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Abstract

Large Language Models (LLMs) have achieved
promising performance on Math Word Prob-
lem (MWP) and Question Answering (QA)
tasks. LLM fine-tuning is commonly based
on cross-entropy loss minimization to perform
accurate predictions. However, the standard
cross-entropy function neither considers the un-
derlying token distribution over training data
nor weighs differently correct and misclassified
samples. To address tasks such as closed-ended
QA and step-by-step MWP resolution LLMs
require advanced language reasoning capabili-
ties. This prompts the adoption of established
computer vision loss functions that optimize
LLMs’ performance rather than simple accu-
racy. This paper shows the higher effectiveness
of combining cross-entropy with computer vi-
sion loss functions across MWPs and closed-
ended QA datasets. We show relevant LLMs’
performance improvements with equal model
complexity and the same number of training
samples or even fewer. We also demonstrate
the efficacy of reproducing step-by-step reason-
ing on the MWP task.

1 Introduction

Despite their increasing popularity, Large Lan-
guage Models (LLMs) encounter challenges in han-
dling reading comprehension and formal language
understanding tasks such as open-book Question
Answering (QA), sentence completion, and Math
Word Problems (MWPs). When the task subtends
deep reasoning and elaboration of the input ques-
tion and provides context, LLMs might struggle
to achieve competitive performance when used in
a zero-shot setting. To specialize deep learning
models on specific subtasks, a common practice
is to fine-tune the model on in-domain training
data. However, this approach typically requires the
availability of a large set of human-curated annota-
tions (Min et al., 2024).

Both LLM pre-training and fine-tuning are com-
monly based on cross-entropy loss minimization.
Cross-entropy optimizes the overall system accu-
racy (Li et al., 2020) but disregards relevant aspects
such as the presence of imbalances in token gener-
ation and errors. For example, in QA tasks such as
MWP a straightforward comparison between the
predicted and expected answer fails to capture the
text-relevant relations subtended by the formal lan-
guage (Liu, 2023). When the task involves multiple
formal steps, verifying the correctness of the final
result does not necessarily guarantee the quality
of the LLLM outcome. In the worst-case scenario,
the reasoning steps are wrong, but the mistakes are
concealed by the random selection of the correct
answer, yielding an apparently high accuracy score
(Turpin et al., 2023).

Inspired by advances in computer vision, in this
work, we explore the use of the cross-entropy loss
combined with well-known semantic segmentation
loss functions in LLM fine-tuning for closed-ended
question answering and mathematical reasoning
in MWPs. We explore the use of loss functions
designed to take into account imbalance in clas-
sification (Lin et al., 2017) and optimize perfor-
mance metrics other than accuracy, such as Gener-
alized Dice Score (Sudre et al., 2017) and Jaccard
Index (Berman et al., 2018). The idea behind it
is to enhance LLM capabilities by incorporating
penalization terms in the loss functions that take
token probability distributions and classification
error rates into account. The modified objective
functions led to consistently better performance
without requiring additional training samples or
annotations.

The main contributions of the present work are:

* A discussion of the limitations of cross-
entropy loss in closed-ended question answer-
ing and step-by-step mathematical resolution
in MWPs (see Section 3);



* An exploration of the performance of well-
known semantic segmentation losses in LLM
fine-tuning for five different loss functions,
four datasets, and two tasks, even with limited
data (see Section 4);

* An extensive performance analysis using
MWP reasoning metrics (Golovneva et al.,
2022) and a comparison between step-by-step
reasoning and accuracy results and an error
analysis of common errors done by LLMs in
MWP reasoning steps (see Section 4.5).

The source code to reproduce the exper-
iments is available for research purposes
at https://anonymous.4open.science/r/
segmentation-losses-nlp-5B73.

2 Related Works

The main objective of the present work is to explore
the use of different loss functions in natural lan-
guage generation tasks such as closed-ended Ques-
tion Answering and Math Word Problems. The
contribution is rooted in the objective functions
that are commonly used for semantic segmentation
tasks.

Common loss functions for semantic segmen-
tation. The use of Weighted Cross-Entropy,
Dice (Milletari et al., 2016) and Focal losses (Lin
et al., 2017) is established for overcoming poten-
tial imbalances in the classes to be predicted and
to effectively penalize classification errors (Mil-
letari et al., 2016; Berman et al., 2018). The goal
is to optimize the overlap between the predicted
and ground truth segmentation maps, which can
be quantified using the Dice score or the Jaccard
Index.

Combining complementary loss functions to-
gether (Taghanaki et al., 2019) has shown to im-
prove segmentation performance (Yeung et al.,
2022; Shit et al., 2021; Iantsen et al., 2021; Hu
et al., 2021c). Transferring a similar approach to
text generation tasks is particularly appealing and,
to the best of our knowledge, appears to be limited.

