
Mining Math Conjectures from LLMs: A Pruning
Approach

Jake Chuharski1∗ Elias Rojas Collins1∗ Mark Meringolo2
1Massachusetts Institute of Technology 2Unaffiliated

{chuharsk,erojasc}@mit.edu
markpmeringolo@gmail.com

Abstract

We present a novel approach to generating mathematical conjectures using Large
Language Models (LLMs). Focusing on the solubilizer, a relatively recent con-
struct in group theory, we demonstrate how LLMs such as ChatGPT, Gemini, and
Claude1 can be leveraged to generate conjectures. These conjectures are pruned by
allowing the LLMs to generate counterexamples. Our results indicate that LLMs
are capable of producing original conjectures that, while not groundbreaking, are
either plausible or falsifiable via counterexamples, though they exhibit limitations
in code execution.

1 Introduction

Artificial intelligence, specifically deep learning, has created much discussion around the possibility
to augment human creativity with computational capability. Among the leading technologies pushing
this discussion are large language models (LLM’s) such as OpenAI’s ChatGPT, Anthropic’s Claude,
and Google’s Gemini (1; 2; 3). While LLMs have been widely recognized for their competence in
text generation, their interactions within abstract academic fields such as mathematics, specifically
with conjecture creation, remain under-explored. Initial work has evaluated LLMs’ ability to pass
exams like the SAT and MBA qualifying exams (4; 1). More recently, efforts have focused on
bench-marking their capacity to generate mathematical proofs (5). However, there has been little
work on bench-marking the ability of language models to act as a creative agent towards coming up
with new conjectures.

In this study, we use the Claude Sonnet, Gemini 1.5, and GPT-4 APIs to both generate conjectures
and write GAP computer algebra code to check them for plausibility. GAP (Groups, Algorithms, and
Programming) is a computer algebra system designed for computational group theory and related
areas in abstract algebra. However, GAP is not a proof assistant so does not give the user proofs
for theorems, but it can be used to check conjectures for immediate counterexamples. We work
specifically on the solubilizer subset which is a relatively new/unexplored construction in group
theory that contains much potential for novel conjectures (see Appendix A.1). GAP computer algebra
can check the conjecture for chosen groups and allows for language models to "guess and check".
The system provides a method to mine for conjectures using language models and a pruning step to
remove conjectures that are false for obvious (or sometimes non-obvious) reasons. This approach
offers a systematic method for generating and validating conjectures, combining model output with
automated computational verification without requiring a strong formal theorem prover.

*These authors contributed equally to this work
1We additionally add information from a small sample on OpenAI o1 preview in Appendix A.5

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



2 Related Work

Recent studies have explored LLMs’ role in conjecture generation. Johansson and Smallbone observe
that many of the symbolic structures generated by LLMs may already exist in training data, raising
concerns about genuine originality (6). They note that GPT-4 appears to have been trained on proof
libraries like QuickSpec, Hipster, and Isabelle/HOL, providing a potential caveat for verifying the
originality of any generated conjectures.

We mitigate this challenge by deliberately focusing on a mathematical area with limited prior exposure:
the solubilizer (see Appendix A.1). By iteratively updating prompts, we also attempt to steer the
models away from generating as many redundant conjectures which they also found to be a problem
because “GPT-4 usually produces the same kind of ‘generic’ lemmas every time” (6).

Other studies, such as Davies et al. (7), use machine learning to assist mathematicians in proof
creation rather than conjecture generation. In Wu et al. (8), LLMs are shown to autoformalize natural
language math into formal theorem provers like Isabelle, translating competition problems into formal
proofs with impressive accuracy. In Si et al. (9), LLMs are evaluated on the ability to be creative
agents in coming up with research ideas, however math was touched minimally. They additionally
corroborate the claim that “LLMs lack diversity in idea generation”(9). These approaches focus on
proof generation, formalization, or assistance, whereas our work emphasizes the initial creative step
of formulating new conjectures, and then provides an immediate ‘guess-and-check’ step to verify
plausibility.

3 Methodology

The method that we propose to “mine” for math theorems, shown in Table 10, is as follows:

1. We begin with a prompt that includes literature on the solubilizer from (10; 11; 12; 13; 14;
15; 16). The model is prompted to generate theorems related to the literature provided and
write GAP code to test conjectures on groups. Full prompting is provided in Appendix A.2.

2. The LLM then generates GAP code and the GAP code is run.

! If the code compiles and runs and the outcome is recorded.
% If the code does not compile the LLM is prompted again to fix the code, provided with

the output of the failing program. It is given the chance to do two revisions (in practice
allowing for further revision almost never results in working code).

3. If the result is that the conjecture is false, the theorem and it’s result is added to the prompt,
and the process is repeated with the false conjecture added to the set of ideas that are known
to fail.

This process was run with three models: ChatGPT 4 (gpt-4o-2024-05-13), Claude Sonnet
(claude-3-5-sonnet-20240620), and Gemini 1.5 (gemini-1.5-flash). LLM’s have a “Tem-
perature” parameter which varies the level of randomness in the outputs to a given prompt. This
is sometimes taken as a proxy for “Creativity”, although this description is dispuited (17). The
temperature for the Claude model was set to 1 for conjecture generation and .1 for code generation.
The GPT-4 conjecture was set to 1.08 for conjecture generation and was left at default for code
generation. The Gemini 1.5 conjecture generation was set to 1.5 (top_k: 5, top_p:.99) and
default for code generation. The values were generated by trial and error where the authors observed
qualitatively the most consistent conjecture variation without extreme hallucinations2.

