
Learning World Models for Unconstrained Goal
Navigation

Yuanlin Duan
Rutgers University

yuanlin.duan@rutgers.edu

Wensen Mao
Rutgers University

wm300@cs.rutgers.edu

He Zhu
Rutgers University

hz375@cs.rutgers.edu

Abstract

Learning world models offers a promising avenue for goal-conditioned reinforce-
ment learning with sparse rewards. By allowing agents to plan actions or ex-
ploratory goals without direct interaction with the environment, world models
enhance exploration efficiency. The quality of a world model hinges on the rich-
ness of data stored in the agent’s replay buffer, with expectations of reasonable
generalization across the state space surrounding recorded trajectories. However,
challenges arise in generalizing learned world models to state transitions back-
ward along recorded trajectories or between states across different trajectories,
hindering their ability to accurately model real-world dynamics. To address these
challenges, we introduce a novel goal-directed exploration algorithm, MUN (short
for "World Models for Unconstrained Goal Navigation"). This algorithm is capable
of modeling state transitions between arbitrary subgoal states in the replay buffer,
thereby facilitating the learning of policies to navigate between any "key" states.
Experimental results demonstrate that MUN strengthens the reliability of world
models and significantly improves the policy’s capacity to generalize across new
goal settings.

1 Introduction

Goal-conditioned reinforcement learning (GCRL) has emerged as a powerful framework for learning
diverse skills within an environment and subsequently solving tasks based on user-specified goal
commands, without requiring further training(Mendonca et al. (2021); Andrychowicz et al. (2017)).
Given that specifying dense task rewards for GCRL requires domain expertise, access to object
positions, is time-consuming, and is prone to human errors, rewards in GCRL are typically sparse,
signaling success only upon reaching goal states. However, sparse rewards pose a challenge for
exploration during training. To address this challenge, several previous methods, e.g., Hafner et al.
(2019a); Hansen et al. (2023); Mendonca et al. (2021) have proposed learning a generative world
model of the environment using a reconstruction (decoder) objective, an instantiation of Model-based
Reinforcement Learning (MBRL), visualized in Fig. 1. This approach is appealing because the world
model can provide a rich learning signal(Yu et al. (2020); Georgiev et al. (2024)). For example,
world models allow agents to plan their actions or exploratory goals without directly interacting with
the real environment for more efficient exploration(Hu et al. (2023); Sekar et al. (2020)).

Existing MBRL techniques train world models to capture the dynamics of the environment from the
agent’s past experiences stored in a replay buffer. The richness of the data stored in the agent’s replay
buffer directly impacts the quality of a World Model. It is expected that the world model generalizes
reasonably well to the state space surrounding the trajectories recorded in the replay buffer. However,
the world model may not generalize well to state transitions backward along recorded trajectories or
to states across different trajectories, which impedes the world model’s learning of the real-world
dynamics.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Figure 1: The general framework of model-based RL.

To induce a data-rich replay buffer
covering a wide range of dynamic
transitions, in this paper, we present
a novel goal-directed exploration al-
gorithm for effective world model-
ing and policy learning, MUN (short
for "World Models for Unconstrained
Goal Navigation"). MUN facilitates
modeling state transitions between
any subgoal states in the replay buffer,
whether tracing back along recorded
trajectories or transitioning between
states on separate trajectories. This enhances the reliability of the learned world model and signifi-
cantly improves the generalizability of the policy derived from the model to real-world environments,
thereby boosting the exploration capabilities of the method. Additionally, we introduce a simple
and practical strategy for discovering key subgoal states from the replay buffer. The key subgoals
precisely mark the milestones necessary for task completion, such as steps like grasping and releas-
ing blocks in the context of block-stacking scenarios. By world modeling and policy learning for
unconstrained navigation between these key states, MUN can generalize to new goal settings, such as
block unstacking that was not given to the agent at training time.

Our key contributions are as follows. First, we propose a novel goal-directed exploration algorithm
MUN for effective world modeling of state transition between arbitrary subgoal states in replay
buffers. As the quality of the world model improves, MUN becomes highly effective at learning
goal-conditioned policies that excel at exploration in sparse-reward environments. Second, we present
a practical strategy for identifying pivotal subgoal states, which serve as milestones in completing
sophisticated tasks. By training world models for unconstrained transition between these milestones,
our method enables learning policies that can adapt to novel goal scenarios. Finally, we evaluate
MUN in challenging robotics environments, such as guiding a multi-legged ant robot through a maze,
maneuvering a robot arm amidst cluttered tabletop objects, and rotating items in the grasp of an
anthropomorphic robotic hand. Across these environments, MUN exhibits superior efficiency in
training generalizable goal-conditioned policies compared to baseline methods and ablations.

2 Problem Setup and Background

We consider the problem of goal-conditioned reinforcement learning (GCRL) under a Markov
Decision Process (MDP) parameterized by (S,A, P,G, η,R, ρ0). S and A are the state and action
spaces, respectively. The probability distribution of the initial states is given by ρ0(s), and P (s′|s, a)
is the transition probability. η : S → G is a mapping from the state space to the goal space, which
assumes that every state s can be mapped to a corresponding achieved goal g. The reward function R
is defined as R(s, a, s′, g) = 1{η(s′) = g}. We assume that each episode has a fixed horizon T . For
ease of presentation, we further assume S = G and η is an identify function in this paper.

A goal-conditioned policy is a probability distribution π : S ×G × A → R+, which gives rise to
trajectory samples of the form τ = {s0, a0, g, s1, . . . , sT }. The purpose of the policy π is to learn
how to reach the goals drawn from the goal distribution pg. With a discount factor γ ∈ (0, 1), it

maximizes J(π) = Eg∼pg,τ∼π(g)

[∑T−1
t=0 γt ·R(st, at, st+1, g)

]
.

In the context of model-based reinforcement learning (MBRL), a world model M̂ is trained over
trajectories sampled from the agent’s interactions with the real environment, which are stored in a
replay buffer, to predict the dynamics of the real environment. Fig. 1 illustrates the general MBRL
framework. We use the world model structure M̂ of Dreamer (Hafner et al. (2019a,b, 2020, 2023)) to
learn real environment dynamics as a recurrent state-space model (RSSM). We provide a detailed
explanation of the network architecture and working principles of the RSSM in Appendix A.1.
Our study focuses on tackling the world model learning problem in goal-conditioned model based
reinforcement learning settings. Particularly, we consider GC-Dreamer (goal-conditioned Dreamer)
as an important baseline with the following learning components:

World Model: M̂(st|st−1, at−1) Actor: πG(at|st, g) Critic: V (st, g) (1)

2

(a) Key subgoal states in a 3-Block Stacking task. (b) Bidirectional Replay Buffer

Figure 2: In Fig. 2(a), we illustrate the key states involved in completing the task of 3-block stacking.
In Fig. 2(b), we demonstrate the significant advantages of the bidirectional replay buffer used in
MUN over traditional methods in learning world models.

In GC-Dreamer, the goal-conditioned agent πG(a|s, g) samples goal commands g ∈ G from the
given environment goal distribution pg to collect trajectories in the real world. These trajectories are
used to train the world model M̂ , and subsequently, πG is trained on imagined rollouts generated
by M̂ using the model-based actor-critic algorithm in Dreamer Hafner et al. (2020), with these two
steps run in alternation. The critic estimates the sum of future rewards

∑
t r

G
t , and the actor tries

to maximize the predicted values from the critic. The goal-reaching reward rG is defined by the
self-supervised temporal distance network Dt (Mendonca et al. (2021)), i.e. rG(s, g) = −Dt(s, g).
Dt predicts the anticipated number of action steps needed to transition from s to g. Essentially, πG is
reinforced to minimize the action steps required to transition from the current state s to a sampled
goal state g. The temporal distance estimator Dt is trained by extracting pairs of states st and st+k

from an imagined rollout generated by running the policy over the world model and predicting the
distance k between them as follows:

Dt

(
Ψ(st),Ψ(st+k)

)
≈ k/H (2)

Here, Ψ represents the preprocessing for imagined states, such as transforming them into the world
model’s latent space (we assume S = G in the paper). H represents the total length of the imagined
rollout. Further details on the training procedure of Dt can be found in Appendix A.2.

3 Training World Models for Unconstrained Goal Navigation

In this section, we introduce MUN, our main approach to addressing the core challenge in GCRL: ef-
ficient exploration in long-horizon, sparse-reward environments. Our approach focuses on enhancing
the agent’s understanding of the real-world environment through improved dynamic (world) modeling
and latent space representation. As the quality of the world model improves, the goal-conditioned
policy developed from it generalizes more effectively to the real environment. By closing the gen-
eralization gap between the policy’s behavior in the real environment and the world model, MUN
effectively guides the agent’s exploration towards the desired goal region in the real environment.

