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Abstract

The recent explosion of question answering
(QA) datasets and models has increased the in-
terest in the generalization of models across
multiple domains and formats by either train-
ing on multiple datasets or by combining mul-
tiple models. Despite the promising results of
multi-dataset models, some domains or QA for-
mats may require specific architectures, and
thus the adaptability of these models might
be limited. In addition, current approaches
for combining models disregard cues such as
question-answer compatibility. In this work,
we propose to combine expert agents with a
novel, flexible, and training-efficient architec-
ture that considers questions, answer predic-
tions, and answer-prediction confidence scores
to select the best answer among a list of answer
candidates. Through quantitative and quali-
tative experiments we show that our model
i) creates a collaboration between agents that
outperforms previous multi-agent and multi-
dataset approaches in both in-domain and out-
of-domain scenarios, ii) is highly data-efficient
to train, and iii) can be adapted to any QA for-
mat. We release our code and a dataset of an-
swer predictions from expert agents for 16 QA
datasets to foster future developments of multi-
agent systemsl.

1 Introduction

The large number of question answering (QA)
datasets released in the past years has been ac-
companied by models specialized on them (Rogers
et al., 2021; Dzendzik et al., 2021). These
datasets and models differ by domain (e.g., biomed-
ical, Wikipedia, etc), required skills (e.g., numer-
ical, multi-hop, etc), and format (e.g., extractive,
multiple-choice, etc). This variety of tasks and
overspecialization of the corresponding models
have led the community towards developing sim-
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Q: How many people did the gunman kill?
Context: “...it could result in a gunfight and
then we might have 23 people killed instead of ecight.”
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Figure 1: Given a question, each expert agent provides a
prediction with a confidence score and MetaQA selects
the best answer. Correct answers in . Wrong
answers in red.

ple unified models that can generalize across do-
mains and formats through unifying dataset formats
(Khashabi et al., 2020), creating models trained on
multiple datasets (Fisch et al., 2019; Talmor and
Berant, 2019; Khashabi et al., 2020), and design-
ing ensemble methods for QA agents (Geigle et al.,
2021). All these research lines have a potential
impact on end-user applications because general-
ization can help create robust systems and ease the
implementation of QA models. More abstractly,
these research lines also share a central research
question: how to combine QA skills.

We argue that a one-size-fits-all architecture may
encounter some limitations to combine QA skills.
For instance, Raffel et al. (2020) has observed that
a single model trained on multiple tasks may un-
derperform the same architecture trained on a sin-
gle task. An alternative approach is to combine
multiple expert agents. Geigle et al. (2021) pro-
pose a model that given a question and a list of
agents, selects an agent trained on the domain of
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the input question. However, even though they
achieve a classification accuracy greater than 90%,
they disregard the actual predictions and confidence
scores from the agents when selecting the output
agent, which may result in underestimating high-
performing models on out-of-domain questions.

To address the limitations of previous ap-
proaches, we propose a novel model to combine
heterogeneous expert agents (i.e., different architec-
tures, formats, and tasks). It takes a question, and
a list of candidate answers with confidence scores
as input and selects the best answer (Figure 1). We
modify the embedding mechanism of the Trans-
former encoder (Vaswani et al., 2017) to embed
the confidence score of each candidate answer. In
addition, we use a multi-task training objective that
makes the model learn two complementary tasks:
selecting the best candidate answer and identifying
agents trained on the domain of the input question.

Unlike multi-dataset models, our approach
learns to match questions with answers, an im-
mensely easier task than end-to-end QA itself. This
makes our model remarkably data efficient as it
only needs 16% of the amount of data needed to
train multi-dataset models.

We compile a list of 16 QA datasets that en-
compass different domains, formats, and reasoning
skills to conduct experiments on. Through quanti-
tative experiments we show that our MetaQA 1) es-
tablishes a successful collaboration between agents,
ii) outperforms multi-agent and multi-dataset mod-
els in both in-domain and out-of-domain scenarios,
iii) excels in minority domains, and iv) is highly
efficient to train. Our contributions are:

* A new approach for multi-skill QA that estab-
lishes a collaboration between agents.

* A model called MetaQA that utilizes question,
answer, and confidence scores to select the
best candidate answer for a given question.

 Extensive analyses showing the successful col-
laboration between agents and the training ef-
ficiency of our approach.

* A dataset of (QA Agents, Questions, and an-
swer predictions) triples that cover different
QA formats, domains, and skills to foster fu-
ture developments of multi-agent models.

2 Related Work

Currently, there are two approaches to solve ques-
tions from multiple QA domains: ensemble models
and multi-dataset models. The former combines
multiple QA agents trained on a single dataset and
the latter is a model trained on multiple datasets.

