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ABSTRACT

Graph anomaly detection faces challenges of scarce labeled samples and con-
cealed anomalous features. Although recent graph-based models have shown
potential, their reliance on extensive supervisory signals limits their effective-
ness in real-world scenarios. To address this issue, we propose the GradConf
framework, which enables robust anomaly detection under extremely low supervi-
sion. This framework constructs a graph structure where nodes represent entities
and edges denote associative relationships, enhancing model robustness through
view enhancement and consistency learning. Based on this, our key contribu-
tions are as follows: (1) Proposing a Gradient-Confidence Aware Loss that dy-
namically balances positive and negative samples by combining global training
gradients with instance-level confidence; (2) Designing a Pseudo-label Clustering
Self-Correction module that iteratively optimizes pseudo-label quality via learn-
able clustering centers and a structure-aware self-correction mechanism; (3) In-
troducing a Logits Adversarial Perturbation strategy that injects perturbations in
the logit space to improve the model’s sensitivity to anomalies and generalization
ability under low supervision. Experiments on six real-world datasets demonstrate
that GradConf, using only a single pair of labeled samples, can achieve or even
outperform fully supervised methods, verifying its effectiveness and practicality.

1 INTRODUCTION

In recent years, with the rapid development of the Internet, graph-structured data has become ubiqui-
tous. Graph Anomaly Detection (GAD) aims to identify a small number of "atypical graph objects"
in graph-structured data that differ significantly from the majority of objects (O1ao et all, P075;
Hanef all, P072; Akoglu et all, 20T9). It is widely applied in various real-world scenarios, such as
detecting money laundering activities in financial networks (Huang et all, P027), identifying mali-
cious reviews in review networks (Ciefall, 20T19), and uncovering bot accounts on social platforms
(GmoZef-all, 202T). However, due to the complex structure and attributes of graph data (Ciiefall,
2073; Maef all, P0723; Diao & Pang, P073), identifying anomalous nodes in graphs poses significant
challenges. Although GAD is crucial for maintaining the integrity of these systems, effectively ad-
dressing this problem still faces numerous challenges (Cin_ef-all, 2074)), including label imbalance
(Ciefall, 20274; Duef-all, P074; Gupta et all, 2073), relational camouflage (Plafonov_etf-all, 2073;
Huang et all, P07S; Caef-all, P070), and feature heterophily (Gao’ef-all, P017734; Dong et all, PO75H).

Based on the availability of supervision information, GAD mainly encompasses three mainstream
paradigms: unsupervised, semi-supervised, and fully supervised learning. Unsupervised methods
excavate inherent data patterns through strategies such as data reconstruction (Ding et all, Z019;

and one-class homophily modeling (Q1ao & Pang, P173). While they are suitable for extreme label-
free scenarios, they fail to utilize easily accessible node labels to calibrate representations. Moreover,
the lack of real anomaly domain information may lead to learning biases, ultimately resulting in sub-
optimal performance. Semi-supervised and fully supervised methods, although leveraging labels to
improve performance, generally require the simultaneous acquisition of a large number of labeled
normal and anomalous nodes (Douefall, P020; Coefall, ZO02Ta; Peng et all, Z021; Wi ef-all, 2024,
[ang et all, P073; Wang et all, 2025). However, the rarity of anomalous nodes and the high cost of
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their annotation trap these methods in the dilemma of "theoretically effective but practically inappli-
cable". Additionally, the strong dependence of current methods on the types of annotated anomalous
samples makes it more difficult for them to address the demand for heterogeneous anomaly detec-
tion. Therefore, we focus on a more realistic yet challenging scenario: when there is only one labeled
anomalous node, can the model still capture its key anomaly-indicating features and generalize to
identify unknown anomalies with sparse distributions and subtle patterns?

Specifically, we propose GradConf, a graph anomaly detection framework tailored for extremely
low-supervision environments. Centered on the nodes in the graph, this framework constructs a
general graph structure using the associative relationships between nodes as edges. To mitigate opti-
mization bias caused by extreme class imbalance, we introduce a Gradient-Confidence Aware Loss
(GCAL), which adaptively balances the contributions of positive and negative sample pairs by cou-
pling global gradient signals with instance-level confidence. To address the instability of pseudo-
labels under limited supervision, we propose a Pseudo-label Clustering Self-Correction (PCSC)
module. It continuously refines label distributions via learnable cluster centers and integrates a
structure-aware self-revision mechanism to suppress error propagation induced by clustering noise,
thus improving pseudo-label reliability and generalization to unlabeled samples. Furthermore, con-
sidering the rarity and concealment of anomaly patterns, we incorporate a Logits Adversarial Pertur-
bation (LAP) mechanism within the encoder to enhance the discriminability of learned features and
improve the model’s sensitivity to anomalous instances.

Overall, the main contributions of this paper are as follows:

(1) To the best of our knowledge, this work is the first to systematically focus on graph anomaly
detection under the practical constraints of extremely low labeling rates, weak graph homophily,
and extreme class imbalance, bridging the gap between existing research assumptions and real-world
deployment scenarios;

(2) We propose GradConf, a plug-and-play contrastive training framework that integrates gradient-
aware loss, clustering-based pseudo-label correction, and adversarial perturbation to tackle class
imbalance, pseudo-label noise, and anomaly concealment under minimal supervision;

(3) Systematic experiments are conducted on graph datasets from six real-world scenarios.The re-
sults demonstrate that GradConf, using only one pair of labeled samples, can achieve performance
comparable to or even surpassing that of fully supervised methods, confirming its effectiveness and
feasibility under extreme conditions.

2 RELATED WORK

Graph Anomaly Detection. Graph Anomaly Detection (GAD) aims to identify nodes, edges, or
subgraphs in a graph that deviate from normal patterns, and it serves as a core technology for risk
prevention and control in complex systems (Maetall, 202T). Early shallow methods (Ciefall, 20T,
Peng et all, POTR; Perozzi & AKogly, Z0T6) are limited by their representational capacity, making it
difficult to capture the complex semantics and high-order correlations of graphs. With the develop-
ment of GNNs, deep GAD methods have become the mainstream. Reconstruction-based methods
from the spatial perspective (Ding et all, Z019; Fan“ef-all, P020), correlation mining methods (M3
ef_all, P073), and signal analysis methods from the spectral perspective (Ciunef-all, POZTH; [Tang
ef_all, D027; Gao_ef-all, P0734) have all improved performance through the adaptive aggregation
of topological and attribute information. However, recent specialized models (Gao“ef-all, PO73Hh;
Gong et all, 2073; Wang et al], Z023H; [Tang et all, 2023) still fail to overcome two core bottlenecks.
First, they generally rely on sufficient supervision signals (Lin_ef-all, 2027h; [Tang et al], 2073),
which conflicts with the requirement of "scarce labeled samples" in real-world scenarios. Second,
their adaptability to scenarios with "concealed anomaly features" is insufficient. Generative meth-
ods (Ding et all, P071; Chen"ef all, P0720) fail to fully utilize topological information, leading to
a significant mismatch between the distribution of pseudo-anomalies and real anomalies (Zenafi
ef-all, 2OT8; Ngo et all, P01Y9). Furthermore, most existing methods focus on single-level anomaly
detection (LCau“ef-all, P073; Dong et all, P073), fail to capture inter-level collaborative correlations
and thus miss cross-level hidden anomalies. This highlights the necessity of the GradConf.

Semi-supervised Learning on Graphs. Semi-supervised learning on graphs addresses node classi-
fication with limited labeled nodes by leveraging topology and unlabeled information. Early works
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commonly adopt message passing frameworks to propagate label signals across neighborhoods
(Kipf & Welling, 2017; [Yang et al), ZOT6; Zhief all, 2003). To enhance representation learning,
recent studies explore adversarial training (Dai"ef-all, DOTR; lin"ef-all, DOXT; Xu“ef-all, 2077), data
augmentation (You ef all, P020; Wang et all, 2020; Sui-ef-all, 2073), pseudo-labeling (Wang et all,
20734), virtual connections (Xie“efall, 2073), and information regularization (Zhang et all, 2075;
Chen_ef all, P0T) to reduce oversmoothing and distribution bias. Among them, contrastive learn-
ing has gained increasing attention for its ability to extract structure-aware representations without
heavy reliance on labels (Yanefall, 2023; Velickovic ef all; Cief all, 2027d; Ciefall, PO21; Boefall,
20073), often through augmentation-consistent training or feature-level alignment. Recent efforts
also explore curriculum-aware sampling (Zhang et all, 2023), consistency-enforcing teacher-student
frameworks (Chang et all, Z073; Liu & Zhang, P071), and prompt-based or meta-knowledge-driven
tuning strategies for efficient graph adaptation in low-label regimes (Holfz ef all, D074; Shaa ef all,
2074). Despite these advances, many approaches rely on implicit assumptions such as label proxim-
ity or structural regularity, which are often violated in real-world graph anomaly detection scenarios
characterized by sparse supervision and irregular connectivity patterns.

3 METHODOLOGY

3.1 PROBLEM SETUP

One-shot Graph Anomaly Detection: Graph anomaly detection is a binary classification task on
graph-structured data D = {(t1,1), ..., (tn,yn)}, where t; is a node with feature vector X; € R%,
and y; € {0, 1} is its label (1 for anomaly, O for normal). GNNs are commonly used by constructing
a graph G(V, E, X, A), where V = {vy,...,vx} are nodes, E C V x V are edges, X € RV*4
is the node feature matrix, and A € {0,1}V*¥ is the adjacency matrix. We define this as: a
binary semi-supervised node classification problem on a graph G = (V, E, X, A). The labeled
set D, = {(zy,1), (z,0)} contains one anomalous and one normal node. A large unlabeled set
Du = {Tuy,-- -, Tu,, } (Where M > |Dy]) is also utilized. Let V; and V,, be node sets for Dy, and
Dy. The goal is to learn f : V' — {0, 1} using G, Dy, Dy to predict labels for an unseen test set
Q = {zq,,-..,zqp} (nodes V,, disjoint from V;, V,,).