3.1 Training Generalizable World Models

Fig 1 illustrates the general framework of Model-based RL, where world models are trained us-
ing agent’s experiences stored in a replay buffer populated with observed environment transitions
(st, at, st+1) linking the environment’s future states st+1 and past states st along with the corre-
sponding control actions at. The richness of the environment space and dynamic transitions captured
by the replay buffer define the extent of what a world model can learn about the real environment.
Through supervised learning, the model can generalize reasonably well within the state space moving
forward along the trajectories recorded in the replay buffer. However, it may be inaccurate for the
state transitions moving backward along the recorded trajectories or across different trajectories.
Consider the task of stacking blocks using a robot manipulator in Fig. 2(a). When humans learn to
stack blocks, they also understand how to reverse the process to unstack the blocks or return to the
initial state. In contrast, a world model trained solely on data from policies under training for stacking

3

Algorithm 1 The main training framework of MUN

1: Input: Policy πG, World Model M̂ , reward function rG, subgoals transfer number Ns, subgoal
time limit Ts

2: Initialize buffers D,DDAD, Degc

3: for i = 1 to Ntrain do
4: if Should Plan Subgoals then
5: Begc ← A batch of episodes from Degc

6: Gsubgoals ← DAD(Begc) with Algorithm 2
7: Initialize empty trajectory τ
8: for s = 1 to Ns do
9: ts = 0

10: gs = Sample a subgoal randomly from Gsubgoals

11: while agent has not reached gs and ts < Ts do
12: Append one step in real environment with πG using goal gs to τ
13: ts ← ts + 1
14: DDAD ← DDAD ∪ {τ}
15: τ ′ ← Trajectory of πG sampled using the environment goal distribution g ∼ pg
16: Degc ← Degc ∪ τ ′

17: D ← DDAD ∪Degc

18: Update M̂ with D

19: Update πG in imagination with M̂ to maximize rG

is unlikely to accurately model the unstacking process. As a result, the model may yield hallucinated
trajectories for training policies, causing a significant discrepancy between the policy’s behavior in
the model and in the real world, thereby leading to ineffective exploration.

To improve model generalizability, in MUN, we proposed to learn world models capable of char-
acterizing state transitions between any states in the replay buffer, whether by tracing back along
recorded trajectories or transitioning between states on separate trajectories. Fig. 2(b) visualizes the
comparison between the bidirectional replay buffer for learning world models used in MUN and the
unidirectional replay buffer in conventional model-based algorithms. The bidirectional replay buffer
not only covers a wider observation space but also captures a richer set of dynamic transitions. As
discussed in Sec. 2, due to joint optimization, the richer set of dynamic transitions in MUN allows for
a more reliable latent representation of the environmental space and consequently a higher quality
reward function (Equation 2) for training policies generalizable to the real environment on top of the
learned model.

We depict the learning algorithm in MUN in Algorithm 1. In the algorithm, we maintain Gsubgoals

as a set of pivot subgoal states sampled from the relay buffer (illustrated in Algorithm 2) and aim to
learn world models capable of seamless transitions between these subgoals. At line 6, we periodically
update Gsubgoals as the training evolves. In the loop starting from line 8, we repeatedly sample Ns

subgoals from Gsubgoals and direct the agent to sequentially reach these subgoals within a time limit of
Ts steps for each. In this way, MUN samples a replay buffer that records bidirectional state transitions
between the subgoals in Gsubgoals. Based on our experience, we find that setting Ns = 2 is sufficient.
Further discussion on the setting of Ns is provided in Sec 4. At line 18, we train the world model
M̂ using trajectories collected by both the goal commands from Gsubgoals (stored in DDAD) and
that sampled from the environment goal distribution pg (stored in Degc). Then, we sample imaginary
rollouts from the world model for policy training at line 19.

Comparison with Go-Explore. We highlight the key difference between MUN’s exploration strategy
and the recently popular "Go-Explore" strategy(Ecoffet et al. (2019); Pislar et al. (2021); Tuyls
et al. (2022); Hu et al. (2023)), designed for exploration-extensive long-term GCRL settings. In
Go-Explore, each training episode comprises two phases: the "Go-phase" and the "Explore-phase".
During the "Go-phase," the goal-conditioned policy πG directs the agent to an "interesting" goal(Pong
et al. (2019); Pitis et al. (2020))(e.g., states with low frequency of occurrence in the replay buffer),
resulting in a final state sTg after Tg steps. Following this, the "Explore-phase" begins, where an
undirected exploration policy takes over from sTg

for the remaining Te timesteps. This exploration
policy is trained to maximize an intrinsic exploration reward(Bellemare et al. (2016); Pathak et al.

4

(2017); Burda et al. (2018); Sekar et al. (2020)) (e.g., to visit areas of the real world that the World
Model has not yet learned well). This structure of training episodes has been shown to result in
richer exploration(Pislar et al. (2021)). In MUN, when Ns = 2, Algorithm 1 essentially replaces
the "Explore-phase" in "Go-Explore" with another "Go-phase". Thus, the algorithm directs the
agent to navigate between two "interesting" goals selected from the replay buffer. Firstly, MUN
is computationally efficient as it eliminates the need to train a separate exploration policy and an
ensemble of world models used to generate intrinsic exploration rewards. Secondly, MUN trains the
world model for unconstrained navigation between goal states in the replay buffer, thereby improving
the model’s generalization to the real-world environment and leveraging the model for exploration.
We empirically compare the two strategies in the context of model-based GCRL in Sec. 4.

3.2 Key Subgoal Generation through Distinct Action Discovery (DAD)

Having set up the main learning algorithm, we seek to address: how should we pick exploration-
inducing goals from the replay buffer at training time to help learn generalizable world models? A
straightforward strategy is to sample trajectories from the replay buffer and select subgoal states
at fixed time intervals along these trajectories. We improve this simple approach with a practical
method called DAD (Distinct Action Discovery) for identifying key subgoal states, which represent
the pivotal milestones necessary to complete a complex task. Consider the block stacking task as
an example. The robotic arm must be able to move its gripper to the vicinity of a block, close the
gripper, lift the block, move to the top of another block, release the block, and finally open the gripper.
These key subgoal states are essential for completing the task. We illustrate the roles of key states
in a 3-Block Stacking task in Fig. 2(a). For an agent to learn this task, it must master reaching and
navigating between the key states. By training world models for unconstrained transitions between
these key states, MUN can develop models that more accurately capture the task structure and learn
policies capable of adapting to novel goal scenarios e.g. block unstacking.

Algorithm 2 Key Subgoal Generation by Distinct Action Discovery

1: Function: DAD(...)
2: Input: A batch of episodes Begc, number of subgoals Nsubgoals

3: A ← Find the most different Nsubgoals actions from Begc by
FPS

4: Ssubgoals ← get the corresponding states of A from Begc

5: Gsubgoals ← η(Ssubgoals)
6: return Gsubgoals

There exist methods for identifying key
states(Zhang et al. (2021); Paul et al.
(2019)). However, these methods often
tend to be overly complex, leading to in-
sufficient generalization across different
environments and requiring adjustments
to the methods’ components or parameters
for various tasks. Our approach is based
on the observation that certain actions are crucial at different stages of task completion. For instance,
in a block stacking task, the robotic arm must learn actions such as closing the gripper, grasping the
block, lifting it, and releasing the gripper. When the agent performs these key actions, the corre-
sponding states can often be considered key subgoal states. By selecting actions that significantly
differ along trajectories and extracting the corresponding states during these actions, we can identify
potential key subgoal states. The Farthest Point Sampling (FPS) algorithm(Eldar et al. (1997))
provides a simple and efficient method for selecting N points with maximal differences from a set.
We apply FPS(Eldar et al. (1997)) to choose N time steps with the greatest variations in actions from
a batch of trajectory data, thereby obtaining the set of key subgoal states corresponding to these time
steps. Algorithm 2 shows how MUN finds key subgoal states using the DAD method.

4 Experiments

We evaluate MUN across various robotic manipulation and navigation environments, aiming to
address the following three research questions: (RQ1) Does MUN outperform other goal-conditioned
model-based reinforcement learning baselines with advanced exploration strategies? (RQ2) Can
DAD effectively identify key subgoal states along trajectories to the environment goal region? (RQ3)
Does MUN successfully leverage the bi-directional replay buffer to train a generalizable policy for
navigating effectively between arbitrary subgoals?

4.1 Environments

We conducted experiments on six challenging goal-conditioned tasks to evaluate MUN. In Ant-Maze,
an ant-like robot is tasked to learn complex 4-legged locomotion behavior and navigate around the

5

Figure 3: We evaluate MUN on 6 environments: Ant Maze, Walker, 3-Block Stacking, Block Rotation,
Pen Rotation, Fetch Slide.

hallways within a maze structure. The Walker task involves a two-legged robot learning to control its
leg joints effectively to achieve stable walking to reach goals along a flat plane forward or backward.
In 3-Block Stacking, a robot arm with a two-fingered gripper operates on a tabletop with three blocks.
The goal is to stack the blocks into a tower configuration. The agent needs to learn to push, pick, and
stack objects while discovering complex action sequences to complete the task in the environment.
Previous solutions have relied on methods like demonstrations, curriculum learning, or extensive
simulator data, highlighting the task’s difficulty(Ecoffet et al. (2019); Li et al. (2020); Nair et al.
(2018); Lanier (2019)). The Block Rotation and Pen Rotation tasks require the agent to manipulate a
block and a pen, respectively, to achieve a randomly specified orientation along all axes. Pen Rotation
is particularly challenging due to the pen’s thinness, requiring precise control to prevent it from
dropping. In Fetch Slide, a manipulator slides a puck to a designated goal area on a slippery table.
Unlike tasks that involve direct manipulation, Fetch Slide emphasizes the challenge of accurately
controlling the force and direction of the push operation, as the puck must slide across the flat surface
to the target. See Appendix. C for more information about environments.