Ensemble Methods for QA. A well-known
method for combining expert agents is the Mix-
ture of Experts (MoE). It requires training a set
of models and combining their outputs with a gat-
ing mechanism (Jacobs et al., 1991). However,
this approach would require jointly training mul-
tiple agents, which can be extremely expensive,
and sharing a common output space to combine
the agents. These limitations make it unfeasible
to implement in our setup, where a large number
of heterogeneous agents are combined (i.e., agents
with different architectures, target tasks, and out-
put formats such as integers for multiple-choice or
answer spans for span extraction).

Recently, Geigle et al. (2021) proposed agent
classifiers on top of a Transformer to identify the
most appropriate agent for a given question. How-
ever, they disregard answer predictions when se-
lecting the agent and hence, agents that are effec-
tive in out-of-domain questions are underestimated.
Lastly, Friedman et al. (2021) average the weights
of adapters (Houlsby et al., 2019) trained on single
datasets to obtain a multi-dataset model. However,
their architecture is limited to span extraction.

Multi-dataset models consist of training a
model on various datasets to generalize it to multi-
ple domains. Talmor and Berant (2019) conduct ex-
tensive analysis of the generalization of QA models
using ten datasets. However, they only experiment
on extractive tasks and, due to their model architec-
ture (BERT for span extraction), it is not possible
to extend it to other tasks such as abstractive or
visual QA. Fisch et al. (2019) created a competi-
tion on QA generalization using 18 datasets. These
datasets are from very different domains such as
Wikipedia and biomedicine, among others. How-
ever, they also focus only on extractive datasets.
Lastly, Khashabi et al. (2020) takes one step
further showing that the different QA formats can
complement each other to achieve a better general-
ization. They use an encoder-decoder architecture
and transform the questions into a common format.
However, we argue that their approach is limited by
the fact that some questions may require a specific



skill that must be modeled in a particular manner
(e.g. numerical reasoning) and, this is not possible
with their simple encoder-decoder.

3 Model

We propose a new model, shown in Figure 2, to
combine QA agents by integrating cues of the QA
task, such as question-answer compatibility. We
also define two complementary tasks: i) in-domain
agent selection (Agent Selection Networks, AgSeN,
in Figure 2) and ii) answer selection (AnsSel net-
work in Figure 2). The division of the problem
into these two learnable tasks is vital to ensure that
MetaQA considers out-of-domain agents that can
give a correct answer, unlike TWEAC (Geigle et al.,
2021). To achieve this, the backbone of our archi-
tecture relies on an encoder Transformer (Vaswani
et al., 2017) whose input is the concatenation of
the question with the candidate answers from each
agent. Each answer is separated by a new token

[ANS] that informs the model of the beginning
of a new answer candidate.
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Figure 2: MetaQA architecture. The Agent Selection
Networks, AgSeN, identifies the best agent for the input
question Q and the Answer Selection, AnsSel, selects
the best answer prediction. confy, is the confidence score
from the agent for answer k.

We devise a new embedding for the Transformer
encoder to include the confidence score of the pre-
dictions of each agent (Figure 3). While the origi-
nal encoder uses the token ¢;, position p;, and seg-
ment s; embeddings, we add an agent confidence
embedding c; to these three.
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As usual, the segment embedding, s; is used to
distinguish two parts of the input: the input ques-
tion (segment A) and the candidate answers (seg-
ment B). As for the new c¢;, it is obtained with a
feed-forward network f that takes an answer confi-
dence conf; and creates an embedding c;.
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where Idx is a function that given a list of tokens
returns their indexes in the encoder input.

otherwise
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Figure 3: Description of our novel embedding system
including confidence scores from the agents.

We leverage two types of embeddings from the
output of the encoder. The first one is the em-
bedding of the [CLS] token. This embedding
captures information about the domain of the input
question and is used as the input to k£ independent
feed-forward networks called Agent Selection Net-
work (AgSeN) to classify the agent trained on the
domain of the input question in the same way as
in TWEAC. The second type of embedding used is
the embedding of the [ANS] tokens. They con-
tain the cues needed to discriminate the best answer
to the input question. These [ANS] embeddings
are concatenated with the model selection scores
and input into a final feed-forward network, called
Answer Selection (AnsSel), that selects the best
candidate answer according to the domain of the
question and the candidate answers.

3.1 Training

As previously mentioned, our model learns two
complementary tasks: i) agent selection and ii)
answer selection. Thus, to learn these two tasks we
define the following loss function:

k
aq
! = ? ; EAgSthi + 042€AnsSel 3)

where £ 445.n, is the loss of one AgSeN net-
work and £ 4,551 the loss of the AnsSel network.



