). As top- and
bottom-half occluded words are likely out-of-
distribution with respect to the model’s training
data, we do not expect the mutual information
estimate to be tight in this setting. For a bet-
ter estimate, we then fine-tune Qwen2.5-VL-
7B on our task-specific data to improve its per-
formance. To complement the estimate from
the pre-trained model, we also train a separate
transformer-based OCR model (TransOCR) (Yu
et al., 2023), from scratch, to perform the same
prediction task. The model combines a ResNet
encoder with a Transformer decoder for charac-
ter recognition. Full training configurations and
prompt designs for the Qwen and TransOCR

®https://huggingface.co/Qwen/Qwen2.5-VL-7B-
Instruct

models are provided in Appendix B and Ap-
pendix C, respectively.

To give a visual sense of how our models
perform, Figure 2 shows sample images in our
three experimental conditions, along with the
predictions of the fine-tuned Qwen2.5 model.

4 Results

4.1 Human Reading Results

We show human reading times in Figure 3(a).
In both languages, reading full words resulted
in the shortest average reading times, as pre-
dicted. Interestingly, both languages follow a
Full < Upper < Lower pattern, with lower-half
visibility leading to the longest times. To quan-
tify these effects, we fit linear mixed-effects
models with visibility condition as a fixed ef-
fect, using sliding contrasts to compare Up-
per vs. Full and Lower vs. Upper. Ran-
dom intercepts were included for subjects and
items. In Chinese, both contrasts were signif-
icant: § = 36.45ms and § = 16.28 ms. In
English, the effects were larger: 8 = 54.64 ms
and B = 90.06 ms’. All effects were statisti-
cally significant at p < 0.001.

These results can be interpreted as implying
a visual asymmetry in both languages between
ease of processing with respect to just upper
and lower halves of words. The asymmetry
is stronger in English, where the lower half
leads to greater slowdowns. Participants’ sub-
jective ratings confirm this asymmetric pattern
and further show that English lower halves are
perceived as harder to read than Chinese ones
(Appendix D).

4.2 Mutual Information Results

Figure 3(b) shows the information gain (IG)
between word identity and visual input across
the three visibility conditions, estimated by
Qwen2.5-VL-7B-Instruct (zero-shot and fine-
tuned) and TransOCR. Visually, these results
show a decreasing IG trend among the Full,
Upper, and Lower conditions. To test this sta-
tistically, we fit linear mixed-effects models for

"Gaze duration was calculated for Chinese characters
and English words, which may account for the generally
longer reading times in English.
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Figure 3: (a) Mean gaze durations measured in human reading under three visibility conditions. Boxes
represent the interquartile range (middle 50%), center lines indicate the median, and whiskers show the
overall data spread. Grey lines trace each participant’s mean across conditions. EN: English; ZH: Simplified
Chinese (b) Information gain (IG) between word identity and visual form under the three conditions, obtained

with Qwen2.5 and TransOCR models.

each language-model pair, with visibility con-
dition as a fixed effect and including a random
intercept for item. As in the human reading
analysis, we used sliding contrasts to compare
our three conditions.

In Chinese, all models showed significant IG
reductions when only the upper half was visi-
ble (Qwen2.5-Zeroshot: 8 = —4.55; Qwen2.5-
Finetuned: 5 = —1.85; TransOCR: 8 = —0.99
nats), and IG from fine-tuned models dropped
further when viewing changed from Upper
to Lower (Qwen2.5-Finetuned: 8 = —0.37;
TransOCR: § = —1.01 nats). In English,
the zero-shot model showed the largest over-
all drop (Upper vs. Full: 8 = —1.46; Lower
vs. Upper: 8 = —2.11 nats), while fine-tuned
models showed smaller but consistent reduc-
tions (Qwen2.5-Finetuned: 8 = —0.12, —0.47,;
TransOCR: g = —0.08, —0.35 nats). All ef-
fects were statistically significant at p < 0.001.
Panels (a) and (b) of Figure 3, taken together,
reveal a clear pattern: as visual input degrades
from Full to Upper to Lower, as measured by
IG, reading times increase as well. We also ob-
tained the mutual information 7(11; O) from
the Qwen2.5 and TransOCR models, although
we did not use them in our analysis above.
The mutual information I(1/; O) estimates are
given in Appendix E.

4.3 Word-Level Relationship

In this section, we test the relationship between
reading time and informational quality at the
word level. To do so, we fit linear mixed-effects
models with reading time of an orthographic
representation as the dependent variable and its
IG as a fixed effect. We also included frequency,
surprisal, contextual entropy, and (in English)
word length as additional fixed effects, as well
as by-subject and by-item random intercepts.