3.2 OVERVIEW

GradConf first generates two augmented graph views(Zhao ef all, 2021), G}, = t;(G), from the
original graph G = (V, E, X, A) using independent augmentation operators ¢1(-) and t5(-). A
shared-parameter GNN encoder fj processes these views for representative node embeddings H,
guiding initial training with supervised signals from sparse labeled data Dy. This phase includes
three key losses: a consistency loss L., ensuring consistent node embeddings across augmented
views; a supervised negative log likelihood loss(IYaoef-all, P02(1) L., and a supervised contrastive
loss L5 on labeled nodes. These three losses collectively form the base loss Lpqs. (Figurell, left),
detailed in the APPENDIX A™A. Building on this foundation, GradConf introduces GCAL, PCSC,
and LAP, as illustrated on the right side of Figure [I.

3.3 GRADIENT-CONFIDENCE AWARE LOSS

Effective pseudo-label is often challenged by noise and class imbalance(Zou & Cheng, 20074 Xiang
ef all, 2073, Tang et all, 2027; Xiang et all, 2073; Donef all, P020; Shiefall, P027; Cinefall, P07T3).
While existing methods(Qian et all, P027; Xiao ef-all, PO23; 1 et all, 2024; Miao_ef-all, P024); [Yang
& Xii, 2020) employ re-weighting or resampling, they often lack full adaptivity to both class-level
imbalance and sample-specific difficulty as revealed by gradients. To address this, we introduce

L gca1 for robust pseudo-label learning.

GCAL first compute the predicted probability p; ; of sample ¢ for its pseudo-label 37 " at view k. Its
standard cross-entropy loss CE; = —log(p; ;) is then modulated by three weighting components:
First, Focal Weighting w focal,; = (1 — pt,i)7* (wWhere vy is set to 4/5), emphasizes hard-to-classify
samples based on prediction confidence. Second, Dynamic Class Balancing Weight w45, €sti-
mates and adjusts class weights based on the K% (set to 10%) hardest samples (highest C'E;). Let
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Figure 1: Global overview of GradConf. The Gradient-Confidence Aware Loss (GCAL) uses
gradient-confidence to balance imbalanced samples. Pseudo-label Clustering Self-Correction
(PCSC) refines pseudo-labels via clustering and self-revision for few-shot learning. Logits Adversar-
ial Perturbation (LAP) perturbs logits adversarially to boost anomaly sensitivity and generalization.

ni“"d’(t) be the count of class ¢ samples among the hardest examples at training step t. The smoothed
effective count for class c, Nc(t), is updated using a momentum term £ (set to 9/10).

Nc(t) — /BNC(,t71) + (1 _ /B)nlc'l,a’r‘d,(t). (1)

The weight «.. for class c is then calculated as:

1
e = (—5)7, 2
N
where 7., (set to 1/2) governs the intensity of class balancing. Class weights a. are normalized
(ZC a. = C, where C' is the number of classes). For a sample ¢ with pseudo-label g}f l, its class
balancing weight is Wejqss,i = Qupt. Third, as samples with larger gradient magnitudes often reside

near the decision boundary or represent instances where the model is uncertain, we compute the L.2
norm of gradient magnitude weight wgy,qq,; With respect to the input logits zy, ;:

ki = Hvzk,iCE(softmax(zk,i), gfl)Hz . 3)

Initially, the class balancing weight w455, and the gradient magnitude weight wg,.qq,; are multi-
plied to form a class-aware difficulty weight, wq; s 7 ; (Welass,i * Werad,:)> then normalized by:
wdi‘ff)i
1 .
Drr] 2 jeDp, Wdiffj
Subsequently, this normalized class-aware difficulty weight wq;g ; is multiplied by the focal weight

Wiocal,i- This step refines the overall weighting by incorporating the sample-level hardness (predic-
tion confidence) as captured by the focal term, yielding a preliminary final weight wgnal raw,:

“

Wdiff,; =

W final_raw,i = 'J]diff,i *Wfocal,is (5)

and 0 final _
mal_raw,r
— 3 (6)

Uj}ﬁnal,i = 1 .
DrL ZjGDPL W final_raw,j

The final £cq; is defined as:

N 1 B
Egcal(zkaY) = E Z Wfinal,i CE“ (7)
1€Dpy,
where Zj, = {zx;}icp,, represents the set of logits for samples in Dpy, from the k-th view, and
Y = {9 | i € Dpy} is the set of their corresponding pseudo-labels.

The total loss from pseudo-labels is averaged across the two augmented views:

1 R N
Eg::fl = 5 (Egcal(zh Y) + ‘Cgcal(ZQ’ Y)) ) (8)
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3.4 PSEUDO-LABEL CLUSTERING SELF-CORRECTION

To address the underutilization of unlabeled graph data by existing anomaly detectors (Zon &
Cheng, 2074)(Tang et all, 2022)(Xiang et all, 2023)(Xiang et all, Z025)(Shiefall, 2022)(Don ef all,
P020)(Cmef-all, PZ02T4) in one-shot scenarios, PCSC utilizes learnable cluster centroids, initialized
based on original node embeddings H,,;, and optimized via L,.s. aimed at enhancing cluster com-
pactness and separability. These evolving centroids then guide the soft cluster assignments g, ;
for unlabeled nodes v € Dy computed using Gumbel-Softmax(Jang et all, Z0T6), considering Eu-
clidean distanced (hyyg,4,c;) and Gumbel noise(Jang et all, ZOI6) g;. Then, g, ; are fused with
the GNN model’s predictions to generate pseudo-labels ¢! for the GCAL and LAP strategies.

Gui = exp((gj - d(horig,ua Cj))/Tclus) (9)

" chio_l exp((gk - d(horig,u7 Ck))/Tclus)

where 7.5 (set to 4/5) donates the sharpness of the soft assignments. Node u’s raw cluster
assignment is k£, = argmax;gq, ;. To align the clustering probability vector g, ; (for raw
clusters) with a semantic [P(normal), P(anomalous)] format for fusion, we use prior knowl-
edge (anomaly as minority): the more populous raw cluster in X = {k,|u € Dy} is normal
(class0), the less populous is anomalous (class1), which converts g, ; into the semantically ordered
Que = 40, 0(normat)> Q1 (anomatous))- The model-derived probability for semantic class ¢, pu,c, i

typically obtained by averaging the softmax outputs from two augmented views:

1
Pu,e = E(sof‘umax(zLu)C + softmax(zz y)c). (10)

where ¢ € {0(normal), 1(anomaly)}, and z1 ,,, 22 ,, are the logits from the Encoder for node w on
the two augmented views, respectively. Specifically, we first compute an averaged probability p,, .
by taking the mean of g, . and p,, :

(L/,L’c + pu,c
—

The pseudo-label 3 " is then determined by selecting the class with the highest averaged probability:

ﬁu,c = (11)

gjfl = arg mcaxﬁu)c. (12)

These generated pseudo-labels g7 "forall i € Dy form the set Dpy,, which provides supervisory
signals for the £,.,;. Crucially, the learnable cluster centroids C (used to derive g,, .) are continually
refined by optimizing Lcsc and L;qp.

Embeddings from original and two augmented views H,;; are aligned by L,.s. towards initial
soft assignments Q.4 and centroids c; computed only from the less noisy original view H,.;g.
First, the Intra-cluster Loss L;,+-, encourages embeddings to be close to their assigned cluster
centroids. This is measured by the Dy divergence (details in the appendix BATI) computed
between the softmax-normalized probability distribution of an embedding h, drawn from H,;,
P(h,) = softmax(h,), and that of a centroid, P(c;) = softmaz(c;).

_ ) P(z)
Drer (Pl Q) = Z P(e)log 5 (13)
and )
Lintra = E(h, q)~ (Han.Quig) [ Qi D (P(h)|[P(c;))]- (14)
§=0

Second, the Inter-cluster Loss L;,ter promotes dissimilarity between different centroids. This is
achieved using the symmetric KL divergence, defined as:

1

Dskr(PillF;) = 5 (DxL(Bl|Py) + Dk (Bj]1Fi)), (15)
where P; = P(c;) and P; = P(c;) are the softmax-normalized distributions of two distinct cen-
troids.

Dskr(P(ci) || P(c;))
Lo = _
inter log Z eXP( . )a (16)
(4,5) 475
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where 7, is a temperature hyperparameter (set to 1/2) that controls the sensitivity to the dissimilarity
between centroids.

Third, the Centroid Regularization Loss L., regularizes the centroids towards the origin using
Smooth L1 loss, to prevent them from becoming excessively large and to mitigate potential overfit-
ting.

Lreg = E;j[SmoothL1(c;, 0)]. (17
These components are weighted and summed to form the total clustering loss. The weights are
set as: Wintrq = 1.0; Winger = min(0.5,10.0/(N, + N,,)), where N,, and N,, are the number of
samples assigned to each raw cluster (0 and 1) and wy¢g = 0.01 x (d;/16.0), where d is the feature
dimensionality. Thus, the overall clustering loss is:

Epcsc = wintraﬁintra + winterﬁinter + wregﬁreg- (18)

3.5 LOGITS ADVERSARIAL PERTURBATION

To enhance the models sensitivity to anomalous instances and improve generalization under distri-
butional sparsity, we introduce a novel hierarchical adaptation for logits perturbation to generate
adversarial logits Z;w’ = 2y, + Ny, by iteratively perturbing original logits z;, ; of pseudo-labeled
sample ¢ (view k). Efficacy depends on dynamically adjusted single-step strength «; ; and total
steps S,’;i. These adapt from base settings (g = 0.03, Sy _iter = 20) considering class imbalance
and sample hardness.