3.1 Area of Focus

The mathematical area of focus is called the solubilizer and is defined as follows:
Definition 3.1. Let G be a finite group. For any element x ∈ G, the solubilizer of x in G is defined
as:

SolG(x) := {y ∈ G | ⟨x, y⟩ is soluble}.

More introductory and historical information on the solubilizer can be found in the Appendix A.1.
2For example, if the temperature is set too high in GPT-4, the model will return output in multiple languages

2



Figure 1: Method

4 Results

4.1 Performance Overview

The experiment provided three types of outcomes (Summarized in Table 3):

• Successful generation of counterexample-finding code in 25.95% of cases (109 out of 420
unique outputs).

• Generation of conjectures without counterexamples in 9.52% of cases (40 out of 420 unique
outputs).

• Generation of non-executable code in 64.52% of cases (271 out of 420 unique outputs).

Table 1: Classification of Outputs

Category ChatGPT Claude Gemini Total
Unique Conjectures 94 89 237 420
Total Output 249 258 250 757

No Counter-Examples 25 4 11 40
Couldn’t Execute Code 33 44 194 271
Conjecture Failed 36 41 32 109

4.2 Examples

The following is an example with no counter-examples from Claude:
Conjecture 4.1. Let G be a non-solvable group. For any element x in G, if SolG(x) is a subgroup,
then the Frattini subgroup of SolG(x) is contained in the Frattini subgroup of G.

This result is simple enough that the model can be prompted to prove the conjecture with slight
modification. See appendix A.4.1. The following is a conjecture that failed from Gemini (see A.4.2):
Conjecture 4.2. Let G be a non-solvable group, and let x ∈ G. If |SolG(x)| is divisible by exactly
two primes, then one of them is 2.
Output 4.3. Conjecture failed for group: PSL(3, 2)

Where PSL(3, 2) is the projective special linear group of 3x3 matrices over the finite field F2. Lastly,
we have an example where code could not be executed from GPT-4:
Conjecture 4.4. Let G be a finite non-solvable group and x ∈ G. Then for every abelian subgroup
A of G, we have SolG(x) ∩A ̸= {1}.

4.3 Similarity Analysis

To quantitatively measure diversity, we calculated the cosine self-similarity, and similarity between
conjecture sets/literature. The similarity results are summarized in Table 2. Where we see a maintained
level of similarity throughout the experiments and between models. See Appendix A.7 for heatmaps.

Scaling the system further by increasing the number of trials or generating more variations in the
prompt failed to yield significantly more diverse conjectures. However the quality did not decrease
either. This finding suggests that a different approach, such as multi-modal model interaction or
combining LLMs with automated theorem provers, could help diversity.

3



Table 2: Output Cosine Similarity Distribution

Metric Max Min Mean Median
ChatGPT vs. ChatGPT 0.9284 0.0486 0.2911 0.2658
Claude vs. Claude 0.9950 0.0921 0.4238 0.3683
Gemini vs. Gemini 0.8742 0.0132 0.2451 0.2264
ChatGPT vs. Claude 0.8695 0.0356 0.2699 0.2552
ChatGPT vs. Gemini 0.8892 0.02638 0.2442 0.2292
Claude vs. Gemini 0.7662 0.0149 0.2220 0.2102
Claude vs. Literature 0.7101 0 0.1501 0.1332
Gemini vs. Literature 0.8274 0 0.1812 0.1510
GPT-4 vs. Literature 0.9388 0 0.2139 0.1978

5 Discussion

5.1 Observations

Among the 757 outputs generated by the LLMs, 420 unique conjectures were identified. The high
number of duplicates shows a considerable redundancy in the results, as approximately 55.48% of
the conjectures were deemed to be unique. While not unexpected, the duplicates suggest that LLMs
likely rely on similar patterns when prompted similarly across trials as described in (6). However,
this did not significantly hinder overall performance other than increase the number of total iterations
needed to yield a desirable number of conjectures.

Not all of the conjectures generated by the models were entirely original and was verified by one of
the authors of the seven original solubilizer papers for all 420 unique conjectures. For example,
Theorem 5.1. Let G be an insoluble group and x an element of G. Then the cardinality of cannot be
equal to p2 for any prime p.

shows up in (12) and GPT-4 conjectured:
Conjecture 5.2. Let G be an insoluble group and x ∈ G. Then the cardinality of SolG(x) cannot be
equal to p2 for any prime p.

That being said, this result was contained in the system prompt and can be ignored. In all other cases
the models output conjectures that were distinct from anything found in literature or their system
prompt.

In 109 cases (25.95%), the generated code successfully identified counterexamples, which is critical
for falsifying conjectures. Secondly, of the 420 unique outputs, only 40 (9.52%) produced conjectures
with no counterexamples. ChatGPT significantly outperformed both Claude and Gemini in this area,
generating 26.60% valid conjectures compared to Gemini’s 4.64% and Claude’s 4.49%. This shows
that ChatGPT was more effective at producing conjectures that are plausible at first glance. However,
a large portion of the GPT-4 conjectures were looking at the size of the solubilizer rather than about
interactions with other groups, group structure, or subgroup properties. Therefore, one could argue
that they were easier to write code for, or at least more likely to succeed based on similarity. Further
still, results classified as having "no counterexamples" by GPT-4 seemed to be qualitatively more
obvious than those by Claude or Gemini (see Conjecture A.5 vs. Conjecture A.4 vs. Conjecture A.9).
Lastly, the fact that the models are able to generate novel, original conjectures at all provides promise
for these models to be used as useful tools when developing the theory of a new construction.