We find a significant effect of IG on read-
ing time across all models and measures, with
a consistent negative effect: the higher the in-
formational quality of the input, the faster it is
read. In Chinese, all three IG estimates were
significant predictors of reading time: Qwen2.5-
Zeroshot ( = —7.53 ms), Qwen2.5-Finetuned
(8 = —10.19 ms), and TransOCR (5 = —4.97
ms). In English, the effects were even larger:
Qwen2.5-Zeroshot (6 = —23.67 ms), Qwen2.5-
Finetuned (5 = —51.48 ms), and TransOCR
(8 = —66.42 ms). All effects were statistically
significant at p < 0.001.

4.4 Nonlinear Relationship Between
Information Quality and Reading Time

While our linear regression models show that
informational quality affects reading time, it
makes (arguably strong) assumptions about the
functional form of this relationship. In order to
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Figure 4: Relationship between informational quality of individual words (information gain; IG) and reading
time slowdown. Solid blue lines are smoothed GAM fits; shaded regions show bootstrapped 95% confidence
intervals. Red tick marks along the bottom (rug plots) indicate the distribution of IG data points. Reading
times are aligned to end at zero at the highest MI end to emphasize relative reading time reductions.

get a better sense of how these two variables are
related, we visualize them together in Figure 4.
We used generalized additive models (GAMs).
GAMs are models that allow for non-linear re-
lationships between predictor and response vari-
ables. We fit GAMs to predict reading times
with smooth terms for IG, controlling for fre-
quency, surprisal, contextual entropy, and (for
English) word length. We applied bootstrap
smoothing over 20 resamples and computed
confidence intervals for the estimated effects.
We observe a consistent trend across both lan-
guages and all three models: reading time re-
mains relatively stable at lower IG estimates but
decreases rapidly as IG increases.

5 Discussion

Turning back to our main prediction, we argue
that our results provide strong evidence that vi-
sual quality, as measured by mutual information,
or information gain, impacts ease of process-
ing. First, we find a consistent ordering, both
in terms of reading times and mutual informa-
tion, across our three experimental conditions.
Second, we find a significant effect of the spe-
cific mutual information, or information gain,
of individual words on reading times. While
intuitive, the idea that bottom-up informational
quality impacts ease of reading has not been

quantified within a formal framework of read-
ing. Our methods and experiments provide a
specific estimate for the relationship between
visual informational quality and reading times,
which in English is between 25 —66 ms/bit and
in Chinese 5 — 10 ms/bit. However, these num-
bers should be taken only as rough estimates, as
the exact functional form may not be linear.

Turning now to our two sub research ques-
tions outlined in section 3.1: Interestingly, we
find that information is not distributed evenly
between the top and bottom half of words. Both
English and Chinese place more information
about word identity in the top half of their or-
thographic systems, a feature which we argue
is reflected in the quicker reading times for our
Upper condition. Interestingly, Pimentel et al.
(2021) find similar informational asymmetries
between the beginnings and ends of words, us-
ing an even wider set of languages. Exploring
whether their asymmetry in reading times and
extending our results to more languages is an im-
portant direction for future research. Finally, we
find some suggestive evidence that this asym-
metry is stronger in English, reflected in the
larger effect sizes for the Upper vs. Lower con-
trast in our reading data. Future work should
investigate such differences in greater detail.



6 Limitations

There are several limitations with the present
work. In our formal model, we made two
assumptions—that visual samples of a given
word £ are drawn i.i.d. during reading, and
that visual inputs are conditionally independent
from each other given 1. These assumptions
are strong, however, they are compatible with
a “simple but fast” approach to reading. We
discuss them in more detail in Appendix A.

Another limitation concerns our approach to
estimating mutual information between word
identity and orthographic representation in Chi-
nese. We used characters, rather than lexical
words, as the unit of analysis. This choice was
motivated by two considerations: first, the aver-
age word length in our OneStopQA Chinese
dataset is approximately 1.4 characters; sec-
ond, Chinese characters, unlike English letters,
carry substantial visual and semantic complex-
ity. As such, characters may serve as a more
suitable unit for modeling bottom-up visual pro-
cessing in Chinese, analogous to words in En-
glish. Nonetheless, using lexical words might
produce slightly different estimates of mutual in-
formation. Future work could examine whether
similar patterns hold when words are used in-
stead of characters.

One other limitation of the present work has
to do with the languages studied. While we
chose two languages that were topologically dis-
tinct, and used different types of orthographic
systems, they represent only two language sam-
ples. Extending to more languages will be im-
portant to generalize the conclusions of this
work.
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A Assumptions of Formal Model

In this appendix, we discuss our two assump-
tions about our samples of evidence, E, namely
that they are drawn i.i.d., and that they are con-
ditionally independent of each other, given V.
First, given these two assumptions, we walk
through the step from 4a to 4b. First, we have
by the definition of mutual information:

I(W; E; | Eri-1) (11)

k
= ZI(WZ;Ei | Eq.-1)

=1

(12)

k‘
= ZH(Ei | Ev;im1) — H(E; | W, Eq-1)
i=1
(13)

Assuming that the samples £ are drawn inde-
pendently of each other, we have, for the first
term in this sum that H(E | E1,,_1) = H(E).
That is, the previous samples don’t influence
the entropy of the current sample. Further-
more, assuming conditional independence be-
tween the samples, given 11/, we have that
H(E | W,E1;—1) = H(E | W). Therefore,
we can rewrite as:

A‘
=Y H(E)—H(E; | W) (14
=1

k
=Y I(EsW) (15)
=1

which, given the symmetry of mutual informa-
tion, 1s what we have in 4b.

