
Published in Transactions on Machine Learning Research (01/2024)

Neural Task Synthesis for Visual Programming

Victor-Alexandru Pădurean vpadurea@mpi-sws.org
Max Planck Institute for Software Systems

Georgios Tzannetos gtzannet@mpi-sws.org
Max Planck Institute for Software Systems

Adish Singla adishs@mpi-sws.org
Max Planck Institute for Software Systems

Reviewed on OpenReview: https: // openreview. net/ forum? id= aYkYajcJDN

Abstract

Generative neural models hold great promise in enhancing programming education by syn-
thesizing new content. We seek to design neural models that can automatically generate
programming tasks for a given specification in the context of visual programming domains.
Despite the recent successes of large generative models like GPT-4, our initial results show
that these models are ineffective in synthesizing visual programming tasks and struggle with
logical and spatial reasoning. We propose a novel neuro-symbolic technique, NeurTaskSyn,
that can synthesize programming tasks for a specification given in the form of desired
programming concepts exercised by its solution code and constraints on the visual task.
NeurTaskSyn has two components: the first component is trained via imitation learn-
ing procedure to generate possible solution codes, and the second component is trained via
reinforcement learning procedure to guide an underlying symbolic execution engine that
generates visual tasks for these codes. We demonstrate the effectiveness of NeurTaskSyn
through an extensive empirical evaluation and a qualitative study on reference tasks taken
from the Hour of Code: Classic Maze challenge by Code.org and the Intro to Programming
with Karel course by CodeHS.com.

1 Introduction

Recent advances in generative AI have demonstrated impressive performance in a variety of domains, in-
cluding visual art and music creation (Dong et al., 2018; Briot et al., 2020; Suh et al., 2021; Ramesh et al.,
2021; Rombach et al., 2022), medicinal chemistry synthesis (Schneider et al., 2020; Walters & Murcko,
2020; Tong et al., 2021; Gao & Coley, 2020), and AI-enhanced programming (Finnie-Ansley et al., 2022;
Leinonen et al., 2023; Chen et al., 2021; Feng et al., 2020; Phung et al., 2023a). These successes are, in part,
driven by advanced capabilities of deep generative models, such as Stable Diffusion (Rombach et al., 2022),
ChatGPT (OpenAI, 2023a), and GPT-4 (OpenAI, 2023b). These advancements also hold great promise in
enhancing education, for instance, by generating personalized content and new practice tasks for students
allowing them to master required concepts (Sarsa et al., 2022; Tate et al., 2023; Baidoo-Anu & Owusu Ansah,
2023; Lim et al., 2023; Phung et al., 2023b).

In this paper, we explore the role of generative AI in visual programming domains used for introductory
programming. Popular domains, such as Scratch (Resnick et al., 2009), Hour of Code:Maze Challenge by
Code.org (HoCMaze) (Code.org, 2013b;a), and Karel (Pattis et al., 1995), have become an integral part of
introductory computer science education and are used by millions of students (Code.org, 2013a; Wu et al.,
2019; Price & Barnes, 2017). In existing visual programming platforms, programming tasks are hand-curated
by tutors and the available set of tasks is typically very limited, posing a major hurdle for novices in mastering
the missing concepts (Zhi et al., 2019; Ahmed et al., 2020). To this end, we seek to design generative models
that can automatically synthesize visual programming tasks for a given specification (see Figure 1).

1

https://openreview.net/forum?id=aYkYajcJDN

Published in Transactions on Machine Learning Research (01/2024)

Student is working on task
Tref, struggling with obtain-
ing a solution code Cref.

AI system extracts the specifi-
cations ψin for a simpler task.

AI system generates a
task Tout based on ψin,

and delivers it to student.

(a) An interaction be-
tween student and AI
system.

Allowed blocks: {move,
turnLeft, turnRight,
RepeatUntil, IfElse}

Maximum size: 7

def Run(){
RepeatUntil(goal){
If(pathAhead){
move

}
Else{
If(pathRight){
turnRight

}
Else{
turnLeft

}
}

}
}

(b) Puzzle Tref
IO (left), code constraints Tref

code (middle), and solution Cref (right).

def Run(){
RepeatUntil(goal){
a blocks
If(pathRight){
turnRight

}
Else{
a blocks

}
a blocks

}
}

a blocks is a body of
basic action blocks from
the set {move, turnLeft,
turnRight}

Number of blocks ≤ 7

(c) Specifications ψin
IO (left), ψin

sketch (middle), and ψin
∆ (right).

Allowed blocks: {move,
turnLeft, turnRight,
RepeatUntil, IfElse}

Maximum size: 7

def Run(){
RepeatUntil(goal){
If(pathRight){
turnRight

}
Else{
turnLeft
move

}
move

}
}

(d) Puzzle Tout
IO (left), code constraints Tout

code (middle), and Cout (right).

Figure 1: (a) Illustration of an AI system helping a student, inspired by (Ghosh et al., 2022). The AI
system supports the student when trying to solve Tref. The system first extracts a specification for a simpler
task that can be provided to help the student. It then generates a new task based on that specification and
delivers it to the student. (b) shows reference task Tref along with solution code Cref. (c) shows specifications
ψin extracted by AI system. (d) shows task Tout and code Cout synthesized by AI system.

1.1 Motivation and Overview

Our work is motivated by existing literature on AI-driven educational systems that seek to provide feedback
to students who are struggling while solving a programming task. For instance, (Zhi et al., 2019) studies
feedback provided in the form of worked examples as demonstration and (Ghosh et al., 2022) studies
feedback provided in the form of new simpler tasks for adaptive scaffolding. We have illustrated the
interaction between such a system and a student in Figure 1. Previous works have focused on studying how
to adapt the feedback type according to the student’s needs. We complement these works by focusing on
generating on-the-fly the desired examples and simpler tasks that the system could provide to the student.
In our work, we consider that a desired feedback format for a student is an input specification in the form of
puzzle layout, code structure, code size, and selected programming concepts. Since the search space defined
by these input specifications is potentially unbounded, designing AI systems that can synthesize correct
tasks in real-time for any input specification is critical to cater to a diverse set of students’ behaviors.

As a natural approach, one might be tempted to employ state-of-the-art large language models (LLMs) to
generate a visual programming task by providing task synthesis specification as a prompt. In particular,
models like GPT-4 are trained on multi-modal data, including text, code, and visual data, and hence it
seems a suitable technique for reasoning about visual programming tasks (OpenAI, 2023b; Bubeck et al.,
2023). However, our results show that these models are ineffective in synthesizing visual programming tasks
and struggle with logical and spatial reasoning, as also indicated in recent literature on state-of-the-art

2

Published in Transactions on Machine Learning Research (01/2024)

models (Bang et al., 2023; Bubeck et al., 2023; Valmeekam et al., 2022; Huang & Chang, 2022); see Section 5
for detailed discussion. In general, a major challenge in using purely neural generative models for synthesizing
visual programming tasks is that the generative process is highly brittle – even a small modification in the
output task could make it invalid or semantically incorrect w.r.t. the input specification (Ahmed et al., 2020).

As an alternative to neural generative models, we could rely on symbolic generative methods driven by
search and planning algorithms to generate content that matches a specification. Several works have
shown the efficacy of symbolic methods to generate new tasks in various educational domains, e.g., algebra
exercises (Singh et al., 2012; Gulwani, 2014), geometric proof problems (Alvin et al., 2014), natural deduc-
tion (Ahmed et al., 2013), mathematical word problems (Polozov et al., 2015), Sokoban puzzles (Kartal
et al., 2016), and visual programming tasks (Ahmed et al., 2020; Ghosh et al., 2022). In particular, our
work is related to (Ahmed et al., 2020; Ghosh et al., 2022) that proposed symbolic methods guided by
hand-crafted constraints and Monte Carlo Tree Search to generate high-quality visual programming tasks.
However, their symbolic methods still suffer from intractably large spaces of feasible tasks and codes for a
given specification, and could take several minutes to generate an output task for an input specification;
see Section 4 for comparison to our technique. In general, a major shortcoming of using purely symbolic
generative methods in the above-mentioned works is that the generative process is typically time-inefficient
and not suitable for applications that require real-time synthesis.

Against that backdrop, the main research question is: Can we develop neuro-symbolic techniques that
can synthesize high-quality visual programming tasks while being robust and efficient? To this end, we
develop NeurTaskSyn, a novel neuro-symbolic technique that can synthesize programming tasks for input
specifications in the form of desired programming concepts exercised by its solution code and constraints
on the visual task. Given a task synthesis specification as input (Figure 1c), NeurTaskSyn uses two
components trained via reinforcement learning procedure: the first component generates possible solution
codes, and the second component involves guiding an underlying symbolic execution engine that generates
visual tasks for these codes. Our main results and contributions are summarized below: I. We formulate
visual programming puzzle synthesis as a sequential decision-making process and propose NeurTaskSyn, a
novel neuro-symbolic technique for synthesizing visual programming tasks (Section 3). II. We demonstrate
the performance of NeurTaskSyn by comparing it to baselines from existing works (Section 4). III. We
demonstrate the effectiveness of NeurTaskSyn through an extensive evaluation on task specifications from
real-world programming platforms (Section 5). IV. We publicly release the implementation and datasets to
facilitate future research.1

1.2 Related work

Educational task generation. Earlier works on task generation considered simpler domains such as
algebra problems where solutions follow well-defined procedures. These works employed classical methods
such as template-based (Polozov et al., 2015; Singh et al., 2012) or exhaustive enumeration-based task gener-
ation (Ahmed et al., 2020; Alvin et al., 2014). We aim to synthesize programming task given well-structured
specifications, similar to previous works on visual task synthesis (Ahmed et al., 2020; Ghosh et al., 2022).
While the existing works focused on offline generation, we seek to learn neural models that can generate
tasks in real-time, as highlighted in Figure 1. Recent works have also explored the use of LLMs to generate
new assignments for Python programming (Sarsa et al., 2022; Phung et al., 2023b) with mixed results.

Spatial and logical reasoning for LLMs. Recent studies have focused on assessing the various capabilities
of LLMs (Bubeck et al., 2023; Arora et al., 2023; Bang et al., 2023). These works show that such state-of-
the-art models have already achieved impressive generative capabilities for several programming education
scenarios, including program repair and hint generation (Sarsa et al., 2022; Leinonen et al., 2023). However,
these models still lack crucial capabilities like program execution, symbolic reasoning, and planning that
are needed for structured task generation in visual programming domains (Valmeekam et al., 2022; Huang
& Chang, 2022; Kaddour et al., 2023; Phung et al., 2023b). Based on (Huang et al., 2023), the LLMs’
inherent capabilities alone are still insufficient for many general reasoning tasks and require the guidance of
an external tool or a human.

1GitHub repository: https://github.com/machine-teaching-group/tmlr2024_neurtasksyn.

3

https://github.com/machine-teaching-group/tmlr2024_neurtasksyn

Published in Transactions on Machine Learning Research (01/2024)

2 Problem Setup

Visual programming tasks. We define a task as a tuple T := (TIO, Tcode), where TIO denotes the visual
puzzle and Tcode denotes additional constraints on a solution code of this puzzle. This task space is general
enough to encompass popular visual programming domains, including block-based programming domain of
Hour of Code:Maze Challenge by Code.org (HoCMaze) (Code.org, 2013b;a) and text-based programming
domain of Karel (Pattis et al., 1995). For instance, the task in Figure 1b is based on HoCMaze:Maze20
task Code.org (2013a) – it is comprised of a visual puzzle where a solution code, when executed, will take
the avatar to the goal without crashing into walls. Additional constraints on a solution code specify that
it should use only blocks from the set {move, turnLeft, turnRight, RepeatUntil, IfElse} and have a size
≤ 7. We give a similar illustrative example for Karel in Section 5.

Solution codes of a task. We define the space of all possible codes C in a domain via a domain-
specific language (DSL) (Gulwani et al., 2017). For instance, in our evaluation with HoCMaze and Karel
programming domains, we will use their corresponding DSLs as introduced in (Bunel et al., 2018; Ahmed
et al., 2020). For a given task T, a code C ∈ C is a solution code if the following holds: C successfully
solves TIO while respecting Tcode. For example, the codes in Figures 1b and 1d use only blocks from the set
{move, turnLeft, turnRight, RepeatUntil, IfElse}, have sizes equal to 7, and when executed, will take
the avatar to the goal. Note that IfElse is considered a single block.

Task synthesis specification. We now introduce a notation to specify desired tasks for synthesis that
exercise certain programming concepts in their solution codes and respect certain constraints on the visual
puzzle. We define a task synthesis specification as a tuple ψ := (ψIO, ψsketch, ψ∆), where ψIO is a partially
initialized visual puzzle, ψsketch is a code sketch (i.e., a partial code) capturing the structure that should
be followed by the synthesized task’s solution codes, and ψ∆ specifies additional constraints on solution
codes. For instance, the input task synthesis specification ψin in Figure 1c is extracted from Tref and Cref in
Figure 1b – here, ψin

IO is a 12x12 maze with certain cells initialized to free or wall cells; ψin
sketch specifies the

structure and some already initialized conditionals, loops and actions that should be used in solution codes;
ψin

∆ specifies constraints related to what kind of blocks can be used and the size of a solution code.

Synthesis objective. Given a task synthesis specification ψin := (ψin
IO, ψ

in
sketch, ψ

in
∆) as input, we seek to

generate a task Tout := (Tout
IO , Tout

code) as output. Inspired by human-centered task quality criteria for the
visual programming domains (Ahmed et al., 2020; Ghosh et al., 2022), we design objectives that capture the
quality of desirable tasks. To formally set our synthesis objective and evaluation metrics, below we introduce
different binary criteria (taking values 1 or 0) that we want Tout to satisfy w.r.t. ψin:

• O1:Validity. A task Tout is valid (i.e., value 1) iff: (a) Tout
IO respects ψin

IO, (b) Tout
code respects (ψin

sketch, ψ
in
∆),

and (c) there exists at least one solution code C ∈ C for Tout.