We first calculate preliminary class-aware steps S.. Minimum S,,;, = max(1,int(So_jter - 0.5))
and maximum Sy, = int(Sg_iter - 2.0) steps are defined. Using observed class counts N, relative

class frequencies p. = N,/ > j N; and an inverse frequency factor ¢ freq,c = 1/1.0/p. are derived
to determine .S’

’ ) . - Y. streq,c
SC = S’mzn + int ((Smaz S’mzn) ¢f7-eq7c + 1.0 . (19)

For a given sample ¢ with pseudo-label ¢ L

independent of view k at this stage), are then set to S

its preliminary perturbation steps, denoted S,’m- (though

’
pl-
%

First, if class ¢ is the minority class, then a class imbalance-aware scaling factor wimp,. =
min(Ceap, (Kimp)®®), where the ratio of majority to minority class frequencies K;,;, is clamped
to the range [1.0, 10.0], and the scaling cap C.q,, is set to 5.0, thus assigning greater weight to mi-
nority classes. Second, a class-average gradient-aware scaling factor wg,qq,c is calculated. Based
on the momentum-updated average cross-entropy loss Lo g . for samples in each class C, which is
then normalized using a softmax function to get a normalized average gradient indicator g..Then,
Wgrad,e = (1.0 4 Ge - Aeg), where A4 (set to 2) controls the weight of class gradient.Finally, the
preliminary class-aware strength for class ¢, o, is:

/
Q. = Q" Wimb,c * Wgrad,c- (20)

For sample %, class-aware strength oz;m = a;i. Individual sample difficulty g;nq ; is derived from
the L2 norm of the gradient of Lo g which is computed using logits 2 ; and pseudo-label y; with
respect to 2y, ; to yield final S} ; and o, ;:

ind,i = ||Vay, Lop(softmax(zy,i), 9], - (21)

Then, the gradient norms are normalized through a Softmax function to obtain normalized individual
sample difficulties:
exp(Gind,i)
0= = "F7"—. (22)
S, exp(gind.)
The final adaptive steps and strength are:

Sp.i = int(Sy, - &), (23)

and
- 0;. (24)
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First, calculate the average softmax probability vector ﬁés) for each class c at iteration step s.

Then, construct a base direction matrix V y;,., where row ¢ (the base direction vector for class c,
Vdir.c :normalize(ﬁ'gs)ec), with e. being the one-hot encoding vector for class c. Let 7T(_Si) be the

i-th element of ﬁés) (the average self-prediction probability for class c). A threshold Tii)gipmb is cal-

culated as the mean of these self-prediction probabilities across all classes. Then, a sign modulation

(s) _(s) p

factor 0. = sign(r — Te,c ). For a sample ¢ with pseudo-label gil its perturbation direction

avg_prob

d,(;g at iteration s and view k is:

d;:yz = Vdir):aipl . U?;ipz. (25)
Subsequently, an iterative process is employed to apply the perturbation:
2t =2 1 ap,-dY), s=0,....8;, -1 (26)
where z,(fz = zj,;- The final adversarial logit is zj_; = z,(csi’“’i). Finally, we define £;,), as follows:
1 J
Liop = = CE(softmax(zj, ;), 97" ). 7
lap 2Dpr| Z ( (Z3,0): 7;)

i€Dpyp,ke{l,2}

where Dpy, is the set of pseudo-labeled samples.

3.6 MODEL OPTIMIZATION

In conclusion, the total objective of Gradconf can be expressed as follows:
énin Liotal = ‘Csup + Lo + H(ECOHS + £gcal + Elap + Epcsc)- (28)

e

where 6 denotes GNN encoder parameters, i) denotes classifier parameters, ¢ denotes learnable
centroids, and p(Came & Aila, POTH) denotes loss balance.

3.7 THEORETICAL ANALYSIS

Our theoretical approach seeks to minimize the true risk R(f) = E(, ,)~p[¢(f(x),y)], where f is
the learned classifier and / is a loss function. We conceptualize R(f) as being bounded by:

R(f) < Rp,(f) +Epr(Du, f) + Q(f) + A" (29)
Here, Rp, (f) = ITIL‘ > (eyep, {(f(@),y) is the empirical risk on the minimal true labeled set

Dy,. GradConf directly minimizes Rp, (f) through the optimization of its supervised components
Lgup and Ly.sc, anchoring the model with ground-truth signals.

The term Epr,(Dy, f) represents the error introduced by using pseudo-labels 77! derived from the
unlabeled data Dyy. The quality of these pseudo-labels (how closely 92! approximates true y,,) is
critical. By minimizing £,.s., GradConf iteratively refines pseudo-labels towards higher fidelity
(g)ﬂl — ¥y), thus reducing the inherent error in Epy. Subsequently, GradConf, through the min-
imization of L4, enables robust learning from these pseudo-labels by adaptively re-weighting
samples based on confidence, class balance, and gradient information. This targeted optimization
further mitigates the adverse impact of Epr, on R(f).

The generalization gap, X(f) = R(f) — Remp(f) (Where Rey,p(f) is the empirical risk on all data
used for training), reflects the model’s ability to generalize. GradConf addresses 2( f) by promoting
robust and invariant feature learning through the minimization of L.,,s from its dual-branch aug-
mentation. Furthermore, Optimizing £,,, encourages smoother and more resilient decision bound-
aries, which also contributes to a smaller Q( f).

Finally, A\* is the irreducible Bayes error rate. While not directly minimized, LAP’s role in enhancing
the discriminability of rare anomalous classes (via optimizing L;,,,) helps the learned f to better
approach this theoretical performance limit, i.e., R(f) — A*.

In essence, GradConf minimizes its overall objective function L;,t4;. The joint optimization of
these terms systematically reduces Rp, (f), controls Epr(Dy, f), and diminishes Q(f), thereby
effectively minimizing the upper bound on R(f). This principled approach underpins GradConf’s
ability to achieve efficient anomaly detection under challenging data conditions.
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4 EXPERIMENTS

4.1 SETUP

Datasets. GradConf is evaluated on six benchmark datasets: Amazon (McAuley & Leskovec, Z0173),
YelpChi (Rayana & Akoglu, 20T5), and S-FFSD (Xiang et all, 2073). Weibo, Reedit, and T-finance
from GADBench ([Iang et all, Z073). More details are placed on the Appendix B~4.

Compared Methods. We compare GradConf with several SOTA Anomaly Detection Methods:
SpaceGNN (Dong et all, 20754), HOGRL(Zou & Cheng, 2074), BWGNN(Iang et all, 2077),
GTAN(KXiang et all, 2023), RGTAN(Xiang et al], 2025), H2-FDetector(Shi_et_all, 2027), CARE-
GNN(Donef all, 20210), PC-GNN(Luiefall, ZO2T3).

Table 1: CompePerformance comparison on Amazon, YelpChi, S-FFSD, Weibo, Reddit, and T-
Finance under full supervision, one-shot setting, and GradConf-enhanced one-shot setting (without
ACC-0 and ACC-1 metrics).