Dataset Characteristics #  Expert Agents Used for
SQuAD (Rajpurkar et al., Crowdsourced questions on 1 Span-BERT Large (Joshi et al., all extractive + DROP
2016) Wikipedia 2020) for SQUAD
NewsQA (Trischler et al., Crowdsourced questions about 2 Span-BERT Large for NewsQA all extractive + DROP
2017) News 3 Span-BERT Large for HotpotQA all extractive + DROP
HotpotQA (Yang et al., 2018)  Crowdsourced multi-hop ques- 4 Span-BERT Large for SearchQA all extractive + DROP
° tions on Wikipedia 5  Span-BERT Large for NQ all extractive + DROP
S SearchQA (Dunn et al., 2017) Web Snippets, Trivia questions 6 Span-BERT Large for TriviaQA- all extractive + DROP
g from J! Archive web
M NQ (Kwiatkowski et al., 2019)  Wikipedia, real user queries on 7  Span-BERT Large for QAMR all extractive + DROP
Google Search 8  Span-BERT Large for DuoRC all extractive + DROP
TriviaQA-web (Joshi et al., Web Snippets, crowdsorced trivia 9  ROBERTa Large (Liu et al., 2019)  all multiple choice
2017) questions for RACE
QAMR (Michael et al., 2018)  Wikipedia, predicate-argument 10 RoBERTa Large for HellaSWAG all multiple choice
understanding 11 RoBERTa Large for SIQA all multiple choice
DuoRC (Saha et al., 2018) Movie Plots from IMDb and 12 AIBERT xxlarge-v2 (Lan et al.,  all multiple choice
Wikipedia 2020) for CSQA
RACE (Lai et al., 2017) Exams requiring passage summa- 13 BERT Large-wwm (Devlin et al., BoolQ
L. . . 2019) for BoolQ
rization and attitude analysis R P
S CSQA (Talmoretal., 2019)  Web Snippets, common-sense 14 TASE (Segal et al., 2020) for DROP DROP
2 . 15 Adapter BART Large (Pfeiffer et al., NarrativeQA
Q reasoning 2020) for NarrativeQA
& BoolQ (Clark et al., 2019) Wikipedia, Yes/No questions 16 Hvb .dor CEIT& 1vel 2020) for H HvbridOA
£ HellaSWAG (Zellers et al., Completing sentences using com- yoru er (Chen et al., ) for Hy- ybridQ
= Conc bridQA
= 2019) mon sense
SIQA (Sap et al., 2019) Common sense in social interac-
tions Table 2: List of the expert agents and datasets in which
~ DROP (Dua et al., 2019) Wikipedia, numerical reasoning they are used.
2 NarrativeQA (Kocisky et al., Books, Movie Scripts
<
2018)
HybridQA (Chen et al., 2020)  Wikipedia tables and paragraphs . . .
§ lection on the film domain, and this allows us to

Table 1: Summary of the datasets used. Abs. stands for
abstractive and MM for multi-modal.

We compute the loss of the AnsSel network using
Cross-Entropy while for the AgSeN networks we
use the Binary Cross Entropy.

The labels to train AnsSel are obtained by com-
paring the prediction of each agent with the correct
answer. If the F1 score is higher than a thresh-
old, 6, we consider the prediction as correct. As
for AgSeN,, its training label is 1 when the input
question is from the training set of the i‘" agent.

4 Experimental Setup
4.1 Datasets

‘We have collected a series of QA datasets cover-
ing different formats, domains, and reasoning skills
(Table 1). In particular, we use four formats: extrac-
tive, multiple-choice, abstractive, and multimodal.

For extractive, we use the MRQA 2019 shared
task collection (Fisch et al.,, 2019), QAMR
(Michael et al., 2018), and DuoRC (Saha et al.,
2018). We add these two additional datasets to add
more diversity to the training set. In detail, QAMR
requires predicate-argument understanding, a skill
that agents should have to solve most QA datasets.
As for DuoRC, it is the only dataset in our col-

study transfer learning from other domains. The
multiple-choice datasets require boolean reasoning,
commonsense, and passage summarization skills
and as we can observe in Table 1, there is an over-
lap in the reasoning skills required to solve these
datasets. Lastly, we include abstractive QA follow-
ing (Khashabi et al., 2020) and multimodal datasets
to show that our approach can solve any type of
question while multi-dataset models are limited to
certain formats.

Most of these datasets do not have the labels of
the test set publicly available, except for RACE and
NarrativeQA. Since we need to do hyperparameter
tuning and hypothesis testing to compare models,
we divide the public dev set into an in-house dev
set and test sets following (Joshi et al., 2020). In
this way, we conduct hyperparameter tuning on the
dev set and hypothesis testing on the test set.