• O2:Concepts. A task Tout conceptually captures specification ψin (i.e., value 1) iff: (a) there exists at
least one solution code C ∈ C that respects ψin

sketch and (b) all solution codes C ∈ C are at least of the
complexity required by ψin

sketch. We define complexity w.r.t. the total number of programming constructs
used (e.g., RepeatUntil, While, If, IfElse) and the level of code nesting. We refer to the level of nesting
as code depth in the remaining content of the paper.

• O3:Trace. A task Tout captures the following synthesis property: for any solution C for Tout that respects
(ψin

sketch, ψ
in
∆), the execution trace of C on Tout executes each loop or conditional at least n times. This

property is inspired by real-world tasks that are easy to comprehend, as indicated by task quality criteria
used in (Ahmed et al., 2020; Ghosh et al., 2022); we will use n = 2 in Section 5 evaluation.

• O4:Overall. This objective is 1 only if all the above objectives (O1, O2, O3) are satisfied for a task Tout.

• O5:Human. This objective captures the quality of a task Tout from an expert’s point of view. The
assessed criteria are the conceptual correctness w.r.t. the input specification and the visual quality of the
task. Based on these criteria, the expert reports an overall binary score.

4

Published in Transactions on Machine Learning Research (01/2024)

3 Our Synthesis Technique NeurTaskSyn

Code
Generator

Puzzle
Generator

C!"# T!"#𝜓$%&#'(
)*

𝜓)*

𝜓+,)*

𝜓-)*

Figure 2: Components of task synthesis.

In this section, we present NeurTaskSyn, our neuro-
symbolic technique to synthesize visual programming
tasks (Tout) for an input specification (ψin).

3.1 Overview

As noted in Section 1, a key challenge in synthesizing tasks is that the mapping from the space of visual tasks
to their solution codes is highly discontinuous – a small modification in the output task could make it invalid
or semantically incorrect w.r.t. the input specification (Ahmed et al., 2020). One way to tackle this challenge
is to first reason about a possible solution code and then generate visual puzzles based on execution traces
of this code (Gulwani, 2014; Kartal et al., 2016; Ahmed et al., 2020; Tercan et al., 2023). This motivates
two components in our synthesis process shown in Figure 2: the first component generates possible solution
codes Cout (akin to that of program synthesis (Gulwani et al., 2017)); the second component generates the
visual puzzle for these codes via symbolic execution (akin to the idea of test-case generation (King, 1976)).
After synthesizing both, we can get all the elements of Tout. Tout

IO is based on the generated puzzle. Tout
code is

extracted from the size and types of blocks of Cout.2 Next, we discuss the components of NeurTaskSyn.

3.2 Generating the Solution Code Cout

The code generator component takes the elements of the specification, (ψin
sketch, ψ

in
∆), that enforce constraints

on solution codes of the desired task and accordingly generates a possible solution code Cout. Below, we briefly
describe a base symbolic engine to generate syntactically valid codes from specifications via random search
and then a neural model to guide this base engine; full details of this component are deferred to Appendix D.1.

Base symbolic engine. The base engine operates on Abstract Syntax Tree representation of code sketches
(i.e., partial codes). The engine generates codes by sampling tokens (i.e., action blocks, conditions, and
iterators) from underlying DSL while respecting specification. Even though this ensures that a generated code
is syntactically correct and valid w.r.t. specification, it could have semantic irregularities. Such irregularities
can lead to confusing tasks (e.g., see Figure 8c, where the If and Else bodies are the same).

Neural model. The neural model is trained to guide the sampling process of the base symbolic engine. This
neural model is akin to a program synthesizer, but it has a different objective. It aims to synthesize codes
that are semantically correct and can lead to high-quality tasks. One could use a variety of architectures,
for instance, transformer-based (Le et al., 2022; Fried et al., 2022; Li et al., 2022; Wang et al., 2021) or
custom-made encoder-decoder approaches (Balog et al., 2017; Bunel et al., 2018; Yin & Neubig, 2017). In
our work, we use an LSTM-based decoder (Hochreiter & Schmidhuber, 1997) because of their extensive use
in the existing literature on generating program solutions for an input visual programming task (Devlin
et al., 2017; Bunel et al., 2018; Shin et al., 2019; Gupta et al., 2020). In our setting, the input corresponds
to the code specification. Similar to (Bunel et al., 2018), we use an imitation (supervised) learning approach
to train the LSTM-based neural model, learning to predict in a token-by-token manner.

3.3 Generating the Visual Puzzle Tout
IO

The puzzle generator component takes the element of the specification, ψin
IO, that enforces constraints on

the visual puzzle along with generated code Cout and accordingly generates a visual puzzle Tout
IO . We first

describe a base symbolic engine that performs symbolic execution of Cout to generate a semantically valid
puzzle via random search and then describe a neural model to guide this base engine. We then offer details
regarding how we formulate the neurally guided symbolic engine as a reinforcement learning (RL) agent.

Base symbolic engine. The base engine performs symbolic execution of Cout on ψin
IO which has uninitialized

elements/unknowns. This symbolic execution emulates an execution trace of Cout and makes decisions about

2It is possible that code Cout generated during intermediate step is not a solution for Tout, e.g., when Cout is semantically
incorrect and cannot generate a corresponding puzzle. In this case, we set the size constraints in Tout

code as specified by ψin
∆ .

5

Published in Transactions on Machine Learning Research (01/2024)

def Run(){
RepeatUntil(goal){

If(pathRight){
turnRight

}
Else{
turnLeft
move

}
move

}
}

def Run(){
RepeatUntil(goal){

If(pathRight){
turnRight

}
Else{
turnLeft
move

}
move

}
}

def Run(){
RepeatUntil(goal){

If(pathRight){
turnRight

}
Else{
turnLeft
move

}
move

}
}

def Run(){
RepeatUntil(goal){

If(pathRight){
turnRight

}
Else{
turnLeft
move

}
move

}
}

def Run(){
RepeatUntil(goal){

If(pathRight){
turnRight

}
Else{
turnLeft
move

}
move

}
}

def Run(){
RepeatUntil(goal){

If(pathRight){
turnRight

}
Else{
turnLeft
move

}
move

}
}

Figure 3: Illustration of symbolic execution. In the first step, the execution of Cout starts on the partially
initialized ψin

IO. In the second step, the agent’s location and orientation are set and execution continues to
RepeatUntil(goal), which is decided to false in this particular example. This decision does not immedi-
ately affect the visual grid. In the third step, the execution continues to If(pathRight), which is decided
to false and the avatar moves accordingly. The effect of these actions can be seen in the next state of the
visual grid. In the fourth step, the execution continues to RepeatUntil(goal), which is decided to true,
giving the goal location at step five. This leads to the sixth step, which is the end of the execution. The
remaining unknowns are replaced with walls.

unknowns resulting in a concrete instantiation of ψin
IO to Tout

IO . The outcome of these decisions affects the
quality of the generated Tout

IO . Figure 3 shows an example of symbolic execution done by the symbolic engine.
During this execution process, an emulator will replace unknowns with free cells, walls, the avatar position,
and the goal location as indicated by the symbolic engine. The highlighted blocks of code in Figure 3 show
the steps where the symbolic execution engine takes decisions, leading to one possible path in the execution
of Cout and an instantiation of Tout

IO . A code could have a potentially unbounded number of possible execution
traces, and randomly taking decisions would typically lead to a lower quality task (King, 1976; Ahmed et al.,
2020). Deciding the path of the execution maps to a sequential decision-making process. We aim to guide
this decision-making process to achieve execution traces that lead to higher-quality tasks.

Neural model. We train the neural model to guide the decision-making process of the base symbolic
engine. Our neural architecture uses a CNN-based encoder for partial visual puzzles and combines it with
code execution-related features (e.g., coverage, currently executed code block). This choice is based on
previous works on program synthesis for visual programming tasks (Bunel et al., 2018; Gupta et al., 2020).
Other works have investigated the use of Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006)
strategy to guide the symbolic execution for generating better puzzles with fewer resources (Kartal et al.,
2016; Ahmed et al., 2020). However, these works used MCTS at inference time without any learned policy
and could take several minutes to generate an output task for an input specification. Instead, a neural model
makes use of learned experience to lead to high-quality puzzles.

Neurally guided symbolic engine as an RL agent. To speed up the generation process at inference, we
train an RL agent (Sutton & Barto, 2018) whose reward is defined via a scoring function Fscore that captures
the quality of the generated visual puzzle for an input specification; this scoring function is similar in spirit
to that used for MCTS in (Kartal et al., 2016; Ahmed et al., 2020). The agent’s goal is to make decisions
about the unknowns encountered when symbolically executing a code with the objective of generating high-
quality puzzles. More concretely, we consider an episodic Markov Decision Process (MDP) defined as a tuple
M = (S,A, P,R, S0), where an episode corresponds to a full symbolic execution of a code and the agent
interacts with the environment over discrete time steps t. The elements of the MDP are defined as follows:

• A state s ∈ S is given by current status of visual puzzle and the block being executed (as in Figure 3);

• A set of state-depended actions As can either be the set of initialization actions (i.e., {pos1, pos2,...,
posn}), or a set of binary decisions (i.e, {true, false});

6

Published in Transactions on Machine Learning Research (01/2024)

def Run(){
RepeatUntil(goal){

If(pathRight){
turnRight

}
Else{
turnLeft
move

}
move

}
}

(a) State at time t

Environment RL Agent

(1) state: puzzle+code

(2) action: fill in unknown

(3) reward: 0 or Fscore

(b) Interaction at time t

def Run(){
RepeatUntil(goal){

If(pathRight){
turnRight

}
Else{
turnLeft
move

}
move

}
}

(c) State at time t+ 1

Figure 4: Illustration showing the interaction between the RL agent and the environment. (a) shows state
at time t, composed of code block being executed and status of the visual puzzle. (b) shows the interaction
between the environment and the RL agent at time t. The environment comprises the code emulator and
the scoring function. The RL agent is the neurally guided symbolic engine. (c) shows state at time t+ 1

• P : S×A×S → R denotes deterministic transition dynamics, P (s′|s, a) = 1 for s′ = s⊕a, and 0 otherwise.

• R : S ×A→ R denotes a sparse reward. During the episode, the reward values are returned as 0; at the
end of an episode, the reward values are computed using Fscore(Tout, Cout).

• S0 ⊆ S is the set of initial states. An initial state is composed of ψin
IO and Cout.

In order to explain the interaction between the neurally guided symbolic engine and the emulator, we use a
concrete example in Figure 4. Let us consider that the current state at time t is composed of the block being
executed (i.e., If(pathRight) interrogation) and the status of the visual puzzle (i.e., the avatar surrounded
by unknowns). This is depicted in Figure 4a. At this point, the neural model can guide the symbolic engine,
as an interaction between the environment and the agent is expected (Figure 4b). The agent receives the
current state of the emulator (i.e., as in Figure 4a) and outputs an action, i.e., the decision on how to fill in
the unknown. In our case, the decision is that there is no path to the right. Then the environment computes
a reward in accordance with the action taken by using Fscore. After the decision is taken, the emulator
continues executing the upcoming blocks (i.e., turnLeft, move, move) until reaching the next step where
a decision is needed (i.e., RepeatUntil(goal)). The state at time t + 1 is represented by the block being
executed (i.e., RepeatUntil(goal)) and the new status of the visual puzzle, as depicted in Figure 4c. The
implementation details of the RL agent are provided in Appendix D.2.

4 Training and Validation on Synthetic Specifications

In this section, we train and validate NeurTaskSyn on synthetic datasets of task specifications. We
employ different variants of NeurTaskSyn to quantify the utility of individual components and evaluate
w.r.t. scoring and runtime metrics. Importantly, the models obtained here through training on synthetic
dataset will be used for evaluation on real-world specifications in Section 5.

4.1 Evaluation Setup

Visual programming domains. We consider two popular visual programming domains: Hour of
Code:Maze Challenge by Code.org (HoCMaze) (Code.org, 2013b;a) and Karel (Pattis et al., 1995), as intro-
duced in Sections 1 and 2. Both these programming domains have been studied extensively in the literature
on program/task synthesis (Bunel et al., 2018; Shin et al., 2019; Ahmed et al., 2020; Gupta et al., 2020)
and computing education (Piech et al., 2015; Efremov et al., 2020; Ghosh et al., 2022). We define a few
domain-specific elements for these visual programming domains. First, as introduced in Section 2, we use
two domain-specific languages (DSLs) adapted from (Bunel et al., 2018; Ahmed et al., 2020). Second, as

7

Published in Transactions on Machine Learning Research (01/2024)

mentioned in Section 3, we will use domain-specific scoring functions FHoCMaze
score and FKarel

score to capture qual-
ity of a visual programming task. In our work, we adapt scoring functions used in (Ahmed et al., 2020).
Full details are provided in the supplementary material; in a nutshell, these scoring functions are designed
to intuitively capture the synthesis objectives set in Section 2, including properties like code coverage and
trace quality. These scoring functions will be used in different ways: (a) during training of NeurTaskSyn’s
puzzle generator as a reward for RL agent and during inference to select an output task from candidates;
(b) when evaluating different techniques with a surrogate metric based on these scoring functions; (c) when
computing the quality of expert-designed code-task pairs for the runtime experiments. For each domain, we
will make use of an offline, time-intensive, method TaskOracle(C): it does one million symbolic executions
of a given code C and returns highest-scoring task w.r.t. scoring function Fscore (cf. Footnote 3).