5.2 Limitations

A limitation observed in both models was the generation of non-executable code, which occurred in
271 instances (64.52% of unique outputs). Gemini and Claude struggled more with code execution,
having 81.86% and 49.44% instances of non-executable code respectively, compared to ChatGPT’s
37.76%. This potentially points to differences in how the models handle code syntax in GAP, however
the models were prompted to have a near identical code format (see Appendix A.2). This corroborates
the idea that some conjectures set by Claude/Gemini are more difficult to write code for, and therefore
more likely to fail in this system. Interestingly, there are some examples that Claude/Gemini gave

4



that would be much harder to check in GAP with a constrained time limit where Claude/Gemini
could not write executable code (see Appendix A.4.6). Lastly, we note that the models had different
approaches to generating code to test conjectures, with Claude and Gemini being more similar.
We found that ChatGPT liked to preemptively restrict the groups it would consider. For example,
ChatGPT conjectured that the solubilizer couldn’t be bigger than or that it couldn’t be exactly equal
to any of the following numbers (for all non-solvable groups) in seperate conjectures: [2, 3, 6, 8, 9,
10, 11, 12, 14, 15, 16, 18, 20, 24, 25, 27, 32, 49, 50, 126].

While this study focuses on group theory and solubilizers, a relatively unexplored area, the approach
could be generalized to other domains. We acknowledge limitations of using GAP, an algebra
software. However, future work could easily extend this methodology to fields like number theory,
geometry, representation theory, or combinatorics by integrating tools like SageMath, MAGMA, or
other computational solvers.

5.3 Future Work

We propose the investigation of conjecture generation in fields where existing conjectures are sparse
or absent. For example, LLMs could be applied to generate conjectures in newer or less explored
areas such as tropical geometry or higher homotopy theory, where automated tools exist but have
yet to be fully integrated with LLMs. Furthermore, the study above was limited to using a single
LLM. If one model is better at writing code and the other is better at conjectures, using a combination
structure could yield better results. We remark that a quantitative metric for ‘interestingness’ of a
math conjecture or problem seems to be elusive, nontrivial, yet useful (see Appendix A.6).

6 Conclusion

The study opens up several promising avenues for the use of LLMs in research. Our work, while
small, shows the potentially impactful way that LLM’s augmented with other computational capacity
can solve more complex problem. For example, further work integrating conjecture generation with
proof validation systems could streamline the process of discovery.

That being said, LLM-based conjecture generation is still very limited to existing knowledge. Rather
than producing fundamentally new ideas, LLMs are likely to lean on known results, limiting their
ability to drive groundbreaking discoveries (18). Indeed, when thinking of language models as
statistical traversers of some sort of higher dimensional surface built from training data, it is easy to
imagine that the models are not able to stray too far from what they are fed to generate the surface.
Specifically, conjectures and theorems involving well-understood subgroups on which the solubilizer
is inspired (think centralizer and normalizer) can serve as an incredibly large well from which an
LLM can sample a new direction about the solubilizer. This may all be permissible to a practitioner if
one is only interested in clearing out the brush around a new construct such as the solubilizer; but as
of writing, it should not be expected that these models will conjecture something profound.

We demonstrate that combining LLMs with computational resources like GAP can successfully
generate and test original, albeit simple math conjectures. Indeed, performance suggests that LLMs
like ChatGPT, Claude, and Gemini have potential, but only on conjectures that are similar to existing
ideas or are otherwise simple. Furthermore, the models face significant challenges in generating
executable code and avoiding duplicate conjectures. Indeed, ChatGPT-4 demonstrated stronger
performance in generating conjectures that could not be immediately falsified, Claude was slightly
more effective at identifying counterexamples, and Gemini had the least redundancy likely due to the
longer context window. The high percentage of non-executable code reinforces the need for robust
error-checking and handling within the models. GAP is limited in the variety of error codes that are
produced when code fails, so other more verbose computational algebra solvers could help with error
correction. Lastly, further analysis of failed code generation to find patterns of failure could lead to
better prompting for avoiding common bugs. Further work would likely include adding a formal
automated theorem prover or another form of neuro-symbolic proof engine, giving an end-to-end
system that can generate new conjectures and prove them in a single pass(19; 20). The authors are
also interested to see other new approaches for accurate conjecture generation in various abstract
fields, or more generally, improvements to conjecture generation by non-LLM based models.

5



References
[1] OpenAI, “GPT-4 Technical Report,” 2023.

[2] Anthropic, “Claude AI.” https://www.anthropic.com, 2023.

[3] G. Team, R. Anil, S. Borgeaud, and et. al, “Gemini: A family of highly capable multimodal
models,” 2024.

[4] C. Terwiesch, “Would ChatGPT3 Get a Wharton MBA? A Prediction Based on Its Performance
in the Operations Management Course.” Mack Institute for Innovation Management at the
Wharton School, University of Pennylvania, 2023.

[5] B. Romera-Paredes, M. Barekatain, A. Novikov, et al., “Mathematical discoveries from program
search with large language models,” Nature, vol. 625, pp. 468–475, 2024.

[6] M. Johansson and N. Smallbone, “Exploring mathematical conjecturing with large language
models,” in NeSy, pp. 62–77, 2023.

[7] A. Davies, P. Veličković, L. Buesing, et al., “Advancing mathematics by guiding human intuition
with ai,” Nature, vol. 600, pp. 70–74, 2021.