Common loss functions for natural language
generation. Policy gradient or minimum risk
training (Ranzato et al., 2015; Wang et al., 2019)
have already been used to optimize the syntactic
overlap between generated and expected output,
quantified by the BLEU metric (Papineni et al.,
2002). Reinforcement Learning suffers from high

variance and instability during training. Most effi-
cient solutions rely on soft Q-learning (Guo et al.,
2021), differentiable BLEU objectives (Shao et al.,
2018, 2021), or EISL loss. The latter is insensitive
to the shift of n-grams in target sequences, making
it suitable for training with noisy data and weak
supervisions; however, its applicability is limited
to non-autoregressive models (Liu et al., 2022).
In Li et al. (2020), the use of Dice loss and its
self-adjusting version has been proposed for the
reading comprehension task with encoder-only ar-
chitectures. However, their benefits depend on the
specific task (Li et al., 2020).

Evaluation metrics for reasoning tasks. It is
quite common to evaluate the final outcome of the
reasoning task regardless of the intermediate steps
applied to achieve that result (e.g., (Liang et al.,
2022; Cobbe et al., 2021; Hendrycks et al., 2021)).
State-of-the-art metrics like ROSCOE (Golovneva
et al., 2022) propose new ways to evaluate ratio-
nales, although they could not be easily optimized,
and the search for representative functions is al-
ready opened.

3 Methodology

In this section, we formally introduce the loss func-
tions, shortlisted from the classification presented
in Ma et al. (2021), and explain their rationale. For
the sake of simplicity, hereinafter we will consider
the binary formulation. The loss formulations can
be straightforwardly extended to the multi-class
scenario.

3.1 Distribution-based losses

This family of loss functions is derived from the
Kullback-Leibler Divergence. They aim to opti-
mize the model weights according to the differ-
ences between the observed and expected distribu-
tions. The traditional cross-entropy loss belongs to
this category.

Cross Entropy Loss. Cross-Entropy (CE) is an
accuracy-oriented function, i.e., it aims to maxi-
mize the accuracy (AC) metric globally in the pre-
dicted tokens (Li et al., 2020). AC and CE loss are
defined as follows:

CE(p:) = —log(pt) (2)
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where N is the total number of samples, ¢; and y;
are the predicted and ground truth class for sam-
ple ¢, respectively, and p; is the probability of the
sample belonging to the positive class.

CE is the most established loss for LLM pre-
training and fine-tuning based on Next Token Pre-
diction. Cross-entropy does not consider the under-
lying structures of predictions or any differences
between classes and errors. Imbalance is character-
istic of language problems, where the number of
classes is equal to the size of a language vocabu-
lary (see Appendix B). Although weighted cross-
entropy may address this issue, assigning a proper
weight to each class can be challenging.

Focal Loss. Focal loss (FL) is a variant of CE
that is specifically designed to address the class
imbalance problem. It aims to reduce the relative
loss for well-classified examples while emphasiz-
ing training on hard, misclassified ones. Focal loss
can be defined as follows:

FL(pt) = —(1 — pt)” log(pt) 3

where p; is the probability of the sample belong-
ing to the positive class while  is the Focal sup-
pression parameter. Although Focal loss does
not directly consider the class distribution, it au-
tonomously distinguishes between hard and easy
samples (using (1 — p;)). This proves beneficial in
correctly predicting underrepresented classes. No-
tably, this solution gives more importance to errors
(i.e., wrongly predicted tokens) than cross-entropy.

3.2 Region-based losses

This family of loss functions optimizes the model’s
weights according to the differences between two
sets.

Dice Loss. It is the main representative of the
region-based loss family. The Dice Loss (DL) (Mil-
letari et al., 2016) optimizes the Dice Score (DS)
between two sets'. They are defined as follows:
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where Y and Y are the prediction and ground truth
sets, TP, FF'P, F'N are the numbers of true posi-

'Tt corresponds to the F1-Score in binary classification.

tives, false positives, and false negatives, respec-
tively, p; is the probability of the sample belonging
to the positive class, and y; is the ground truth label.

DL directly maximizes a soft version of the Dice
Score. It assigns different weights to errors and
correct predictions. However, according to Equa-
tion (4), correct predictions are deemed more rele-
vant than wrong predictions; therefore, errors may
not be sufficiently penalized.

Self-Adjusting Dice Loss. We also evaluate Self-
Adjusting Dice Loss (SADL) (Li et al., 2020),
which combines the intuitions of Dice and Focal
losses. It can be expressed as follows:

2>, (1 —pi)piyi
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SADL =1 — (6)

where the Focal component in Equation (3) is
(1—p;). The rationale behind introducing the Focal
component in the Dice Loss is to address the im-
balance problem between well-classified and mis-
classified tokens, which is not adequately covered
by Dice Loss.

Generalized Dice Loss. A generalization of the
Dice score (Crum et al., 2006) was proposed to
consider each class’s volume. The corresponding
Generalized Dice Loss (GDL) (Sudre et al., 2017)
can be expressed as follows:
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where w; = 1/(3°, yi)? for each class, while p;
and y; have the same meanings as defined in Equa-
tion (5). This formulation proposes to self-adjust
the weight of each class for each sample to address
the class imbalance issue.