Scoring-based metrics. We introduce a binary success metric M(ψin, Tout, Cout) that is used to compare
the performance of different techniques and to pick hyperparameters. More concretely, M(ψin, Tout, Cout) is
1 if the following hold: (i) the task Tout is valid w.r.t. ψin; (ii) the generated code Cout is semantically correct
in a sense that it can lead to a valid task via TaskOracle, i.e., Fscore(TaskOracle(Cout), Cout) > λ1; (iii)
the generated task Tout is good quality in comparison to the oracle-generated task, i.e., Fscore(Tout, Cout) >
λ2 · Fscore(TaskOracle(Cout), Cout). We use λ1 = 0 and λ2 = 0.9 in our experiments. For each technique,
performance is computed as % success rate across the evaluation dataset w.r.t. M; in total, we compute
performance across three seeds and report averaged results as mean (stderr). Importantly, we note that this
metric only serves as a surrogate metric for evaluation on synthetic dataset; the neural models trained here
will be evaluated on real-world task specifications w.r.t. the synthesis objectives in the next section.

Runtime metrics. We aim to measure the resources needed for a technique to reach certain quality
thresholds. We do this by first computing the score given by Fscore to an expert-designed task-code pair.
Then, we fix the code and measure the time and number of symbolic execution rollouts needed to reach a
given % of the computed score. We evaluate each technique multiple times and report averaged results.

4.2 Evaluation w.r.t. Scoring-based Metrics

Synthetic task specifications. For training and evaluation of techniques, we create a dataset of syn-
thetic task specifications per domain, referred to as D := {ψin}. To create one specification ψin :=
(ψin

sketch, ψ
in
IO, ψ

in
∆), the most crucial part is getting a code sketch ψin

sketch that respects the DSL and can
lead to a valid code generation. We start by sampling a code Cin from the DSL for a given structure, depth,
and constructs – this sampling process is inspired by methods for synthetic dataset creation (Bunel et al.,
2018; Shin et al., 2019; Ahmed et al., 2020). For each sampled code, we check its semantic validity, i.e.,
this code can lead to a high-quality task using TaskOracle. Afterwards, for a sampled code Cin we create
its corresponding ψin

sketch by keeping only the programming constructs (loops/conditionals) with a random
subset of the booleans/iterators masked out. The rest of the ψin elements are instantiated as follows: ψin

IO
is 16 × 16 size without any initialization, ψin

∆ enforces the underlying DSL and a randomly initialized size
between the number of blocks in Cin and 17. In our evaluation, we split D as follows: 80% for training the
neural models (Dtrain), 10% for calibration (Dcal), and a fixed 10% for evaluation (Dtest).

Techniques. First we describe NeurTaskSyn, our main task synthesis technique from Section 3. For each
domain (HoCMaze and Karel), we train a separate instance of NeurTaskSyn using the synthetic dataset
introduced above. In Section 3, we described the generation process for a single “rollout”, i.e., one Cout and
one puzzle Tout

IO is generated. In practice, we use multiple rollouts to select a final output task Tout. More
concretely, at inference time for a given ψin as input, NeurTaskSyn generation process is captured by two
parameters: number of code rollouts c by the code generator and number of puzzle rollouts p by the puzzle
generator for each generated code. We denote these hyperparameters in subscript, e.g., NeurTaskSync:5,p:10
for 5 × 10 rollouts. Out of these c × p candidates, the technique outputs one task Tout along with solution
code Cout using its scoring function. Next, we describe different variants of NeurTaskSync,p and baselines:

• NeurPuzzleGenc:fix,p: This technique is a variant of NeurTaskSync,p to evaluate its puzzle generation
component, assuming the code generator has access to code Cin associated with specification ψin in the
dataset. At inference, NeurPuzzleGenc:fix,p generation process is captured by hyperparameter p, i.e.,
number of puzzle rollouts. Out of p candidates, technique outputs one task, analogous to NeurTaskSyn.

8

Published in Transactions on Machine Learning Research (01/2024)

10 20 30 40 50
Number of rollouts

0

20

40

60

80

100

Pe
rf

or
m

an
ce

NEURTSYN:ALL

BASETSYN:ALL

NEURTSYN:HARD

BASETSYN:HARD

(a) BaseTaskSyn, NeurTaskSyn

0 10 20 30 40 50 60 70 80 90 100
Number of rollouts

0

20

40

60

80

100

Pe
rf

or
m

an
ce

NEURPGEN:ALL

BASEPGEN:ALL

NEURPGEN:HARD

BASEPGEN:HARD

(b) BasePuzzleGen, NeurPuzzleGen

Metric Rollouts Runtime

Technique:Data

Quality Quality

90% 95% 99% 99%

NeurPGen:All 4 9 30 1.97s
NeurPGen:Hard 15 46 160 11.08s

BasePGen:All 91 2932 69105 1977.44s
BasePGen:Hard 437 17122 405231 11800.11s

MCTS:All 92 1180 11740 14.92s
MCTS:Hard 283 6841 10116 88.25s

(c) Results for runtime evaluation.

Figure 5: (a) Results for BaseTaskSync,p and NeurTaskSync,p by increasing code rollouts c from 1 to
5 with fixed puzzle rollouts p = 10. (b) Results for BasePuzzleGenc:fix,p and NeurPuzzleGenc:fix,p
by increasing puzzle rollouts p from 1 to 100. (c) Table showing the runtime/rollouts comparison between
different techniques, on tasks of different difficulty, when varying the required quality threshold. The quality
threshold is expressed as % of the quality score of an expert-designed task. See further details in Section 4.

• BaseTaskSync,p and BasePuzzleGenc:fix,p: These techniques operate similar to NeurTaskSync,p and
NeurPuzzleGenc:fix,p, but use only symbolic engine with random search.3

Results. Figures 5a and 5b report results as we vary the number of rollouts for different techniques, evaluated
on the full dataset and on a “hard” segment of the dataset, where ψin

sketch uses at least 2 constructs and has
a depth of 3. In summary, these results demonstrate the utility of different components of NeurTaskSyn
and how the synthesis quality improves as we increase the number of rollouts.

4.3 Evaluation w.r.t. Runtime Metrics

Code samples for puzzle generation. For evaluating the runtime of our technique, we pick a set of codes
designed by experts as solutions for six representative tasks from both the HoCMaze and Karel domains. We
select those tasks that are common among our evaluation in Section 5 (see Figure 6) and the work of (Ahmed
et al., 2020). These tasks are derived from HoC:Maze8, HoC:Maze9, HoC:Maze13, HoC:Maze18 (Code.org,
2013b), and Karel:OurFirst, Karel:Diagonal (CodeHS, 2012b).

Techniques. We focus on evaluating the runtime performance of three techniques. NeurPuzzleGenc:fix,p
and BasePuzzleGenc:fix,p are equivalent to the techniques of Section 4.2. MCTSc:fix,p is the puzzle
generation method based on Monte Carlo tree search (MCTS) (Ahmed et al., 2020), introduced in Section 3.3.
More specifically, we do not set a fixed number of puzzle rollouts p, but we measure the values of p needed
to reach certain quality thresholds.

Results. We present our results in Figure 5c, averaged over all the selected tasks. Additionally, we define
an expert code as “hard” when using at least 2 constructs and having a depth of 3. We separately report
the results on HoC:Maze18, which is considered hard. It can be noticed that the unguided symbolic execu-
tion of BasePuzzleGenc:fix leads to large execution times when aiming to synthesize high-quality tasks.
MCTSc:fix has faster runtimes than BasePuzzleGenc:fix, but it becomes less scalable when required to
come up with high-quality tasks for the hard code. NeurPuzzleGenc:fix maintains low execution times
and number of rollouts for any of the required quality thresholds, even when faced with a hard code.

5 Experiments on Real-World Specifications

In this section, we evaluate our task synthesis technique NeurTaskSyn on real-world specifications.

3TaskOracle(C) introduced above is BasePuzzleGen with p = 106 rollouts for a fixed code C.

9

Published in Transactions on Machine Learning Research (01/2024)

ψin ψin
sketch structure (depth, constructs) ψin

IO ψin
∆ Source

ψ0 {Run {Repeat}} (2, 1) 16x16 empty HoCMaze, blocks ≤ 10 HoC:Maze9 Code.org (2013b)
ψ1 {Run {RepeatUntil}} (2, 1) 16x16 empty HoCMaze, blocks ≤ 10 HoC:Maze13 Code.org (2013b)
ψ2 {Run {Repeat; Repeat}} (2, 2) 16x16 empty HoCMaze, blocks ≤ 10 HoC:Maze8 Code.org (2013b)
ψ3 {Run {RepeatUntil{IfElse}}} (3, 2) 16x16 empty HoCMaze, blocks ≤ 10 HoC:Maze18 Code.org (2013b)
ψ4 {Run {RepeatUntil{If; If}}} (3, 3) 16x16 empty HoCMaze, blocks ≤ 10 HoC:Maze20 Code.org (2013b)
ψ5 {Run} (1, 0) 16x16 empty Karel, blocks ≤ 10 Karel:OurFirst CodeHS (2012b)
ψ6 {Run {While}} (2, 1) 16x16 empty Karel, blocks ≤ 10 Karel:Diagonal CodeHS (2012b)
ψ7 {Run {While; While}} (2, 2) 16x16 empty Karel, blocks ≤ 10 Karel:RowBack CodeHS (2012b)
ψ8 {Run {While{If}}} (3, 2) 16x16 empty Karel, blocks ≤ 10 Karel:Stairway CodeHS (2012b)
ψ9 {Run {While{Repeat}}} (3, 2) 16x16 empty Karel, blocks ≤ 10 Karel:CleanAll

Figure 6: Real-world task specifications for HoCMaze and Karel; ψin
sketch is shortened for brevity; ψin

∆
indicated as booleans and actions allowed by each domain, with the addition of maximum size.

Real-world task specifications. We use a set of 10 task specifications from HoCMaze and Karel domains,
shown in Figure 6. These task specifications are inspired by their source tasks (see “Source” column) in
the following sense: we create a specification ψin for which the corresponding source task is a desired task
as would be created by experts. Figure 8 shows illustration of task synthesis for a variant of ψ3 (source
as Maze18 HoCMaze task) where we used 12x12 grid size with certain cells pre-initialized; analogously,
Figure 9 shows illustration of task synthesis for a variant of ψ8 (source as Stairway Karel task) where we
used 12x12 grid size.

Synthesis quality metrics. We evaluate techniques w.r.t. different metrics, each corresponding to a
synthesis objective introduced in Section 2. Even though objectives O1–O4 are quantitative, it is challenging
to fully automate their evaluation because it requires analyzing properties of different possible solution codes
of a generated task. We manually did this evaluation when computing performance for each technique and
metric. To capture objective O5, we assess the quality of synthesized tasks using human experts’ annotations.
Each expert independently evaluated all specifications and all techniques. Additionally, we report a binary
metric of whether Cout solves Tout to provide insight into the robustness of the synthesis process. Results are
reported as a mean over 10 specifications ψin from Figure 6; we evaluate over three seeds and report averaged
results as mean (stderr). In total, three experts (i.e., one per seed) with experience in visual programming
provided annotations for O5.

Techniques. We evaluate NeurTaskSync:10,p:100 with c = 10 and p = 100, i.e., total of c × p = 1000
rollouts (see Section 4). Next, we describe additional techniques evaluated:

• BaseTaskSync:10,p:100 operates similarly to NeurTaskSync:10,p:100, but uses only base symbolic engine
with random search without any neural guidance (see Section 4).

• GPT4TaskSyn-converse is based on OpenAI’s GPT-4 (OpenAI, 2023b). It uses conversation-style
prompts that involved human guidance to correct mistakes. More concretely, it is based on a two-stage
process as shown in Figure 2 – we first ask GPT-4 to generate a code Cout for ψin and then ask it to generate
a puzzle Tout

IO that could be solved by Cout. The first stage comprised 5 separate queries to generate a Cout:
each query started with an initial prompt and then follow-up prompts to fix any mistakes. The second
stage comprised of another 5 separate queries to generate a puzzle Tout

IO : each query started with an initial
prompt and then follow-up prompts to fix any mistakes. Once we get Cout and Tout

IO , we set Tout
code as for

NeurTaskSyn. We defer the prompts to the supplementary material. This variant of GPT4TaskSyn
was used to synthesize the tasks in Figures 8 and 9.

• GPT4TaskSyn-fewshot uses the same two-stage synthesis process, but employs few-shot examples with-
out any follow-up conversations.

• Expert refers to expert-designed tasks. In our setup, Expert simply outputs a task Tout based on the
source task associated with input specification ψin; moreover it appropriately adjusts Tout

IO to match ψin
IO

layout and sets Tout
code as allowed by (ψin

sketch, ψ
in
∆) and the size of the minimal solution code.