4.2 Baselines

We compare MUN with the following baselines. The GC-Dreamer baseline is discussed in Sec. 2.
We include two baselines based on the Go-Explore strategy(Ecoffet et al. (2019)) that has been proved
efficient in the GCRL setting: MEGA(Pitis et al. (2020)) and PEG(Hu et al. (2023)). A Go-Explore
agent firstly uses its goal-conditioned policy πG to approach a sampled exploration-inducing goal
command g, referred to as the Go-phase. In the Explore-phase, it activates an exploration policy πE

to explore the environment from the terminal state of the Go-phase. In contrast, MUN improves the
generalization of world models to facilitate effective real-world environment exploration. During
training, MUN collects trajectories that navigate between two goal states sampled from its candidate
subgoal set, essentially replacing the "Explore-phase" in "Go-Explore" with another "Go-phase".
MEGA commands the agent to rarely seen states at the frontier by using kernel density estimates
(KDE) of state densities and chooses low-density goals from the replay buffer. PEG selects goal
commands to guide an agent’s goal-conditioned policy toward states with the highest exploration
potential given its current level of training. This potential is defined as the expected accumulated
exploration reward during the Explore-phase. Similar to MUN, our baseline methods, named PEG-G
and MEGA-G, augment GC-Dreamer with the PEG and MEGA Go-Explore strategies, respectively.
In these methods, the replay buffer D contains not only trajectories sampled by the GCRL policy πG

commanded by environment goals but also exploratory trajectories sampled using the Go-Explore
strategies. The exploration policy πE in PEG-G and MEGA-G is the Plan2Explore policy from
Sekar et al. (2020), which encourages the agent to actively search for states that induce disparities
among an ensemble of world models.

We note that MUN and the baselines are all implemented based on the Dreamer framework as realized
in GC-Dreamer1.

4.3 Results

Fig. 4 shows the evaluation performance of MUN and all baselines across training. MUN demonstrates
superior performance compared to the baseline models, excelling in both the final success rate and
the speed of learning. MUN outperforms the Go-Explore baselines (MEGA-G and PEG-G) across
all tasks, demonstrating the effectiveness of the exploration strategy in MUN over the alternative
Go-Explore strategies. In the most challenging tasks—block stacking, block rotation, and pen
rotation—MUN shows a significant margin of superiority. For example, MUN achieves over 95%

1MUN is not tied to a specific world model architecture and can be applied to any model-based RL framework.

6

(a) Ant Maze (b) Walker (c) 3-Block Stacking

(d) Block Rotation (e) Pen Rotation (f) Fetch Slide

Figure 4: Experiment results comparing MUN with the baselines over 5 random seeds.

success rate on 3 block stacking, while all other baselines only manage to achieve around 60% success
rate on this task within 2.5M steps. MEGA-G and PEG-G heuristically pick exploration-inducing
goals to initiate exploration by a separate policy. Since finding a goal state that is optimally aligned
with both the goal-conditioned policy and the exploration policy is challenging, these methods can
result in suboptimal goals, thereby slowing down exploration. GC-Dreamer lacks a Go-Explore
phase, which limits its exploration potential. Despite this, it can still perform comparably to or even
better than MEGA-G and PEG-G in certain contexts. This indicates that the Go-Explore strategy
does not always guarantee improved exploration, and suboptimal goal-setting during the "Go-phase"
can hinder exploration (see 3 block stacking).

(a) 3-Block Stacking (b) Pen Rotation

Figure 5: The world model prediction error curves
throughout the training steps for 3-Block Stacking and
Pen Rotation.

Fetch Slide is a non-prehensile manipu-
lation task. This environment has asym-
metric state transitions: when the puck is
slid outside the robot’s workspace, the ma-
nipulator cannot reach the puck’s position
to slide it backward due to physical con-
straints. MUN still outperforms the other
baselines in this environment. We found
MUN, with the DAD strategy, can discover
key subgoals for this task, like contacting
the puck, placing the manipulator at dif-
ferent angles around the puck, and stabi-
lizing the manipulator upon reaching the
goal (these key states result from distinct
actions). MUN enables learning state tran-
sitions between these key subgoals to dis-
cover the high-level task structure. It learns a generalizable world model that handles sliding the puck
between any positions within the workspace and predicts low probabilities for infeasible transitions
from puck positions outside the workspace. Particularly, it enables the agent to hit the puck multiple
times if it is within its workspace, thereby improving task success rates. That said, the current goal
selection mechanism in MUN lacks a process to filter out infeasible goals from the current state,
which could adversely affect sample efficiency. We left addressing this limitation and implementing
a robust filtering mechanism for infeasible goals as a focus for future work.

We studied the prediction error of learned world models in MUN and the baselines. Fig. 5 shows the
one-step model prediction error throughout the training steps. The world models trained by MUN

7

show a much smaller generalization gap to the real environment compared to the baselines across the
training steps. Consequently, MUN can effectively leverage these higher-quality world models to
train policies that generalize better to the real environment. We present a quantitative comparison of
the world model prediction quality between MUN and the baselines in terms of model prediction
compounding error in Appendix F.3.

4.4 Can DAD find key subgoals?

Figure 6: Key subgoals found by DAD (Algorithm 2) in three environments: Ant-Maze, Walker,
3-Block Stacking. They present the important landmarks on the path to the task goal regions.

We visualize several subgoals found by the DAD algorithm during the training process in Fig. 6 for
three environments: Ant-Maze, Walker, 3-Block Stacking. In Walker, DAD successfully identifies
the crucial joint angles and forces of the Walker robot during its forward locomotion, including
standing, striding, jumping, landing, and leg support. In Ant-Maze, DAD recognizes significant
motion variations at corridor corners. In 3-Block Stacking, DAD successfully identifies crucial
state transitions required during the stacking process. These critical subgoals include block grasping,
lifting, horizontal movement, vertical movement, and gripper release. For more discussion about
subgoals found by the DAD in other environments, please refer to Appendix F.1.

4.5 Can MUN navigate between arbitrary subgoals?

Figure 7: Experiment setup and results of navigation between any pair of subgoals in the 3-Block
Stacking environment. In the left part, the bottom section of each image depicts the ultimate evaluation
goal for one evaluation episode, while the top section illustrates the manually set initial state. The
right part shows the evaluation success rates.

As MUN is capable of identifying pivotal subgoal states necessary for complex tasks and training
world models and policies for seamless transitions between these subgoals, we investigate MUN’s
capacity to generalize to new task settings concerning important subgoals. We set the initial state of
the agent at one random subgoal and command it to reach another random subgoal. Such task setting
is not provided to the agent during training. For the 3 Block Stacking task, we employ a set of 15
manually created subgoals representing various critical states in the block-stacking process, resulting
in 225 unique combinations of initial states and test goals for evaluation. Each combination undergoes
10 repeated evaluations, totaling 2250 evaluation trajectories. These evaluations encompass both the
forward and reverse processes of stacking and unstacking blocks, assessing the agent’s proficiency in
both task completion and restoration. For example, in the left portion of Fig. 7, we visualize some
subgoals used as initial task state in the upper part and some subgoals used as evaluation test goals
in the lower part. The right section of Fig. 7 illustrates MUN’s superiority over the other baselines
in these evaluation experiments, achieving the highest success rate through its ability to develop

8

(a) 3-Block Stacking (b) Block Rotation (c) Pen Rotation

Figure 8: Experiment results comparing MUN with its ablations over 5 random seeds.

a robust and adaptable world model that generalizes to novel tasks. Additional results in different
environments are provided in Appendix F.2.

4.6 Ablation study

We conducted the following ablation studies to investigate MUN’s exploration goal selection mecha-
nism. First, we investigated the effect of the number of subgoal states (Ns) in our algorithm. MUN
sequentially traverses Ns = 2 goal states sampled from the replay buffer to explore the environment
during each training episode. We introduced an ablation MUN-Ns-3 that sets Ns = 3. This ablation
aims to investigate whether increasing Ns leads to improved learning performance. Second, we
considered an ablated version of MUN, named MUN-noDAD, which replaces the goal sampling
strategy DAD (Algorithm 2) with a simple method that chooses goal states with fixed time interval in
trajectories sampled from the replay buffer. This ablation investigates the importance of identifying
key subgoal states, which represent pivotal milestones necessary to complete a complex task. It
seeks to determine whether training world models from state transitions between these key states in
MUN is essential, or if using any states from the replay buffer would suffice. Lastly, we explored an
alternative key subgoal discovery strategy. MUN identifies key subgoals for exploration as states in
the replay buffer that result in distinct actions within the action space. We introduced an ablation,
MUN-KeyObs, which directly discovers key subgoals from the state space by identifying centroids
of (latent) state clusters in the replay buffer, following the strategy in Zhang et al. (2021).