4.2 Expert Agents

To guarantee a fair comparison with MultiQA, we
have trained all the agents for extractive datasets us-
ing the same architecture as MultiQA, span-BERT,
a BERT model pretrained for span extraction tasks
that clearly outperforms BERT on the MRQA 2019
shared task (Joshi et al., 2020). More details on the
implementation are provided in Appendix A.2.
For the remaining datasets, we use agents that
are publicly available on HuggingFace or Github



Dataset MetaQA TWEAC Exp. Agent UnifiedQA MultiQA
SQuAD 91.98+0.111  89.09+0.36 92.92 90.81 93.14+0.18
NewsQA 71.71+£0.211  66.86+0.75 73.68 65.57 73.59+0.60
HotpotQA 79.27£0.15%  74.96+0.59 80.60 77.92 81.68+0.22
SearchQA 81.98+0.25+% 80.41+0.22 81.04 81.61 80.45+1.82
TriviaQA-web  80.63+0.267+ 76.55+0.15 79.34 72.34 77.76+4.15
NQ 81.20+£0.18F  78.06+0.37 81.97 75.58 82.57+0.30
DuoRC 51.24+0.20F1 44.28+0.23 43.77 34.65 46.99+0.15
QAMR 83.78+0.141  78.77+0.48 84.00 82.70 84.62+0.14
BoolQ 73.14+0.231  72.20+0.03 72.17 81.34 n.a.
CSQA 78.66+0.197  77.18+0.18 78.56 58.43 n.a.
HellaSSWAG 73.19+1.01 77.12+0.30 77.14 36.01 n.a.
RACE 84.71+£0.051  83.02+0.27 84.78 69.65 n.a.
SIQA 74.17+0.64 75.39+0.05 75.44 61.62 n.a.
DROP 73.04+1.98 74.61+0.00 74.61 42.45 n.a.
NarrativeQA  67.19+0.00 67.19+0.00 67.19 57.82 n.a.
HybridQA 50.94+0.00 50.94+0.00 50.94 n.a n.a

Table 3: MetaQA (ours) and the baselines on the test set of each dataset. Best results in bold. { represents that
MetaQA is statistically significant better than TWEAC. i represents that MetaQA is statistically significant better
than MultiQA. n.a means that the system cannot model the dataset.

with a performance close to the current state of the
art. A summary of the agents is provided in Table
2 and links to download them in Appendix A.1.

4.3 Baselines

We compare our approach with three types of mod-
els: 1) multi-agent systems, ii) multi-dataset mod-
els, and iii) expert agents. The first family is rep-
resented by our main baseline, TWEAC, a model
that maps questions to agents that can solve them
(Geigle et al., 2021). Our MetaQA also ascribes to
this family. As for the second family of models, we
use the currently most representative works, Mul-
tiQA (Talmor and Berant, 2019) and UnifiedQA
(Khashabi et al., 2020). MultiQA is a transformer
encoder with a span-extraction layer trained on
multiple extractive QA datasets. Because of this
span-extraction layer, it can only solve extractive
QA tasks. UnifiedQA, on the other hand, can solve
any QA task that can be converted into text-to-text
thanks to its architecture, an encoder-decoder trans-
former (i.e., extractive, abstractive, and multiple-
choice). Lastly, we also compare our proposal with
expert agents in each dataset, i.e., models trained
on a single dataset.

4.4 Evaluation

We evaluate our model and the baselines using the
official metrics of each dataset, i.e., macro-average
F1 for extractive, accuracy for multiple-choice, and
rouge-L for abstractive. In the particular case of
DROP, the official metric is macro-average F1,
and thus, we also use it. The reported results are
the means and standard deviations of the models
trained with five different seeds except for Uni-
fiedQA, which would be too expensive to compute.
We use a two-tailed T-Test to compare the models
with a p-value of 0.05.

5 Results

In the experiments, we answer the following ques-
tions: 1) is MetaQA able to combine multiple
agents without undermining the performance of
each one (§5.1), ii) is it robust on out-of-domain
scenarios? (§5.2), iii) how does agent collaboration
work? (§5.3), iv) how data-efficient is MetaQA?
(§5.4), and v) what is the effect of each module of
MetaQA? (§5.5).