10

Published in Transactions on Machine Learning Research (01/2024)

Technique O1:Validity O2:Concepts O3:Trace O4:Overall O5:Human Cout solves Tout

NeurTaskSync:10,p:100 1.00 (0.00) 0.83 (0.04) 0.80 (0.00) 0.80 (0.00) 0.77 (0.11) 1.00 (0.00)
BaseTaskSync:10,p:100 0.97 (0.04) 0.37 (0.08) 0.33 (0.04) 0.33 (0.04) 0.20 (0.07) 0.50 (0.12)
GPT4TaskSyn-converse 0.97 (0.04) 0.57 (0.11) 0.60 (0.07) 0.43 (0.11) 0.27 (0.08) 0.33 (0.08)
GPT4TaskSyn-fewshot 0.80 (0.07) 0.37 (0.11) 0.57 (0.11) 0.33 (0.08) 0.13 (0.11) 0.27 (0.04)

Expert 1.00 1.00 1.00 1.00 1.00 1.00

Figure 7: Results on real-world task specifications for HoCMaze and Karel in Figure 6; see Section 5. In
this figure, Expert refers to expert-designed tasks.

def Run(){
a blocks
RepeatUntil(goal){
a blocks
If(b){
a blocks

}
Else{
a blocks

}
a blocks

}
}

a blocks is a body of basic action blocks
from the set {move, turnLeft, turnRight}

b is a boolean condition from {pathAhead,
pathLeft, pathRight}

Number of blocks should be ≤ 7

(a) Task synthesis specification ψin, with ψin
IO (left), ψin

sketch (middle) and ψin
∆ (right).

def Run(){
RepeatUntil(goal){

If(pathLeft){
turnLeft
move

}
Else{
move

}
}

}

(b) Tout
IO , Cout by GPT4TaskSyn

def Run(){
turnLeft
turnLeft
RepeatUntil(goal){
If(pathRight){
move

}
Else{
move

}
}

}

(c) Tout
IO , Cout by BaseTaskSyn

def Run(){
RepeatUntil(goal){
If(pathRight){
turnRight

}
Else{
turnLeft
move

}
move

}
}

(d) Tout
IO , Cout by NeurTaskSyn

def Run(){
RepeatUntil(goal){

If(pathAhead){
move

}
Else{
turnLeft

}
}

}

(e) Tout
IO , Cout by Expert

Figure 8: Illustrative example showcasing task synthesis inspired by the Maze18 HoCMaze
task Code.org (2013b;a). The given specification seeks to synthesize tasks where a solution code has
the {RepeatUntil{IfElse}} structure. (a) Task synthesis specification ψin := (ψin

IO, ψ
in
sketch, ψ

in
∆) is

provided as input: ψin
IO is a 12x12 maze with certain cells initialized to free (white) or wall (gray) cells, the

rest being marked as unknowns (brown); ψin
sketch along with ψin

∆ specify constraints on code solutions of a
synthesized task. (b–d) show tasks Tout and codes Cout used as intermediate step to generate output tasks
by three techniques. (e) shows task Tout and code Cout based on Maze18. See Section 5.

Results. Figure 7 reports evaluation results for different techniques w.r.t. our task synthesis objectives.
Next, we summarize some of our key findings. First, NeurTaskSyn has high performance of at least 0.77
across all metrics. The illustrative examples in Figures 8 and 9 showcase the high-quality of tasks synthe-
sized by NeurTaskSyn, matching interesting characteristics of real-world tasks from Expert. Second,
BaseTaskSyn, GPT4TaskSyn-converse, and GPT4TaskSyn-fewshot struggle on objectives O2 and O3.
Their low performance can be explained, in part, by failure to generate a valid task/code pair. The illus-
trative examples in Figures 8 and 9 further highlight the issues of tasks generated by these techniques. For
instance, BaseTaskSyn’s Tout in Figure 8c can be solved by a simpler code with lower depth than specified
in the input specification; GPT4TaskSyn-converse’s Tout in Figures 8b and 9b are not solvable by codes that
would match the input specification. GPT4TaskSyn-fewshot shows that changing the prompting strategy
does not help with increasing the performance. In summary, these results demonstrate the effectiveness of
NeurTaskSyn in synthesizing high-quality visual programming tasks for real-world specifications and some

11

Published in Transactions on Machine Learning Research (01/2024)

def Run(){
a blocks
While(b){
a blocks
If(b){
a blocks

}
a blocks

}
a blocks

}

a blocks is a body of basic action blocks
from the set {move, turnLeft, turnRight,
pickMarker, putMarker}

b is a boolean condition from {pathAhead,
pathLeft, pathRight, no-pathAhead,
markerPresent, no-markerPresent}

Number of blocks should be ≤ 10

(a) Task synthesis specification ψin, with ψin
IO (left), ψin

sketch (middle) and ψin
∆ (right).

def Run(){
While(pathAhead){

If(markerPresent){
pickMarker

}
move

}
}

(b) Tout
IO , Cout by GPT4TaskSyn

def Run(){
While(no-pathAhead){

If(pathRight){
pickMarker

}
turnRight
turnRight
move
turnLeft

}
pickMarker
move

}

(c) Tout
IO , Cout by BaseTaskSyn

def Run(){
While(pathAhead){
pickMarker
If(pathLeft){
putMarker

}
move

}
turnRight

}

(d) Tout
IO , Cout by NeurTaskSyn

def Run(){
While(no-pathAhead){

If(markerPresent){
pickMarker

}
turnLeft
move
turnRight
move

}
}

(e) Tout
IO , Cout by Expert

Figure 9: Illustrative example showcasing task synthesis inspired by the Stairway Karel task Pattis et al.
(1995); CodeHS (2012b;a). This specification seeks to synthesize tasks where a solution code has the
{While{If}} structure. (a) Task synthesis specification ψin := (ψin

IO, ψ
in
sketch, ψ

in
∆) is provided as input: ψin

IO is
a pregrid-postgrid pair with unitialized grid of size 12x12 ; ψin

sketch along with ψin
∆ specify constraints on code

solutions of a synthesized task. (b–d) show tasks Tout and codes Cout used as intermediate step to generate
output tasks by three techniques. (e) shows task Tout and code Cout based on Stairway. See Section 5.

of the challenges in synthesizing visual programming tasks by state-of-the-art neural generative models as
the synthesis process requires logical, spatial, and programming skills.

6 Concluding Discussions

We developed a novel neuro-symbolic technique, NeurTaskSyn, that can synthesize visual programming
tasks for a given specification. We demonstrated both the efficiency and effectiveness of NeurTaskSyn
through an extensive evaluation on synthetically generated and reference tasks picked from popular visual
programming environments. We believe our proposed technique has the potential to enhance introductory
programming education by synthesizing personalized content. Moreover, we showcase the challenges that
purely neural generative models and purely symbolic models face. BaseTaskSyn, a purely symbolic model,
can lead to semantic irregularities in codes and low-quality tasks. On the other hand, purely generative
techniques based on GPT-4 struggle to generate high-quality puzzles. This result aligns with findings in
contemporary studies that GPT-4 may face challenges in code execution, symbolic operations, test-case
generation, and task synthesis (Bubeck et al., 2023; Phung et al., 2023b).

12

Published in Transactions on Machine Learning Research (01/2024)

There are many interesting directions for future work. First, we have built our LSTM/CNN-based archi-
tecture specialized for task synthesis objectives; it would be interesting to fine-tune models like GPT-4 to
improve its capabilities for synthesizing visual programming tasks. Moreover, we can analyze the logical and
spatial abilities of these fine-tuned models by curating benchmarks in visual programming domains. Sec-
ond, our methodology focused on visual programming; it would be interesting to develop generative models
for synthesizing tasks in other programming domains, such as synthesizing Python problems that match a
certain input-output configuration and other specifications regarding the possible solution codes. Third, our
evaluation study considered various objectives capturing human-centered aspects along with expert annota-
tions; in the future, it would also be useful to conduct studies with human learners to evaluate the quality
in terms of perceived difficulty or interpretability of synthesized tasks.

Acknowledgements

Funded/Co-funded by the European Union (ERC, TOPS, 101039090). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European Union or the
European Research Council. Neither the European Union nor the granting authority can be held responsible
for them.

References
Umair Z. Ahmed, Sumit Gulwani, and Amey Karkare. Automatically Generating Problems and Solutions

for Natural deduction. In IJCAI, 2013.

Umair Z. Ahmed, Maria Christakis, Aleksandr Efremov, Nigel Fernandez, Ahana Ghosh, Abhik Roychoud-
hury, and Adish Singla. Synthesizing Tasks for Block-based Programming. In NeurIPS, 2020.

Chris Alvin, Sumit Gulwani, Rupak Majumdar, and Supratik Mukhopadhyay. Synthesis of Geometry Proof
Problems. In AAAI, 2014.

Daman Arora, Himanshu Gaurav Singh, and Mausam. Have LLMs Advanced Enough? A Challenging
Problem Solving Benchmark For Large Language Models. CoRR, abs/2305.15074, 2023.

David Baidoo-Anu and Leticia Owusu Ansah. Education in the Era of Generative Artificial Intelligence
(AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. Available
at SSRN 4337484, 2023.

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. DeepCoder:
Learning to Write Programs. In ICLR, 2017.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, and Pascale Fung. A Multitask, Multilingual,
Multimodal Evaluation of Chatgpt on Reasoning, Hallucination, and Interactivity. CoRR, abs/2302-04023,
2023.

Jean-Pierre Briot, Gaëtan Hadjeres, and François-David Pachet. Deep Learning Techniques for Music Gen-
eration. Springer, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg, Harsha Nori, Hamid Palangi, Marco Túlio
Ribeiro, and Yi Zhang. Sparks of Artificial General Intelligence: Early Experiments with GPT-4. CoRR,
abs/2303.12712, 2023.

Rudy Bunel, Matthew J. Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging
Grammar and Reinforcement Learning for Neural Program Synthesis. In ICLR, 2018.

Mark Chen et al. Evaluating Large Language Models Trained on Code. CoRR, abs/2107-03374, 2021.

CodeHS. CodeHS.com: Teaching Coding and Computer Science. https://codehs.com/, 2012a.

13

https://codehs.com/

Published in Transactions on Machine Learning Research (01/2024)

CodeHS. Intro to Programming with Karel the Dog. https://codehs.com/info/curriculum/introkarel,
2012b.

Code.org. Code.org: Learn Computer Science. https://code.org/, 2013a.

Code.org. Hour of Code: Classic Maze Challenge. https://studio.code.org/s/hourofcode, 2013b.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet
Kohli. RobustFill: Neural Program Learning under Noisy I/O. In ICML, 2017.

Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. Musegan: Multi-track Sequential Gen-
erative Adversarial Networks for Symbolic Music Generation and Accompaniment. In AAAI, 2018.

Aleksandr Efremov, Ahana Ghosh, and Adish Singla. Zero-shot Learning of Hint Policy via Reinforcement
Learning and Program Synthesis. In EDM, 2020.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A Pre-Trained Model for Programming and Natural
Languages. In EMNLP, 2020.

James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and James Prather. The Robots
Are Coming: Exploring the Implications of OpenAI Codex on Introductory Programming. In ACE, 2022.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau
Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A Generative model for Code Infilling and Synthesis.
CoRR, abs/2204.05999, 2022.

Wenhao Gao and Connor W Coley. The Synthesizability of Molecules Proposed by Generative Models.
Journal of Chemical Information and Modeling, 60(12):5714–5723, 2020.

Ahana Ghosh, Sebastian Tschiatschek, Sam Devlin, and Adish Singla. Adaptive Scaffolding in Block-Based
Programming via Synthesizing New Tasks as Pop Quizzes. In AIED, 2022.

Sumit Gulwani. Example-based Learning in Computer-aided STEM Education. Communications of the
ACM, 57(8):70–80, 2014.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program Synthesis. Foundations and Trends® in
Programming Languages, 2017.

Kavi Gupta, Peter Ebert Christensen, Xinyun Chen, and Dawn Song. Synthesize, Execute and Debug:
Learning to Repair for Neural Program Synthesis. In NeurIPS, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9, 1997.

Jie Huang and Kevin Chen-Chuan Chang. Towards Reasoning in Large Language Models: A Survey. CoRR,
abs/2212-10403, 2022.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, and Denny
Zhou. Large Language Models Cannot Self-Correct Reasoning Yet. CoRR, abs/2310.01798, 2023.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and Robert McHardy.
Challenges and Applications of Large Language Models. CoRR, abs/2307.10169, 2023.

Bilal Kartal, Nick Sohre, and Stephen J. Guy. Data Driven Sokoban Puzzle Generation with Monte Carlo
Tree Search. In AIIDE, 2016.

James C. King. Symbolic Execution and Program Testing. Communications of ACM, 19(7):385–394, 1976.

Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo Planning. In ECML, 2006.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu-Hong Hoi. Coderl: Mas-
tering Code Generation through Pretrained Models and Deep Reinforcement Learning. In NeurIPS, 2022.

14

https://codehs.com/info/curriculum/introkarel
https://code.org/
https://studio.code.org/s/hourofcode

Published in Transactions on Machine Learning Research (01/2024)

Juho Leinonen, Arto Hellas, Sami Sarsa, Brent N. Reeves, Paul Denny, James Prather, and Brett A. Becker.
Using Large Language Models to Enhance Programming Error Messages. In SIGCSE, 2023.

Yujia Li et al. Competition-Level Code Generation with Alphacode. CoRR, abs/2203.07814, 2022.

Weng Marc Lim, Asanka Gunasekara, Jessica Leigh Pallant, Jason Ian Pallant, and Ekaterina Pechenkina.
Generative AI and the Future of Education: Ragnarök or Reformation? A Paradoxical Perspective from
Management Educators. The International Journal of Management Education, 21(2):100790, 2023.

OpenAI. ChatGPT. https://openai.com/blog/chatgpt, 2023a.

OpenAI. GPT-4 Technical Report. CoRR, abs/2303.08774, 2023b.

Richard E Pattis, Jim Roberts, and Mark Stehlik. Karel the Robot: A Gentle Introduction to the Art of
Programming. John Wiley & Sons, Inc., 1995.

Tung Phung, José Cambronero, Sumit Gulwani, Tobias Kohn, Rupak Majumdar, Adish Singla, and Gustavo
Soares. Generating high-precision feedback for programming syntax errors using large language models.
In EDM, 2023a.

Tung Phung, Victor-Alexandru Padurean, José Cambronero, Sumit Gulwani, Tobias Kohn, Rupak Ma-
jumdar, Adish Singla, and Gustavo Soares. Generative AI for Programming Education: Benchmarking
Chatgpt, Gpt-4, and Human Tutors. In ICER V.2, 2023b.

Chris Piech, Mehran Sahami, Jonathan Huang, and Leonidas J. Guibas. Autonomously Generating Hints
by Inferring Problem Solving Policies. In L@S, 2015.

Oleksandr Polozov, Eleanor O’Rourke, Adam M. Smith, Luke Zettlemoyer, Sumit Gulwani, and Zoran
Popovic. Personalized Mathematical Word Problem Generation. In IJCAI, 2015.