Setting ‘ Model ‘ Amazon YelpChi S-FFSD ‘Weibo Reddit T-Finance
. AUC F1 Gmean | AUC F1 GMean | AUC Fl1 Gmean | AUC Fl Gmean | AUC F1 Gmean | AUC Fl1 Gmean
CARE-GNN 90.67°  89.46"  89.62" | 76.19* 63.32" 67.91" | 66.23" 57.71" / / / / / / / / / /
PC-GNN 95.85°  89.99*  89.95* | 79.87* 63.00 71.60* | 69.75" 60.77% / 91.10° 8991 86.43* | 55.96* 49.83" 11.59" | 93.04* 84.86" 82.99"
H2-FDetector? | 97.11*  84.70*  92.23* | 88.77* 69.44* 81.60* | 72.68* 60.17° 65117 | 92.34* 91.23* 88.76" | 57.45* 52.16* 15.23* | 94.21* 86.52° 84.31°
RGTAN 97.50°  92.00* / 9498 84.92* / 84.61*  75.13° / 93.67°  92.45*  90.12* | 59.23* 54.87* 18.45* | 95.18* 88.23° 86.54"
Full Supervised GTAN 96.21%  92.13*  90.81* | 91.41* 77.88* 88.21" | 82.86" 73.36" / 94.89%  93.67° 91.45% | 61.45° 56.78" 21.34" | 96.34* 89.56" 87.98"
BWGNN? 97.59*  91.91*  91.95* | 91.70 78.91* 87.91* | 67.51* 45.13* 59.31% | 98.29* 92.35" 89.62" | 61.02* 51.73* 23.05* | 96.14* 9126 82.12%
HOGRL? 98.00° 91.98*  94.38* | 98.08" 85.95* 93.61* | 66.50* 46.06° 58.52% | 98.76" 94.12* 92.87* | 63.78" 58.34* 26.89* | 97.68* 93.45° 91.23%
SpaceGNN 92.85°  89.34*  84.64" | 65.65* 57.17" 44.07" | 6548" 61.31° 44.83° | 93.89° 85.41* 81.29* | 61.06* 49.15*  0.00° | 94.00* 87.23* 83.45*
CARE-GNN 79.84°  41.64*  60.84* | 56.72* 35.18* 47.27* | 57.97* 55.42° 51.52° / / / / / / / / /
PC-GNN 77.84%  41.84*  61.49* | 57.05* 25.28* 35.87* | 59.74* 37.53" 48.95% | 66.48° 7248 67.12° | 51.29* 49.14* 0.00° | 78.58* 49.10° 526
H2-FDetector | 72.13* 60.11* 47.79* | 61.84* 38.77* 52.16* | 65.93* 62.47° 57.24* | 6821* 74.15* 69.23* | 53.45* 51.23* 62.15* | 80.34* 52.16* 58.23*
RGTAN 78.77%  63.08"  73.26" | 51.32% 3547* 4743" | 63.08" 59.65° 61.39° | 70.56° 76.23* 71.87" | 55.67* 53.89* 64.78" | 82.45* 54.32° 62.45"
One-Shot GTAN 78417 40.27% 61" 55.80*  39.99* | 6321 59.34"  62.69° | 72.89° 7845 74.12* | 57.89" 56.12* 67.23* | 84.67* 56.78" 65.67"
BWGNN 78.06"  63.14* * 53.14* | 60.33* 54.82% 59.97° | 82.81* 49.14*  0.00* | 57.56* 49.14* 0.00" | 87.92* 73.91* 64.21*
HOGRL 58.88%  45.58" 38.89* | 56.76" 31.73* 41.50° | 84.56 52.89* 13.29" | 59.78" 52.34* 1.23° | 89.34" 7645 67.89°
SpaceGNN 2525%  10.82% 48.61% | 48.41*  49.04 40.02% | 5241 23.83" 37.93" | 4874 49.16* 0.00° | 53.17" 41.23" 33.85%
CARE-GNN! / / / / / / / / / / / / / / / / / /
PC-GNN* / / / ! / / / / / / / ! ! / / / / /
H2-FDetector | 93.34*  74.59*  86.21* | 71.32* 57.07" 66.37* | 70.42* 58.68" 65.17° | 80.45° 84.78" 82.15" | 65.89* 62.45* 82.34" | 88.67" 64.23% 78.45"
Baselines+GradConf RGTAN 90.96"  86.89*  86.09* | 73.53* 55.09* 69.31* | 68.23* 54.08° 62.46° | 82.67° 87.34* 84.56" | 68.45" 6578 8567 | 90.78* 67.45° 82.34°
(One-Shot) GTAN 84.44  71.30* 82.56" | 74.26" 56.45* 7055 | 68.10* 54.08% 62.46" | 84.89° 89.67* 86,7%’ 70.89*  68.34* 88.45* | 92.89* 70.23* 86.78"
BWGNN 91.42% 7130 69.99* | 74.94" 61.62* 67.66" | 64.16* 54.43° 61.88" | 86.12° 91.23* 88.45* | 72.34* 70.45* 91.23* | 94.23* 72.67° 89.34"
HOGRL? 97.11°  85.84*  91.91" | 7542" 56.77" 68.29* | 73.59* 50.12° 63.18° | 88.45° 93.78" 91.23" | 75.89" 7345 95.67" | 96.78" 76.34° 94.56"
SpaceGNN 92.56" 79.45% 8567 | 74.12* 63.78* 68.45% | 66.78" 56.89% 64.23% | 87.34* 92.45" 89.78" | 73.67° 71.89* 92.34* | 9545* 7456 91.23%

1 Official code of PC-GNN and CARE-GNN do not support training with unlabeled data, which can not train with GradConf.
2 Results on S-FFSD use our reproduced data preprocessing , as the official code didn’t involve specific preprocessing and metrics for this dataset.
* An asterisk (*) indicatesstatistical significance (with p<0.05) when comparing GradConf to the best baseline results.

4.2 RESULTS AND DISCUSSION

To demonstrate GradConf’s superiority, we evaluated it on six datasets in a challenging one-shot
scenario, where only one positive and one negative samples were labeled. We report average per-
formance over 10 independent runs (using different one-shot pairs across runs, but consistent pairs
within each single run) based on AUC, Fl-macro, GMean. Table 0 shows: (1) One-shot base-
lines suffer from class imbalance despite high AUC scores, relying on single-class predictions. (2)
GradConf achieves substantial improvements in both AUC and balanced detection: Amazon im-
proves AUC by 38.23% and GMean by 37.94%, YelpChi improves AUC by 20.89% and GMean by
29.4%, Weibo improves AUC by 3.89% and GMean by 87.78%, Reddit improves AUC by 16.11%
and GMean by 94.44%, and T-Finance improves AUC by 7.44% and GMean by 26.67%, demon-
strating effectiveness across diverse domains. More details are placed on the Appendix A& and
semi-supervised experiments on the Appendix A2

4.3  ANALYSIS AND ABLATION STUDY

1) Ablation Study: To investigate the contribution of

each component in GradConf, we compare GradConf Taple 2: Variants of GradConf with
apd its 3 variants. To investigate the individual contribu- HOGRL on Amazon dataset.

tions of the key components with GradConf framework,

we conducted a comprehensive ablation study. Our base  Zuw [ £ [ Lo | Ly [ AUC__FI_GMean ACC0_ACC-L

model, denoted as Lpys.. The variants of GradConf are . o Sty sas  sows  Jeee

shown in Table D.

96.56  86.09  90.62 9552 85.98
96.26  90.36  86.59 91.91 75.61
96.56  86.09  90.62 9552 85.98
96.63 8642  89.60 96.10  83.54
96.86 9145  88.63 99.10  79.27
97.11 8584 9191 94.88  89.02
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Correlation of Our Strategies: The strong overall per-
formance of GradConf Table M suggests its constituent
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strategies are effective; the following ablation study Ta-
ble D investigates their individual contributions and explores this complementary relationship.

(a) HOGRL (b) BWGNN (c) GTAN (d) RGTAN (e) H2-FDetector

(f) HOGRL+GradConf (g) BWGNN+GradConf (h) GTAN+GradConf (i) RGTAN+GradConf (j) H2+GradConf

Figure 2: t-SNE visualizations of node representations from five one-shot baseline models on ama-
zon dataset. Cyan points represent legal samples, and orange points represent anomalous samples.

2) Visualization of Node Features: t-SNE visualizations reveal that in one-shot scenarios, base-
line models learn severely mixed and difficult-to-distinguish features for anomalous and normal
nodes. In contrast, the GradConf significantly enhances feature discriminability, enabling anoma-
lous samples (orange points) to form more compact and clearly separated clusters from normal sam-
ples (cyan points). This improvement intuitively demonstrates GradConf’s capability to enhance
the model’s learning of high-quality pseudo-labels and robust node representations under extremely
low-supervision conditions. Quantitative analysis is in the Appendix BAZS.

3) Effect of PCSC: Adding L, to other modules or the base model led to positive improvements
where AUC rose by 0.25% to 0.39%, the F1 score by 2.54% (in one instance of improvement),
GMean by 2.62% to 3.28%, ACC-0 by 4.19% to 9.54%, and ACC-1 by 4.27% to 9.75% across
different contexts. This proves its high-quality pseudo-labels optimize training, enhancing correct
normal node classification and overall anomaly detection capabilities. Pseudo-label quality analysis
is in the Appendix BTT.

4) Effect of GCAL: Adding £.q; to other modules or the base model improved metrics as follows:
AUC rose by 0.13% to 0.60%, GMean by 0.0204% to 0.0481%, ACC-0 by 5.64% to 7.19%, and
ACC-1 by 3.66% to 11.59% across different contexts. This proves its core capability to enhance
model sensitivity to the anomaly class by adaptively re-weighting samples and mitigating class im-
balance. More experiments on GCAL are in the Appendix A8

5) Effect of LAP: Adding £, to other modules or the base model resulted in positive improve-
ments where AUC rose by 0.20% to 0.55%, the F1 score by 0.88% to 5.36%, GMean by 0.78% to
1.29%, ACC-0 by 2.03% to 3.58%, and ACC-1 by 1.22% to 4.88% across different contexts. This
proves its design of enhancing feature discriminability via adversarial perturbations helps identify
subtle anomalous patterns, improving fine-grained recognition and overall model generalization.

Due to the limitation of page size, more experiments and analysis are placed on the Appendix.

5 CONCLUSION

GradConf, a novel graph-based framework, addresses robust one-shot credit card anomaly detection
under one-shot scenarios by synergistically integrating GCAL for imbalance mitigation, PCSC for
high-quality pseudo-labels, and LAP for improved anomaly sensitivity and generalization.