[8] Y. Wu, A. Q. Jiang, W. Li, M. N. Rabe, C. Staats, M. Jamnik, and C. Szegedy, “Autoformalization
with large language models,” ArXiv, vol. abs/2205.12615, 2022.

[9] C. Si, D. Yang, and T. Hashimoto, “Can llms generate novel research ideas? a large-scale human
study with 100+ nlp researchers,” 2024.

[10] B. Akbari, “More on the non-solvable graphs and solvabilizers,” 2018.

[11] B. Akbari, M. L. Lewis, J. Mirzajani, and A. R. Moghaddamfar, “The solubility graph associated
with a finite group,” 2020.

[12] B. Akbari, C. Delizia, and C. Monetta, “On the solubilizer of an element in a finite group,”
2022.

[13] B. Akbari, J. Chuharski, V. Sharan, and Z. Slonim, “Characterization of solubilizers of elements
in minimal simple groups,” 2023.

[14] D. Hai-Reuven, “Non-solvable graph of a finite group and solvabilizers,” 2013.

[15] A. Lucchini, “Solubilizers in profinite groups,” 2023.

[16] H. Mousavi, M. Poozesh, and Y. Zamani, “The impact of the solubilizer of an element on the
structure of a finite group,” 2023.

[17] M. Peeperkorn, T. Kouwenhoven, D. Brown, and A. Jordanous, “Is Temperature the Creativity
Parameter of Large Language Models?,” 2024.

[18] I. Mirzadeh, K. Alizadeh, H. Shahrokhi, O. Tuzel, S. Bengio, and M. Farajtabar, “Gsm-symbolic:
Understanding the limitations of mathematical reasoning in large language models,” 2024.

[19] T. H. Trinh, Y. Wu, Q. V. Le, et al., “Solving Olympiad Geometry Without Human Demonstra-
tions,” Nature, vol. 625, pp. 476–482, 2024.

[20] DeepMind, “AI solves IMO problems at silver medal level,” 2023. Accessed: 2024-09-10.

[21] J. H. Thompson, “Nonsolvable finite groups all of whose local subgroups are solvable,” Bull.
Am. Math. Soc., vol. 48, no. 2, pp. 511–592, 1973.

[22] R. Guralnick, B. Kunyavskiı̆, E. Plotkin, and A. Shalev, “Thompson-like characterization of the
solvable radical,” J. Algebra, vol. 300, no. 1, pp. 363–375, 2006.

[23] OpenAI, “Introducing openai o1-preview.” https://openai.com/index/
introducing-openai-o1-preview, 2024. Accessed: 2024-09-20.

6

https://www.anthropic.com
https://openai.com/index/introducing-openai-o1-preview
https://openai.com/index/introducing-openai-o1-preview


A Appendix / Supplemental Material

A.1 Solubilizer

A.1.1 Background

The solubilizer is a construct that can be attributed to Doron Hai-Reuven in (14) from 2013. Much of
the work in the area can be atributed to Banafsheh Akbari et al. in (10; 11; 12; 13). The construct
itself should be intelligible for anyone who has taken an introductory university algebra course,
although can be potentially unpredictable to work with. It is therefore also simple for the models to
understand, but non-trivial to produce conjectures. All of the models claim to have not heard of the
construction before, meaning that the training data either excluded this information or did not have
enough for it to be in the knowledge base. In either case, the models seem to be able to understand
the definition once it is given, and provide often accurate assumptions about how the set behaves. For
example, when testing these ideas on GPT-4, the model responded with the following:

Input: Give me the definition of the solubilizer in group theory

Output: “In group theory, there isn’t a concept specifically called ‘solubilizer.’ However, I suspect
you might be referring to the ‘solubility’ of a group or the concept of a ‘solvable group.’ A group G
is said to be solvable if there exists a sequence of subgroups

{e} = G0 ◁ G1 ◁ G2 ◁ · · · ◁ Gn = G

such that each Gi is a normal subgroup of Gi+1 and the quotient group Gi+1/Gi is abelian. Solvable
groups generalize the notion of abelian groups. Solvability is an important property in group theory
and plays a key role in Galois theory, which connects group theory with field theory. If you had a
different concept in mind or need more information about solvable groups or another topic, please
clarify, and I’ll be happy to assist further!"

We also further note that the model presents an almost identical response to “solvabilizer” instead of
“solubilizer” which is another name that the set can be found under in the literature. We then present
the definition to the model so that it can begin to formulate an understanding of the area.

Input: I will define the solubilizer as follows: Let G be a finite group. For an element x in G, we
define the solubilizer of x in G as the set: SolG(x) := {y ∈ G|⟨x, y⟩ is soluble}

Output: "Ah, I see. Given your definition, the solubilizer SolG(x) of an element x in G is the set of
all elements y in G such that the subgroup generated by x and y, denoted ⟨x, y⟩, is a solvable group.
To further elaborate on this:

1. ⟨x, y⟩ denotes the subgroup of G generated by the elements x and y. This is the smallest
subgroup of G that contains both x and y.

2. The condition that ⟨x, y⟩ is solvable means that there exists a sequence of subgroups, starting
with the trivial group and ending with ⟨x, y⟩, such that each subgroup in the sequence is a
normal subgroup of the next, and the quotient of successive subgroups is abelian.