Thomas W. Price and Tiffany Barnes. Position Paper: Block-Based Programming Should Offer Intelligent
Support for Learners. IEEE Blocks and Beyond Workshop, 2017.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-Shot Text-to-Image Generation. In ICML, 2021.

Mitchel Resnick, John H. Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond, Karen
Brennan, Amon Millner, Eric Rosenbaum, Jay S. Silver, Brian Silverman, and Yasmin B. Kafai. Scratch:
Programming for All. Communications of ACM, 52(11):60–67, 2009.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-Resolution
Image Synthesis with Latent Diffusion Models. In CVPR, 2022.

Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. Automatic Generation of Programming Exercises
and Code Explanations Using Large Language Models. In ICER, 2022.

Petra Schneider, W Patrick Walters, Alleyn T Plowright, Norman Sieroka, Jennifer Listgarten, Robert A
Goodnow Jr, Jasmin Fisher, Johanna M Jansen, José S Duca, Thomas S Rush, et al. Rethinking Drug
Design in the Artificial Intelligence Era. Nature Reviews Drug Discovery, 19(5):353–364, 2020.

Richard Shin, Neel Kant, Kavi Gupta, Chris Bender, Brandon Trabucco, Rishabh Singh, and Dawn Song.
Synthetic Datasets for Neural Program Synthesis. In ICLR, 2019.

Rohit Singh, Sumit Gulwani, and Sriram K. Rajamani. Automatically Generating Algebra Problems. In
AAAI, 2012.

Minhyang Suh, Emily Youngblom, Michael Terry, and Carrie J. Cai. AI as Social Glue: Uncovering the
Roles of Deep Generative AI during Social Music Composition. In CHI, 2021.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

15

https://openai.com/blog/chatgpt

Published in Transactions on Machine Learning Research (01/2024)

Tamara Tate, Shayan Doroudi, Daniel Ritchie, and Ying Xu. Educational Research and AI-Generated
Writing: Confronting the Coming Tsunami. 2023.

Alperen Tercan, Ahana Ghosh, Hasan Ferit Eniser, Maria Christakis, and Adish Singla. Synthesizing a
Progression of Subtasks for Block-Based Visual Programming Tasks. CoRR, abs/2305.17518, 2023.

Xiaochu Tong, Xiaohong Liu, Xiaoqin Tan, Xutong Li, Jiaxin Jiang, Zhaoping Xiong, Tingyang Xu, Hualiang
Jiang, Nan Qiao, and Mingyue Zheng. Generative Models for De Novo Drug Design. Journal of Medicinal
Chemistry, 64(19):14011–14027, 2021.

Karthik Valmeekam, Alberto Olmo Hernandez, Sarath Sreedharan, and Subbarao Kambhampati. Large
Language Models Still Can’t Plan (A Benchmark for LLMs on Planning and Reasoning about Change).
CoRR, abs/2206-10498, 2022.

W. Walters and Mark Murcko. Assessing the Impact of Generative AI on Medicinal Chemistry. Nature
Biotechnology, 38(2):143–145, 2020.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. CodeT5: Identifier-aware Unified Pre-trained
Encoder-Decoder Models for Code Understanding and Generation. In EMNLP, 2021.

Mike Wu, Milan Mosse, Noah D. Goodman, and Chris Piech. Zero Shot Learning for Code Education:
Rubric Sampling with Deep Learning Inference. In AAAI, 2019.

Pengcheng Yin and Graham Neubig. A Syntactic Neural Model for General-Purpose Code Generation. In
ACL, 2017.

Rui Zhi, Thomas W. Price, Samiha Marwan, Alexandra Milliken, Tiffany Barnes, and Min Chi. Exploring
the Impact of Worked Examples in a Novice Programming Environment. In SIGCSE, 2019.

16

Published in Transactions on Machine Learning Research (01/2024)

A Table of Contents

In this section, we provide a brief description of the content provided in the appendices of the paper.

• Appendix B provides a discussion of the broader impact of our work and compute resources used.

• Appendix C presents the details about the generation of the illustrative examples from Figures 8 and 9,
and shows their relationship with metrics O1-O4 described in Section 2.

• Appendix D gives more insights into the architecture described in Section 3.

• Appendix E provides additional details about results, the scoring functions, the synthetic dataset creation
process, and the training process in Section 4.

• Appendix F provides the source task/code pairs used for creating the real-world task specifications in
Section 5. It also provides more insights into the interaction with GPT-4.

B Discussion

Broader impact. This paper develops new techniques which have the potential of being used for improving
pedagogy in visual programming environments. On the existing platforms, content is hand-curated by tutors,
offering limited resources for students to practice on. We aim to tackle this challenge by synthesizing novel
practice tasks that match a desired level of difficulty with regard to exercised content for a student. We
believe our proposed technique has the potential to drastically enhance introductory programming education
by synthesizing personalized content for students.

Compute resources. All the experiments were conducted on a cluster of machines equipped with Intel
Xeon Gold 6142 CPUs running at a frequency of 2.60GHz.

17

Published in Transactions on Machine Learning Research (01/2024)

C Illustrative Examples: Details

In this section, we discuss the details regarding the generation and scoring for each of the techniques’ output
in Figure 8 for HoCMaze and Figure 9 for Karel.

C.1 Example for HoCMaze in Figure 8

We present Tout, along with Cout for each of the techniques with ψin as input in Figure 11; this figure expands
on Figure 8 with additional details. We give additional explanations regarding how each of the techniques’
output respects or not metrics O1-O3 (see Sections 2 and 5) in Figure 10.

Generation/adjustment for GPT4TaskSyn in Figure 8. When querying GPT-4 for this example,
we set ψin

IO as an empty 8x8 grid. We then expand the generated grid to a 12x12 grid and manually
integrate the pattern seen in Figure 11a to match the specification. We discuss the results obtained by
GPT4TaskSyn-converse.

Generation/adjustment for BaseTaskSyn and NeurTaskSyn in Figure 8. The neural model for
puzzle generation is trained on 16x16 grids, yet the symbolic engine can support the existence of pre-
initialized grids. Thus, we mask the upper-left part of the grid (4 rows and 4 columns), obtaining the 12x12
workspace for the technique. On top of that, on the remaining 12x12 grid, we pre-initialize the pattern seen
in Figure 11a (i.e., lower-left and upper-right bounded squares).

Generation/adjustment for Expert in Figure 8. The output of Expert represents a manual adaptation
of the HoC:Maze18 task to expand it to a 12x12 grid and to integrate the pattern seen in in Figure 8a.

Technique O1:Validity O2:Concepts O3:Trace O4:Overall Cout solves Tout

GPT4TaskSyn 1 0 0 0 0
BaseTaskSyn 1 0 0 0 1
NeurTaskSyn 1 1 1 1 1
Expert 1 1 1 1 1

Figure 10: Scores showing whether the output Tout for ψin of each technique respects the four metrics O1-O4,
with the additional Cout solves Tout metric, for this HoCMaze example.

We provide explanations for each 0 entry for the objectives O1-O3 in Figure 10:
• GPT4TaskSyn for Objective O2: The only possible solution code C has depth 4 and uses 3 constructs

(nested IfElse is needed), i.e., ψin
sketch is not respected, hence O2 is 0.

• GPT4TaskSyn for Objective O3: There is no solution C that respects ψin
sketch, hence O3 is 0 by definition.

• GPT4TaskSyn for Cout solves Tout: Cout, when executed on Tout
IO , makes the avatar crash into a wall,

hence Cout is not a solution for Tout

• BaseTaskSyn for Objective O2: The IfElse block employed by Cout is not required. This implies that
there is a solution code C which has a lower complexity, i.e., a smaller depth and less constructs than
required by ψin

sketch, hence O2 is 0.

• BaseTaskSyn for Objective O3: As the employed IfElse block is not required, it is possible to design a
solution code that uses IfElse with a different conditional (e.g., If(pathLeft)Else) for which the body
would never be executed, hence O3 is 0.

18

Published in Transactions on Machine Learning Research (01/2024)

def Run(){
a blocks
RepeatUntil(goal){
a blocks
If(b){
a blocks

}
Else{
a blocks

}
a blocks

}
}

a blocks is a body of basic action blocks
from the set {move, turnLeft, turnRight}

b is a boolean condition from {pathAhead,
pathLeft, pathRight}

Number of blocks should be ≤ 7

(a) Task synthesis specification ψin

Allowed blocks: {move,
turnLeft, turnRight,
RepeatUntil, IfElse}

Maximum size: 7

(b) Tout by GPT4TaskSyn

def Run(){
RepeatUntil(goal){
If(pathLeft){
turnLeft
move

}
Else{
move

}
}

}

(c) Cout by GPT4TaskSyn

Allowed blocks: {move,
turnLeft, turnRight,
RepeatUntil, IfElse}

Maximum size: 7

(d) Tout by BaseTaskSyn

def Run(){
turnLeft
turnLeft
RepeatUntil(goal){
If(pathRight){
move

}
Else{
move

}
}

}

(e) Cout by BaseTaskSyn

Allowed blocks: {move,
turnLeft, turnRight,
RepeatUntil, IfElse}

Maximum size: 7

(f) Tout by NeurTaskSyn

def Run(){
RepeatUntil(goal){
If(pathRight){
turnRight

}
Else{
turnLeft
move

}
move

}
}

(g) Cout by NeurTaskSyn

Allowed blocks: {move,
turnLeft, turnRight,
RepeatUntil, IfElse}

Maximum size: 5

(h) Tout by Expert

def Run(){
RepeatUntil(goal){
If(pathAhead){
move

}
Else{
turnLeft

}
}

}

(i) Cout by Expert

Figure 11: Illustration containing the tuple Tout for each technique, along with Cout, for this HoCMaze
example.

19

Published in Transactions on Machine Learning Research (01/2024)

C.2 Example for Karel in Figure 9

We present Tout, along with Cout for each of the techniques with ψin as input in Figure 13; this figure expands
on Figure 9 with additional details. We give additional explanations regarding how each of the techniques’
output respects or not metrics O1-O3 (see Sections 2 and 5) in Figure 12.

Generation/adjustment for GPT4TaskSyn in Figure 9. For this example, we set ψin
IO as an empty

12x12 grid and query GPT-4. We discuss the results obtained by GPT4TaskSyn-converse.

Generation/adjustment for BaseTaskSyn and NeurTaskSyn in Figure 9. The neural model for
puzzle generation is trained on 16x16 grids, yet the symbolic engine can support the existence of pre-initialized
grids. Thus, we mask the upper-left part of the grid (4 rows and 4 columns), obtaining the 12x12 workspace
for the technique.

Generation/adjustment for Expert in Figure 9. The output of Expert for this example is based on
the Karel:Stairway task.

Technique O1:Validity O2:Concepts O3:Trace O4:Overall Cout solves Tout

GPT4TaskSyn 0 0 0 0 0
BaseTaskSyn 1 0 1 0 1
NeurTaskSyn 1 1 1 1 1
Expert 1 1 1 1 1

Figure 12: Scores showing whether the output Tout for ψin of each technique respects the six metrics O1-O4,
with the additional Cout solves Tout metric, for this Karel example.

We provide explanations for each 0 entry for the objectives O1-O3 in Figure 12:

• GPT4TaskSyn for Objective O1: Tout
IO cannot be solved with any code respecting Tout

code, hence O1 is 0.

• GPT4TaskSyn for Objective O2: Tout
IO cannot be solved with any code respecting Tout

code, hence O2 is 0.

• GPT4TaskSyn for Objective O3: Tout
IO cannot be solved with any code respecting Tout

code, hence O3 is 0.

• GPT4TaskSyn for Cout solves Tout: The generated code Cout does not solve Tout, i.e., the pregrid is not
transformed into the postgrid after code execution.

• BaseTaskSyn for Objective O2: The employed If block is not required. This implies that there is a
solution code C which has a lower complexity, i.e., a smaller depth and less constructs than required by
ψin

sketch, hence O2 is 0.

20

Published in Transactions on Machine Learning Research (01/2024)

def Run(){
a blocks
While(b){
a blocks
If(b){
a blocks

}
a blocks

}
a blocks

}

a blocks is a body of basic action blocks
from the set {move, turnLeft, turnRight,
pickMarker, putMarker}

b is a boolean condition from {pathAhead,
pathLeft, pathRight, no-pathAhead,
markerPresent, no-markerPresent}

Number of blocks should be ≤ 10

(a) Task synthesis specification ψin

Allowed blocks: {move,
turnLeft, turnRight,
pickMarker, putMarker,
While, If}

Maximum size: 10

(b) Tout by GPT4TaskSyn

def Run(){
While(pathAhead){
If(markerPresent){
pickMarker

}
move

}
}

(c) Cout by GPT4TaskSyn

Allowed blocks: {move,
turnLeft, turnRight,
pickMarker, putMarker,
While, If}

Maximum size: 10

(d) Tout by BaseTaskSyn

def Run(){
While(no-pathAhead){
If(pathRight){
pickMarker

}
turnRight
turnRight
move
turnLeft

}
pickMarker
move

}

(e) Cout by BaseTaskSyn

Allowed blocks: {move,
turnLeft, turnRight,
pickMarker, putMarker,
While, If}

Maximum size: 7

(f) Tout by NeurTaskSyn

def Run(){
While(pathAhead){
pickMarker
If(pathLeft){
putMarker

}
move

}
turnRight

}

(g) Cout by NeurTaskSyn

Allowed blocks: {move,
turnLeft, turnRight,
pickMarker, putMarker,
While, If}

Maximum size: 8

(h) Tout by Expert

def Run(){
While(no-pathAhead){
If(markerPresent){
pickMarker

}
turnLeft
move
turnRight
move

}
}

(i) Cout by Expert

Figure 13: Illustration containing the tuple Tout for each technique, along with Cout, for this Karel example.