Lovasz Loss. Let Y and Y represent the pre-
diction and ground truth sets, respectively. The
Jaccard Index (or Intersection-over-Union, IoU) is
defined as follows:

Yoyl TP

IoU = =
Y UY| TP+ FP+ FN
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Lovész surrogate Loss (LL) has the following
expression:



AJ1:1—|{¥:1}Q{Y:1}| ©)
{Y =1t u{Yy =1}
HL;(x;,y;) = max(0,1 — z;y;)

LL=A, HL(X,Y)

(10)
an

where A, is the Jaccard loss, HL is the hinge
loss, z; € X is the prediction logit associated to
sample 4, y; € Y with y; € {—1,1}, and A, is
the Lovész extension of the Jaccard loss.

LL takes into account both errors and correct
predictions. In contrast to Dice loss, which assigns
more weight to correctly classified samples, the
formulation of Lovasz loss allows for an adequate
penalty for misclassifications. In many language
tasks, we aim not only to penalize errors but also
to force the system to avoid introducing extra to-
kens or omitting certain tokens. This objective can
be reached by optimizing the Jaccard Index. We
claim that optimizing this objective can be partic-
ularly beneficial for the mathematical reasoning
task where the model is required to generate the
final answer and the intermediate reasoning steps.
Specifically, in mathematical reasoning, the inter-
mediate steps must adhere to a stringent structure
in terms of syntax (i.e., Math is a formal language)
and content (i.e., the sequence of steps required to
answer the problem generally lacks many alterna-
tive solutions). This makes the task suitable for
optimization using Lovdsz loss.

3.3 Combining loss functions

LLM requires both input and ground truth during
training since the training objective is the next to-
ken prediction. So, the analyzed tasks require a
training set consisting of question (@) - answer (A)
pairs. Let ¢ and a be the number of tokens in () and
A, respectively. We define the fine-tuning language
modeling loss as a convex combination (Taghanaki
et al., 2019) of CE and one of the different loss
functions L under consideration (i.e., FL, GDL,
SADL, and LL):

L£=MCEga+ (1—X\Ly (12)

where CE is applied to both the ()’s and A’s tokens,
L is applied only to the A’s tokens of the answer,
and ) is the mixing parameter (ranging between
zero and one).

As depicted in Figure 1, cross-entropy loss is
applied to both the question and the answer, as

commonly done to ensure good performance in the
next token prediction task. This is done following
the principle of combo losses, which aims to create
more robust training objectives. Conversely, the
second component of the loss is applied exclusively
to the answer (i.e., ground truth), representing the
actual target sequence of interest and following a
more rigid structure. Note that the second term
of the loss is not applied also to the question to-
kens as they lack a strict pattern. Consequently,
it may incorrectly emphasize underrepresented to-
kens, which, in this case, are not of interest.

Answer Loss Ly

A

ATy | .. | AT,

Qr, | ary [QT, | .. |aT

q

Question & Answer Loss CEq 4

Figure 1: A graphical sketch on how to apply the com-
bined loss on question () and answer A. QT's are ques-
tion tokens, AT's are answer tokens.

3.4 Evaluation Metrics

We consider both standard metrics that consider
the final result only (e.g., Exact Match) and met-
rics that are specifically employed to assess the
reasoning steps (suited to MWP only).

Exact Match. Exact Match (EM) is a modified
version of the accuracy metric quantifying the simi-
larity between the predicted and expected answers:

N
1 N
EM = I E I(Ai =A;) (13)

where A, is the predicted answer, A; is the ground
truth answer for sample i, and N is the number
of samples. Each answer may consist of multiple
tokens. The matching is exact if and only if A; and
A; contain precisely the same tokens.

Metrics for the reasoning steps. Our purpose is
to check whether the intermediate reasoning steps
are correct. To this end, we adopt the ROSCOE
metrics (Golovneva et al., 2022) and other met-
rics, thanks to the systematic and precise nature of
mathematical language: Jaccard Index (or IoU, in
short) (see Equation (8)); Precision (Prec); Recall
(Rec); Dice Score (see Equation (4)); Commuta-
tive IoU (C-IoU), which we define as a variant of
IoU that accounts for the commutative property of



mathematical operations. These metrics are calcu-
lated between predicted rationales and ground truth
reasoning steps. Unlike ROSCOE, adopting this
approach eliminates reliance on external models,
thus circumventing potential limitations inherent
to the models used.