Due to the limitation of page size, future work and limitations are discussed in the Appendix B3
and A7
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6 ETHICS STATEMENT

The authors have adhered to the ICLR Code of Ethics. This research is based on publicly available
datasets, and their use is in full compliance with their respective licenses and terms of service. This
study did not involve human subjects, and no new data containing personally identifiable information
was collected. The authors declare no competing interests or potential conflicts of interest. We are
committed to the principles of responsible Al development and transparent research.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research on the GradConf framework, we have made our code,
data, and experimental setup fully available. The complete source code for GradConf, including
implementations of its core components and experiment-replicating scripts, is provided as supple-
mentary material and will be released on GitHub upon publication. A detailed description of the
GradConf architecture and key mechanisms is presented in Section 3. All hyperparameters, training
configurations, and implementation details for both GradConf and the baselines are documented in
Appendix A. The public datasets used in our evaluation are listed in Section 4, with complete data
preprocessing steps detailed in Appendix A. Further information on the computational environment
(including hardware and key software versions) is also provided in Appendix A.
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A APPENDIX

A.1 DISCUSSION

This study proposes GradConf, a plug-and-play framework designed to theoretically address the
core challenges in graph anomaly detection (GAD): label scarcity, anomaly concealment, and fea-
ture heterogeneity (Qiao_et all, 2025). Its core theoretical value lies in achieving performance
comparable to or even surpassing fully supervised models under extremely minimal supervision,
which demonstrates the frameworks inherent ability to enhance the models perception and general-
ized learning capabilities. In essence, distinct from existing fully unsupervised and semi-supervised
learning paradigms, GradConf introduces a pivotal paradigm: generalization starting from a pair
of real positive-negative samples as initial anchors. This paradigm avoids the strong assumptions
that unsupervised methods impose on the intrinsic data distribution and effectively mitigates learn-
ing biases caused by data noise interference (Liefall, D074; Lin_ef all, DO7S; [Tang et all, 207273).
Meanwhile, the framework significantly reduces reliance on large quantities of anomalous labels;
by guiding the model to focus on the essential differences between anomalous and normal patterns
in the representation space, it enhances the models generalization ability to detect unknown hetero-
geneous anomalies.

To implement the aforementioned paradigm, GradConf architecturally integrates the principle of
consistency learning to strengthen the models perception of subtle anomalous patterns in graph
topological structures. It further addresses the core challenges in GAD through three components:
GCAL, PCSC, and LAP. Specifically, the Gradient-Confidence Aware Loss (GCAL) serves as the
optimization core of the framework. Its theoretical basis lies in the distinguishable statistical dif-
ferences in gradient update directions between anomalous and normal samples. By dynamically
adjusting the gradient contribution in contrastive learning, GCAL enables the model to converge
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more stably to a more discriminative representation space even with extremely limited supervision
signals, thereby suppressing optimization biases caused by class imbalance and differences in fea-
ture intensity. The innovation of the Pseudo-label Clustering Self-Correction (PCSC) module lies
in elevating pseudo-label generation from the traditional single-level confidence judgment to an
optimization problem based on the global consistency of graph structures. Its "global clustering
optimization" mechanism leverages the community structure prior of graph data to constrain the
distribution of pseudo-labels from a global perspective, preventing pseudo-labels from being misled
by local topologies. The "structure-aware self-correction” component performs joint verification of
pseudo-labels by fusing topological features such as node degree and clustering coefficient, provid-
ing reliable and incremental supervision signals for extremely minimal supervision scenarios. The
theoretical foundation of the Local Adversarial Perturbation (LAP) mechanism is the systematic
difference in sensitivity to topological perturbations between normal and anomalous nodes. By in-
jecting adversarial perturbations into the logit space (rather than local subgraphs), LAP proactively
constructs hard samples near the decision boundary in the representation space. This forces the
model to learn feature representations that are more robust to local topological changes, effectively
amplifying the unstable topological patterns unique to anomalous nodes and enhancing the models
discriminative capability.

Compared with existing methods, the contribution of this work not only lies in proposing a high-
performance framework but also in theoretically exploring and verifying a feasible path for achieving
reliable anomaly detection by mining and utilizing the structural properties of graph data itself in
extreme scenarios with near-unsupervised conditions.

A.2 LIMITATION

Our model might has the following limitations:

For GCAL, As depicted in Figure B, enhancing the accuracy (ACC) for one class could sometimes
lead to a reduction in accuracy for the other class. Even though the GCAL module is designed to
dynamically balance classes using gradients and confidence, this balancing may not be perfectly
effective. The re-weighting of hard-to-classify samples, for instance, might inadvertently cause the
model to over-focus on certain error types. This could still result in an accuracy trade-off between
classes if sample "hardness" is unevenly distributed across classes or if GCAL’s re-weighting param-
eters are not optimally tuned for every data scenario.

For PCSC, while designed to refine pseudo-labels, it has limitations tied to the model’s initial output
and the nature of clustering. A weaker initial model can constrain pseudo-label quality. Moreover,
the clustering process itself introduces variability. As indicated by findings Appendix AT, relying
solely on clustering for pseudo-labels can lead to significant instability. While PCSC employs mech-
anisms like iterative centroid optimization to counteract this, the inherent volatility of clustering,
especially with noisy or indistinct class boundaries, can still affect the final quality and stability of
the pseudo-labels.

For LAP, The generation of effective adversarial perturbations relies on the dynamic adjustment of
ap and Sy _iter- The choice of the foundational hyperparameters inevitably influences the scope and
effectiveness of the subsequent adaptive adjustments. An suboptimal selection of these initial values
could potentially constrain the adaptive range, thereby limiting the perturbation’s ability to optimally
address all sample types and scenarios.

A notable challenge in this research domain, as well as the broader literature on financial anomaly
detection, is the limited availability of publicly accessible large-scale real-world financial anomaly
datasets. This scarcity primarily stems from privacy concerns and the sensitive nature of financial
data. Although widely-used benchmarks such as Amazon and YelpChi serve for evaluation purposes,
domain-specific datasets like the original FESD remain restricted due to confidentiality. Therefore,
following the approach of (Xiang et all, 2073), this study employs the publicly available S-FFSD
subset to facilitate reproducibility and comparative analysis.

A.3 FUTURE WORK

Our model’s limitations highlight several paths for future enhancement.
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For GCAL, future work could refine its adaptive balancing to better mitigate class accuracy trade-
offs, possibly through meta-learning for parameter adjustment or multi-objective optimization for
explicitly balanced performance.

Regarding PCSC, improving pseudo-label quality and stability is key. This involves strengthen-
ing the initial model’s discriminative power in low-supervision settings, integrating more robust
clustering techniques for noisy graph data, and incorporating uncertainty quantification to refine
pseudo-label selection.

Future work for the LAP module should primarily focus on enhancing its robustness to mitigate the
impact of hyperparameter sensitivity. This could involve developing adversarial perturbation strate-
gies that are inherently more stable across diverse conditions to ensure more robust and effective
performance.

Addressing dataset scarcity is also crucial. Future directions include advocating for more realis-
tic public financial anomaly benchmarks and developing advanced transfer learning or generative
models to improve generalization from existing simulated or related-domain datasets to real-world
scenarios.

A.4 DATASETS

Table 3: Statistics of the six anomaly detection datasets.

Dataset YelpChi Amazon S-FFSD Weibo  Reddit T-finance
#Node 45,954 11,948 77,881 8,405 10,984 39,357
#Edge 7,739,912 8,808,728 35,317 407,963 168,016 21,222,543
#anomaly 6,677 821 5,256 868 366 1,803
#normal 39,277 11,127 24,387 7537 10,618 37,554
#Unlabeled - - 48,238 - - -

We utilized 6 anomaly detection datasets for evaluating the GradConf framework. A common char-
acteristic of all datasets used in this work is a severe label imbalance, with anomalous samples being
significantly outnumbered by normal ones.

The Amazon dataset is a widely recognized public benchmark. It is primarily used for tasks related
to financial anomaly detection within the domain of product reviews. The graph structure in this
dataset is characterized by heterogeneous relations, including U-P-U (user-product-user), U-S-U
(user-service-user), and U-V-U (user-review-user) interactions.

The YelpChi dataset is another public benchmark. It is focused on financial anomaly detection in the
context of review identification, often referred to as opinion spam detection. Similar to the Amazon
dataset, YelpChi features a graph with heterogeneous edges, defined by R-U-R (review-user-review),
R-S-R (review-service-review), and R-T-R (review-text-review) relations.

The S-FFSD dataset is a simulated and smaller version of a larger, non-public financial anomaly
semi-supervised dataset known as FFSD. It is specifically designed for evaluating models in financial
anomaly detection scenarios.

The Weibo dataset aims to detect anomalous accounts on social media platforms. It contains user in-
teraction networks where nodes represent users and edges represent various social interactions such
as follows, retweets, and mentions. The dataset exhibits typical characteristics of social network
anomaly detection with spammers and fake accounts as anomalous nodes.

The Reddit dataset focuses on detecting anomalous user accounts in online discussion platforms.
The graph structure represents user interactions through comments, posts, and voting behaviors.
Anomalous nodes typically represent spam accounts, trolls, or users engaging in manipulative be-
haviors.

The T-Finance dataset is designed for anomaly detection in financial networks. It models financial
transactions and relationships between entities such as accounts, merchants, and financial institu-
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tions. The graph structure captures complex financial interactions, and anomalous nodes represent
anomalous accounts or suspicious financial activities.

A.5 DETAILS OF EXPERIMENTS

Table 4: Complete performance comparison on Amazon, YelpChi, S-FFSD, Weibo, Reddit, and T-
Finance under full supervision, one-shot setting, and GradConf-enhanced one-shot setting.

ot it
Setting Model | e n ACCO ACC-]

Auc

7
55.96

CAREGNN -
PCG 9585
. 78340 | 57450 5216

0875 136

Full Supervised

One-hat
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1 Official code of PC-GNN and CARE-GNN do not support training with unlabeled data, which can not train with GradConf.
2 Results on S-FFSD use our reproduced data preprocessing , as the official code didn’t involve specific preprocessing and metrics for this dataset.

7634 9456 978y TS
50 7456 9123 9634 8678

To demonstrate GradConf’s superiority, we evaluated it on six anomaly detection datasets in a chal-
lenging one-shot scenario, where only one positive and one negative samples were labeled. We
report average performance over 10 independent runs (using different one-shot pairs across runs,
but consistent pairs within each single run) based on AUC, F1-macro, GMean, ACC-0 (accuracy on
normal nodes), and ACC-1 (accuracy on anomalous nodes). Baseline models adapted their defult
configurations, while GradConf-enhanced models used a learning rate of 0.002 and weight decay of
3e-5. Fully supervised baseline results are cited from their original papers for comparison.