21

Published in Transactions on Machine Learning Research (01/2024)

D Our Synthesis Technique NeurTaskSyn: Details

Next, we give additional details regarding each module of our architecture. We present the interaction
between the neural models and the underlying symbolic engines, the neural architecture, and the training
procedures.

D.1 Generating the Solution Code Cout

Code generator visualization. We describe the interaction between the neural model and the underlying
symbolic engine for the code generator. For better understanding, we use one concrete example, illustrated
in Figure 14. We consider the AST at time t as presented in Figure 14a, where the previously taken decision
was the addition of the turnLeft token. The symbolic engine continues its depth-first traversal of the AST
and now needs to take the next decision for the subsequent ‘a blocks’. This is achieved by interrogating
the neural component; interaction demonstrated in Figure 14b. We introduce the notion of a budget, which
represents the number of available blocks that can be added to the AST so that the size specified by ψin

∆
is respected; in our example, the remaining budget is 2. It is passed as input for the neural model at time
t. The neural model, based on the budget and its internal state, which keeps track of the previously taken
decisions, outputs a logit for each decision, i.e., a set of logits Ldict. The symbolic engine accepts Ldict and
masks them according to the rules in the DSL, thus obtaining Lmasked

dict . In our example, the only values
in Lmasked

dict that are not masked are those of basic action blocks (i.e., move, turnLeft, turnRight) and the
token that represents the end of the Else body. After mapping the logits to a probability distribution, the
symbolic engine proceeds to sample a decision from it. In our example, move is sampled. The decision is
passed to the neural model to update its internal state. The symbolic engine then updates the AST with the
taken decision (i.e., move), thus obtaining the updated version of the AST for the next step at time t + 1,
illustrated in Figure 14c. We generalize this process to every decision that needs to be taken while traversing
the AST.

def Run(){
RepeatUntil(goal){
If(pathRight){
turnRight

}
Else{
turnLeft
a blocks

}
a blocks

}
}

(a) Code status at time t

Symbolic
Engine

Neural
Model

(1) budget

(2) logits Ldict

(3) sample(Lmasked
dict)

(b) Interaction at time t

def Run(){
RepeatUntil(goal){
If(pathRight){
turnRight

}
Else{
turnLeft
move
a blocks

}
a blocks

}
}

(c) Code status at time t+ 1

Figure 14: Visualization of the interaction process between the neural model and the symbolic engine in the
code generator component of NeurTaskSyn. (a) shows the AST at time t, where the first ‘a blocks’ needs
to be decided. (b) shows the interaction between the symbolic engine and the neural model at time t, where
the symbolic engine first passes the budget (available blocks) to the neural model, the neural model computes
the logits for all the tokens in the dictionary Ldict and passes them back to the symbolic engine, which finally
masks them obtaining Lmasked

dict , applies softmax to obtain a probability and samples the next action, sending
it to the neural model. (c) shows the AST at time t+ 1, where the sampled move was integrated.

Imitation learning procedure. We will now give details about the learning procedure we used for the
neural model. Given the fact that dataset D := {ψin} is accompanied by example codes, i.e., Cin for each
ψin, we employ an imitation (supervised) learning approach, similar to (Devlin et al., 2017; Bunel et al.,
2018). Thus, for each decision, we compute the cross-entropy with respect to the target decision. We force
the agent to take the target decision afterward so the generated code does not digress from our example
code.

22

Published in Transactions on Machine Learning Research (01/2024)

Neural architecture. Here, we present in detail the architecture of the neural model we employ for code
generation. Similar to (Bunel et al., 2018), we employ an LSTM-based (Hochreiter & Schmidhuber, 1997)
recurrent neural network. We first convert code tokens to indexes based on a dictionary, then we pass them
through an embedding layer. We do the same with the numeric representation of the budget (introduced
previously). We concatenate both embeddings and pass them through a two-layer LSTM. Last, we convert
the output of the LSTM to logits for each entry in the dictionary using a linear layer. The architecture can
be observed in Figure 15.

Input Code token categorical (0-58) Budget ordinal (0-16)
Embedding Size = 256 Size = 16

LSTM 1 Hidden dim = 256
LSTM 2 Hidden dim = 256
Linear Hidden dim × Dict size = 256 × 59

Figure 15: Architecture of the neural model used by the code generator.

23

Published in Transactions on Machine Learning Research (01/2024)

D.2 Generating the Visual Puzzle Tout
IO

Reinforcement learning procedure. We describe further details necessary for training our reinforcement
learning (RL) agent. To learn a policy, we use policy gradient methods. These methods generally learn by
using gradient ascent, thus updating the parameters θ of the parameterized policy πθ(a|s) to increase the
expected reward of the policy in the MDP. Naturally, a neural network can be used to learn the policy,
where θ represents the network’s weights. The network would take action a and state s as input, outputting
a logit Hθ(a|s). Given the logits, we map them to a probabilistic distribution using softmax: πθ(a|s) =

exp (Hθ(a|s))∑
a′∈As

exp (Hθ(a′|s))
. We use an actor-critic policy gradient method for agent training (Sutton & Barto,

2018). We denote with v̂(s, w) the value for state s predicted by the critic with parameters w. As we operate
on batches, the parameters of both the actor and the critic remain unchanged until a buffer is filled with a
fixed number of episodes. Thus, for an initial state s0 (i.e., an empty or pre-initialized task and a code, with
the emulator reset), we execute the existing policy πθ until the buffer is filled, generating several sequences
of experience as tuples (st, at, rt)t=0..T , where T represents a variable episode length. Thus, the losses for an
episode are computed as a sum over the timesteps t ∈ [0, T] as follows, for the actor (Equation 1) and for
the critic (Equation 2, employing the smooth L1 loss, denoted as L1smooth):

Lossθ =
T∑

t=0

(
T∑

τ=t

rτ − v̂(st, w)
)
· ∇θ log(πθ(at|st)) (1)

Lossw =
T∑

t=0
L1smooth

(
T∑

τ=t

rτ , v̂(st, w)
)

(2)

Finally, θ and w are updated by using the computed losses over the entire batch, multiplied with a learning
rate.

Neural architecture. We describe the architecture of the CNN-based neural model used by the puzzle
generator. We employ a similar architecture for both the HoCMaze and Karel domains, as presented in
Figure 16. Only the input size for the grid (i.e., D × 16 × 16, where D = 12 for HoCMaze and D = 14
for Karel) and code features (i.e., F, where F = 9 for HoCMaze and F = 12 for Karel) differ. We process
the grid by 3 CNN blocks (i.e., one block composed of Conv2D, ReLU, and MaxPooling2D layers), after
which we apply 5 fully connected (linear) layers, thus obtaining the grid embedding. To the grid embedding,
we concatenate the code features, which are represented in a binary manner (e.g., increase in coverage,
current decision type). We then pass the concatenated tensor through an additional fully-connected layer,
and its output is then passed to both the action head and the value head (i.e., necessary for the Actor-Critic
algorithm).

24

Published in Transactions on Machine Learning Research (01/2024)

Input D× 16× 16 Grid

Code features, Size = F

CNN Block 1
Conv2D, kernel size = 3, padding 1, 64 × 64

ReLU
MaxPool2D, kernel size = 2, padding 0

CNN Block 2
Conv2D, kernel size = 3, padding 1, 64 × 64

ReLU
MaxPool2D, kernel size = 2, padding 0

CNN Block 3
Conv2D, kernel size = 3, padding 1, 64 × 64

ReLU
MaxPool2D, kernel size = 2, padding 0

Linear 1 CNN output size (256) × 1024

Linear 2 1024 × 512

Linear 3 512 × 256

Linear 4 256 × 128

Linear 5 128 × 32

Linear 6 Concatenated features size (32 + F) × 8

Linear 7 (Action and Value) 8 × action space 8 × 1

Figure 16: Architecture of the neural model used by the puzzle generator. D denotes the depth of the input
grid and F denotes the size of the code features tensor, both different for each of the HoCMaze and Karel
domains.

25

Published in Transactions on Machine Learning Research (01/2024)

E Experimental Evaluation with Synthetic Task Specifications: Details

In this section, we detail the instantiations of the scoring functions, give more insight into the synthetic
dataset creation process, and show the details of the training processes for both the code generator and the
task generator.

E.1 Scoring Function Fscore

Next, we describe the two instantiations for Fscore as used in the two domains HoCMaze and Karel. We adopt
a scoring function similar to that of (Ahmed et al., 2020), where Fscore is used for guiding a Monte Carlo Tree
Search, as an evaluation function that describes the desired properties of their system’s output. We note
that our method can work with any other instantiation of the scoring function Fscore. The instantiations
we use for Fscore for each of the HoCMaze and Karel domains are defined in Equations 3 and 4 and are
comprised of different components: (i) Fcov(Tout

IO , Cout) ∈ [0, 1] computes the coverage ratio, i.e., ratio of
executed blocks to total number of blocks; (ii) Fsol(Tout

IO , Cout) ∈ {0, 1} evaluates to 1 if Cout correctly solves
Tout

IO , i.e., no crashing, reaching the goal/converting the pre-grid to the post-grid; (iii) Fnocross(Tout
IO , Cout) ∈

[0, 1] computes the ratio of cells visited exactly once with regard to the total number of visited cells; (iv)
Fnocut(Tout

IO , Cout) ∈ {0, 1} evaluates to 0 if there is a shortcut sequence comprised of basic actions; (v)
Fnotred(Tout

IO , Cout) ∈ {0, 1} evaluates to 0 if there are redundant action sequences in Cout, e.g., sequences
like turnLeft, turnRight, or if the codes obtained by eliminating one action, loop or conditional from
Cout solves Tout

IO ; (vi) Fqual(Tout
IO , Cout) ∈ [0, 1] evaluates the visual quality of Tout

IO as per Equation 5; (vii)
Fcutqual(Tout

IO , Cout) ∈ [0, 1] evaluates visual quality of the shortest path made only of basic actions, similar
to Fqual. We set α1 = α2 = 1

2 and α3 = α4 = α5 = 1
3 .

FHoCMaze
score (Tout, Cout) =1

[
Fcov(Tout

IO , Cout) = 1,Fsol(Tout
IO , Cout) = 1,Fnocross(Tout

IO , Cout) = 1,

Fnocut(Tout
IO , Cout) = 1,Fnotred(Tout

IO , Cout) = 1
]
·[

α1Fcov(Tout
IO , Cout) + α2Fqual(Tout

IO , Cout)
] (3)

FKarel
score (Tout, Cout) =1

[
Fcov(Tout

IO , Cout) = 1,Fsol(Tout
IO , Cout) = 1,Fnocross(Tout

IO , Cout) = 1,

Fnocut(Tout
IO , Cout) = 1,Fnotred(Tout

IO , Cout) = 1
]
·[

α3Fcov(Tout
IO , Cout) + α4Fqual(Tout

IO , Cout) + α5Fcutqual(Tout
IO , Cout)

] (4)

We use the same measure of visual quality for both domains, keeping into account the number of moves,
turns, segments, long-segments, and turn-segments, as explained next. More specifically, segments and
long-segments correspond to consecutive sequences of ‘moves’ containing more than 3 and 5 actions,
respectively; turn-segments correspond to consecutive sequences of ‘turnLeft’ or ‘turnRight’ containing
more than 3 actions. The formula for Fqual is given in Equation 5 below; we also clip the values for each
counter # w.r.t. its corresponding normalization factor (not depicted here for brevity).

Fqual(Tout, Cout) =3
4 ·
(

1
4 ·
(#moves

2n + #turns
n

+ #segments
n/2 + #long-segments

n/3

))
+

1
4 ·
(

1− #turn-segments
n/2

) (5)

E.2 Synthetic Task Specifications

Domain-specific elements. As introduced in Sections 2 and 4, we use two DSLs shown in Fig-
ures 17a and 17b, adapted from the DSLs in (Bunel et al., 2018; Ahmed et al., 2020).

26

Published in Transactions on Machine Learning Research (01/2024)

code C := def Run () do y
rule y := s | g | s; g
rule s := a | s; s | If (b) do s

| If (b) do s Else s
| Repeat (x) do s

rule g := RepeatUntil (goal) do s
action a := move | turnLeft | turnRight
bool b := pathAhead | pathLeft | pathRight
iter x := 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

(a) DSL for HoCMaze domain

code C := def Run () do s
rule s := a | s; s | If (b) do s | If (b) do s Else s

| While (b) do s | Repeat (x) do s
action a := move | turnLeft | turnRight

| putMarker | pickMarker
bool b := pathAhead | pathLeft | pathRight

| no-pathAhead | markerPresent | no-markerPresent
iter x := 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

(b) DSL for Karel domain

Domain All Easy Hard
(depth, constructs) (depth, constructs)

(1, 0) (2, 1) (2, 2) (3, 2) (3, 3)

HoCMaze 1, 016 183 69 47 136 581
Karel 1, 027 300 155 277 295 0

(c) Dataset of synthetic task specifications

Figure 17: (a) Synthetic datasets used for training/evaluation in Section 4). (b) DSLs for two domains.

Algorithm 1: Specification Dataset Collection Procedure
Input: list S of tuples (code structure s, required size l); maximum candidate set size m;
D← ∅ ; /* Dataset initialized to empty set */
foreach (s, l) ∈ S do

C← ∅ ; /* Candidate set initialized to empty set */
while size(C) < m do

code← GenerateCode(s);
task← TaskOracle(code);
score← Fscore(task, code);
if score > 0 then

add (code, task, score) to C;

sort C according to the score, in decreasing order;
counter ← 0;
while counter < l and C ̸= ∅ do

(code, task, score) ← Pop(C);
accept ← Inspect(task, code) ; /* Inspection step */
if accept then

ψ ← ExtractSpecs(code);
add ψ to D;
counter ← counter+1;

Output: Dataset D;

Dataset. We follow Algorithm 1 to create dataset D. For each code structure, we generate a set of
candidate codes and obtain an oracle task for these codes. We filter them out if a low-quality task is
obtained, supplementing this filtering with an additional inspection step. This inspection step is necessary
because semantic irregularities (e.g., IfElse with the same If and Else bodies) can get past the previous
filtering step. As the compute and implementation efforts are larger for an automatic system that would
detect such irregularities, which are easy to spot, we opt for a direct inspection step. Figure 17c provides a
summary of datasets D for each domain.