ROSCOE metrics consider four perspectives: Se-
mantic Alignment, Semantic Similarity, Logical
Inference, and Language Coherence. Semantic
Alignment (SA) measures the extent to which the
generated reasoning is grounded in the source con-
text and aligned with the reference steps, capturing
potential hallucinations or missing steps; Semantic
Similarity (SS) quantifies the degree of similarity
between the generated reasoning and the context
or among intermediate steps to identify repetitions;
Logical Inference (LI) assesses the internal consis-
tency of the generated reasoning steps and exam-
ines for potential contradictions; Language Coher-
ence (LC) evaluates the fluency and grammaticality
of the entire reasoning chain. Each metric ranges
between zero (worst) and one (best). While, for
completeness, we evaluate all the proposed metrics,
we argue that LC metrics might not be suitable
for assessing mathematical steps, as they are not
expressed in natural language.

4 Experimental Results

We perform an extensive experimental evaluation
on two tasks for a total of four datasets, five mod-
els, and five loss functions. In the following, we
summarize the main results. Additional results are
available in Appendix D.

4.1 Datasets

We select four datasets, each including at least train-
ing and validation sets, therefore neglecting those
containing only the test set (being designed for
zero-shot benchmarking).

Math World Problems. We consider the follow-
ing two datasets on MWP: GSM8K (Cobbe et al.,
2021) and MathQA (Amini et al., 2019). We have
chosen these datasets because they include both the
final result and the operational annotations (reason-
ing steps) leading to the final answer.

GSMS8K is included in HELM benchmark (Liang
et al., 2022). It collects open-ended questions in-
volving a median of 3 steps to solve them. In con-
trast, MathQA is designed to operate in a closed-
ended QA fashion, with problems involving a me-
dian of 4 reasoning steps.

Closed-ended Question Answering. We select
two multiple-choice datasets both included in the
HELM benchmark, i.e., OpenBookQA (Mihaylov
et al., 2018) and HellaSwag (Zellers et al., 2019).
We consider these QA datasets because answers are
mainly based on reading comprehension rather than
relying on prior knowledge of the LLM models.

OpenBookQA comprises questions with multi-
ple choices and contexts to help the reader select
the correct answer, whereas HellaSwag provides
incomplete sentences with multiple options for ap-
propriate sentence completion.

Detailed information on the considered datasets,
including their training/validation/test set splits, are
available in Appendix A.

4.2 Models

We employ the following LLMs with a number of
parameters ranging from 3B to 7B: RedPajama-
Incite-3B (Together Computer, 2023), StableLM-
3B (Tow et al.), RedPajama-Incite-7B (Together
Computer, 2023), Falcon-7B (Almazrouei et al.,
2023), and Llama-2-7B (Touvron et al., 2023). Ex-
cept for Llama-2 (which is selected as one of the
most well-known open-source models), the other
ones are selected with the following criteria: (1)
They are open-source; (2) They show promising re-
sults according to HELM benchmark (Liang et al.,
2022); (3) The majority of their training datasets
are public or clearly stated to avoid overlapping
with analyzed datasets; (4) We consider only the
pre-trained version (without any instruction tuning
or tuning by human preferences).

More details about the selected models can be
found in Appendix C.

4.3 Prompts

We express the prompts to fine-tune the LLM mod-
els as follows:

Question: [Question Text] (Context: [Context text])
Answer: [Answer Text]

where Context is optional as not every dataset in-
cludes it. The answer format can be either a single
letter corresponding to the answer for QA or a se-
ries of passages and a final answer for mathematical
problems. In the latter case, we adhere to the for-
mat of GSM8K:

«[Formula]» ... #### [Final answer]

where each Formula comprises operators and
operands, which can be numbers or symbols. This
is done to evaluate better mathematical steps, which
exhibit less ambiguity and adhere to stricter lexical



rules than textual reasoning. Prompt examples can
be seen in Appendix F.

4.4 Experimental settings

We set the number of training steps to around
25000 and the batch size to 2. We employ the Low
Rank Adaptation (Hu et al., 2021a), the AdamW
optimizer (Loshchilov and Hutter, 2017), and a lin-
ear learning rate scheduler with a warmup of 500
steps. Further information about the experimental
settings and implementation details are given in
Appendix E.

4.5 Results for the MWP task

Table 1 reports the results achieved on two MWP
datasets. We report the macro average of the perfor-
mance metric achieved by the five models. For the
ROSCOE metrics, we report the average for each
category (SA, SS, LI, and LC) (Golovneva et al.,
2022). Detailed results for each ROSCOE metric
are reported in Table 9, whereas additional results
are available in Appendix D.

Reasoning step evaluation. On both MWP
datasets, the combined loss with Lovasz loss (LL)
consistently outperforms the Cross-Entropy only
setting. It achieves the best performance, likely due
the effect of misclassified sample penalties. Specif-
ically, while cross-entropy and Focal loss (FL) aim
to maximize global accuracy, LL aims to maximize
the global IoU, i.e., it considers both the absence
of extra tokens and the presence of missing tokens.

Contrasting results characterize the Self-
Adjusting Dice Loss (SADL). It consistently per-
forms better than CE on GSM8K. Conversely, it is
less effective than CE on MathQA. This is probably
due to the different ways of expressing mathemati-
cal operations between the two datasets.