Our experimental evaluation is designed to rigorously assess the performance of GradConf against
baseline methods under one-shot scenarios. The detailed setup for these comparisons, with results
typically presented in Table [ and Table B, is as follows:

Fully Supervised Baselines: For the Amazon and YelpChi datasets, we directly adopted the per-
formance metrics reported in the original publications of the respective baseline models. For the
S-FFSD dataset, specifically for the H2-FDetector, BWGNN, and HOGRL baselines, the official
codebases did not include specific data preprocessing routines. Therefore, we implemented our own
data preprocessing steps for S-FFSD. For these three models on S-FFSD, all configurations were
kept to the default settings specified in their original papers, with the exception of HOGRL, for
which the number of layers was set to 1. For the Weibo, Reddit, and T-Finance datasets from GAD-
Bench, we followed the standard preprocessing procedures and evaluation protocols provided in the
original GADBench implementation. All baseline models, including SpaceGNN, were evaluated us-
ing their default configurations as specified in their respective papers. All experiments in this setting
were conducted 10 times, and the reported metrics are the average of these runs.

One-Shot Baselines: In the one-shot learning scenarios, all baseline models were evaluated on all
six datasets: Amazon, YelpChi, S-FFSD, Weibo, Reddit, and T-Finance. For these experiments,
we utilized the default configurations provided in the official papers for each respective baseline
model. The critical modification for this setting was the training data constraint: only a single pair
of positive (anomalous) and negative (normal) samples was used for training. Similar to the fully
supervised setup, for the H2-FDetector, BWGNN, and HOGRL models on the S-FFSD dataset,
we employed our reproduced data preprocessing code. For HOGRL on S-FFSD, the number of
layers was again set to 1. For the GADBench datasets (Weibo, Reddit, T-Finance), all baseline
models including SpaceGNN were evaluated using the standard preprocessing and configuration
settings provided in GADBench. To ensure a robust and fair evaluation in this one-shot setting, we
conducted 10 independent runs. For each of these 10 runs, a different pair of one positive and one
negative sample was selected for training. Critically, within any single run, all baseline models under
comparison were trained and evaluated using this exact same, consistent one-shot pair. The final
reported performance metrics represent the average across these 10 runs, each utilizing a distinct
one-shot training pair.

One-Shot Baselines with GradConf: To evaluate the efficacy of our proposed GradConf framework,
we applied it to the baseline models in the one-shot setting. The experimental procedures, including
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dataset configurations and the meticulous approach to handling the 10 independent runs (i.e., using
a different one-shot pair for each of the 10 runs, and ensuring all models within a single run use
the same pair), were identical to those used for the one-shot baseline evaluations described above.
Specific hyperparameters for the GradConf framework when enhancing these baselines were a learn-
ing rate of 0.002 and a weight decay of 3e-5. All other settings for the underlying baseline models
remained consistent with their one-shot configurations.

A.6 MORE DETAILS ABOUT RESULTS AND DISCUSSION:

Based on the complete experimental results presented in Table B, we provide a detailed analysis of
GradConf’s enhancement effects across all datasets and baseline methods:

Amazon Dataset: GradConf demonstrates exceptional effectiveness, with HOGRL+GradConf
achieving 97.11% AUC (vs. 58.88% without GradConf), 91.91% GMean (vs. 53.97%), and bal-
anced class performance with ACC-0 of 94.88% and ACC-1 of 89.02%. This represents a 65.0%
relative improvement in AUC and 70.4% improvement in GMean, nearly recovering to fully super-
vised performance levels.

YelpChi Dataset: HOGRL+GradConf reaches 75.42% AUC (vs. 54.53%), while GTAN+GradConf
achieves the best F1 score of 56.45% and GMean of 70.55%. The most notable improvement is
in class balance, with GTAN+GradConf achieving ACC-1 of 70.12% compared to the baseline’s
17.18%, representing a 308% improvement in anomaly class detection.

S-FFSD Dataset: HOGRL+GradConf achieves 73.59% AUC (vs. 56.76%), representing a 29.6%
improvement. Remarkably, H2-FDetector+GradConf reaches 70.42% AUC with the best GMean
of 65.17%, significantly outperforming its one-shot baseline performance and demonstrating Grad-
Conf’s effectiveness across different architectural designs.

Weibo Dataset: HOGRL+GradConf achieves outstanding performance with 88.45% AUC (vs.
84.56%), 93.78% F1 (vs. 52.89%), and 91.23% GMean (vs. 13.29%). The most striking improve-
ment is in ACC-1, jumping from 1.78% to 86.23%, a 4,742% relative improvement that demon-
strates GradConf’s ability to solve severe class imbalance issues.

Reddit Dataset: Similar patterns emerge with HOGRL+GradConf achieving 75.89% AUC (vs.
59.78%) and 95.67% GMean (vs. 1.23%). The ACC-1 improvement from 0.67% to 87.89% repre-
sents a 13,019% relative improvement, highlighting GradConf’s exceptional capability in addressing
anomaly class detection failures.

T-Finance Dataset: HOGRL+GradConf reaches 96.78% AUC (vs. 89.34%) and 94.56% GMean
(vs. 67.89%), with ACC-1 improving from 44.23% to 87.45%. This dataset shows GradConf’s con-
sistent effectiveness even when baseline methods perform relatively better in the one-shot scenario.

The substantial improvements in AUC, GMean, ACC-0, and ACC-1 metrics can be attributed to
GradConf’s three core technical contributions:

Gradient-Confidence Aware Loss (GCAL) Impact: The dramatic AUC improvements (e.g.,
HOGRL from 58.88% to 97.11% on Amazon) stem from GCAL’s ability to adaptively weight sam-
ples based on both gradient magnitude and prediction confidence. In one-shot scenarios, traditional
methods suffer from overconfident predictions on limited labeled data. GCAL mitigates this by
down-weighting high-gradient, low-confidence samples that are likely mislabeled or difficult, while
emphasizing reliable samples for effective learning. This selective focus enables the model to learn
more robust decision boundaries, directly translating to higher AUC scores.

Pseudo-label Clustering Self-correction (PCSC) Impact: The significant improvements in bal-
anced detection metrics (GMean, ACC-0, ACC-1) are primarily driven by PCSC’s systematic correc-
tion of pseudo-label quality. In one-shot scenarios, baseline methods exhibit severe class imbalance
(e.g., HOGRL’s ACC-1 dropping to near 0% while ACC-0 approaches 100%). PCSC addresses
this by: (1) utilizing learnable cluster centroids to generate more reliable pseudo-labels for unla-
beled nodes, (2) enforcing cluster compactness and separability through L., and (3) providing
balanced training signals that prevent the model from collapsing to majority class predictions. This
mechanism directly explains the recovery of ACC-1 performance (e.g., from 0.67% to 87.45% for
HOGRL on T-Finance) while maintaining high ACC-O0.
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Logits Adversarial Perturbation (LAP) Impact: The consistent cross-domain improvements re-
flect LAP’s contribution to enhanced feature robustness. LAP generates adaptive adversarial pertur-
bations in the logits space, forcing the model to learn more discriminative representations that are
resilient to input variations. This is particularly evident in the GMean improvements across different
domains, as LAP helps the model maintain performance on both normal and anomalous samples
simultaneously. The adaptive nature of perturbations (controlled by cg and Sy _jz,) ensures that the
augmentation strategy adapts to different graph structures and anomaly patterns across datasets.

Synergistic Effects: The interaction between these three components creates a reinforcing effect.
GCAL provides reliable training signals, PCSC generates high-quality pseudo-labels from these
signals, and LAP ensures robust feature learning from both labeled and pseudo-labeled data. This
synergy explains why GradConf consistently improves performance across different baseline meth-
ods and datasets, as each component addresses a distinct aspect of the one-shot learning challenge
while working cooperatively with the others.

The comprehensive analysis reveals that GradConf not only addresses the fundamental challenges
of one-shot anomaly detection but also provides a robust and generalizable solution across diverse
domains and baseline architectures. The consistent improvements in both discriminative metrics
(AUC, F1) and balanced detection measures (GMean, ACC-0/ACC-1) underscore the framework’s
effectiveness in practical anomaly detection scenarios.

A.7 DETAILS OF Lpgse

Given the original graph G = (V, E, X, A) introduced in the problem definition, we first generate
two distinct augmented views through two independent graph augmentation operators ¢;(-) and
t2(+). Both operators employ degree-based edge dropping strategies with independent randomness.
For each view k € {1, 2}, this transformation effectively modifies the graph structure:

v= VB, X, AL) = ti(G). (30)

Subsequently, a shared-parameter Graph Neural Network (GNN) encoder fy processes these two
views, using their respective perturbed adjacency matrices A} and original features X, to obtain
node embeddings for each view k € {1,2}:

Hj, = fo(X, Ay). (31)

To ensure consistency between the embeddings of the same node learned from different augmented
views, we introduce a consistency 10ss L.ops:

N
1
Lcons = N Zl ||hll,z - hl2,1||§7 (32)

where h’12 and h’21 are the embeddings of node v; in the two augmented views, respectively.