The results are depicted in Fig. 8. MUN outperforms all ablated versions. Setting Ns = 3 slows
down the training performance, supporting our claim it suffices to set Ns = 2. The performance
of MUN-noDAD and MUN-KeyObs does not match MUN, especially in the 3 Block Stacking
environment, highlighting that discovering key subgoals in the action space (the DAD strategy)
indeed contributes to higher performance and efficiency. It is noteworthy that the ablation methods
achieve a relatively small gap in success rates compared to MUN in the challenging Block Rotation
and Pen Rotation environments. This suggests that MUN’s approach to learning a world model
from state transitions between any states in the replay buffer (whether tracing back along recorded
trajectories or transitioning across separate trajectories) alone is effective in bridging the generalization
gap between the model and the real environment.

5 Related Work

Model-based reinforcement learning (MBRL) is a promising approach to reinforcement learning
that learns a model of the environment and uses it to plan actions(Sutton (1991); Deisenroth and
Rasmussen (2011); Oh et al. (2017); Chua et al. (2018)). It has achieved remarkable success in
numerous control tasks and games, such as chess(Silver et al. (2017); Schrittwieser et al. (2020);
Xu et al. (2022)), Atari games(Hafner et al. (2020); Schrittwieser et al. (2020); Oh et al. (2017)),
continuous control tasks(Kurutach et al. (2018); Buckman et al. (2018); Hafner et al. (2019b); Janner
et al. (2019)), and robotic manipulation tasks(Lowrey et al. (2018); Luo et al. (2018)). The dynamic
model serves as a pivotal component of model-based reinforcement learning, primarily fulfilling
two key roles: planning actions(Deisenroth and Rasmussen (2011); Oh et al. (2017); Chua et al.
(2018); Lowrey et al. (2018); Hafner et al. (2019b)) or generating synthetic data to aid in the training

9

of model-free reinforcement learning algorithms(Janner et al. (2019); Hafner et al. (2020, 2023)).
The primary drawback of the former lies in the excessive cost associated with long-term planning.
To address this issue, the concept of ensemble has been employed to enhance performance(Chua
et al. (2018); Kurutach et al. (2018); Buckman et al. (2018)). Oh et al. (2017); Hansen et al. (2022b)
integrate the dynamics model with a value prediction network to improve the accuracy of long-term
planning. The latter also suffers from the potential bias of the model, which can result in inaccuracies
in the generated data, thereby directly impacting policy learning(Luo et al. (2018); Lai et al. (2021)).

Multi-goal reinforcement learning (RL) agents (Schaul et al. (2015); Plappert et al. (2018); Ghosh
et al. (2019)) acquire goal-conditioned behaviors capable of achieving and generalizing across diverse
sets of objectives. Researchers have been continuously exploring the integration of Model-based RL
and Goal-conditioned RL(Mendonca et al. (2021); Nair et al. (2020); Zhang et al. (2020)), leveraging
the capabilities of dynamic models in planning and generating synthetic data to enhance the training
efficiency and generalization of GCRL. However, compared to traditional RL problems, GCRL
faces more severe challenges regarding reward sparsity and exploration difficulties(Ren et al. (2019);
Florensa et al. (2018); Trott et al. (2019)). These challenges often lead to significant biases in the
learned World Model, consequently impairing the performance of goal-conditioned policy(Mendonca
et al. (2021); Hu et al. (2023)). Pong et al. (2019) propose to learn a maximum-entropy goal
distribution, Pitis et al. (2020) encourage the agent to explore goals with low frequency of occurrence
in the replay buffer, Sekar et al. (2020) introduce a planning algorithm to pick goals for exploration
using world model.

The World Model holds inherent advantages for GCRL, as it often enables faster exploration and
facilitates the training of a more generalized policy(McCarthy et al. (2021); Shyam et al. (2019);
Hu et al. (2023); Sekar et al. (2020)). However, within the GCRL framework, learning a reliable
World Model is a crucial prerequisite for developing excellent policies(Zhang et al. (2024); Young
et al. (2022); Wang et al. (2023); Lai et al. (2021)). Kauvar et al. (2023) propose a curiosity-driven
exploration method, which is focused on replay buffer management. Hansen et al. (2022a) use
demonstration data as a supplement to the replay buffer to learn a more reliable World Model.
Previous work has often focused on devising more appropriate objectives when sampling real
trajectory data from the environment to enrich the diversity of dynamic transitions in the replay
buffer(Nair et al. (2020); Charlesworth and Montana (2020); Trott et al. (2019); Florensa et al. (2018);
Campero et al. (2020)). However, they overlooked the overall direction of dynamic transitions within
the data which extremely affects the richness of dynamic transitions to learn a comprehensive World
Model.

6 Conclusion

In summary, we introduce MUN, a novel goal-directed exploration algorithm designed for effective
world modeling of seamless transitions between arbitrary states in replay buffers, whether retracing
along recorded trajectories or transitioning between states on separate trajectories. As the quality of
the world model improves, MUN demonstrates high efficacy in learning goal-conditioned policies
in sparse-reward environments. Additionally, we present a practical strategy DAD for identifying
pivotal subgoal states, which act as critical milestones in completing complex tasks. The experimental
results underscored the effectiveness of MUN in strengthening the reliability of world models and
learning policies capable of adapting to novel test goals.

Reproducibility Statement

The code of MUN is provided on https://github.com/RU-Automated-Reasoning-Group/MUN. For
hyperparameter settings and baseline pseudocode, please refer to Appendix D and Appendix E.3.

Acknowledgements

We thank the anonymous reviewers for their comments and suggestions. This work was supported by
NSF Award #CCF-2124155.

10

References
Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin,

J., Pieter Abbeel, O., and Zaremba, W. (2017). Hindsight experience replay. Advances in neural
information processing systems, 30.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. (2016). Unifying
count-based exploration and intrinsic motivation. Advances in neural information processing
systems, 29.

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., and Lee, H. (2018). Sample-efficient reinforcement
learning with stochastic ensemble value expansion. Advances in neural information processing
systems, 31.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. (2018). Exploration by random network
distillation. arXiv preprint arXiv:1810.12894.

Campero, A., Raileanu, R., Küttler, H., Tenenbaum, J. B., Rocktäschel, T., and Grefenstette, E. (2020).
Learning with amigo: Adversarially motivated intrinsic goals. arXiv preprint arXiv:2006.12122.

Charlesworth, H. and Montana, G. (2020). Plangan: Model-based planning with sparse rewards and
multiple goals. Advances in Neural Information Processing Systems, 33:8532–8542.

Chua, K., Calandra, R., McAllister, R., and Levine, S. (2018). Deep reinforcement learning in a
handful of trials using probabilistic dynamics models. Advances in neural information processing
systems, 31.

Deisenroth, M. and Rasmussen, C. E. (2011). Pilco: A model-based and data-efficient approach to
policy search. In Proceedings of the 28th International Conference on machine learning (ICML-11),
pages 465–472.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. (2019). Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995.

Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y. Y. (1997). The farthest point strategy for
progressive image sampling. IEEE transactions on image processing, 6(9):1305–1315.

Florensa, C., Held, D., Geng, X., and Abbeel, P. (2018). Automatic goal generation for reinforcement
learning agents. In International conference on machine learning, pages 1515–1528. PMLR.

Georgiev, I., Giridhar, V., Hansen, N., and Garg, A. (2024). Pwm: Policy learning with large world
models. arXiv preprint arXiv:2407.02466.

Ghosh, D., Gupta, A., Reddy, A., Fu, J., Devin, C., Eysenbach, B., and Levine, S. (2019). Learning
to reach goals via iterated supervised learning. arXiv preprint arXiv:1912.06088.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. (2019a). Dream to control: Learning behaviors by
latent imagination. arXiv preprint arXiv:1912.01603.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., and Davidson, J. (2019b). Learning
latent dynamics for planning from pixels. In International conference on machine learning, pages
2555–2565. PMLR.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. (2020). Mastering atari with discrete world models.
arXiv preprint arXiv:2010.02193.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. (2023). Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104.

Hansen, N., Lin, Y., Su, H., Wang, X., Kumar, V., and Rajeswaran, A. (2022a). Modem: Accelerating
visual model-based reinforcement learning with demonstrations. arXiv preprint arXiv:2212.05698.

Hansen, N., Su, H., and Wang, X. (2023). Td-mpc2: Scalable, robust world models for continuous
control. arXiv preprint arXiv:2310.16828.

11

Hansen, N., Wang, X., and Su, H. (2022b). Temporal difference learning for model predictive control.
arXiv preprint arXiv:2203.04955.

Hu, E. S., Chang, R., Rybkin, O., and Jayaraman, D. (2023). Planning goals for exploration. arXiv
preprint arXiv:2303.13002.

Janner, M., Fu, J., Zhang, M., and Levine, S. (2019). When to trust your model: Model-based policy
optimization. Advances in neural information processing systems, 32.

Kauvar, I., Doyle, C., Zhou, L., and Haber, N. (2023). Curious replay for model-based adaptation.
arXiv preprint arXiv:2306.15934.

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel, P. (2018). Model-ensemble trust-region
policy optimization. arXiv preprint arXiv:1802.10592.

Lai, H., Shen, J., Zhang, W., Huang, Y., Zhang, X., Tang, R., Yu, Y., and Li, Z. (2021). On effective
scheduling of model-based reinforcement learning. Advances in Neural Information Processing
Systems, 34:3694–3705.