5.1 Overall Performance

In Table 3, we compare the performance of
MetaQA with the baselines and prior works. To
begin with, our proposal outperforms TWEAC in



Dataset ‘ NewsQA HotpotQA SearchQA TriviaQA NQ DuoRC QAMR ‘ CSQA HellaSWAG SIQA ‘ DROP
MetaQA 71.46 79.37 81.87 80.65 81.08 51.01 83.87 78.40 72.14 73.90 | 74.96
UnifiedQA 65.57 77.92 81.61 72.34 75.58  34.65 82.70 58.43 36.01 61.62 | 4245
OOD MetaQA 64.39 70.62 67.82 71.76 65.52 51.23 71.90 46.48 55.09 59.77 | 22.36
OOD UnifiedQA 60.12 62.21 63.02 69.33 6149 3284 70.07 50.57 29.35 4493 | 22.30

Table 4: Results of leave-one-out ablation. Out-of-domain (OOD) models are trained on all the datasets except the
target dataset. Best OOD results in bold. Underlined results reflect OOD MetaQA outperforming full UnifiedQA.

all datasets except HellaSWAG and SIQA. On av-
erage, MetaQA achieves an average performance
boost of 1.8 with respect to TWEAC, and more
importantly, the performance boost is greater than
4 points on HotpotQA, DuoRC, NewsQA, QAMR,
and TriviaQA. Particularly, there is an astonish-
ing 6.8 points performance boost on DuoRC. This
is achieved thanks to the collaboration between
the agents established by MetaQA. In more detail,
while TWEAC only attempts to predict the agent
trained on the domain of the input question, we
aim to retrieve the best answer prediction, even if it
comes from a model trained on a completely differ-
ent dataset. For instance, in DuoRC, our MetaQA
selects the in-domain agent only for 43% of its
questions, i.e, most of the questions are assigned to
agents that are not trained on DuoRC.

When comparing to UnifiedQA, we can observe
the limitations of its architecture. For example,
the performance in DROP is clearly far from our
MetaQA. The reason for this is that while the expert
agent used by MetaQA is designed for numerical
reasoning, UnifiedQA does not have any mecha-
nism to achieve this, and since it is designed as a
general model for text-to-text generation, it cannot
be augmented with special reasoning modules. The
same phenomenon occurs in the multiple-choice
datasets and in some minority domains in extractive
QA (i.e., NewsQA and DuoRC). The only excep-
tion is in BoolQ, where UnifiedQA achieves the
best results. However, this is because TS5 (Raffel
et al., 2020), on which UnifiedQA is trained, is
already one of the SOTA models, while the agent
we use has lower performance and was the only
publicly available model in HuggingFace’s Model
Hub at the time of experimentation.

Lastly, compared to our model, MultiQA
achieves an average 0.24 performance increase.
However, our model was trained on only 13% of
its training set as later discussed in §5.4. In ad-
dition, our proposed approach achieves a striking
4.15 points performance boost on DuoRC, a 2.73
on TriviaQA-web, and a 1.55 on SearchQA thanks

to the collaboration between the agents. We also
observe that MultiQA mostly outperforms the ex-
pert agents on the Wikipedia-based datasets (i.e.,
SQuAD, HotpotQA, NQ, and QAMR). This sug-
gests that MultiQA benefits from the additional
Wikipedia data but struggles with other minority do-
mains. On the other hand, our approach excels on
those minority domains (i.e., SearchQA, TriviaQA-
web, and DuoRC) outperforming MetaQA by an
average of 2.88. This shows the successful collabo-
ration between the agents and MetaQA’s ability to
adapt to new domains.

5.2 Leave-One-Out Ablation

In this experiment, we analyze whether the combi-
nation of expert agents can successfully solve an
out-of-domain dataset. We conduct a leave-one-
out ablation test in both MetaQA and UnifiedQA.
In the case of MetaQA, it is possible to switch-
off agents without retraining the model. We just
need to set to null all the predictions of the ablated
agent. On the other hand, in UnifiedQA we have
to retrain the model without the target dataset for
each dataset. Table 4 shows that the out-of-domain
MetaQA outperforms UnifiedQA in all datasets ex-
cept in CommonSenseQA by an average of 9.14
points. In addition, in three datasets (DuoRC, Hel-
1aSWAG, and TriviaQA-web), the ablated MetaQA
even outperforms the full UnifiedQA trained on
those datasets. This is another piece of evidence
of the successful collaboration between agents and
suggests that agent collaboration might be more
suitable than transfer learning in certain situations.

5.3 MetaQA Analysis

We further analyze the behavior of our proposed
model by inspecting its predictions. In particular,
we investigate the collaboration between the agents
for DuoRC, SearchQA, and TriviaQA, where this
collaboration is particularly strong.