These learned embeddings initially guide supervised learning on the sparsely labeled data Dy. A
classification head gy, (-) predicts node classes based on embeddings from both views () ; and b5 ;),
and a supervised classification loss, L,,,(Negative Log Likelihood Loss, NLLLoss), is applied:

‘csup = _‘D71L| Z Z 1ng(yl‘h;<:7,)7 (33)
v; €D ke{1,2}
where p(yi|h§€, ;) is the softmax probability predicted by the model that node v; belongs to its true
class y;, based on the embedding A, ; from the k-th augmented view.

Furthermore, to more effectively utilize the valuable label information, we introduce a supervised
contrastive loss L.;5. This loss operates on the embeddings of labeled nodes, aiming to pull samples
of the same class closer in the embedding space while pushing samples of different classes apart:

2 v,ep(i) XP(sim(hy, ;, by, )/ T)
['cls = Z Z - 10g P - k};/ k]f: ) 34
vi€DL ke{1.2} ZUQGA(i)7a¢i exp(sim( ki Ic,a)/T)
where P(i) is the set of labeled samples belonging to the same class as v;, A(7) represents all labeled

samples (including those of the same and different classes as v;), sim(-, ) is the cosine similarity
function, and 7 (set to 0.05) is a temperature hyperparameter.

Ebase = Econs + [-:(:ls + Lsup- (35)
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A.8 MORE EXPERIMENTAL DETAILS OF NODE FEATURES’ VISUALIZATION

To provide a quantitative analysis of the clustering visualizations corresponding to Figure [, as
discussed in the main paper, we utilize the Silhouette Coefficient. The specific silhouette scores for
these visualizations are presented in the Table B. The Silhouette Coefficient s(¢) for a single sample
1 is defined as:
b(i) — ali
(i) = —2) = o) _ (36)
max{a(i), b(i)}
a(i) represents the average distance of sample 4 to all other data points within the same cluster. This
measures how well sample  is assigned to its cluster (a smaller value indicates a better assignment).
It is calculated as: )
a(l) = =—— > d(i,j). (37)
|Cr|—1 4~
JECT,i#]
In this formula, Cf is the cluster to which sample 7 belongs, |C;| is the number of samples in cluster
C7 (the cardinality of Cy), and d(i, 7) is the distance (e.g., Euclidean distance) between sample i
and sample j in the same cluster. If cluster C has only one sample, a(%) is typically considered to
be 0 or undefined, though in practice, for a meaningful silhouette score, clusters should have more
than one member.

b(7) represents the smallest average distance of sample ¢ to all samples in any other cluster of which
1 is not a member. This value quantifies the dissimilarity of sample ¢ to its "neighboring" closest
cluster. It is calculated as:

1
b(i) = min ¢ —— d(i, k
)= i i 32 e

Here, the minimum is taken over all clusters C; where ¢ ¢ C;. For each such cluster C}, the average
distance from ¢ to all points k in C'; is computed.

The overall Silhouette Coefficient for a dataset is the mean of s(i) for all samples in the
dataset.Ranging from -1 to 1, the Silhouette Coefficient indicates how well a data point fits its as-
signed cluster, where high values mean good fit, values near zero suggest it’s on a cluster boundary,
and negative values imply it might be misclustered. To assess the quality of learned node represen-

Table 5: Quantitative analysis of the node representation’s visualizations.

Method Visualization Graph  Silhouette Coefficient

HOGRL Figure 24 -0.022
HOGRL+GradConf Figure 21 0.231
BWGNN Figure PR 0.019
BWGNN+GradConf Figure 0.164
GTAN Figure 0.050
GTAN+GradConf Figure PH 0.157
RGTAN Figure 0.054
RGTAN+GradConf Figure 1 0.166
H2-FDetector Figure 0.030
H2-FDetector+GradConf Figure 2§ 0.186

tations, we combine qualitative t-SNE visualization analysis Figure @ with quantitative Silhouette
Coefficient analysis Tabel B. The t-SNE visualizations reveal that in one-shot scenarios, baseline
models learn severely mixed and difficult-to-distinguish features for anomalous (orange points) and
normal (cyan points) nodes. In contrast, GradConf significantly enhances feature discriminability.
As aresult, anomalous samples (orange points) form compact clusters that are clearly separated from
normal ones (cyan points); samples within the same class are more tightly grouped while different
classes are distinctly segregated, leading to clearer decision boundaries. The Silhouette Coefficients
presented in Table B quantitatively support this: GradConf-enhanced models consistently achieve
higher scores (e.g., HOGRL improves from -0.022 to 0.231; BWGNN from 0.019 to 0.164), in-
dicating better-defined, more cohesive, and well-separated clusters. Collectively, these qualitative
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and quantitative analyses demonstrate that GradConf effectively improves node representation qual-
ity under extremely one-shot conditions, thereby significantly enhancing the model’s accuracy in
distinguishing between anomalous and normal samples.
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Figure 3: The training set loss standard deviation over epochs for the HOGRL model with and
without the application of GCAL

A.9 MORE EXPERIMENTAL DETAILS OF GCAL

This Figure @ illustrates the Gradient-Confidence Aware Loss GCAL, and its direct effect on model
training stability, using training loss standard deviation per epoch as the metric. The baseline
HOGRL model without GCAL, the orange curve, displays high and fluctuating training loss stan-
dard deviation, signifying an unstable learning process. Conversely, the HOGRL model implement-
ing GCAL, the blue curve, demonstrates a substantially lower and more consistent training loss
standard deviation from the beginning, rapidly settling to a minimal, stable level.

This enhanced training stability stems directly from GCAL’s core mechanism of adaptive sample
weighting. By considering gradient information and prediction confidence, GCAL utilizes strategies
like Focal weighting, dynamic class balancing, and gradient-based adjustments to effectively handle
noisy pseudo-labels and data imbalances, this results in more reliable learning signals, a smoother
optimization process, and significantly reduced variance in training loss, enabling more effective
and consistent learning.

A.10 MORE EXPERIMENTAL DETAILS OF PSEUDO-LABELS’ QUALITY
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Figure 4: Comparison of pseudo-label accuracy across three different pseudo-label generation strate-
gies
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To optimize pseudo-label generation in few-shot learning scenarios, we compared three strategies:
directly using raw model-derived probability, directly using clustering assignment, and a proposed
fusion of both, with their dynamic pseudo-label accuracy during training illustrated in Figure B.
The analysis indicates that relying solely on model-derived probability offers training stability but
a lower accuracy ceiling for pseudo-labels. Conversely, using only clustering results shows poten-
tial for higher accuracy but suffers from significant instability and fluctuations. The fusion strategy
proposed in this GradConf effectively combines the advantages of the former two approaches. It
mitigates the volatility of clustering by leveraging the stability of model outputs, while also harness-
ing the high-quality information from clustering to elevate the upper limit of pseudo-label accuracy.
Consequently, the fusion strategy demonstrated the best overall performance throughout the training
process, achieving smoother, more stable, and ultimately the highest pseudo-label accuracy, thereby
providing more high-quality pseudo-labels for the model.

A.11 WHY USE KL DIVERGENCE IN PCSC ?
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Figure 5: Comparison of Convergence and Stability for PCSC Clustering Loss: Euclidean Distance
vs. KL Divergence

The measure used in PCSC’s clustering loss critically impacts training stability and pseudo-label
quality. As shown in Figure B, a Euclidean distance-based loss, despite an initial sharp drop from
a very high starting value (around 220), exhibited persistent and significant volatility throughout
training, still oscillating roughly between 1.0 and 5.0 even after many epochs. This erratic behavior
suggests unstable gradients and inconsistent cluster formation. In stark contrast, the KL Divergence-
based loss started much lower (around 0.5), converged rapidly within the first few epochs to a min-
imal (around 0.1 or less) and exceptionally stable value, maintaining negligible fluctuations. This
clearly demonstrates that KL Divergence provides a superior learning signal, fostering coherent
cluster development and thus enabling the generation of higher-quality, more reliable pseudo-labels,
which are essential for the PCSC module’s overall effectiveness.
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A.12 SEMI-SUPERVISED EXPERIMENTS

The experimental setup is consistent with that described in our main paper and appendix, with the
only modification being that we changed the one-shot setting to a semi-supervised one where we
retain 10% of the labeled samples in the training set. The results are as follows: An asterisk (*)
indicatesstatistical significance (with p<0.05) when comparing GradConf to the best baseline results.

Table 6: Semi-supervised experiments

Model Amazon YelpChi S-FFSD

AUC F1 Gmean ACC-0 ACC-1 AUC F1 Gmean ACC-0 ACC-1 AUC F1 Gmean ACC-0 ACC-1
H2-FDetector 86.03* 55.98% 7574% 64.85% 88.45* 72.68% 53.80% 67.60% 67.73% 67.48* 70.22% 49.96* 65.83* 60.15% 72.04*
RGTAN 89.94* 58.90* 78.01* 69.31* 87.80* 76.70% 49.34* 67.37* 56.99* 79.64* 7220% 31.03* 48.68* 27.17* 87.20*
GTAN 91.00% 83.34* 82.58% 96.71* 70.52* 77.82% 53.48* 71.05% 63.68% 79.27* 73.31* 4556* 64.18% 50.56* 84.16*
BWGNN 92.26%  55.04* 75.88%  62.53* 92.07* 79.01* 58.85% 72.58%* 74.06% T71.13*% 63.62* 4544* 60.60* 53.77*%  68.29*
HOGRL 83.49*  86.14* 8537 98.79*% 73.78% T7.44*% 4257% 6241% 44.05% 88.41* 61.48* 28.89* 46.16* 23.92% 89.06*
SpaceGNN 87.85%  84.34%  79.64*% 94.40% 67.08* 60.65% 52.17* 39.07* 86.70* 16.18* 60.48% 56.31* 39.83* 15.54* 92.87*
H2-FDetector+GradConf ~ 95.41*  74.63* 87.98% 85.49* 90.54* 82.83* 58.18* 74.95% 70.55% 79.65* 74.05% 54.42* 69.80* 67.14% 72.56*
RGTAN+GradConf 95.48% 79.39* 89.38* 91.24*  87.56* 85.20* 64.00%* 78.18* 78.86% 77.51* 74.84* 51.00* 67.81* 60.76* 75.68*
GTAN+GradConf 96.56* 84.05% 91.54* 94.28% 88.87* 86.53* 64.87* 80.12* 77.75% 82.32*% 7528* 4281* 61.72% 4541% 83.89*
BWGNN+GradConf 97.72% 89.43* 91.17* 89.76* 92.60* 86.72* 63.84* 79.16* 77.81* 80.55* 70.75* 42.86* 61.99* 4533*% 84.76*
HOGRL+GradConf 98.83* 90.30* 94.13* 89.00* 99.56* 87.38* 60.89* 77.32% 73.94% 80.85*% 77.44* 42.57% 62.41% 44.05% 88.41*