3. The solubilizer SolG(x) is then the set of all elements y in G for which this condition holds.

This is an interesting definition, and it essentially captures the elements in G that, when paired with
x, produce a solvable subgroup. The concept seems to be related to understanding the structure and
solvability properties of subgroups within G. Do you have specific questions about this definition or
its properties?"

This output shows three correct assertions about the subset, so we test to see if the model can expand
further on it’s understanding without more input. The model is then asked to provide some conjectures
based on the newly learned definition. The idea is to gauge the model’s understanding of a single
definition and to see what material the model relates to the new definition to conjecture something
that it considers to be new material.

Input: Based on this definition, can you conjecture any theorems that might apply to this set?
Output: “Certainly! Given the definition of the solubilizer SolG(x) in a finite group G, we can
propose some conjectures or theorems. Here are a few ideas:

7



1. Non-Empty Solubilizer: For any element x in G, x belongs to SolG(x) because the
subgroup ⟨x⟩ (generated solely by x) is cyclic and hence solvable.
Theorem: For any x ∈ G, x ∈ SolG(x).

2. Subgroup Containment: If y belongs to SolG(x), then y−1 (the inverse of y) also belongs
to SolG(x). This is because if ⟨x, y⟩ is solvable, then ⟨x, y−1⟩ is also solvable.
Theorem: For any y ∈ SolG(x), y−1 ∈ SolG(x).

3. Closure under Solvability: If y1, y2 ∈ SolG(x) and their product y1y2 belongs to ⟨x, y1⟩
or ⟨x, y2⟩, then y1y2 should also belong to SolG(x).
Theorem (Conditional): For y1, y2 ∈ SolG(x), if y1y2 ∈ ⟨x, y1⟩ or y1y2 ∈ ⟨x, y2⟩, then
y1y2 ∈ SolG(x).

4. Entire Group Solvability: If G itself is solvable, then for any x ∈ G, SolG(x) = G.
Theorem: If G is solvable, then for all x ∈ G, SolG(x) = G.

5. Size of the Solubilizer: The size of SolG(x) provides information about the complexity of
the group’s structure in relation to solvability.
Conjecture: For certain classes of groups (e.g., simple groups), the size of SolG(x) relative
to the order of G may have particular bounds or properties.

All five of these ideas are true. The first four are easily proved to be correct mathematical statements
and the fifth is just a general statement that presents the (correct) expectation that the solubilizer may
be informative to studying the structure of the group.

A.1.2 Math

Let G be a finite group, and for any element x ∈ G, the solubilizer of x in G is defined as:

SolG(x) := {y ∈ G | ⟨x, y⟩ is soluble}.

In general, SolG(x) is not necessarily a subgroup of G. However, there are specific conditions under
which this set does form a subgroup. It has been proven in (14) that SolG(x) is a subgroup of G for
any element x ∈ G if and only if G is a soluble group.

A well-known result, attributed to Thompson (21), states that a finite group G is soluble if and only
if, for every x, y ∈ G, the subgroup ⟨x, y⟩ is soluble. Thus, a finite group G is soluble if and only if
for any element x ∈ G SolG(x) = G.

An important related concept is the soluble radical R(G), the largest soluble normal subgroup of
G. Guralnick et al. (22) demonstrated that for an element x ∈ G, x ∈ R(G) if and only if ⟨x, y⟩ is
soluble for all y ∈ G. Consequently, x ∈ R(G) if and only if SolG(x) = G.

A common question is how the structure of a single solubilizer influences the structure of the entire
group. For instance, it was shown in (14) that if G contains an element x such that all elements
of SolG(x) commute pairwise, then G must be abelian. Another example, (11) generalizes this
by proving that if there exists x ∈ G such that for every u1, u2, u3 ∈ SolG(x), the commutator
[u1, u2, u3] = 1, then γ3(G) = 1, implying that the group is nilpotent. Here, γ3(G) is the third term
in the lower central series of G. These are ideas that are more often explored by Claude and Gemini,
although are harder to verify.

The arithmetic properties of solubilizers also play a crucial role in determining group structure. For
example, if G contains an element x whose solubilizer has order p or p2 (where p is a prime), then G
is a p-group, as discussed in (12). These ideas seem to be of heavy focus for ChatGPT.

Thompson’s theorem (21) demonstrated that a finite group G is soluble if and only if every two-
generated subgroup of G is soluble. This motivates the definition of the solubilizer and highlights
its significance. Moreover, the solubilizer operates similarly to the centralizer in a group, with the
soluble radical R(G) functioning in a way comparable to the center of a group. Analogous to the
centralizer CG(x) = {y ∈ G | ⟨x, y⟩ is abelian}, the solubilizer describes solvability rather than
commutativity. However, unlike the centralizer, the solubilizer is not always a subgroup which was
initially tough for the models to rememeber, leading to this fact requiring repetition in the prompting.

8



A.2 Model Usage and prompting

Both the prompt for generating conjectures and the prompt for generating code were prefaced with:
1 """ You are a mathematician and efficient computer scientist. You

are interested in abstract algebra , but are generally very
knowledgeable and interested in the intersections between
different areas of math.

2

3 You have began working on the ’solubilizer ’ subset of a non -
solvable group. You are very good at writing GAP code. The user
will ask for either a conjecture , or GAP code to check a
conjecture.

4

5 When a user asks for GAP computer algebra code you will provide
nothing in your response except code to complete their task. When
writing code make sure that the answer to your question is PRINTED
to the terminal.

6

7 A maximum of two things should be printed by your code. If the
conjecture fails , the code should break and just print for which
group the conjecture failed. If the code does not generate any
counter -examples , the code should return "No Counter -examples !".