In DuoRC, the most helpful out-of-domain (ood)
agent is NewsQA with a chosen rate of 18.2% in
the test set. This might be due to the question



Dataset Question In-domain Agent OOD Agent
DuoRC Who does Rocky Balboa work for as  Adrian Tony Gazzo
an enforcer? (NewsQA Agent)
TriviaQA-web  Who played the character Mr Chips  Timothy Carroll MartinClunes
in the 2002 TV adaptation of Good- (DuoRC Agent)

bye Mr Chips
SearchQA

that bridge... I am safe"

This short story, written around 1820,
contains the line "If I can but reach

Legend of Sleepy
Hollow  (TriviaQA
Agent)

Legend

Table 5: Examples of questions where our MetaQA system disregard the in-domain agent due to their incorrect
predictions (in red) and selects and an out-of-domain (OOD) agent that returns the right answer (in green).

types of DuoRC and NewsQA. DuoRC’s ques-
tions are crowdsourced and are predominately
who-questions (42% of the training set as shown
in Appendix 11). NewsQA’s questions are also
crowdsourced and have a high proportion of who-
questions (24%). The other datasets with a high
amount of who-questions are NQ and SearchQA.
However, the questions of these two are very dif-
ferent in style to DuoRC (i.e., real user queries
and trivia from a TV show). An example of this
DuoRC-NewsQA agents collaboration is shown in
the first row of Table 5.

In TriviaQA-web, the second most commonly
used agent is trained on DuoRC. We randomly sam-
pled 50 QA pairs where DuoRC is the selected
agent and returns the right answer. In 20% of the
cases, the question was about a movie or book plot,
which indicates that our MetaQA successfully rec-
ognizes that this ood agent is able to respond to this
type of question. An example of this collaboration
is shown in the second row in Table 5.

In SearchQA, the most helpful ood agent is Triv-
1aQA (5% chosen rate). This might be due to their
similarities (Table 1). Within the pool of instances
where the in-domain agent fails and the TriviaQA
agent provides the right answer, we randomly ana-
lyzed 50 instances and discovered that in 84% of
the cases, the in-domain agent returns a partially
correct answer (i.e., it fails to identify the exact an-
swer boundaries), and in those cases, the ood agent
was able to identify the correct answer boundaries.
This is another example of the successful agent col-
laboration achieved by our MetaQA. Even though
the in-domain agent almost have the correct an-
swer, MetaQA selects an ood agent that gives a
better answer as shown in the last row on Table 5.

The main limitation of our approach is that when

no agent has a correct answer, MetaQA would re-
turn an incorrect answer. Table 6 describes how
often this scenario occurs. In extractive datasets,
without the outliers (i.e., SQUAD and DuoRC), we
observe this to be 18% on average per dataset. This
percentage drops to 8.35% in the multiple choice
datasets (without BoolQ, another outlier). As for
NarrativeQA and HybridQA, since we only use
one agent for each of them and these agents have a
relatively low performance, there is a large number
of unsolvable questions.

Dataset % Unsolvable
SQuAD 3.92
NewsQA 26.88
HotpotQA 19.93
SearchQA 13.97
NQ 19.15
TriviaQA-web 12.25
QAMR 15.81
DuoRC 47.41
BoolQ 1.47
SIQA 8.90
HellaSSWAG 8.90
CSQA 9.00
RACE 6.61
DROP 21.77
NarrativeQA 55.71
HybridQA 56.09

Table 6: Percentage of unsolvable questions for our
MetaQA with the selected agents, i.e., none of the agents
can give a correct answer.

5.4 Efficiency of MetaQA

We trained MetaQA with bins of QA instances for
each dataset and observe that the training converges
with only 10K instances/per dataset (i.e., 160K in-
stances including all datasets). This is only 16%



of the data needed to train UnifiedQA (900K in-
stances excluding HybridQA) and 13% of the data
needed to train MetaQA (600K of extractive QA
instances). The reason for this large saving is that
MetaQA only has to learn how to match questions
with answers because it reuses publicly available
agents. On the other hand, multi-dataset models
need to learn how to solve questions (i.e., language
understanding, reasoning skills, etc), a much more
complex task.

As for inference time, if all the agents fit on mem-
ory2, then multi-datasets models and our MetaQA
would have comparable running times. For exam-
ple, compared to MultiQA, since our extractive
agents use the same architecture as MultiQA, run-
ning the agents would take the same amount of
time as running MultiQA. Then, we would need
to select the answer. However, our MetaQA only
takes 0.05s/question to select the best candidate
answer. This makes it fast enough to not be notice-
able by the users. On the other hand, if the agents
do not fit in memory at the same time, it would be
needed to run them sequentially. Yet, this might
not be a problem because it is possible to predict
in advance which agents are more likely to give a
correct answer to a given question (Geigle et al.,
2021; Garg and Moschitti, 2021), which we leave
as future work. This would allow us to skip some
agents at run-time and improve the running time
dramatically in low-memory scenarios.