Exact Match. The results obtained on GSM8K
show that LLLMs adopting the combined loss yield

better results than cross-entropy (e.g., LL+CE
+1.93% vs. CE).

Correlation analysis between reasoning step
metrics. We study the correlation between the
ROSCOE metrics and the standard MWP metrics.
The goal is to empirically verify whether enhancing
LLM reasoning capabilities with ad hoc loss func-
tions has a positive impact on the standard MWP
metrics as well. In Table 2 we report the follow-
ing ROSCOE metrics: Reasoning Alignment (RA),
External Hallucination (EH), Redundancy (RD),

Common Sense Error (CSE), Missing Step (MS),
and Semantic Coverage Chain (SCC). We disre-
gard natural language-oriented metrics, such as the
ones related to the language coherence metrics (i.e.,
grammaticality, perplexity), which are deemed as
not relevant to mathematical reasoning.

As expected, all the standard metrics, except for
EM (accuracy-oriented), are correlated with the
ROSCOE ones, with Pearson correlation values
between ~ 0.5 and ~ 0.7. This confirms the effi-
cacy of the proposed strategy as jointly optimizing
reasoning and final results is beneficial.

General considerations. The results on MathQA
and GSMSK show that the final answer tends to be
wrong in many cases (low EM values), while the
reasoning steps tend to be quite accurate (high or
medium-high reasoning step metrics). This high-
lights that the models generally struggle to cor-
rectly predict the final result despite showing a
good capability in formulating the mathematical
reasoning steps. Often, LLMs identify the exact
sequence of reasoning steps needed to solve a math-
ematical task. However, the predicted final result
is wrong since they are not capable of applying the
identified steps to compute the final result.

The complete set of results for all metrics and
models on the MWP datasets are available in Ap-
pendix D, along with statistical tests for signifi-
cance between cross-entropy and the other loss
functions.

Error type analysis in MWP. We also analyze
the most common mistakes observed in the MWP
reasoning steps. We consider the following metrics
covering complementary types of reasoning errors’

» Extra Step (ES): proportion of predicted ratio-
nales not included in the gold annotations:
_|PS - GTS|

ES = 14
S 73| (14)

* Missing Step (MS): proportion of gold ratio-
nales not generated by the model:
_|GTS - PS|

MS = 15
GTS| (15)

* Wrong Operators (WO): proportion of pre-
dicted rationales with correct operands but
wrong sign according to the gold rationales:

| PSwol
|E]

2To the best of our knowledge, there are no standard met-
rics to evaluate mathematical reasoning.

WO = (16)



Accuracy Reasoning step Metrics
metric General Purpose metrics ROSCOE metrics
Loss EM IoU Prec Rec DS C-IoU SA SS LI LC
CE 15.83 15.52 19.65 2143 19.98 19.27 81.14  65.75 3491 37.58
FL 15.41 15.09 19.27 21.29 19.61 18.71 81.39 66.67 36.74  37.60
v (-042) | (-0.43) (-0.38) (-0.14) (-037) (-0.57) | (+0.25) (+0.92) (+1.83) (+0.03)
020 GDL 15.00 15.15 19.22  21.23 19.63 18.70 81.08 65.73 3470  37.60
2 (-0.83) | (-0.38) (-0.43) (-0.20) (-0.35) (-0.58) | (-0.06) (-0.03) (-0.21) (40.02)
LL 17.76 17.39 21.73 2378 22.09 21.10 | 81.38 66.33 36.00 37.46
(+1.93) | (+1.86) (+2.08) (+2.35) (42.11) (+1.83) | (+0.24) (+0.57) (+1.09) (-0.12)
SADL 1591 15.64 19.78 22.35 20.32 19.51 81.33 66.29 35.47 37.62
(+0.08) | (+0.11) (+0.13) (+0.91) (+0.35) (+0.24) | (+0.18) (+0.54) (+0.56) (40.05)
CE 5.12 36.72 4030 4298  40.66  36.78 85.12 6843 24.21 38.86
FL 5.52 33.73 37.14 4174 3798 33.79 85.29 68.39 23.75 38.80
(+0.41) | (-2.99) (-3.16) (-1.24) (-2.68) (-2.99) | (+0.17) (-0.05) (-0.46) (-0.06)
< | GDL 5.04 36.30 3935 4485  40.60  36.36 85.07 67.05 21.01 38.90
= (-0.07) | (-0.42) (-0.95) (+1.88) (-0.06) (-0.42) | (-0.04) (-1.39) (-3.20) (4+0.04)
§ LL 4.76 4325 46.17 50.55 4712 4331 8576  70.03  28.68  38.75
(-0.36) | (+6.52) (+5.87) (+7.57) (+6.46) (+6.53) | (+0.65) (+1.60) (+4.47) (-0.11)
SADL 4.48 34.18 37.69  43.00 38.64 3423 84.97 67.05 2042 38.95
(-0.63) | (-2.55) (-2.62) (+0.02) (-2.02) (-2.55) | (-0.15) (-1.39) (-3.79) (+0.09)