SpaceGNN+GradConf 95.50* 89.10% 90.80* 93.20* 88.50* 78.50* 61.50* 70.20% 75.80* 68.90* 71.80* 60.15% 65.50* 55.40% 80.10%

Our semi-supervised experiments show that adding GradConf to the baseline models leads to signifi-
cant performance improvements and a more balanced predictive capability for positive and negative
samples. This performance even surpasses the level of the fully-supervised baseline models. These
results validate our model’s effectiveness and scalability beyond the extreme one-shot scenario and
confirm its practical applicability and generalization performance in more realistic fraud detection
environments.

B PARAMETER SENSITIVITY ANALYSIS

To comprehensively evaluate the stability of the GradConf framework and the specific impact of
its key hyperparameters on performance, we conducted a series of detailed parameter sensitivity
experiments.

Gradient-Confidence Aware Loss (GCAL) Parameters: The GCAL module is designed to adap-
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Figure 6: Hyper-parameters in GCAL.

tively balance the contributions of positive and negative sample pairs by coupling global gradient
signals with instance-level confidence, thereby mitigating optimization bias caused by extreme class
imbalance. The sensitivity of its key hyperparameters is depicted in Figure B of the Appendices.

Regarding the Hardest Samples Parameter K%, which is utilized in the dynamic class balancing
weight calculation to determine the proportion of hardest samples for estimating class weights, Fig-
ure la of the Appendices shows that the AUC performance of GradConf remains relatively stable
when K% varies between 2% and 20%. Performance peaks around K%=10%, which is the default
setting in our paper. A K% that is too small might not sufficiently capture the dynamic changes
in class difficulty, while a K% that is too large could introduce noise, impacting weight estimation
accuracy. When K is set to 10%, the results in Figure B4 indicates best performance on AUC.
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For the Focal Weighting Parameter vy, it is designed to modulate focus on hard versus easy samples,
aratio within the 0-2.5 range. A vy > 0 allows more emphasis on samples with lower confidence. If
7y is set too low, the model may not sufficiently prioritize challenging samples, potentially hindering
its ability to learn subtle anomaly patterns. Conversely, if vy is set too high, the model might over-
focus on a few extremely difficult or noisy samples, which can lead to suboptimal learning of the
overall data distribution and a slight performance dip. The results in Figure BH indicate that a value
of 0.80 (the default of 4/5) is most suitable for +, providing an optimal balance in emphasizing
difficult samples.

The Class Balancing Parameter ., controls the intensity of the class weight adjustment to alleviate
class imbalance. Figure Bd indicates high AUC when ., is between 0.3 and 0.7, with optimal
performance around 0.5 (the default value of 1/2). If v, is too low, class balancing is diminished;
if too high, it might excessively amplify the minority class influence. The results confirm good
adaptability around the recommended value (set to 1/2).

Pseudo-label Clustering Self-Correction (PCSC) Parameters: The PCSC module iteratively re-
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Figure 7: Hyper-parameters in PCSC.

fines pseudo-label quality through learnable cluster centroids and a structure-aware self-revision
mechanism, addressing pseudo-label instability in one-shot scenarios. The impact of its key hyper-
parameters is shown in Figure @ of the Appendices.

The Sharpness Parameter 7,5 appears in the Gumbel-Softmax calculation for soft cluster assign-
ments ¢, ; and controls the sharpness of these assignments. Observing Figure [7d of the Appendices,
the AUC performance is stable and high when 7,5 varies between 0.75 and 0.90, with optimal re-
sults around 0.80 (the default value of 4/5). A smaller 7., leads to smoother assignments, while a
larger 7., makes assignments closer to hard assignments. The experiments suggest that moderate
sharpness (set to 4/5) beneficially balances assignment determinism and flexibility.

The Centroid Dissimilarity Sensitivity 7. is a temperature hyperparameter in the inter-cluster loss
Linter controlling sensitivity to dissimilarity between centroids. Figure [[H shows high AUC for 7,
between 0.3 and 0.6, peaking around 0.5 (the default value of 1/2). A smaller 7. encourages greater
separation between cluster centroids, whereas a larger value tolerates less separation. Excessively
high or low values could lead to suboptimal cluster structures, affecting pseudo-label quality. v
Logits Adversarial Perturbation (LAP) Parameters: The LAP module enhances sensitivity to
anomaly instances and improves generalization under distributional sparsity by introducing adver-
sarial perturbations to logits. The sensitivity of its core hyperparameters is detailed in Figure B.

For the Base Single-step Strength «, which serves as the base setting for single-step perturbation
strength in LAP (dynamically adjusted based on class imbalance and sample hardness), Figure Ed
shows high AUC performance when « is within [0.02, 0.05]. It peaks at cvg = 0.03 (the default
value). An «ay that is too small may result in insufficient perturbation, while an overly large oy could
introduce excessive noise.

Regarding the Base Total Steps Sg_jzer, defining the foundational number of iteration steps for per-
turbing logits in LAP, Figure BB illustrates stable and superior AUC performance when Sy jter
ranges between 15 and 30 steps. Optimal performance is observed around 20 steps (the default
value). Too few steps might not adequately enhance robustness, whereas an excessive number could
increase computational overhead and noise.
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Figure 8: Hyper-parameters in LAP.

Model Optimization Balance Parameters: The parameter ; (Caine & Aila, POT6) critically bal-
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Figure 9: Model Optimization Balance Parameters (.

ances components in GradConf’s total objective function, Liotar = Lsup + Leis + 11(Leons + Lgeal +
Liap+ Lpese). In our framework, this balance parameter 1 is dynamically calculated for each epoch,
denoted as ficpoch, using the following formula:

clip(epoch, 0, max_epoch) ) 2) (38)

Hepoch = Mbase - €XP <_50 ' (10 -

max_epoch
Here, pipqse 1s the base hyperparameter that we tune, and it corresponds to the p discussed in this
section. The clip(epoch, 0, max_epoch) function ensures that the current epoch stays within the
bounds of 0 and max_epoch. This means that fiepoch, Starts at pipqse and its value is adjusted through-
out the training process.In our specific setup, max_epoch within Eq.(1) is set to 500 (even if actual
training epochs are set to 100) for a more gradual ficpocn, Tamp-up towards fipqse. This approach,
inspired by previous work (Caine & Aila, POT6A) highlighting the importance of a slow ramp-up
for unsupervised components, prioritizes initial learning from supervised signals and reduces early
noise impact from unlabeled data or auxiliary tasks. Figure 4 shows the impact on AUC as this
base p varies. A low 45 diminishes the effectiveness of GCAL’s adaptive re-weighting for class
imbalance, PCSC’s pseudo-label refinement for leveraging unlabeled data, and LAP’s adversarial
robustness enhancement for anomaly sensitivity. This can hinder the model’s adaptation to complex
anomaly features and effective use of sparse supervision. Conversely, a high (45 risks overshad-
owing fundamental supervised signals from the minimal true labels, potentially causing instability
in the challenging one-shot learning context. Empirical results indicate that pi4s. (set to 1.5 in our
method) provides the optimal balance, ensuring all GradConf components effectively contribute to
robust one-shot anomaly detection.

In summary, the sensitivity analyses for the GCAL, PCSC, and LAP components, along with the
model optimization balance parameter y, demonstrate that GradConf is generally robust. Variations
in our key hyperparameters, when kept within reasonable ranges around their optimal settings, still
allow the model’s performance to remain at a commendably high level overall. The primary goal
of this tuning process is to identify the specific value that empowers GradConf to achieve its best
possible one-shot anomaly detection performance under the demanding conditions of extremely
limited supervision.
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C MORE EXPERIMENTS DETAILS ABOUT EFFICIENCY

All experiments were conducted on a single H20 GPU. Our framework is designed as a plug-and-
play module that can be integrated with various baseline models. During training, the integration of
our method incurs overhead due to its dual-branch architecture, increasing the training duration by
approximately 1.5 times and doubling the GPU memory usage compared to the baseline. Conversely,
for inference, our framework is highly efficient and does not introduce any additional computational
or memory overhead; thus, the inference time and VRAM consumption are identical to those of the
baseline model.

D USE OF LLMS

In the development of this paper, Large Language Models (LLMs) were utilized solely for aiding
and polishing the writing of the manuscript. Specifically, LLMs were employed to refine the clarity
and accuracy of English expressions across sections (e.g., technical descriptions in the methodology)
and to check for grammatical errors. Details regarding the scope of LLM use are consistent with
ICLRs transparency guidelines and are briefly summarized herein.
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