5.5 Ablation Study

Lastly, we quantitatively measure the impact of
each feature of MetaQA on its overall performance.
The first row of Table 7 shows that removing the
loss of the Agent Selection Network (AgSeN) hurts
the performance of MetaQA. This manifests that
our intuition of considering in-domain agents with-
out falling into the argumentum ad verecundiam
fallacy is correct. Lastly, the second row shows that
the confidence embeddings provide key informa-
tion to MetaQA to select an answer. For instance,
an in-domain agent could have a prediction with
low confidence because it does not know the an-
swer while an out-of-domain agent could have the
correct answer and be certain about it.

YIn our hardware and with our experimental setup, all
agents and MetaQA fit on our GPU memory.

Model Avg. Downgrade
Full model -
*gAgSeN -0.45

— Conf. Emb. -0.46

Table 7: Average performance loss across all datasets
of each ablated model compared to the full model.

6 Conclusion

In this work, we propose a new system to com-
bine expert agents for question answering (QA)
called MetaQA. It considers questions, answer pre-
dictions, and confidence scores from the agents
to select the best answer to a question. Through
quantitative experiments, we show that our model
avoids the limitations of multi-dataset models and
outperforms the baselines in both in-domain and
out-of-domain scenarios thanks to the agent col-
laboration established by MetaQA. Additionally,
since MetaQA learns how to match questions with
answers instead of end-to-end QA, it is higly data-
efficient to train.

We leave as future work: i) combining partially
correct answer predictions to generate a better an-
swer, ii) adding new agents without retraining the
whole MetaQA by fixing most of the weights and
only training the weights of the Agent Selection
Network, and iii) identifying a priori agents that
are likely to give an incorrect answer to skip them
at run-time.

Ethics Discussion

The proposed model, MetaQA, cannot generate un-
fair, biased, or harmful contents given that the ex-
pert agents it aggregates are fair because MetaQA
does not generate content, rather it selects from
Expert Agents. Future work should address how to
identify unfair content to avoid selecting it. Simi-
larly, the veracity of the answers given by MetaQA
rely on the expert agents and the evidence docu-
ments used.
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A Appendix

A.1 Expert Agents

#  Expert Agents Link
1 Span-BERT Large (Joshietal., in-house trained
2020) for SQuAD
2 Span-BERT  Large  for in-house trained
NewsQA
3 Span-BERT Large for Hot- in-house trained
potQA
4 Span-BERT  Large for in-house trained
SearchQA
5  Span-BERT Large for NQ in-house trained
6  Span-BERT  Large for in-house trained
TriviaQA-web
7 Span-BERT Large for QAMR  in-house trained
8  Span-BERT Large for DuoRC in-house trained
9  RoBERTa Large (Liu et al., https:/huggingface.co/LIAMF-
2019) for RACE USP/roberta-large-finetuned-
race
10 RoBERTa Large for Hel- https://huggingface.co/prajjwall/-
1aSWAG roberta_hellaswag
11 RoBERTa Large for SIQA in-house trained
12 AIBERT xxlarge-v2 (Lan https://huggingface.co/danlou/-
et al., 2020) for CSQA albert-xxlarge-v2-finetuned-
csqa
13 BERT Large-wwm (Devlin https://huggingface.co/lewtun/-
et al., 2019) for BoolQ bert-large-uncased-wwm-
finetuned-boolq
14 TASE (Segal et al., 2020) for https://github.com/eladsegal/-
DROP tag-based-multi-span-
extraction
15 Adapter BART Large (Pfeiffer in-house trained
et al., 2020) for NarrativeQA
16 Hybrider (Chen et al., 2020) https://github.com/wenhuchen/-

for HybridQA

HybridQA

Table 8: List of the expert agents and datasets in which
they are used for.

Table 8 provides the links to download the expert
agents used in this work.

A.2 Implementation

Our model was implemented using PyTorch
(Paszke et al., 2019) and HuggingFace’s Transform-
ers library (Wolf et al., 2020) with an Nvidia A100
and 16GB RAM. Both MetaQA and MultiQA were
implemented using Span-BERT large (335M pa-
rameters) while UnifiedQA uses T5-base (220M pa-
rameters, the closest to the 335M of our MetaQA).
The score embedder for MetaQA is implemented
as a linear layer with an input size of 1 and output
size of 1024 (i.e., the hidden size of Span-BERT
Large). a1 and a9 in Eq. 3 are set to 0.5 and 1
respectively. The Agent Selection Networks are
implemented as a linear layer with an input size of
1024 and an output size of 1. Lastly, the Answer
Selection Network (AnsSel) is also implemented
as a linear layer with an input size of number-of-
agents x 1025 (Span-BERT’s hidden size + 1 from
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Dataset Train Validation Test
SQuAD 86573 5253 5254
NewsQA 74160 2106 2106
NQ 104071 6418 6418
HotpotQA 72928 2950 2951
TriviaQA-web 61688 3892 3893
SearchQA 117384 8490 8490
DuoRC 58752 13111 13449
QAMR 50615 18908 18770
RACE 87866 4887 4934
CSQA 9741 611 610
HellaSWAG 39905 5021 5021
SIQA 33410 977 977
BoolQ 9427 1635 1635
DROP 77409 4767 4768
NarrativeQA 32747 3461 10557
HybridQA 62682 1733 1733

Table 9: Split sizes of each dataset.

the output of the agent selection network). The
threshold 6 to determine whether a candidate an-
swer is correct or not to create the labels to train
AnsSel is set to 0.7.