Table 1: Macro-average achieved on GSM8K and MathQA datasets. Absolute gains/losses w.r.t. CE results are

reported in brackets.

| EM IoU Prec Rec DS  C-IoU
RA (SA) | 0.1615 0.6582 0.6891 0.6076 0.6739 0.6698
EH (SA) | 0.1425 0.6058 0.6186 0.5115 0.5919 0.6074
RD (SA) | 0.1607 0.6781 0.6911 0.5674 0.6600 0.6828
CSE (SA) | 0.1559 0.5583 0.5314 0.5741 0.5596 0.5608
MS (SA) | 0.1744 0.6461 0.6138 0.6595 0.6463 0.6523
SCC (SS) | 0.1345 0.5403 0.5501 0.5005 0.5484 0.5495

Table 2: Pearson’s correlation between reasoning met-
rics (ROSCOE) and standard ones (EM, IoU, Prec, Rec,
DS, C-IoU) over all samples.

* Inverted Operands (I10): proportion of pre-
dicted rationales in which the operands
have an incorrect position, considering non-
commutative operations:

| PSiol
|E]

I0 = a7)

where G'T'S and PS are, respectively, the ground
truth and predicted reasoning steps, P.S,, and
PS;, are predicted steps with a wrong operator
and inverted operands, respectively, and F is the
set of errors, i.e., the set of predicted reasoning
steps that do not correspond to the gold rationales.

The results are summarized in Table 3. Lovész
loss yields the lowest percentages of errors across
most error types, particularly in reducing the
amount of missing steps. The errors related to

wrong operators and inverted operands affect only
approximately 4-5% of the reasoning steps for all
loss functions. Overall, generating fully accurate
reasoning chains remains challenging, but losses
such as Lovéasz loss can help mitigate certain types
of errors, making it a preferable training loss than
Cross-entropy.

Loss | ES| MS| WO| 10|
CE | 67.60% 67.78% 4.68% 5.13%
FL 67.85% 68.48% 4.22% 4.66%
GDL | 68.30% 66.95% 4.57% 5.00%
LL | 62.87% 62.83% 4.27% 4.66%
SADL | 7040% 67.32% 4.71% 521%

Table 3: Mean errors in mathematical reasoning (see
the definitions in Section 4.5 - paragraph entitled Error
type analysis) across models and datasets.

4.6 Results on Question Answering

We analyze the EM results achieved on the Open-
BookQA and HellaSwag datasets. Cross-entropy
only proves to be a suboptimal choice in both cases.
On OpenBookQA, cross-entropy achieves 75.6,
while combining CE with Lovész and Focal losses
yields 7.2 and +5.28 improvements, respectively.
Conversely, combining CE with Self-adjusting
Dice and Generalized Dice losses worsens the per-



formance by —8.20 and —0.20, respectively. On
HellaSwag, cross-entropy achieves 47.36. Specifi-
cally, Lovéasz, Focal, and Generalized Dice losses
yield +10.72, +24.32, and +-0.03 improvements,
respectively. In contrast, Self-adjusting Dice loss
experiences a decrease in performance of —5.53.

The positive contributions of Focal and Lovész
losses are likely due to the fact that FL underesti-
mates the loss contributions of well-predicted sam-
ples based on class distribution, whereas Lovasz
penalizes wrong predictions without suppressing
well-predicted samples according to their distribu-
tional behavior.

For the sake of completenesse, in Appendix D
we report the detailed results for every combina-
tion of model and loss as well as the results of the
statistical tests for significance.

Results on a reduced number of samples We
evaluate the effectiveness of the proposed approach
on each task and dataset by reducing the num-
ber of training samples to 40% and 10%, while
also reducing the training duration by the same
amount. In Table 4, we present the mean results
for MWP datasets by loss. We show that cross-
entropy does not generally yield satisfactory re-
sults when the amount of data is reduced. Con-
versely, losses such as Focal and Lovasz demon-
strate better capability in extracting desired knowl-
edge even from fewer samples. The same trend
is observed in QA datasets, where CE achieves
76.15 and 82.46 for 10% and 40%, respectively.
Focal yields improvements of +5.28 and +5.25,
proving the most effective, while Lov4sz shows im-
provements of +1.34 and +-2.43. Generalized Dice
achieves —3.30 and +4-0.07, while Self-adjusting
Dice —0.27 and +0.68.

5 Conclusion and Future Work

In this work, we explored the application of
losses from the semantic segmentation literature
to improve Large Language Model efficient fine-
tuning for mathematical reasoning and closed-
ended question-answering tasks. Our experiments,
performed using multiple models across four dif-
ferent datasets, demonstrate that combining cross-
entropy with established computer vision losses
yields significant performance improvements.