Lai, Y., Wang, W., Yang, Y., Zhu, J., and Kuang, M. (2020). Hindsight planner. In Proceedings of the
19th International Conference on Autonomous Agents and MultiAgent Systems, pages 690–698.

Lanier, J. B. (2019). Curiosity-driven multi-criteria hindsight experience replay. University of
California, Irvine.

Li, R., Jabri, A., Darrell, T., and Agrawal, P. (2020). Towards practical multi-object manipulation
using relational reinforcement learning. In 2020 ieee international conference on robotics and
automation (icra), pages 4051–4058. IEEE.

Lowrey, K., Rajeswaran, A., Kakade, S., Todorov, E., and Mordatch, I. (2018). Plan online, learn of-
fline: Efficient learning and exploration via model-based control. arXiv preprint arXiv:1811.01848.

Luo, Y., Xu, H., Li, Y., Tian, Y., Darrell, T., and Ma, T. (2018). Algorithmic framework for model-
based deep reinforcement learning with theoretical guarantees. arXiv preprint arXiv:1807.03858.

McCarthy, R., Wang, Q., and Redmond, S. J. (2021). Imaginary hindsight experience replay: Curious
model-based learning for sparse reward tasks. arXiv preprint arXiv:2110.02414.

Mendonca, R., Rybkin, O., Daniilidis, K., Hafner, D., and Pathak, D. (2021). Discovering and
achieving goals via world models. Advances in Neural Information Processing Systems, 34:24379–
24391.

Nagabandi, A., Konolige, K., Levine, S., and Kumar, V. (2020). Deep dynamics models for learning
dexterous manipulation. In Conference on Robot Learning, pages 1101–1112. PMLR.

Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2018). Overcoming
exploration in reinforcement learning with demonstrations. In 2018 IEEE international conference
on robotics and automation (ICRA), pages 6292–6299. IEEE.

Nair, S., Savarese, S., and Finn, C. (2020). Goal-aware prediction: Learning to model what matters.
In International Conference on Machine Learning, pages 7207–7219. PMLR.

Oh, J., Singh, S., and Lee, H. (2017). Value prediction network. Advances in neural information
processing systems, 30.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven exploration by
self-supervised prediction. In International conference on machine learning, pages 2778–2787.
PMLR.

Paul, S., Vanbaar, J., and Roy-Chowdhury, A. (2019). Learning from trajectories via subgoal
discovery. Advances in Neural Information Processing Systems, 32.

Pislar, M., Szepesvari, D., Ostrovski, G., Borsa, D., and Schaul, T. (2021). When should agents
explore? arXiv preprint arXiv:2108.11811.

12

Pitis, S., Chan, H., Zhao, S., Stadie, B., and Ba, J. (2020). Maximum entropy gain exploration for
long horizon multi-goal reinforcement learning. In International Conference on Machine Learning,
pages 7750–7761. PMLR.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B., Baker, B., Powell, G., Schneider, J., Tobin, J.,
Chociej, M., Welinder, P., et al. (2018). Multi-goal reinforcement learning: Challenging robotics
environments and request for research. arXiv preprint arXiv:1802.09464.

Pong, V. H., Dalal, M., Lin, S., Nair, A., Bahl, S., and Levine, S. (2019). Skew-fit: State-covering
self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698.

Ren, Z., Dong, K., Zhou, Y., Liu, Q., and Peng, J. (2019). Exploration via hindsight goal generation.
Advances in Neural Information Processing Systems, 32.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015). Universal value function approximators. In
International conference on machine learning, pages 1312–1320. PMLR.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lockhart,
E., Hassabis, D., Graepel, T., et al. (2020). Mastering atari, go, chess and shogi by planning with a
learned model. Nature, 588(7839):604–609.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D., and Pathak, D. (2020). Planning to
explore via self-supervised world models. In International conference on machine learning, pages
8583–8592. PMLR.

Shyam, P., Jaśkowski, W., and Gomez, F. (2019). Model-based active exploration. In International
conference on machine learning, pages 5779–5788. PMLR.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L.,
Kumaran, D., Graepel, T., et al. (2017). Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. arXiv preprint arXiv:1712.01815.

Sutton, R. S. (1991). Dyna, an integrated architecture for learning, planning, and reacting. ACM
Sigart Bulletin, 2(4):160–163.

Trott, A., Zheng, S., Xiong, C., and Socher, R. (2019). Keeping your distance: Solving sparse reward
tasks using self-balancing shaped rewards. Advances in Neural Information Processing Systems,
32.

Tuyls, J., Yao, S., Kakade, S., and Narasimhan, K. (2022). Multi-stage episodic control for strategic
exploration in text games. arXiv preprint arXiv:2201.01251.

Wang, X., Wongkamjan, W., Jia, R., and Huang, F. (2023). Live in the moment: Learning dynamics
model adapted to evolving policy. In International Conference on Machine Learning, pages
36470–36493. PMLR.

Williams, G., Aldrich, A., and Theodorou, E. (2015). Model predictive path integral control using
covariance variable importance sampling. arXiv preprint arXiv:1509.01149.

Xu, Y., Hansen, N., Wang, Z., Chan, Y.-C., Su, H., and Tu, Z. (2022). On the feasibility of cross-task
transfer with model-based reinforcement learning. arXiv preprint arXiv:2210.10763.

Young, K., Ramesh, A., Kirsch, L., and Schmidhuber, J. (2022). The benefits of model-based
generalization in reinforcement learning. arXiv preprint arXiv:2211.02222.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine, S., Finn, C., and Ma, T. (2020). Mopo:
Model-based offline policy optimization. Advances in Neural Information Processing Systems,
33:14129–14142.

Zhang, L., Yang, G., and Stadie, B. C. (2021). World model as a graph: Learning latent landmarks
for planning. In International conference on machine learning, pages 12611–12620. PMLR.

Zhang, W., Wang, G., Sun, J., Yuan, Y., and Huang, G. (2024). Storm: Efficient stochastic transformer
based world models for reinforcement learning. Advances in Neural Information Processing
Systems, 36.

Zhang, Y., Abbeel, P., and Pinto, L. (2020). Automatic curriculum learning through value disagree-
ment. Advances in Neural Information Processing Systems, 33:7648–7659.

13

Appendix
A Extended Background

A.1 Dreamer World Model

The RSSM consists of an encoder, a recurrent model, a representation model, a transition predictor,
and a decoder, as formulated in Equation 3. And it employs an end-to-end training methodology,
where its parameters are jointly optimized based on the loss functions of various components,
including dynamic transition prediction, reward prediction, and observation encoding-decoding.
These components often operate in a latent space rather than the original observation space, as
encoded by the World Model. Therefore, during end-to-end training, the losses of all components
indirectly optimize the latent space.

The encoder fE encodes the input state xt into a embed state et, which is then fed with the deter-
ministic state ht into the representation model qϕ to generate the posterior state zt. The transition
predictor pϕ predicts the prior state ẑt based on the deterministic state ht without access to the current
input state xt. Using the concatenation of either (ht, zt) or (ht, ẑt) as input, the recurrent transition
function fϕ iteratively updates the deterministic state ht with given action at.

Encoder: et = fE(et|xt)

Recurrent model: ht = fϕ(ht−1, zt−1, at−1)

Representation model: zt ∼ qϕ(zt|ht, et)

Transition predictor: ẑt ∼ pϕ(ẑt|ht)

Decoder: x̂t ∼ fD(x̂t|ht, zt)

(3)

A.2 Temporal Distance Training in LEXA

The goal-reaching reward rG is defined by the self-supervised temporal distance objective (Mendonca
et al. (2021)) which aims to minimize the number of action steps needed to transition from the current
state to a goal state within imagined rollouts. We use bt to denote the concatenate of the deterministic
state ht and the posterior state zt at time step t.

bt = (ht, zt) (4)

The temporal distance Dt is trained by sampling pairs of imagined states bt, bt+k from imagined
rollouts and predicting the action steps number k between the embedding of them, with a predicted
embedding êt from bt to approximate the true embedding et of the observation xt.

Predicted embedding: emb(bt) = êt ≈ et, where et = fE(xt) (5)

Temporal distance: Dt(êt, êt+k) ≈ k/H where êt = emb(bt) êt+k = emb(bt+k) (6)

rGt (bt, bt+k) = −Dt(êt, êt+k) (7)

B Limitations and Future Work

The MUN has provided powerful guidance in enhancing world model learning by repeatedly studying
the transitions between various key states. This allows the acquisition of richer dynamic transitions
and deepens the world model’s understanding of the real world. However, such a framework requires
an efficient strategy for discovering key states, as evidenced by the comparative results of the MUN
and MUN-noDAD. We found that although DAD excels in discovering key states with its simple and
efficient method, it will identify ineffective and task-irrelevant states in tasks with highly complex

14

action spaces or weak correlations between goal space and action space. This can lead to the
degradation of the MUN architecture due to poor-quality subgoals, resulting in a substantial amount
of ineffective sampling in the environment. Therefore, for environments with more complex action
and goal spaces, we need to develop a more robust and effective method for discovering subgoals
than DAD. Only with an efficient and powerful self-supervised subgoal discovery mechanism can the
MUN framework be fully utilized.