27

Published in Transactions on Machine Learning Research (01/2024)

E.3 Training Process

Training the code generator. We employ a standard approach, using an imitation (supervised) form of
learning, with a cross-entropy loss for an LSTM-based architecture (see Appendix D) (Devlin et al., 2017;
Bunel et al., 2018). We augment Dtrain by adding all the possible combinations of construct instantiations
for a given code. The training plots and the hyperparameters used can be seen in Figure 18. We report the
validation performance smoothed via an exponential decay function, and the batch loss averaged over one
epoch.

0 10 20 30 40 50 60
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

HoCMaze:Validation Performance
HoCMaze:Training Loss

(a) HoCMaze

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Karel:Validation Performance
Karel:Training Loss

(b) Karel

HyperParameter HoCMaze Karel
Max. Epochs 60 100

Batch Size 32 32
Learning Rate 5× 10−4 5× 10−4

Dict. Size 59 59
Max. Blocks 17 17

(c) Hyperparameters

Figure 18: Illustration of training details for the code generator. (a) and (b) show the training curves with
mean epoch loss and validation performance, based on metricM, for both the HoCMaze and Karel domains.
(c) shows the hyperparameters employed for the code generator training.
Training the puzzle generator. We use an RL procedure, using the instantiations of Fscore as rewards.
We augment the RL training set with additional codes produced by the previously trained code generator.
To encourage higher quality tasks, we use a form of curriculum as follows: after a certain epoch, we give
a reward larger than 0 only if the ratio between the scores of the output task and the TaskOracle’s
task is larger than a factor λ̂2; we gradually increase λ̂2 from 0.8 to 0.9. For Karel, we also employ a
temperature parameter during training, encouraging exploration during inference. The training plots and
the hyperparameters used can be seen in Figures 19. We report the validation performance (i.e., same
metric employed for NeurPuzzleGen) smoothed via an exponential decay function, and the batch reward
averaged over one epoch.

0 50 100 150 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

HoCMaze:Validation Performance
HoCMaze:Training Reward

(a) HoCMaze

0 50 100 150
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Karel:Validation Performance
Karel:Training Reward

(b) Karel

HyperParameter HoCMaze Karel
Max. Epochs 500 500

Batch Size 32 32
Learning Rate 10−4 10−4

Temperature 1 0.5
Curriculum True True

(c) Hyperparameters

Figure 19: Illustration of training details for the puzzle generator. (a) and (b) show the training curves
with mean epoch reward and validation performance, based on metric M for both the HoCMaze and Karel
domains. A form of curriculum learning was employed, which explains the lack of general monotonicity for
the reward. (c) shows the hyperparameters employed for the puzzle generator training.
Further implementation details. We limit the number of possible initial locations for a grid to one
representative per quadrant. In total, we consider 5 quadrants (i.e., top-left, bottom-left, center, top-right,
bottom-right). We do this to limit the action space to a more tractable amount for a variable grid size. With
5 quadrants and 4 possible orientations, this leads to 5 × 4 = 20 possible initial location/orientation pairs,
offering already enough variability.

28

Published in Transactions on Machine Learning Research (01/2024)

Detailed results on synthetic task specifications. Figure 20 reports evaluation results for different
techniques for a fixed number of code/puzzle rollouts across two domains and segments, complementary to
Figure 5.

Technique HoCMaze Karel
All Easy Hard All Easy Hard

BaseTaskSync:5,p:10 13.6 (1.3) 46.2 (4.1) 2.0 (1.3) 35.7 (1.0) 49.3 (0.9) 10.9 (2.7)
NeurTaskSync:5,p:10 81.4 (3.7) 100.0 (0.0) 74.3 (5.1) 92.6 (1.4) 100.0 (0.0) 79.3 (3.9)
BasePuzzleGenc:fix,p:10 55.6 (1.8) 91.7 (2.4) 41.9 (2.3) 71.8 (3.8) 86.6 (3.8) 45.0 (3.9)
NeurPuzzleGenc:fix,p:10 78.4 (2.5) 100.0 (0.0) 70.3 (3.4) 79.8 (0.6) 92.0 (1.3) 57.7 (1.8)

Figure 20: Results on synthetic task specifications for HoCMaze and Karel; see Figure 17c and Section 4.

29

Published in Transactions on Machine Learning Research (01/2024)

F Experimental Evaluation with Real-World Task Specifications: Details
F.1 Real-World Task Specifications
In Figures 21 and 22 below, we list source tasks T and codes C for 10 task specifications mentioned in Figure 6.

Allowed blocks: {move,
turnLeft, turnRight,
Repeat}

Maximum size: 5

(a) Source T for ψ0

def Run(){
Repeat(3){
move
move
turnRight

}
}

(b) Source C for ψ0

Allowed blocks: {move,
turnLeft, turnRight,
RepeatUntil}

Maximum size: 6

(c) Source T for ψ1

def Run(){
RepeatUntil(goal){
turnRight
move
turnLeft
move

}
}

(d) Source C for ψ1

Allowed blocks: {move,
turnLeft, turnRight,
Repeat}

Maximum size: 6

(e) Source T for ψ2

def Run(){
Repeat(4){
move

}
turnLeft
Repeat(5){
move

}
}

(f) Source C for ψ2

Allowed blocks: {move,
turnLeft, turnRight,
RepeatUntil, IfElse}

Maximum size: 5

(g) Source T for ψ3

def Run(){
RepeatUntil(goal){
If(pathAhead){
move

}
Else{
turnLeft

}
}

}

(h) Source C for ψ3

Allowed blocks: {move,
turnLeft, turnRight,
RepeatUntil, If}

Maximum size: 7

(i) Source T for ψ4

def Run(){
RepeatUntil(goal){
move
If(pathLeft){
turnLeft

}
If(pathRight){
turnRight

}
}

}

(j) Source C for ψ4

Figure 21: Overview of HoCMaze sources.

30

Published in Transactions on Machine Learning Research (01/2024)

Allowed blocks: {move, turnLeft,
turnRight, pickMarker,
putMarker}

Maximum size: 6

(a) Source T for ψ5

def Run(){
move
move
putMarker
move
move

}

(b) Source C for ψ5

Allowed blocks: {move, turnLeft,
turnRight, pickMarker,
putMarker, While}

Maximum size: 8

(c) Source T for ψ6

def Run(){
putMarker
While(pathAhead){
move
turnLeft
move
turnRight
putMarker

}
}

(d) Source C for ψ6

Allowed blocks: {move, turnLeft,
turnRight, pickMarker,
putMarker, While}

Maximum size: 10

(e) Source T for ψ7

def Run(){
While(pathAhead){
move
pickMarker

}
turnLeft
turnLeft
While(pathAhead){
move

}
turnLeft
turnLeft

}

(f) Source C for ψ7

Allowed blocks: {move, turnLeft,
turnRight, pickMarker,
putMarker, While, If}

Maximum size: 8

(g) Source T for ψ8

def Run(){
While(no-pathAhead){
If(markerPresent){
pickMarker

}
turnLeft
move
turnRight
move

}
}

(h) Source C by ψ8

Allowed blocks: {move, turnLeft,
turnRight, pickMarker,
putMarker, While, Repeat}

Maximum size: 5

(i) Source T for ψ9

def Run(){
While(pathAhead){
move
Repeat(4){
pickMarker

}
}

}

(j) Source C by ψ9

Figure 22: Overview of Karel sources.

31

Published in Transactions on Machine Learning Research (01/2024)

F.2 GPT4TaskSyn

We describe next the details of our interaction with GPT-4 for generating the visual puzzles Tout
IO and

the intermediate code Cout via the GPT4TaskSyn techniques. Our interaction is conducted through the
platform (OpenAI, 2023a). We try several strategies and prompts to make GPT-4 work for synthesizing
visual programming tasks, as it tends to struggle with logical and spatial reasoning. Thus, we opt for a
two-stage task synthesis process which works the best. We first ask GPT-4 to generate a code Cout for ψin,
by using 5 separate queries.

For the GPT4TaskSyn-converse technique, we start with an initial prompt and then use follow-up prompts
to fix any mistakes, as GPT-4 occasionally ignores part of the specifications. The initial and follow-up
prompts used for generating Cout are presented in Figures 23a and 24a. We select the best code generated
during the 5 separate queries based on our expertise. The second stage comprises of additional 5 separate
queries for generating Tout

IO for the selected code Cout. Again, we start with an initial prompt and then use
follow-up prompts to fix any issues. The follow-up prompts are necessary because GPT-4 tends to struggle
with spatial orientation and with the relationship between Cout and Tout

IO . The initial and follow-up prompts
used for generating Tout

IO are presented in Figures 23b and 24b. Similar to the code selection process, we
select the best visual puzzle generated during the 5 separate queries based on our expertise. Once we get
Cout and Tout

IO , we set Tout
code as for BaseTaskSyn and NeurTaskSyn.

For the GPT4TaskSyn-fewshot, technique, we employ a few-shot approach for both stages, by first giving
3 synthesis examples (i.e., for code and task synthesis, respectively). We do not use follow-up prompts here.
The few-shot prompts are presented in Figures 25 and 26.

32

Published in Transactions on Machine Learning Research (01/2024)

Code: Initial prompt
I am working in the block-based visual programming domain of Hour of Code: Maze Challenge from code.org.
In this domain, the following types of coding blocks are available:
- Basic action blocks: move forward, turn left, turn right.
- Boolean conditions: path ahead, path left, path right.
- Loops: repeatUntil(goal), repeat(int).
- Conditionals: if(boolean), if(boolean)else.

In this domain, a task is represented as an 8x8 visual grid that contains WALL cells, FREE cells, AVATAR
(with specific location and direction), and GOAL. We represent a task’s 8x8 visual grid with the following
symbols.
represents a WALL cell.
+ represents a FREE cell.
* represents GOAL.
E represents AVATAR’s location facing East direction.
W represents AVATAR’s location facing West direction.
N represents AVATAR’s location facing North direction.
S represents AVATAR’s location facing South direction.
Below, I am giving you a program structure. Can you generate a code that respects this program structure?

— Structure —
[SKETCH]

You should not change the structure. This means that you shouldn’t add or remove any loops (e.g., re-
peatUntil(goal), repeat(int)) and conditionals (e.g., if(boolean), if(boolean)else). The program needs to be
valid, meaning that bodies of constructs cannot remain empty. To complete this given structure, you can
use basic action blocks, boolean conditions, and iteration numbers that are available in the Hour of Code:
Maze Challenge programming.

— Code —

Code: Follow-up prompt in case of constructs changed
Your code does not follow the program structure I have given. You shouldn’t add or remove any loops (e.g.,
repeatUntil(goal), repeat(int)) and conditionals (e.g., if(boolean), if(boolean)else). Can you try to generate
a new code for the same structure?

Code: Follow-up prompt for any other issues
Your code could be improved! You can think of producing a better code by reasoning about the AVATAR’s
actions when the code is executed. Can you try to generate a new code respecting the program structure I
have given?

(a) Prompts used for obtaining Cout

33

Published in Transactions on Machine Learning Research (01/2024)

Task: Initial prompt
I am working in the block-based visual programming domain of Hour of Code: Maze Challenge from code.org.
In this domain, the following types of coding blocks are available:
- Basic action blocks: move forward, turn left, turn right.
- Boolean conditions: path ahead, path left, path right.
- Loops: repeatUntil(goal), repeat(int).
- Conditionals: if(boolean), if(boolean)else.

In this domain, a task is represented as an 8x8 visual grid that contains WALL cells, FREE cells, AVATAR
(with specific location and direction), and GOAL. We represent a task’s 8x8 visual grid with the following
symbols.
represents a WALL cell.
+ represents a FREE cell.
* represents GOAL.
E represents AVATAR’s location facing East direction.
W represents AVATAR’s location facing West direction.
N represents AVATAR’s location facing North direction.
S represents AVATAR’s location facing South direction.
Below I am giving you a solution code. Can you generate a task with 8x8 visual grid that would be solved
by this code?

— Solution —
[CODE]

The visual grid must contain AVATAR (with specific location and direction) along with GOAL, and can
have WALL cells and FREE cells. Number your grid with row numbers (1 to 8) and column numbers (1
to 8). Also, you should tell me the position of AVATAR and GOAL in your generated task so we are sure
about the numbering.
You can verify the correctness of your generated task by executing the solution code on your task. A solution
code for a task takes AVATAR to GOAL when executed. Note that AVATAR can only move on FREE cells
and will crash if it tries to go to a WALL cell. If your generated task is not correct, you should try again to
generate a correct task.

— Task —

Task: Follow-up prompt for any issues
Your code does not solve the generated grid. Be careful with the AVATAR as it should reach the goal
after the code execution. Keep the code fixed. Can you try to generate a new visual grid and explain your
reasoning? Recall that your code, when executed, should take the AVATAR from its initial location to the
GOAL.

(b) Prompts used for obtaining the main part of Tout
IO

Figure 23: Prompts used in the implementation of GPT4TaskSyn-converse technique for HoCMaze domain.

34

Published in Transactions on Machine Learning Research (01/2024)

Code: Initial prompt
I am working in the block-based visual programming domain of Karel programming. In this domain, the
following types of coding blocks are available:
- Basic action blocks: move forward, turn left, turn right, pick marker, put marker.
- Boolean conditions: path ahead, path left, path right, marker present, no path ahead, no marker present.
- Loops: while(boolean), repeat(int).
- Conditionals: if(boolean), if(boolean)else.