Math Word Problems the LLM fine-tuned with
a combination of cross-entropy and Lovdsz loss
achieved the best performance on most reasoning

|Loss | CE GDL FL LL SADL
EM | 967 956 10.08 10.67 9.61
IoU | 1150 1151 11.94 1263 11.05
| Prec | 1520 1525 1562 1652 14.61
=|Rec |[1643 1643 17.04 17.79 15.89
C-loU | 13.16 13.18 1355 1439 1275
DS | 1529 1530 1570 16.56 14.71
EM | 1548 1516 17.78 19.94 13.62
IoU |2360 2370 24.09 27.39 2248
| Prec | 3152 3211 3288 3560 30.49
¥ | Rec |3331 3377 3455 36.83 3226
C-IoU | 29.44 2993 30.89 33.18 28.46
DS |31.83 3230 33.07 3563 30.76

Table 4: Results with subsets of training dataset (10%
and 40%) on MWP datasets. Results are averaged across
models.

metrics on math word problems, outperforming
cross-entropy by over 5-10% absolute in some
cases. Standard metrics have shown to be corre-
lated with the state-of-the-art ROSCOE reasoning
evaluators. On question-answering datasets such as
OpenBookQA and HellaSwag, Lovasz and Focal
losses consistently outperform cross-entropy. The
error analysis revealed that models still struggle
with fully accurate reasoning, often missing neces-
sary steps or adding extraneous ones. However, the
alternative losses help mitigate certain errors, with
Lovdész loss yielding the lowest rates of missing
and useless steps. Overall, our results illustrate the
importance of choosing appropriate loss functions
during fine-tuning to optimize end evaluation met-
rics more effectively. Employing losses tailored
to the task of interest can boost performance even
without additional data.

Future work can explore the design of new ad-
hoc functions to optimize these tasks and other nat-
ural language generation tasks. Moreover, transfer
learning to other non-English languages could em-
phasize the imbalance in token distributions of the
target language. Therefore, additional experiments
on this stream of research could further support the
findings of our study.

Limitations

We analyzed only English language datasets from
the mathematical reasoning and reading compre-
hension domains. Additional experiments on other
languages and tasks would strengthen the general-
izability of our findings. It’s worth noting that we



have limited our analysis to existing loss functions
in computer vision, which could be suboptimal
choices for the tasks under consideration. We an-
alyzed tasks with strong constraints to verify the
effectiveness of analyzed loss functions; however,
this approach may pose limitations in datasets with
more open-ended solutions lacking well-defined
patterns.

Ethics Statement

The datasets employed in this study do not contain,
from our understanding, any personal information,
but they can contain some harmful or inappropriate
content. This claim can be extended to the em-
ployed models, which could provide non-factual,
biased, harmful, or inappropriate answers. Their
usage is subject to the limitations stated in their
respective technical reports and licenses. Their an-
swers are not intended to offend or harm anyone.
Language models have environmental impacts due
to high computing requirements during pre-training
and fine-tuning. We have made efforts to be com-
putationally responsible by reusing open-sourced
pre-trained models and efficient fine-tuning with
LoRA (Hu et al., 2021b) methods. The gains from
improved losses help amortize the resource costs
over higher utility. Overall, we have made rea-
sonable efforts to ensure the transparency and au-
ditability of our experimental methodology.
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Appendices

In this supplementary material, we provide addi-
tional details as follows:

* Appendix A: Dataset Statistics

* Appendix B: Token Distribution

* Appendix C: Model Summary

* Appendix D: Extended Results

* Appendix E: Implementation Details

* Appendix F: Prompt Examples

A Dataset Statistics

» OpenBookQA? (Mihaylov et al., 2018) con-
tains questions that require multi-step reason-
ing, use of additional common and common-
sense knowledge, and rich text comprehen-
sion. OpenBookQA is a new kind of question-
answering dataset modeled after open-book
exams for assessing human understanding of
a subject. The training set contains 4960 sam-
ples, validation 500, and test set 500.

HellaSwag* (Zellers et al., 2019) introduced
a task of commonsense natural language in-
ference, which consists in selecting the most
appropriate conclusion for a sentence from a
set of possibilities. It contains 39900 samples
in the train set and 10000 in validation (which
is employed as the test set since the real one
does not have ground truth). It is released
under MIT license.

GSMBS8K? (Cobbe et al., 2021) is a dataset of
8.5K high-quality linguistically diverse grade
school math word problems. The dataset was
created to support answering questions on ba-
sic mathematical problems requiring multi-
step reasoning. It has 7470 samples in the
training set and 1320 in the test set. It is re-
leased under the MIT license.
Shttps://huggingface.co/datasets/openbookga
*https://huggingface.co/datasets/Rowan/

hellaswag
Shttps://huggingface.co/datasets/gsm8k
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» MathQA® (Amini et al., 2019) is a large-scale
dataset of math word problems enhancing
AQuA (Ling et al., 2017) providing fully-
specified operational programs for each prob-
lem. It is released under Apache-2.0 license.
It comprises 29800 samples in train, 4480 in
validation, and 2990 in test.