8

9 Additionally , make sure you only test conjectures on Non -Solvable
groups! For example , when checking a conjecture , you might want to
check it on all non -solvable groups of order less than one

million by using: SimpleGroupsIterator (1, 10^6). This means ONLY
give GAP computer algebra code unless the user asks for a
conjecture. When the user asks for a conjecture you should return
nothing but the conjecture ."""

The code generation system prompt for both models included code snippets for how to accurately and
consistently generate the solubilizer and had the format for how the conjectures should be checked
and output.

1 "The general function for the solubilizer in GAP is here , you will
have to write the rest of the checks yourself":

2 solubilizer := function(G, max , x)
3 rad := RadicalGroup(G);
4 if x in rad then
5 return G;
6 else
7 M := List(max);
8 M := Set(Filtered(M, m -> x in m));
9 maxes := [];

10 solx := [];
11 while Size(M) > 0 do
12 m := M[1];
13 if IsSolvable(m) then
14 solx := Union(solx , List(m));
15 maxes := Union(maxes , [m]);
16 Remove(M, 1);
17 else
18 MM := MaximalSubgroups(m);
19 MM := Set(Filtered(MM, mm -> x in mm));
20 Append(M, MM);
21 Remove(M, 1);
22 M := Set(M);
23 fi;
24 od;
25 return solx;
26 fi;
27 end;
28 "When you test a conjecture. Make sure to have the end of your code be

in this format":

9



29 CheckConjecture := function ()
30 local G, gen , x, solGx;
31

32 for G in SimpleGroupsIterator (1, 1000000) do
33 [PUT THE CODE TO CHECK THE CONJECTURE HERE!]
34 Print("Conjecture failed for group: ", StructureDescription(G)

, "\n");
35 return;
36 od;
37 Print("No Counter -examples !\n");
38 end;
39 CheckConjecture ();

Listing 1: Solubilizer Prompting

The system prompt for generating conjectures also included information from the literature that was
left in LaTeX form, including the subset’s definition as above. For brevity they will not all be listed
here but were in the form of:

1 Let \(G\) be a group. Then \(o(x)\) divides \(|\ operatorname{Sol}_G(x)
|\) for all \(x \in G\).

2

3 Let \(G\) be a group. Then \(|C_G(x)|\) divides \(|\ operatorname{Sol}
_G(x)|\) for all \(x \in G\).

At the end of the included known true conjectures, the system was also able to continuously update a
set of conjectures falsified by the model.

1 The following are conjectures that you know to be false:
2 Let \( G \) be a finite non -solvable group and \( x \in G \). Then \(

|\ operatorname{Sol}_G(x)| \) is always an even number.
3 Let G be a non -solvable group. For any element x in G, if Sol_G(x) is

a subgroup of G, then Sol_G(x) is nilpotent.
4 Let G be a non -solvable group. For any element x in G, if Sol_G(x) is

a subgroup of G, then the derived subgroup [Sol_G(x), Sol_G(x)] is
contained in the Fitting subgroup of G.

5 Let G be a non -solvable group. For any element x in G, the index of
Sol_G(x) in its normalizer N_G(Sol_G(x)) is always a prime power.

6 Let G be a non -solvable group. For any element x in G, if Sol_G(x) is
a subgroup , then the derived length of Sol_G(x) is strictly less
than the derived length of G.

A.2.1 Compute

The computer used for the experiments has the following specifications:

• Model: Macbook Air

• Chip: Apple M1

• Memory: 8Gb

• OS: MacOS BigSur 11.6 (20G165)

The experiments took between 48-72 hours to run for each model. This was mainly due to checking
all non-solvable (or in some cases just simple) groups of order up to 1,000,000.

A.3 Additional Examples

In the following we include one example of each type from each model.

A.3.1 Claude

Example with no counterexamples from Claude:

10



Conjecture A.1. Let G be a non-solvable group. For any two elements x, y ∈ G, if SolG(x)∩SolG(y)
is non-empty, then SolG(x) ∩ SolG(y) contains a non-trivial normal subgroup of G.

The following conjecture failed:
Conjecture A.2. Let G be a non-solvable group. For any element x in G, if SolG(x) is a subgroup
of G, then the derived subgroup [SolG(x),SolG(x)] is contained in the Fitting subgroup of G.
Output A.3. Conjecture failed for group: A5

In a similar example, the model could not write code that executed properly:
Conjecture A.4. Let G be a non-solvable group. For any element x in G, if SolG(x) is a proper
subgroup of G, then the intersection of SolG(x) with its normalizer in G is always properly contained
in the normalizer of the Fitting subgroup of G.

A.3.2 GPT-4

The following had no counterexamples from ChatGPT 4:
Conjecture A.5. For any finite non-solvable group G and any element x ∈ G, the set SolG(x) is not
a cyclic group.

Similarly GPT-4 suggested that the following be true although it was immediately obvious to be false:
Conjecture A.6. For any element x ∈ G of a non-solvable finite group G, the set SolG(x) contains
all elements of a certain conjugacy class in G

Output A.7. Conjecture failed for group: A5

Where A5 is the alternating group on five elements (see A.4.4). Lastly, an example where GPT-4
could not execute code for the conjecture:
Conjecture A.8. For any finite non-solvable group G, there exists an element x ∈ G such that
SolG(x) is a nilpotent subgroup of G.