MetaQA was trained for one epoch using a batch
size of six, a weight decay of 0.01, a learning rate
of 5e-5, and 500 warmup steps.

All the extractive agents and MultiQA were
trained using the same architecture, Span-BERT
large, for two epochs, and with the same hyperpa-
rameters: batch size of 16, learning rate of 3e-5,
max length of 512, and doc stride of 128.

Lastly, UnifiedQA was trained for two epochs
using a batch size of four, a learning rate of Se-5,
a weight decay of 0.01, and was evaluated on the
dev set every 100K steps.

Any other parameter used the default value in
HuggingFace’s Transformers library. Each model
was trained five times with different random seeds
to do hypothesis testing except for UnifiedQA,
which would be too expensive to compute.

We used the implementation of HuggingFace’s
Dataset library (Lhoest et al., 2021) for the eval-
uation using EM and F1 metrics, while for the
ROGUE metric we used the official implementa-

tion?.

3https://pypi.org/project/rouge-score/


https://huggingface.co/LIAMF-USP/roberta-large-finetuned-race
https://huggingface.co/LIAMF-USP/roberta-large-finetuned-race
https://huggingface.co/LIAMF-USP/roberta-large-finetuned-race
https://huggingface.co/prajjwal1/roberta_hellaswag
https://huggingface.co/prajjwal1/roberta_hellaswag
https://huggingface.co/danlou/albert-xxlarge-v2-finetuned-csqa
https://huggingface.co/danlou/albert-xxlarge-v2-finetuned-csqa
https://huggingface.co/danlou/albert-xxlarge-v2-finetuned-csqa
https://huggingface.co/lewtun/bert-large-uncased-wwm-finetuned-boolq
https://huggingface.co/lewtun/bert-large-uncased-wwm-finetuned-boolq
https://huggingface.co/lewtun/bert-large-uncased-wwm-finetuned-boolq
https://github.com/eladsegal/tag-based-multi-span-extraction
https://github.com/eladsegal/tag-based-multi-span-extraction
https://github.com/eladsegal/tag-based-multi-span-extraction
https://github.com/wenhuchen/HybridQA
https://github.com/wenhuchen/HybridQA
https://pypi.org/project/rouge-score/

A.3 Adding New Agents

Augmenting MetaQA with a new agent only re-
quires adding one more AgSeN network and in-
creasing the output space of the AnsSel network.
Thus, it requires retraining the whole architecture
(including the Transformer encoder). However, as
discussed in §5.4, the training efficiency is one of
the strengths of our system.

A.4 Dataset Sizes

Table 9 contains the size of the train, validation,
and test splits of each dataset.

A.5 Dataset Licences

Table 10 shows the license of each dataset. In the
case of RACE, the authors did not provide any
license but specified that it can only be used for
non-commercial research purposes. In the case of
CommonSenseQA and SIQA there is no license
available, but they are freely available to download.
Our use of these datasets comply with their licenses
and intended uses.

Dataset License
MRQA MIT

DuoRC MIT

QAMR MIT

RACE NA
CommonSenseQA NA
HellaSWAG MIT

SIQA NA

BoolQ CCBY-SA 3.0
DROP CCBY-SA 4.0
NarrativeQA Apache 2.0
HybridQA MIT

Table 10: License of each dataset.

A.6 Wh-word Statistics

Table 11 shows the percentage of wh-words per
dataset.
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Dataset what where who when why which how
SQuAD 56.71 455 1082 747 148 7.73 11.23
NewsQA 4952 854 2446 501 0.11 317 9.19
HotpotQA 3798 461 2299 222 0.05 2939 276
SearchQA 7.55 9.5 3253 28.66 0.72 1832 272
NQ 16.58 13.05 40.02 2035 0.63 325 6.11
TriviaQA-web 30.16 1.56 1507 0.72 0.02 50.03 2.44
QAMR 61.75 523 1792 459 0.66 3.04 6.82
DuoRC 3516 9.68 4232 206 244 189 645

Table 11: Statistics of wh-words per dataset.
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