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Introduction   
Machine learning (ML) has emerged as a promising tool for the improvement of mental health in areas 
such as prevention, diagnosis, treatment, research and administration1,2. Despite recent advanced in the 
field, there remains important gaps in the literature, particularly a lack of evaluation with large samples 
and external datasets, as well as concerns regard potential bias and discrimination. An example of a 
mental health domain that is faced with these limitations is the predictive modelling of schizophrenia 
spectrum disorders (SSZ) using machine learning.  
 
SSZ affect more than 24 million individuals worldwide. They present an acute onset of psychotic 
symptoms such as delusions, hallucinations, perceptual disturbances, and severe disruption of ordinary 
behavior which affect the wellbeing of individuals3. Despite years of research, the mechanisms leading 
to the incidence of SSZ remains elusive4. A recent review on artificial intelligence-based algorithms for 
schizophrenia prediction has reported accuracies ranging from 67% to 93.9% (Cortes-Briones et al., 
2022)5. However, those models were based on electronic health records, electroencephalograms, and 
genetic data, which are acquired in medical centres using expensive equipment, hence limiting 
widespread access to such tools by the general population. More recently, using the large longitudinal 
cohort of UK Biobank, a study on schizophrenia risk prediction based on support vector machines, 
environmental and genetic data was able to obtain an AUC-ROC of 0.716. To the best of our knowledge, 
none of the aforementioned studies used accessible predictors, such as exposome factors, that are 
furthermore potential targets for preventive lifestyle changes. At the same time, none of these studies 
evaluated the fairness of these algorithms against potential sources of biases and their applicability 
across multiple population subgroups, including under-disadvantaged populations. 
 
To tackle these limitations, we developed and validated a novel, accessible and fair ML model for risk 
prediction of SSZ. Based on easily acquired exposome variables, the model enables to identify 
individuals at risk of schizophrenia, schizotypal and delusional disorders, along with modifiable risk 
factors. Moreover, we evaluated the potential improvements offered by blood biochemistry and 
hematology data routinely acquired in clinical practice. We also compared different linear and non-
linear methods and analysed the most important factors relevant for the prediction, including previously 
unknown exposome-related risk factors appropriate for beneficial lifestyle interventions. At the same 
time, we estimated and demonstrates the fairness of the proposed approach with respect to ethnicity, 
sex/gender, birth, education and socio-economics. The method was built using large data from the UK 
Biobank7, then evaluated using internal and external validation cohorts originating from eighteen and 
four independent assessment centers, respectively. 
 
Methods 
An overview of the study design is provided in Figure 1. In brief, we selected readily available features 
from the UK Biobank cohort. We included exposome and hematological features such as maternal 
smoking and vitamin D. Subsequently, we performed data pre-processing, including selection of the 
study population, data cleaning and imputation. We then trained and evaluated our models using internal 
and external validation cohorts ensuring fairness for sensible parameters. Finally, we studied the most 
important features for the model decision to interpret the results and identify potential 
unknownmodifiable factors and biomarkers for risk assessment.  

 



 
Fig. 1. Overview of our methodology for modeling the risk of schizophrenia, schizotypal and delusional disorders using data 

from the UK Biobank. 
 
Predictive modeling  
We performed nested cross-validation (7 outer folds, 5 inner folds) using the internal validation cohort, 
and an additional external validation with several state-of-the art machine learning algorithms: Logistic 
Regression (LR), Support Vector Machine (SVM), Random Forest (RF), AdaBoost (ADA), and 
XGBoost (XGB). We compared the models’ performance using three different sets of input features as 
predictors:  1) Exposome factors alone, 2) Blood factors alone, 3) Combined blood + exposome 
factors.  
 
Models’ analysis 
We evaluated the model performance in the internal and external validation cohorts in terms of 
sensitivity (ratio of correct classifications), precision (positive predictive value), F1 score (harmonic 
mean between precision and sensitivity), and AUC (probability of ranking a randomly chosen positive 
instance higher than a randomly chosen negative one).  
 
Moreover, we evaluated the model fairness by means of statistical parity difference, i.e. the difference 
of the rate of favourable outcomes received by the majority group, to the protected group, and disparate 
impact ratio, i.e. the ratio of the proportion of positive outcomes for the majority group over the 
proportion of positive outcomes for the minority group. For further details see Table 1. 
 
Table. 1. Analyzed privilege and unprivileged groups characteristics. 

Class Ethnicity Sex Younger Older Education Low socio-
economics 

High socio-
economics 

Group 
1 

White British 
(887) 

Male 
(540) 

Born before 
1944 (246) 

Born before 
1959 (790) 

Education 
(873) < -3.241 (266) > 2.462 (798) 

Group 
2 

Non White 
British (177) 

Female 
(524) 

Born after 1944 
(778) 

Born after 
1959 (242) 

No 
education 

(191) 
> -3.241 (798) < 2.462 (266) 

 
Results 
Figure 2 provides the mean and standard deviation of the evaluation metrics (AUC, F1-score, Precision, 
Sensitivity) achieved by means of nested cross-validation by each of the selected algorithms: Logistic 
Regression, Support Vector Machine, Random Forest, AdaBoost and XGBoost. 

 



 
 

Figure. 2. Performance of all models by metric during nested cross-validation.  
 