A.3.3 Gemini

The following is a conjecture with no counterexample:
Conjecture A.9. Let G be a finite non-solvable group and suppose x ∈ G is not an element of
the soluble radical R(G) of G. Assume that ⟨x, xy⟩ is not solvable for any element y ∈ G. Then
⟨x, SolG(x)⟩ = SolG(x) for all x ∈ G.

The following is a conjecture that is false:
Conjecture A.10. Let G be a finite non-solvable group. For any element x of G, the probability that
a randomly chosen element y ∈ G is contained in SolG(x) is less than or equal to the probability
that y is contained in the radical of G.
Output A.11. Conjecture failed for group: A5

Where, again, A5 is the alternating group on 5 elements (see A.4.5). The following is a conjecture
where code could not be executed:
Conjecture A.12. Let G be a finite non-solvable group. Let x, y be two non-commuting elements of
G such that the subgroups generated by x and y, ⟨x, y⟩, is solvable. Then the probability of finding
a third element, w ∈ G, that commutes with both x and y, subject to the additional condition that
at least one of the two groups ⟨x,w⟩ or ⟨y, w⟩ is solvable must be equal to at most the product of
probabilities of a non-commutation of x and y and the existence of w that commutes with y and x.

A.4 Conjectures

A.4.1 Proof of Conjecture 4.1

Proof: By assumption, SolG(x) is a subgroup of G. Let Φ(G) and Φ(SolG(x)) denote the Frattini
subgroups of G and SolG(x), respectively. We aim to prove that

Φ(SolG(x)) ⊆ Φ(G).

11



The Frattini subgroup Φ(H) of a group H is the intersection of all maximal subgroups of H . In
particular, for any maximal subgroup M of SolG(x), there exists a maximal subgroup N of G such
that M ⊆ N . Since

Φ(SolG(x)) =
⋂

{M | M is a maximal subgroup of SolG(x)},

we have
Φ(SolG(x)) ⊆

⋂
{N | N is a maximal subgroup of G} = Φ(G).

Thus, we conclude that Φ(SolG(x)) ⊆ Φ(G).

A.4.2 Failure of Conjecture 4.2

• Conjecture failed for group: PSL(3, 2)

• Element: (2, 8, 4, 3, 6, 7, 5)

• Prime divisors of |SolG(x)| : [3, 7]

A.4.3 Failure of Conjecture A.2

• Conjecture failed for group: A5

• Element: (1,5,2,4,3)

• Derived subgroup: Group( [ (1,5,2,4,3) ] )

A.4.4 Failure of Conjecture A.6

• Conjecture failed for group: A5

• Conjugacy class: (3 4 5)

• Co-generator: (1 2 3)

• Generated group: ⟨(1 2 3), (3 4 5)⟩ = A5 is not solvable

A.4.5 Failure of Conjecture A.10

• Conjecture failed for group: A5

• Element: () (the identity element)

• Probability(SolG(x)) : 1

• Probability(Radical(G)): 1
60

A.4.6 Additional Conjectures

The following conjectures are just a couple of the conjectures that had code that was unable to be run
but are still potentially interesting from Claude:

Conjecture A.13. Let G be a non-solvable group. For any element x in G, if SolG(x) is a proper
subgroup of G, then the intersection of SolG(x) with all of its conjugates in G is always contained in
the hypercenter of G.

Conjecture A.14. Let G be a non-solvable group. For any element x in G, if SolG(x) is a proper
subgroup of G, then the normalizer of SolG(x) in G contains at least one element from each non-
abelian composition factor of G.

Conjecture A.15. Let G be a non-solvable group. For any element x in G, if SolG(x) is a proper
subgroup of G, then the commutator subgroup [SolG(x), G] contains at least one non-identity element
from each non-abelian composition factor of G.

Conjecture A.16. Let G be a non-solvable group. For any element x in G, if SolG(x) is a proper
subgroup of G, then the intersection of SolG(x) with its normalizer in G is always metabelian.

Conjecture A.17. Let G be a non-solvable group. For any element x in G, the subgraph of the power
graph of G induced by SolG(x) is always connected.

12



A.5 OpenAI o1

Here we briefly summarize data taken from OpenAI o1(23). Due to initial limiting factors and the
short timeline, the authors have not finished gathering sufficient data to be included into the main
body. We recieved 51 conjectures with the following data:

Table 3: OpenAI o1 Data

Category OpenAI o1
Unique Conjectures 51
Total Output 51

No Counter-Examples 22
Couldn’t Execute Code 1
Conjecture Failed 28

Perhaps unsurprisingly, the new model was able to execute code properly roughly 98% of the
time. Furthermore, the model only once needed to take a debug step. The authors believe that the
conjectures are not any significantly more interesting than the other ones given by Gemini and Claude,
although this model does give more interesting conjectures than GPT-4 in terms of the willingness
to give conjectures about relation of the solubilizer to other subgroups, conjugacy classes, etc. We
note that this model was more willing to stray from the system prompt in the GAP code wherein it
generated code that checked non-solvable groups that were not simple. Lastly, observe that all of
the conjectures are unique, which leaves this model so far being (albeit with a lower than desireable
number of samples to make a strong claim) the best one to use for this task in all aspects. The authors
intend to explore this further in the coming weeks.