Regarding our assumptions, the first one
means that we model the reader as not making
their decision about what to sample next based
on information about previous samples within a
given word. The second assumption means that
if the reader knows the word’s identity, then pre-
vious samples will not necessarily help them to
predict what will be sampled next. We believe
that both of these (especially the first one) are
somewhat strong assumptions. However, they
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are compatible with the view that readers adopt
a simple, but fast, sampling strategy, in which
prior evidence from samples does not determine
future sampling behavior. Given that reading
happens at a very quick timescale, where word
identification takes potentially only tens of mil-
liseconds, such a “simple but fast” approach is
not unreasonable.

B Qwen2.5-VL-7B-Instruct
Fine-Tuning Details

We fine-tune Qwen2.5-VL-7B-Instruct using
QLoRA with 4-bit quantization and LoRA
adapters applied to attention projection layers
with rank 8, a = 16, and dropout 0.05. The
model is trained for up to 100 epochs. Early
stopping is applied based on validation loss.
The training will terminate if no improvement
for three consecutive epochs. AdamW (learning
rate 2e-4), batch size 4, gradient accumulation
of 8, and gradient clipping of 1.0. Training
data consists of system and user prompts with
bottom-half character images; the model pre-
dicts a single Chinese character. We formatted
the input using Qwen’s chat template and com-
puted the loss on the assistant tokens. Image
inputs are processed using the Qwen processor.
Training is conducted on a single GPU (RTX
3090 Ti). Each training sample consists of a
fixed system prompt and a task-specific user
prompt. For example, for the lower-half recog-
nition task, the templates used are as follows:

Chinese prompt

<system prompt> /RiE— TR
AN FRIREGETF - B RETR
T =N FH T RS, B
i T BB R AIZ I T, R
[E] — M

<user prompt> X7K & 5 R E
— PNF T B, RS
BB T o ERIE A W A

WX et 2307, REE—PX
T, ANEGEHMBNE . XN
£ 2

English prompt

<system prompt> You are a help-
ful assistant that can identify En-
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glish words in images. The image
will show only the lower half of an
English word, with the upper half
masked. Identify the word accurately
based on the visible portion. Please
answer with a single word, and do not
include any other text.

<user prompt> The image contains
the lower half of an English word.
The upper half is masked. What is
the word in the image? Please answer
with a single word, and do not include
any other text. The word is:

C

We trained the Transformer-based OCR model
(TransOCR) for character recognition using the
PyTorch framework. The model takes grayscale
images resized to 32x256 pixels as input and
is trained to predict character sequences in an
autoregressive manner. Training was conducted
using the Adadelta optimizer (p = 0.9, weight
decay = le-4) with an initial learning rate of 1.0
and a batch size of 16. The loss function was
standard cross-entropy over predicted character
classes. We applied early stopping with a pa-
tience of 5 epochs based on validation accuracy.

All models were trained on two NVIDIA
GPUs (RTX 3090 Ti) with multi-GPU support
(DataParallel), and model checkpoints were
saved at each epoch. The best-performing
model was selected based on validation accu-
racy.

During inference, character predictions were
generated step-by-step. At every step, the model
outputs a probability distribution over the char-
acter vocabulary via a softmax layer. The con-
ditional entropy is computed using the standard
formula H(p) = — sz\il p; log p;, where p; is
the predicted probability of the i-th character,
given the input image.

TransOCR Training Details

D Self-Rated Ease of Reading

In both Chinese and English, participants over-
whelmingly rated the upper half of words as
easier to read. This asymmetry was more pro-
nounced in English, where 91% of participants
preferred the upper half, compared to 75% in
Chinese.



11% 149 7% 2%
Self-rated ease of reading

ZH EN Upper & Lower equally easy

(n=57) (n=54) Upper e

75% 91%

Figure 5: Self-rated ease of reading across visibility
conditions. Participants were asked to judge whether
the upper or lower half of words was easier to read.

E Mutual information estimates (nats)

Model Full Upper Lower

Qwen2.5-Zeroshot 542  0.27 0.32
Qwen2.5-Finetuned 5.57 3.62 3.27
TransOCR 526 4.09 3.17

Table 1: Mutual information I(17; O) in Chinese.

Model Full Upper Lower

Qwen2.5-Zeroshot  6.99  5.74 3.86
Qwen2.5-Finetuned 7.11 7.01 6.66
TransOCR 7.07  7.00 6.68

Table 2: Mutual information I (1/; O) in English.
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