Meanwhile, MUN autonomously discovers subgoals and learns a more robust and comprehensive
world model by randomly navigating between subgoals. Although the MUN has achieved huge
success in model-based reinforcement learning (MBRL), we believe it can also be applied to general
model-free methods. General model-free methods do not require learning a world model and
have a simpler architecture. The MUN can directly guide the goal-conditioned policy to enhance
learning in navigation between different subgoals. It can use sampled trajectories to learn this policy
directly, bypassing the use of the world model to train policies and value functions through simulated
trajectories, thereby enhancing the agent’s ability to reach unconstrained goals. Therefore, we plan to
explore the application and effectiveness of the MUN in model-free RL in the future and develop
a new robust self-supervised subgoal discovery mechanism to make the MUN applicable to more
complex environments.

C Environments

C.1 3-Block Stacking

In this task, the robot must stack three blocks in different colors into a tower shape. While PEG
assesses goals of varying difficulty levels: 3 easy goals (picking up a single block), 6 medium goals
(stacking two blocks), and 6 hard goals (stacking three blocks), our evaluation is focused solely
on the 6 hard goals, and we use only 3 hard goals of them as the guiding goals from the training
environment. Training and evaluating with only the hardest goals imposes a significant challenge
for the MUN. However, we observed that the MUN can spontaneously discover additional easy and
medium goals through DAD, as these serve as critical transitional states toward the hard goals. The
environment is characterized by a 14-dimensional state and goal space. The first five dimensions
capture the gripper’s state, while the remaining nine dimensions correspond to the xyz positions
of each block. The action space is 4-dimensional, with three dimensions dedicated to the gripper’s
xyz movements and the fourth dimension controlling the gripper’s finger movement. Success is
defined by achieving an L2 distance of less than 3 cm between each block’s xyz position and its
target position. This environment is a modified version of the FetchStack3 environment from Pitis
et al. (2020), designed to better test the robot’s precision in stacking.

C.2 Walker

In this environment, a 2D walker robot is trained and evaluated on its ability to move across a flat
surface. The environment’s implementation is based on the code from Mendonca et al. (2021). To
thoroughly assess the agent’s capability and precision in covering longer distances, we expanded the
evaluation goals to 12 (±13,±16,±19,±22,±25,±28) along the x axis from the initial position. In
our training setup for the MUN, we only use the goals at ±13 and ±16 provided by the environment,
but we evaluate the agent’s performance across all 12 goals. Success is measured by verifying whether
the agent’s x position is within a small margin of the target x position. The state and goal space in
this environment are nine-dimensional, comprising the walker’s xz positions and its joint angles.
This configuration ensures a comprehensive evaluation of the walker’s locomotion capabilities.

C.3 Ant Maze

This environment builds upon the Ant Maze from Pitis et al. (2020), incorporating a few modifi-
cations. The state and goal spaces in the Ant Maze environment are highly complex, totaling 29
dimensions. These dimensions include the ant’s xyz position, joint angles, and velocities. The first
three dimensions account for the xyz position, the next 12 dimensions capture the joint angles of
the ant’s limbs, and the remaining 14 dimensions represent the velocities of the joints and the ant’s
movements in the xy plane. The action space consists of 8 dimensions, controlling the hip and ankle
movements of the ant’s legs.We matched the goal space to the state space, which includes the ant’s

15

xyz coordinates, joint positions, and velocities. We also introduced an additional room in the top left
to increase the difficulty like PEG. In this scenario, the ant robot must traverse from the bottom left
to the top left of a maze, navigating through various corridors. The task is particularly challenging
due to its lengthy duration—each episode lasts 500 timesteps—and the significant distance the ant
must cover. Unlike PEG, which evaluates goals in both the central hallway and the top left room,
our evaluation focuses exclusively on the four most difficult goals located in the top left room. For
training, we utilize all 32 goals throughout the maze. The maze itself measures about 6 by 8 meters.
The ant succeeds if its xy position is within 1.0 meter of the goal, roughly the size of a single cell in
the maze.

C.4 Fetch Slide

In this task, a robotic arm with a two-fingered gripper must push an object along a flat surface to a
specific goal location. We use the "FetchSlide-v1" environment from Gymnasium, where the robot
operates in a 25-dimensional state space that includes the robot’s joint states, object position, and goal
information. The goal space is 3-dimensional, representing the target coordinates for the object. Each
episode presents a unique random goal location within a bounded area, requiring the agent to adjust
its pushing strategy accordingly. A key challenge in Fetch Slide lies in the indirect manipulation of
the object. The agent must accurately control the force and direction of its push while accounting for
physical properties like friction, surface irregularities, and object momentum. Unlike grasping or
lifting tasks, sliding demands precise force calibration and anticipation of the object’s response to
contact. For evaluation, the agent’s learned policy is tested across 50 episodes with different goal
locations, assessing its ability to generalize over varied configurations. Training goals are randomly
generated from the environment, helping the agent explore diverse sliding trajectories to improve
robustness across different scenarios.

C.5 Block and Pen Rotation

In this task, a robotic hand must manipulate either a thin pen or a block to achieve specified
target rotations. We use "HandManipulatePenRotate-v1" and "HandManipulateBlockRotateXYZ-
v1" versions of the gymnasium environments. Both tasks feature a state space of 61 dimensions,
encompassing the robot’s joint states, object states, and goal information. The goal space is 7-
dimensional, representing the target pose details. Each episode will have randomized target rotations
goal for all axes of the block and for the x and y axes of the pen. The pen is more challenging
to handle due to its tendency to slip, requiring more precise control compared to the block. For
evaluation, the latest policy is tested 50 episodes for each task, with each episode having a unique
random goal. In our framework, training goals are also randomly generated from the environment.

D Baselines

We first present our overall training framework for goal-conditioned model-based reinforcement
learning (MBRL). It is important to note that all baselines utilize this training framework, differing
only in the strategy employed for collecting trajectories within the real environment. Our training
framework is based on the implementation of LEXA paper(Mendonca et al. (2021)).

Algorithm 3 General MBRL Training Framework

1: Input: Policy πG, πE , Environment Goal Distribution G, World Model M̂ , reward function rG,
rE

2: D ← {} Initialize buffer.
3: for Episode i = 1 to Ntrain do
4: τ ← Collect trajectories(. . .)
5: D ← D ∪ τ
6: Update world model M̂ with D
7: Update πG in imagination with M̂ to maximize rG

8: Update πE in imagination with M̂ to maximize rE

16

D.1 Go-Explore

Our baselines utilize the state-of-the-art Go-Explore exploration framework, following the implemen-
tation detailed in the PEG paper(Hu et al. (2023)). This approach initially employs a goal-conditioned
policy πG to get as close as possible to a specified goal g, a process referred to as the "Go phase."
Subsequently, an explorer policy πE is used to further explore the environment starting from the final
state of the Go phase, known as the "Explore phase."

The quality of the trajectories generated by the Go-Explore strategy largely depends on the selection
of the goal g during the Go phase. Therefore, establishing an effective mechanism for selecting the
Go phase goals is crucial. If the chosen goal g is too simple, the explorer will not sufficiently explore
the environment. Conversely, if the goal g is too difficult, the goal-achieving policy πG will fail to
approach it effectively. Thus, the baselines MEGA-G and PEG-G employ different goal selection
strategies to determine g, guiding the agent to areas with high exploration potential during the Go
phase. MEGA-G and PEG-G enhance the agent’s exploration efficiency by crafting robust exploration
strategies, enabling faster learning of the world model with respect to new dynamic transitions and
environmental areas. We present the pseudocode for Go-Explore in Algorithm 4.

Algorithm 4 Go Explore Framework
1: function GO-EXPLORE(g, πG, πE)
2: s0 ← env.reset()
3: τ ← {s0}
4: for Step t = 1 to TGo do
5: st ← env.step(πG(st−1, g))
6: τ ← τ ∪ {st}
7: if agent reach g then
8: break
9: te = t

10: for Step t = te to te + TExplore do
11: st ← env.step(πE(st−1))
12: τ ← τ ∪ {st}
13: return τ

D.2 GC-Dreamer

GC-Dreamer is the goal-conditioned version of Dreamer(Hafner et al. (2019a,b, 2020)), without
incorporating any exploration or goal-directed strategies. It only uses a goal-conditioned policy to
collect trajectories, with goals provided by the training environment.

Algorithm 5 GC-Dreamer Goal Sampling
1: function COLLECT TRAJECTORIES(. . .)
2: g ← Returned by environment
3: τ ← Sample a trajectories by πG using goal g
4: return τ

D.3 PEG-G

PEG uses a world model to simulate exploration trajectories and evaluates the exploration
potential(PE(g)) to identify areas worth exploring.

PE(g) = EpπG(·|·,g)(sT)
[V E(sT)] (8)

V E(sT) = EπE [

T+TE∑
t=T+1

γt−T−1rEt] (9)

17

PEG set goal g for the goal-conditioned policy and generalize it to K trajectories using world model.
sT denotes the final state of the goal-conditioned trajectory from the "Go phase" of Go-Explore
to reach the g. Since the objective in Equation 8 is not easily computable, as it relies on the final
state distribution induced by the target-conditioned policy πg , which may rapidly change throughout
the training process, it’s crucial to use the latest estimates for better exploration. PEG achieve this
by leveraging the learned world model. PEG utilize the learned exploration value function VE(s

T
k)

(Equation 10) from the learned world model to estimate the exploration value of the final state for
each trajectory, and average these estimates.