The best performance in terms of AUC in the internal validation cohort was obtained using Random 
Forest and XGBoost models. Both models had similar behaviors when using the three different 
combination of input features, as depicted in Tables 2 and 3, respectively). 
 
Table. 2. Random Forest mean and standard deviation of the different performance metrics in the internal validation cohort 
using nested cross-validation. 

Model AUC F1-Score Precision Sensitivity 
1) Exposome 0.79±0.02 0.78±0.02 0.82±0.02 0.75±0.04 
2) Blood 0.64±0.02 0.63±0.03 0.65±0.03 0.61±0.04 
3) Blood+Exposome 0.80±0.02 0.79±0.02 0.83±0.03 0.75±0.05 

 
Table. 3. XGBoost mean and standard deviation of the different performance metrics in the internal validation cohort using 
nested cross-validation. 

Model AUC F1-Score Precision Sensitivity 
1) Exposome 0.79±0.01 0.78±0.02 0.82±0.02 0.74±0.04 
2) Blood  0.64±0.03 0.64±0.04 0.64±0.03 0.64±0.05 
3) Blood+Exposome 0.80±0.02 0.79±0.02 0.82±0.02 0.76±0.04 

 
For the RF and XGB best performing models, we computed the statistical parity difference and disparate 
impact ratio to control for potential bias in ethnicity, gender, birth, education, and Townsend deprivation 
index. For each variable, we report both metrics as the mean of the seven outer folds during nested-
cross validation (Figure 3). The results demonstrated that RF and XGB were not discriminating against 
any of the assessed characteristics during the prediction. Hence, there was no need to apply fairness 
techniques such as re-weight or disparate impact remover8.  
 
After verifying algorithm’s fairness, we decided to select the best final model considering both the 
performance in terms of fairness, as assessed by the statistical parity and disparate ratio metrics, and 
the AUC as a metric reporting the overall performance. According to these criteria, the best final model 
was the Boost model trained on the second fold during the nested cross-validation using a blend of 
exposome and haematology data. The model achieved an AUC of 0.822 and 0.796 in the internal and 
external validation cohorts, respectively.  
 



 
 
Figure. 3. Statistical parity difference and disparate impact ratio of sociodemographic factors in Random Forest and XGBoost.  
 
The importance of the features of the best performance model is provided in Figure 4. The exposome 
variables of higher importance in the model were related to sleep patterns, sun protection, changes in 
diet and socioeconomics. Precisely, the most important one was a visit to the psychiatrist before dealing 
with SSD, which may be an indicator of other mental health comorbidities.  Furthermore, hematological 
features as hemoglobin also appear to be in the top 20 of the model importance, which supports previous 
associations of these biomarker and the disorder9.  
 

 
 

Figure. 4. Feature importance of the best model.  
 
Conclusion 
Our results demonstrate that machine learning models based on accessible exposome variables such as 
Townsend deprivation and diet, can reliably identify individuals at risk of schizophrenia, schizotypal 
and delusional disorders. Haematological data slightly improve the results in terms of accuracy. For the 
task at hand, XGBoost outperforms other models with the best fair model achieving an AUC of 0.822 
and 0.796 in internal and external validation cohorts, respectively. These preliminary results show 
promise for further investigation of accessible and fair ML models in mental health that will benefit the 
general population across various ethnic, sex, age and socio-economics groups. 



References  
 
1. Shatte, A. B. R., Hutchinson, D. M. & Teague, S. J. Machine learning in mental health: a 

scoping review of methods and applications. Psychol Med 49, 1426–1448 (2019). 
2. Thieme, A., Belgrave, D. & Doherty, G. Machine Learning in Mental Health. ACM 

Transactions on Computer-Human Interaction 27, 1–53 (2020). 
3. Gaebel, W., Kerst, A. & Stricker, J. CLASSIFICATION AND DIAGNOSIS OF 

SCHIZOPHRENIA OR OTHER PRIMARY PSYCHOTIC DISORDERS: CHANGES FROM 
ICD-10 TO ICD-11 AND IMPLEMENTATION IN CLINICAL PRACTICE. Psychiatr 
Danub 32, 320–324 (2020). 

4. Causes - Schizophrenia - NHS. https://www.nhs.uk/mental-
health/conditions/schizophrenia/causes/. 

5. Cortes-Briones, J. A., Tapia-Rivas, N. I., D’Souza, D. C. & Estevez, P. A. Going deep into 
schizophrenia with artificial intelligence. Schizophr Res 245, 122–140 (2022). 

6. Bracher-Smith, M. et al. Machine learning for prediction of schizophrenia using genetic and 
demographic factors in the UK biobank. Schizophr Res 246, 156–164 (2022). 

7. UK Biobank - UK Biobank. https://www.ukbiobank.ac.uk/. 
8. Bellamy, R. K. E. et al. AI Fairness 360: An extensible toolkit for detecting and mitigating 

algorithmic bias. IBM J Res Dev 63, 4:1-4:15 (2019). 
9. Wysokinski, A. & Szczepocka, E. RED BLOOD CELLS PARAMETERS IN PATIENTS 

WITH ACUTE SCHIZOPHRENIA, UNIPOLAR DEPRESSION AND BIPOLAR 
DISORDER. Psychiatr Danub 30, 323–330 (2108). 

  