In this domain, a task is represented as a pair of 10x10 visual pregrid and 10x10 visual postgrid. This pregrid
and postgrid contain WALL cells, FREE cells, AVATAR (with specific location and direction), and markers.
We represent a task’s 10x10 visual pregrid and postgrid with the following symbols.
represents a WALL cell.
+ represents a FREE cell.
m represents a cell with marker.
E represents AVATAR’s location on a cell without marker, facing East direction.
W represents AVATAR’s location on a cell without marker, facing West direction.
N represents AVATAR’s location on a cell without marker, facing North direction.
S represents AVATAR’s location on a cell without marker, facing South direction.
Em represents AVATAR’s location on a cell with marker, facing East direction.
Wm represents AVATAR’s location on a cell with marker, facing West direction.
Nm represents AVATAR’s location on a cell with marker, facing North direction.
Sm represents AVATAR’s location on a cell with marker, facing South direction.
Below, I am giving you a program structure. Can you generate a code that respects this program structure?

—- Structure —-
[SKETCH]

You should not change the structure. This means that you shouldn’t add or remove any loops (e.g.,
while(boolean), repeat(int)) and conditionals (e.g., if(boolean), if(boolean)else). The program needs to
be valid, meaning that bodies of constructs cannot remain empty. To complete this given structure, you can
use basic action blocks, boolean conditions, and iteration numbers that are available in Karel programming.

— Code —

Code: Follow-up prompt in case of constructs changed
Your code does not follow the programming structure I have given. You shouldn’t add or remove any
loops (e.g., while(boolean), repeat(int)) and conditionals (e.g., if(boolean), if(boolean)else). Can you try to
generate a new code for the same structure?

Code: Follow-up prompt for any other issues
Your code could be improved! You can think of producing a better code by reasoning about the Karel
AVATAR when the code is executed. Can you try to generate a new code?

(a) Prompts used for obtaining Cout

35

Published in Transactions on Machine Learning Research (01/2024)

Task: Initial prompt
I am working in the block-based visual programming domain of Karel programming. In this domain, the
following types of coding blocks are available:
- Basic action blocks: move forward, turn left, turn right, pick marker, put marker.
- Boolean conditions: path ahead, path left, path right, marker present, no path ahead, no marker present.
- Loops: while(boolean), repeat(int).
- Conditionals: if(boolean), if(boolean)else.

In this domain, a task is represented as a pair of 10x10 visual pregrid and 10x10 visual postgrid. This pregrid
and postgrid contain WALL cells, FREE cells, AVATAR (with specific location and direction), and markers.
We represent a task’s 10x10 visual pregrid and postgrid with the following symbols.
represents a WALL cell.
+ represents a FREE cell.
m represents a cell with marker.
E represents AVATAR’s location on a cell without marker, facing East direction.
W represents AVATAR’s location on a cell without marker, facing West direction.
N represents AVATAR’s location on a cell without marker, facing North direction.
S represents AVATAR’s location on a cell without marker, facing South direction.
Em represents AVATAR’s location on a cell with marker, facing East direction.
Wm represents AVATAR’s location on a cell with marker, facing West direction.
Nm represents AVATAR’s location on a cell with marker, facing North direction.
Sm represents AVATAR’s location on a cell with marker, facing South direction.
Below I am giving you a solution code. Can you generate a task with a pair of 10x10 visual pregrid and
10x10 visual postgrid that would be solved by this code?

— Solution —
[CODE]

Both the visual pregrid and visual postgrid must contain AVATAR (with specific location and direction),
and can have WALL cells, FREE cells, and markers. Number your grids with row numbers (1 to 10) and
column numbers (1 to 10). Also, you should tell me the position of AVATAR in your generated pregrid and
postgrid so we are sure about the numbering.
You can verify the correctness of your generated task by executing the solution code on your task. A solution
code for a task transforms the pregrid into the postgrid when executed. Note that AVATAR can only move
on FREE cells and will crash if it tries to go to a WALL cell. If your generated task is not correct, you
should try again to generate a correct task.

— Task —

Task: Follow-up prompt for any issues
Your code does not solve the generated pregrid and postgrid. Be careful with the AVATAR in the postgrid
as it should show the effect of the code execution. Keep the code fixed. Can you try to generate a new visual
pregrid and postgrid and explain your reasoning? Recall that your code, when executed, should transform
the pregrid into the postgrid. Be careful with the AVATAR in the postgrid as it should show the effect of
the code execution.

(b) Prompts used for obtaining the main part of Tout
IO

Figure 24: Prompts used in the implementation of GPT4TaskSyn-converse technique for Karel domain.

36

Published in Transactions on Machine Learning Research (01/2024)

Code: Few-shot prompt
I am working in the block-based visual programming domain of Hour of Code: Maze Challenge from code.org.
In this domain, the following types of coding blocks are available:
- Basic action blocks: move forward, turn left, turn right.
- Boolean conditions: path ahead, path left, path right.
- Loops: repeatUntil(goal), repeat(int).
- Conditionals: if(boolean), if(boolean)else.

In this domain, a task is represented as an 8x8 visual grid that contains WALL cells, FREE cells, AVATAR
(with specific location and direction), and GOAL. We represent a task’s 8x8 visual grid with the following
symbols.
represents a WALL cell.
+ represents a FREE cell.
* represents GOAL.
E represents AVATAR’s location facing East direction.
W represents AVATAR’s location facing West direction.
N represents AVATAR’s location facing North direction.
S represents AVATAR’s location facing South direction.
Below, I will give you a program structure. Can you generate a code that respects this program structure?
You should not change the structure. This means that you shouldn’t add or remove any loops (e.g., re-
peatUntil(goal), repeat(int)) and conditionals (e.g., if(boolean), if(boolean)else). The program needs to be
valid, meaning that bodies of constructs cannot remain empty. To complete this given structure, you can
use basic action blocks, boolean conditions, and iteration numbers that are available in the Hour of Code:
Maze Challenge programming.
I am giving you some examples comprising a program structure and a code that respects the structure.
Provide the code for the last structure.

— Example i: Structure —
[SKETCH_i]
— Example i: Code —
[CODE_i]

— Example n: Structure —
[SKETCH_n]
— Example n: Code —

(a) Prompts used for obtaining Cout

37

Published in Transactions on Machine Learning Research (01/2024)

Task: Few-shot prompt
I am working in the block-based visual programming domain of Hour of Code: Maze Challenge from code.org.
In this domain, the following types of coding blocks are available.
- Basic action blocks: move forward, turn left, turn right.
- Boolean conditions: path ahead, path left, path right.
- Loops: repeatUntil(goal), repeat(int).
- Conditionals: if(boolean), if(boolean)else.

In this domain, a task is represented as an 8x8 visual grid that contains WALL cells, FREE cells, AVATAR
(with specific location and direction), and GOAL. We represent a task’s 8x8 visual grid with the following
symbols.
represents a WALL cell.
+ represents a FREE cell.
* represents GOAL.
E represents AVATAR’s location facing East direction.
W represents AVATAR’s location facing West direction.
N represents AVATAR’s location facing North direction.
S represents AVATAR’s location facing South direction.

Below I will give you a solution code. Can you generate a task with 8x8 visual grid that would be solved by
this code?
The visual grid must contain AVATAR (with specific location and direction) along with GOAL, and can
have WALL cells and FREE cells. Number your grid with row numbers (1 to 8) and column numbers (1
to 8). Also, you should tell me the position of AVATAR and GOAL in your generated task so we are sure
about the numbering.
You can verify the correctness of your generated task by executing the solution code on your task. A solution
code for a task takes AVATAR to GOAL when executed. Note that AVATAR can only move on FREE cells
and will crash if it tries to go to a WALL cell. If your generated task is not correct, you should try again to
generate a correct task.
I am giving you some examples comprising a solution code and task that is solved by this code. Provide the
task for the last solution code.

— Example i: Solution —
[CODE_i]
— Example i: Task —
[TASK_i]

— Example n: Solution —
[CODE_n]
— Example n: Task —

(b) Prompts used for obtaining the main part of Tout
IO

Figure 25: Prompts used in the implementation of GPT4TaskSyn-fewshot technique for HoCMaze domain.

38

Published in Transactions on Machine Learning Research (01/2024)

Code: Few-shot prompt
I am working in the block-based visual programming domain of Karel programming. In this domain, the
following types of coding blocks are available:
- Basic action blocks: move forward, turn left, turn right, pick marker, put marker.
- Boolean conditions: path ahead, path left, path right, marker present, no path ahead, no marker present.
- Loops: while(boolean), repeat(int).
- Conditionals: if(boolean), if(boolean)else.

In this domain, a task is represented as a pair of 10x10 visual pregrid and 10x10 visual postgrid. This pregrid
and postgrid contain WALL cells, FREE cells, AVATAR (with specific location and direction), and markers.
We represent a task’s 10x10 visual pregrid and postgrid with the following symbols.
represents a WALL cell.
+ represents a FREE cell.
m represents a cell with marker.
E represents AVATAR’s location on a cell without marker, facing East direction.
W represents AVATAR’s location on a cell without marker, facing West direction.
N represents AVATAR’s location on a cell without marker, facing North direction.
S represents AVATAR’s location on a cell without marker, facing South direction.
Em represents AVATAR’s location on a cell with marker, facing East direction.
Wm represents AVATAR’s location on a cell with marker, facing West direction.
Nm represents AVATAR’s location on a cell with marker, facing North direction.
Sm represents AVATAR’s location on a cell with marker, facing South direction.

Below, I will give you a program structure. Can you generate a code that respects this program structure?
You should not change the structure. This means that you shouldn’t add or remove any loops (e.g.,
while(boolean), repeat(int)) and conditionals (e.g., if(boolean), if(boolean)else). The program needs to
be valid, meaning that bodies of constructs cannot remain empty. To complete this given structure, you can
use basic action blocks, boolean conditions, and iteration numbers that are available in Karel programming.
I am giving you some examples comprising a program structure and a code that respects the structure.
Provide the code for the last structure.

— Example i: Structure —
[SKETCH_i]
— Example i: Code —
[CODE_i]

— Example n: Structure —
[SKETCH_n]
— Example n: Code —

(a) Prompts used for obtaining Cout

39

Published in Transactions on Machine Learning Research (01/2024)

Task: Few-shot prompt
I am working in the block-based visual programming domain of Karel programming. In this domain, the
following types of coding blocks are available.
- Basic action blocks: move forward, turn left, turn right, pick marker, put marker.
- Boolean conditions: path ahead, path left, path right, marker present, no path ahead, no marker present.
- Loops: while(boolean), repeat(int).
- Conditionals: if(boolean), if(boolean)else.

In this domain, a task is represented as a pair of 10x10 visual pregrid and 10x10 visual postgrid. This pregrid
and postgrid contain WALL cells, FREE cells, AVATAR (with specific location and direction), and markers.
We represent a task’s 10x10 visual pregrid and postgrid with the following symbols.
represents a WALL cell.
+ represents a FREE cell.
m represents a cell with marker.
E represents AVATAR’s location on a cell without marker, facing East direction.
W represents AVATAR’s location on a cell without marker, facing West direction.
N represents AVATAR’s location on a cell without marker, facing North direction.
S represents AVATAR’s location on a cell without marker, facing South direction.
Em represents AVATAR’s location on a cell with marker, facing East direction.
Wm represents AVATAR’s location on a cell with marker, facing West direction.
Nm represents AVATAR’s location on a cell with marker, facing North direction.
Sm represents AVATAR’s location on a cell with marker, facing South direction.

Below I will give you a solution code. Can you generate a task with a pair of 10x10 visual pregrid and 10x10
visual postgrid that would be solved by this code?
Both the visual pregrid and visual postgrid must contain AVATAR (with specific location and direction),
and can have WALL cells, FREE cells, and markers. Number your grids with row numbers (1 to 10) and
column numbers (1 to 10). Also, you should tell me the position of AVATAR in your generated pregrid and
postgrid so we are sure about the numbering.
You can verify the correctness of your generated task by executing the solution code on your task. A solution
code for a task transforms the pregrid into the postgrid when executed. Note that AVATAR can only move
on FREE cells and will crash if it tries to go to a WALL cell. If your generated task is not correct, you
should try again to generate a correct task.
I am giving you some examples comprising a solution code and task that is solved by this code. Provide the
task for the last solution code.

— Example i: Solution —
[CODE_i]
— Example i: Task Pregrid —
[TASK_PREGRID_i]
– Example i: Task Postgrid —
[TASK_POSTGRID_i]

— Example n: Solution —
[CODE_n]
— Example n: Task Pregrid —

(b) Prompts used for obtaining the main part of Tout
IO

Figure 26: Prompts used in the implementation of GPT4TaskSyn-fewshot technique for Karel domain.

40

	Introduction
	Motivation and Overview
	Related work

	Problem Setup
	Our Synthesis Technique NeurTaskSyn
	Overview
	Generating the Solution Code Cout
	Generating the Visual Puzzle TIOout

	Training and Validation on Synthetic Specifications
	Evaluation Setup
	Evaluation w.r.t. Scoring-based Metrics
	Evaluation w.r.t. Runtime Metrics

	Experiments on Real-World Specifications
	Concluding Discussions
	Table of Contents
	Discussion
	Illustrative Examples: Details
	Example for HoCMaze in Figure 8
	Example for Karel in Figure 9

	Our Synthesis Technique NeurTaskSyn: Details
	Generating the Solution Code Cout
	Generating the Visual Puzzle TIOout

	Experimental Evaluation with Synthetic Task Specifications: Details
	Scoring Function Fscore
	Synthetic Task Specifications
	Training Process

	Experimental Evaluation with Real-World Task Specifications: Details
	Real-World Task Specifications
	GPT4TaskSyn