EpπG(·|·,g)(sT)
[V E(sT)] =

1

K

K∑
k

V E(skT) where skT ∼ p̂πG(·|·,g)(τ) (10)

p̂πG(·|·,g)(τ) = p(s0)[

T∏
t=1

M̂(st|st−1, at−1)π
G(at−1|st−1, g)] (11)

The goals sampled for evaluating this exploration potential metric in PEG are drawn from a distribution
updated by the MPPI method (Williams et al. (2015); Nagabandi et al. (2020)). For more details of
PEG MPPI update, please refer to the appendix of their paper(Hu et al. (2023)).PEG-G not only uses
goals obtained by optimizing Equation 10 to guide exploration sampling but also directly samples
trajectories using a goal-conditioned policy with goals provided by the environment. The sampling
alternate between these two strategies as shown in the pseudocode in Algorithm 6.

Algorithm 6 PEG-G Sampling
1: function COLLECT TRAJECTORIES(. . .)
2: if episode i%2 = 0 then
3: g ← Optimize Equation 10 with MPPI
4: τ ← GO-EXPLORE(g, πG, πE)
5: else
6: g ← Returned by environment
7: τ ← Sample a trajectories by πG using goal g
8: return τ

D.4 MEGA-G

MEGA (Pitis et al. (2020)) employs kernel density estimates (KDE) to assess state densities and
selects goals with low densities from the replay buffer. For the implementation of MEGA, we adopt
the model-based MEGA methodology described in the PEG paper without modifications. The PEG
paper has illustrated that their adaptation of MEGA outperforms the original MEGA implementation.
This entails integrating MEGA’s KDE model and incorporating a goal-conditioned value function
into the LEXA framework to filter goals based on reachability. Similar to PEG-G, MEGA-G switches
between utilizing goals from the environment and employing the MEGA goal selection strategy.

Algorithm 7 MEGA-G Goal Sampling
1: function COLLECT TRAJECTORIES(. . .)
2: if episode i%2 = 0 then
3: g ← ming∈D p̂(g)
4: τ ← GO-EXPLORE(g, πG, πE)
5: else
6: g ← Returned by environment
7: τ ← Sample a trajectories by πG using goal g
8: return τ

18

D.5 MUN-noDAD

We consider the Time-sample Hindsight Waypoints Sampling Strategy from Hindsight Planner
(Lai et al. (2020)) as an alternative to the subgoal selection mechanism in MUN. MUN-noDAD
selects subgoals at fixed time intervals along trajectories, providing a simple and effective strategy
for defining subgoals. MUN-noDAD can still benefit from the framework of MUN in navigating
between different subgoals. The pseudocode for this baseline is as follows:

Algorithm 8 MUN-noDAD Subgoal Picking Strategy

1: Function: Subgoals_fixed_interval(...)
2: Input: A batch of episodes Begc, number of subgoals Nsubgoals

3: Ssubgoals ← pick Nsubgoals states at fixed time intervals from Begc

4: Gsubgoals ← η(Ssubgoals)
5: return Gsubgoals

Algorithm 9 Trainning Frame for MUN-noDAD

1: Input: Policy πG, World Model M̂ , reward function rG, subgoals transfer number Ns, subgoal
time limit Ts

2: Initialize buffers D,DDAD, Degc

3: for i = 1 to Ntrain do
4: if Should Plan Subgoals then
5: Begc ← A batch of episodes from Degc

6: Gsubgoals ← Subgoals_fixed_interval(...) with Algorithm 8
7: Initialize empty trajectory τ
8: for s = 1 to Ns do
9: ts = 0

10: gs = Sample a subgoal randomly from Gsubgoals

11: while agent has not reached gs and ts < Ts do
12: Append one step in real environment with πG using goal gs to τ
13: ts ← ts + 1
14: DDAD ← DDAD ∪ {τ}
15: Degc ← Degc∪ Sample a trajectory with πG using goal from training environment
16: D ← DDAD ∪Degc

17: Update M̂ with D

18: Update πG in imagination with M̂ to maximize rG

19

E Implementation Details

E.1 Farthest Point Sampling (FPS) Algorithm

Algorithm 10 Farthest Point Sampling (FPS)

1: function FPS(points, num_samples)
2: sampled_points← []
3: first_point← random.choice(points)
4: sampled_points.append(first_point)
5: min_distances← [float(’inf’)] × len(points)
6: for each point p in points do
7: min_distances[p]← distance(p, first_point)
8: for iteration i = 1 to num_samples-1 do
9: farthest_point_index← argmax(min_distances)

10: farthest_point← points[farthest_point_index]
11: sampled_points.append(farthest_point)
12: for each point p in points do
13: min_distances[p]← min(min_distances[p], distance(p, farthest_point))
14: return sampled_points

The pseudocode presented in the Algorithm 10 illustrate the process of Farthest Point Selection (FPS)
algorithm. The FPS algorithm begins by initializing an empty list called ’sampled_points’ to store
the selected points. The process commences by randomly selecting an initial point from the input
point set, denoted as ’points’, and adding it to ’sampled_points’. Subsequently, ’min_distances’ is
initialized to keep track of the minimum distance from each point to any of the sampled points, with
initial values set to infinity.

The core procedure involves iteratively selecting points until the desired number of samples is reached.
At each iteration, the algorithm identifies the point in ’points’ with the maximum minimum distance
to the previously sampled points and includes it in ’sampled_points’. Concurrently, ’min_distances’
is updated to reflect the recalculated minimum distance of each point to any of the sampled points.

E.2 Runtime

Table 1: Runtimes per experiment.

Total Runtime (Hours) Total Steps

3-Block Stacking 70 2.5e6
Walker 40 1.5e6
Ant Maze 36 1e6
Block Rotation 68 2.5e6
Pen Rotation 68 2.5e6
Fetch Slide 52 2e6

We conduct each experiment on GPU Nvidia A100 and require about 3GB of GPU memory. See
table in Table 1 for specific running time of MUN for different task. Most of the runtime is consumed
by the neural network updates for the policy and the world model, while the time taken by DAD to
filter subgoals is minimal.

E.3 Hyperparameters

We use the default hyperparameters of the LEXA backbone MBRL agent (e.g., learning rate, optimizer,
network architecture) and keep them consistent across all baselines. MUN primarily requires
hyperparameter tuning in the following: 1) the number of candidate subgoals stored Nsubgoals; 2)
the number of subgoals used for navigation when sampling in the environment Ns; and 3) the total

20

episode length L and the maximum number of timesteps allocated for navigating to a specific subgoal
Ts. We show these hyperparameters in Table 2.

Table 2: Hyperparameters of MUN.

Nsubgoals Ns L Ts

3-Block Stacking 20 2 150 75
Walker 10 2 150 75
Ant Maze 20 2 500 250
Block Rotation 20 2 150 75
Pen Rotation 20 2 150 75
Fetch Slide 20 2 150 75

F Additional Experiments

F.1 More subgoals found by DAD

Figure 9: More subgoals found by DAD(Algorithm 2) in all six environments

We visualize several subgoals found by the DAD algorithm during the training process in Fig. 9. In
Walker, the first five images show that DAD successfully identifies the crucial joint angles and forces
of the Walker robot during its forward locomotion, including standing, striding, jumping, landing,
and leg support. In the subsequent three images, DAD similarly succeeds in recognizing the key
movements of the Walker robot during its backward locomotion. In Ant-Maze, DAD recognizes
significant motion variations at corridor corners. In Block Rotation and Pen Rotation, DAD is
able to identify crucial finger movements subgoals for rotating objects. In 3-Block Stacking, DAD
successfully identifies crucial state transitions required during the stacking process. These critical
subgoals include block grasping, lifting, horizontal movement, vertical movement, and gripper
release.

21

F.2 Navigation Experiments

We do the extend navigation experiments on 3-Block Stacking, Ant Maze, and Walker environments to
see if the MUN can learn a better world model to navigate to unconstrained goals from unconstrained
start state compared to other baselines. In the 3-Block Stacking task, we use a set of 15 goals that
represent various critical states in the block-stacking process. These goals serve as candidates for
both initial states and endpoint goals, resulting in a total of 225 unique combinations of initial states
and endpoint goals for each evaluation episode. For each combination, we conduct 10 repeated
evaluations, ultimately computing the average success rate across 2250 evaluation trajectories. Our
goal is to assess whether MUN can effectively achieve a random goal when the agent starts from
an arbitrary state. This evaluation inherently includes both the forward and reverse processes of
stacking blocks, determining whether an agent that can stack blocks is also capable of returning the
stacked blocks to an intermediate state. In the Ant Maze environment, we use 32 different positions
within the maze as a candidate set for starting and goal positions. Evaluating navigation between
these positions allows for a comprehensive assessment of the Ant Robot’s world model learning for
the maze structure. This evaluation not only measures its ability to reach the final room but also its
capability to return to previous rooms from intermediate positions. We evaluate 1024 combinations of
starting and goal positions, conducting 10 evaluations for each combination, resulting in an average
success rate computed over 10,240 experiments. In the Walker environment, we use all evaluation
goals (±13,±16,±19,±22,±25,±28) as a candidate set for starting and goal positions. This set
can form a total of 144 different combinations of starting and goal positions, providing a thorough
assessment of the Walker robot’s ability to move forward and backward, as well as its precision in
position judgment. See Table 3, 4, 5 for specific results of MUN and all baselines.