A.5.1 Examples:

The following are four randomly chosen examples and their output.
Conjecture A.18. In any finite non-solvable group G, the intersection of SolG(x) over all x ∈
G \R(G) is equal to R(G), the solvable radical of G.
Output A.19. No Counter-examples!
Conjecture A.20. In any finite non-solvable group G, for any element x ∈ G \R(G), there does not
exist an element y ∈ SolG(x) such that ⟨x, y⟩ = G.
Output A.21. No Counter-examples!
Conjecture A.22. In any finite non-solvable group G, for any elements x, y ∈ G \ R(G), if
y ∈ SolG(x), then x /∈ SolG(y).
Output A.23. Conjecture failed for group: A5

Conjecture A.24. In any finite non-solvable group G, for any elements x, y ∈ G \R(G), if ⟨x, y⟩ is
solvable, then x and y are both contained in a common solvable maximal subgroup of G.
Output A.25. Conjecture failed for group: PSL(3, 2)

The system failed to write code for a single conjecture:
Conjecture A.26. In any finite group G, the solubilizer SolG(x) is invariant under all automorphisms
of G that fix x.

A.6 Conjecture ‘Interestingness’

In mathematics, evaluating the “interestingness” of a conjecture or problem is inherently subjective
and resists quantification. However, if one seeks a quantitative approach, there are several aspects
to be considered: the conjecture’s depth, its generality or specificity, its implications for other
fields, simplicity of solution, and whether it leads to significant advancements or novel methods.
Indeed, some of these are impossible to predict, and are not always necessary for a conjecture to
be labeled interesting. Some conjectures, like the Riemann Hypothesis, have clear applications to a
wide range of fields, yet others garner interest without obvious practical use. Consider the Collatz

13



Conjecture: despite its straightforward formulation, the conjecture resists resolution and has few
known applications, yet it draws wide attention due to its seemingly simple, though elusive nature.
Furthermore, a conjecture’s “interestingness” often depends on historical context, cultural influence
within mathematical communities, and its perceived difficulty or elegance.

Another difficulty in quantifying interestingness is the risk of conflating technical complexity with
profundity. A conjecture could be formally intricate yet lack broader appeal or connection to
other domains. Additionally, highly specialized conjectures may be overlooked by non-specialists
despite their beauty or importance for those knowledgebale in the field. Further, the evolving nature
of mathematical interest itself becomes an issue; conjectures once regarded as obscure can gain
recognition as foundational connections become clearer.

Nevertheless, certain conjectures seem almost universally intriguing. The Poincaré Conjecture and
Fermat’s Last Theorem captivated broad attention due to their simplicity, profound implications, and
historical legacy. If just pieces of these ideas could somehow be built into a standardized metric,
many studies will surely benefit.

A.7 Similarity Analysis

We include figures that show the similarity heatmaps between conjectures below. It is visually
apparent from these maps that Claude in general had the most syntactic similarity. Indeed, with
conjectures exampled as the following A.27A.28, the entire structure of the first conjecture is held
within the second but they are not the same idea.
Conjecture A.27. "Let G be a finite non-solvable group. Then for any element x in G, if SolG(x) is
a proper subgroup of G, there exists a prime p dividing |G| such that SolG(x) intersects at least two
distinct Sylow p-subgroups of G non-trivially."

Conjecture A.28. Let G be a finite non-solvable group. Then for any element x in G, if SolG(x) is a
proper subgroup of G, there exists a prime p dividing |G| such that SolG(x) intersects at least two
distinct Sylow p-subgroups of G non-trivially, but does not contain any full Sylow p-subgroup of G.

GPT-4 clearly has the most syntactic differences in the conjectures. While many of the conjectures
reference the same idea, the way that they are stated is highly variable. Claude and Gemini both have
a more methodical approach which show up as lighter colored squares. One can see that Gemini
also had a period of runtime where the conjectures were mostly structured similarly with different
modifiers at the end of the conjecture. The authors are unsure why these structural ‘loops’ seem to
occur periodically throughout the repeated process, but they are interesting to note regardless. In
these patches there didn’t seem to be a significant difference in the quality of conjecture.

With regards to the similary with the literature, non-surprisingly GPT-4 had the highest similarity due
to the reproduction of a conjecture from literature as noted above. Otherwise, the distinction in the
models between themselves was roughly comparable with that in literature. We note that Claude had
the lowest maximum similarity, that all of the models had a minimum similarity of zero, and that on
average, the models were slightly more disjoint from literature than they were from each other.

14



Figure 2: GPT-4 Cosine Self Similarity

15



Figure 3: Claude Cosine Self Similarity

16



Figure 4: Gemini Cosine Self Similarity

17



Figure 5: GPT vs. Claude Cosine Similarity

18



Figure 6: GPT vs. Gemini Cosine Similarity

19



Figure 7: Claude vs. Gemini Cosine Similarity

20



Figure 8: Gemini vs. Literature Cosine Similarity

21



Figure 9: Claude vs. Literature Cosine Similarity

22



Figure 10: GPT-4 vs. Literature Cosine Similarity

23


	Introduction
	Related Work
	Methodology
	Area of Focus

	Results
	Performance Overview
	Examples
	Similarity Analysis

	Discussion
	Observations
	Limitations
	Future Work

	Conclusion
	Appendix / Supplemental Material
	Solubilizer
	Background
	Math

	Model Usage and prompting
	Compute

	Additional Examples
	Claude
	GPT-4
	Gemini

	Conjectures
	Proof of Conjecture 4.1
	Failure of Conjecture 4.2 
	Failure of Conjecture A.2
	Failure of Conjecture A.6
	Failure of Conjecture A.10
	Additional Conjectures

	OpenAI o1
	Examples:

	Conjecture `Interestingness'
	Similarity Analysis