Table 3: Success rate of navigation experiments on 3-Block Stacking

Environment Success rate

MUN 3-Block Stacking 95%
MUN-noDAD 3-Block Stacking 81%
GC-Dreamer 3-Block Stacking 56%
MEGA-G 3-Block Stacking 42%
PEG-G 3-Block Stacking 47%

Table 4: Success rate of navigation experiments on Ant Maze

Environment Success rate

MUN Ant-Maze 96%
MUN-noDAD Ant-Maze 89%
GC-Dreamer Ant-Maze 75%
MEGA-G Ant-Maze 94%
PEG-G Ant-Maze 93%

Table 5: Success rate of navigation experiments on Walker

Environment Success rate

MUN Walker 89%
MUN-noDAD Walker 73%
GC-Dreamer Walker 67%
MEGA-G Walker 81%
PEG-G Walker 62%

22

We observe that MUN significantly outperforms other baselines in navigation experiments across
all three environments, demonstrating its exceptional contribution to learning comprehensive world
models and policies.

F.3 World Model Assessment

Table 6 shows the single-step prediction error of learned world models. We randomly sample 1e4
state transition tuples (si, ai, si+1) within the replay buffers from all of our baselines (MUN, MUN-
noDAD, GC-Dreamer, MEGA-G, and PEG-G) to form a validation dataset. Table 6 reports the mean
squared error on this dataset.

Table 7 shows the compounding error (multistep prediction error) of learned world models for
evaluation when generating the same length simulated trajectories. More specifically, assume a real
trajectory of length h is denoted as (s0, a0, s1, ..., sh). For a learned model M , we sample from s0
and generate forward rollouts (ŝ0, a0, ŝ1, ..., ŝh) where ŝ0 = s0 and for i ≤ 0, ŝi+1 = M(ŝ0, ai).
Then the corresponding compounding error of M is defined as 1

h

∑h
i=1 ∥ŝi − si∥22. We set h to be

the maximum number of timesteps in our environments. We evaluated the compounding prediction
error of the learned world models by generating 500 trajectories for each benchmark, simulated on
both the models and the real environments.

In Tables 6 and 7, we used the final world models trained by all methods after the same number
of environment interaction steps. These results provide a quantitative comparison of the world
model prediction quality between MUN and the baselines across our benchmarks. The world models
trained by MUN show a much smaller generalization gap to the real environment compared to
goal-conditioned Dreamer (and the other baselines). Consequently, MUN can effectively leverage
these world models to train control policies that generalize well to the real environment. This explains
the superior task success rates of MUN compared to the baselines in our experiment. Fig 10 also
provides more information about the world model compound prediction error.

(a) Trajectories 3-Block Stacking (b) Trajectories Block Rotation

Figure 10: Fig(a) and Fig(b) illustrate the imagined and real environment trajectories for 3-Block
Stacking and Block Rotation respectively, starting from the same initial state. Among the baselines,
MUN demonstrates the smallest compound model error with respect to the ground truth trajectories.
The X-axis represents the trajectory steps. In Fig(a), the Y-axis represents the sum of the heights of
the three blocks. MUN’s world model outperforms other methods in predicting the correct locations
of the three blocks. In Fig(b), the Y-axis represents the position of the block in the x coordinate.
MUN’s world model outperforms other methods in predicting the correct position of the block.

23

Table 6: One-step Model Prediction Error.

MUN MUN-noDAD PEG-G MEGA-G GC-Dreamer

Ant Maze 1.6740 1.9751 2.1154 2.2416 2.9666
Walker 0.8165 0.9971 1.4759 1.2353 2.1824
3-Block Stacking 0.0070 0.0071 0.0476 0.0853 0.0392
Rotate Block 1.0570 1.5609 1.7753 1.9433 2.3723
Rotate Pen 0.6708 1.1999 1.9622 2.8598 1.8359
Fetch Slide 0.0094 0.0108 0.0132 0.0164 0.0169

Table 7: Compound Model Prediction Error.

MUN MUN-noDAD PEG-G MEGA-G GC-Dreamer

Ant Maze 18.83 22.42 29.42 23.69 40.36
Walker 13.03 16.72 26.54 21.21 39.72
3-Block Stacking 0.45 0.55 0.70 0.95 0.94
Rotate Block 11.55 12.86 14.38 14.13 15.06
Rotate Pen 4.63 6.10 7.40 9.85 9.36
Fetch Slide 1.687 1.648 2.195 2.856 2.304

24

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction accurately represent the primary contributions
of the paper, which include the development of the MUN algorithm designed to improve
goal-conditioned reinforcement learning through enhanced world modeling and exploration
capabilities. The introduction outlines the key challenges in GCRL, specifically with
sparse rewards, and how MUN addresses these by facilitating effective state transitions
between arbitrary subgoal states in the replay buffer. These claims are well-supported by
the theoretical underpinnings and experimental results presented in the paper, reflecting the
scope and impact of the proposed method.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our paper thoroughly discusses the limitations of the MUN framework in
Appendix. We highlight the dependency on an efficient strategy for discovering key states,
pointing out that while DAD is effective, it will also identify irrelevant states in tasks with
complex action spaces or weak correlations between goal space and action space. Addi-
tionally, we mention the potential for applying MUN to model-free reinforcement learning
methods, which do not require learning a world model and have simpler architectures.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

25

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our paper does not include theoretical results.
Guidelines: In the Experiment section and the Appendix of our paper, we provide a detailed
description of our experimental procedures and configurations. This includes all sources
and modifications of the test environments, pseudocode and implementation methods for all
baselines, the equipment and memory used, as well as the specific values of the required
hyperparameters. Additionally, we have open-sourced our code, which can be found in the
Reproducibility Statement section.

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the Experiment section and appendix of our paper, we elaborate on the
procedure and configuration of our experiments. This includes the sources and modifications
of all testing environments, pseudo code and implementation methods for all baselines,
the devices and memory utilized, as well as specific values of hyperparameters employed.
Concurrently, we have open-sourced our code; please refer to the Reproducibility Statement
section for further details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

26

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: As we mentioned in the previous justification, we have not only open-sourced
our code but also provided detailed steps and settings for reproducing our main experimental
results. In the Experiment section and Appendix, we elaborate on the sources and modifi-
cations of the environments, baseline implementation details, and MUN implementation
specifics.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide comprehensive details regarding the hyperparameters essential for
understanding the experiments, including those specific to our MUN framework. The table
presented (Fig 2) outlines these hyperparameters for each task, facilitating reproducibility
and comparison.

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We conducted each experiment a minimum of five times using different
random seeds, and upon plotting the results, as demonstrated in the Experiment section,
we incorporated the experimental error. The solid line denotes the average success rate,
while the shaded region signifies the standard deviation among the repeated experimental
outcomes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We clearly specifies the computer resources (Nvidia A100 GPU) and the
amount of GPU memory required (approximately 3GB). Additionally, we provides detailed
information on the runtime of each experiment in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

28

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in our paper aligns with the NeurIPS Code of Ethics.
We have thoroughly reviewed the guidelines and ensured that our research adheres to ethical
standards. Additionally, we have implemented measures to safeguard anonymity and comply
with pertinent laws and regulations.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our research aims to address the exploration problem in Reinforcement
Learning (RL) within the GCRL environment. It is currently in the theoretical research stage
and has minimal societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.

29

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our paper properly credits the creators or original owners of assets used,
including code, data, and models. The licenses and terms of use are explicitly respected.
Specifically, we cite the original papers for code packages or datasets used, state the version
of the assets, and include URLs where possible.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have documented our code and provided detailed instructions on its usage,
licenses, and permissible scope of use. Additionally, we have included the documentation
alongside the assets to ensure accessibility and clarity for users.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

30

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

	Introduction
	Problem Setup and Background
	Training World Models for Unconstrained Goal Navigation
	Training Generalizable World Models
	Key Subgoal Generation through Distinct Action Discovery (DAD)

	Experiments
	Environments
	Baselines
	Results
	Can DAD find key subgoals?
	Can MUN navigate between arbitrary subgoals?
	Ablation study

	Related Work
	Conclusion
	Appendix
	Extended Background
	Dreamer World Model
	Temporal Distance Training in LEXA

	Limitations and Future Work
	Environments
	3-Block Stacking
	Walker
	Ant Maze
	Fetch Slide
	Block and Pen Rotation

	Baselines
	Go-Explore
	GC-Dreamer
	PEG-G
	MEGA-G
	MUN-noDAD

	Implementation Details
	Farthest Point Sampling (FPS) Algorithm
	Runtime
	Hyperparameters

	Additional Experiments
	More subgoals found by DAD
	Navigation Experiments
	World Model Assessment