B Token Distribution

We report the distribution of tokens across the
datasets, highlighting the strong imbalance in to-
kens in Figure 2. Before the analysis, we exclude
all special tokens (25) from the tokenizer. We plot
the density against the token identifier in the log
scale to better highlight peaks and differences.

1074 4
1075 4

1075 4

Dataset
—— OpenBookQA
GSM8K
—— HellaSwag
—— MathQA

Density

108 4

102 4

10-10 ]

T T T T
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Figure 2: Kernel Density Estimation in log scale for
token distributions in GSM8K, MathQA, OpenBookQA,
and HellaSwag datasets.

C Model Summary

Table 5 summarizes the characteristics of the mod-
els used in this work: RedPajama-Incite-3B’,
StableLM-3BS3, RedPajama—Incite—7B9, Falcon-
7B19, and Llama-2-7B!!. For each of them, the
following characteristics are reported: model name,
number of parameters, license, availability of the
pre-training datasets, and mean win rate according
to HELM benchmark (Liang et al., 2022).

6https://huggingface.co/datasets/math_qa

"https://huggingface.co/togethercomputer/
RedPajama-INCITE-Base-3B-v1

8https://huggingface.co/stabilityai/
stablelm-3b-4elt

9https://huggingface.co/togethercomputer/
RedPajama-INCITE-7B-Base

Yhttps://huggingface.co/tiiuae/falcon-7b

11https://huggingface.co/meta—llama/
Llama-2-7b-hf
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Model # Parameters License Pre-Training Datasets HELM Win Rate
RedPajama-Incite 3B Apache 2.0 Public 0.311
StableLM 3B CC BY-SA-4.0 Public -
RedPajama-Incite B Apache 2.0 Public 0.378
Falcon 7B Apache 2.0 90% Public 0.378
Llama-2 7B Llama-2 Public 0.607

Table 5: Model characteristics.

D Extended Results

In the following, we report the extended re-
sults for the mathematical reasoning and question-
answering tasks.

D.1 Complete results on MWP

In Tables 7 and 8, we present the detailed perfor-
mance of each model and loss function on MWP
datasets. We use McNemar’s test for exact match
and t-tests (Dietterich, 1998) for other metrics to
determine if differences are statistically significant.
Using our metrics in GSM8K, Lovész provides the
best mean performance across all models, except
on Falcon, in which Self-adjusting Dice provide
the best ones. Although, they do not show any
statistical differences, probably due to the model’s
limitations. In MathQA, Lovéasz provides the best
performance across most metrics, while regarding
the exact match, Focal provides 2 times over 5 the
best results. The results for ROSCOE in Table 9
across both MWP datasets show Lovdsz as the best
in most metrics, as highlighted by mean rank, too.

D.2 Complete results on Question Answering

In Table 6, we present the detailed performance of
each model and loss function on closed-ended QA
datasets. We perform McNemar’s test (Dietterich,
1998) to assess whether differences compared to
cross-entropy loss are statistically significant. In 9
cases, Lovdsz loss provides the best improvements
in 4 cases, while Focal obtains the best results. The
main differences are seen when Lovasz fails; Focal
still gets improvement. In the inverse case, the
results are similar.

E Implementation Details

Based on preliminary experiments, we set the lan-
guage modeling loss mixing parameter to A = 0.6.
The Focal suppression parameter was set to y = 2.
The maximum learning rate was set to le — 4 for
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all datasets, except in GSMS8K, for which it is set
to le — 5.

We selected the checkpoint according to the best
validation loss. We train less than 1% of the to-
tal parameters using LoRA. During training, the
context size is chosen to include most samples with-
out truncation according to 75% percentiles: 128
for GSM8K, MathQA, OpenBookQA, and 256 for
HellaSwag. We employ gradient accumulation for
context size 256.

We employed Transformers and Peft libraries.
Full requirements, versions, and losses’ licenses
are available in the code repository. For ROSCOE
evaluation, we employed the models suggested in
the original paper: SimCSE'? for sentence embed-
ding, RoBERTa!? for word embedding model, De-
BERTa'# as NLI model, RoBERTa!> as grammar
model, and GPT-2!6 as perplexity model.

We run our experiments on a machine equipped
with Intel® Core™ i9-10980XE CPU, 1 x
NVIDIA® RTX A6000 48GB GPU, 128 GB of
RAM running Ubuntu 22.04 LTS.

F Prompt Examples

GSMS8K Question: John takes care of 10 dogs.
Each dog takes .5 hours a day to walk and take care
of their business. How many hours a week does
he spend taking care of dogs? Answer: «10%.5=5»
«S*7=35» #### 35

MathQA Question: Sophia finished 2 / 3 of
a book . she calculated that she finished 90

more pages than she has yet to read . how long

12https://huggingface.co/facebook/
roscoe-512-roberta-base

13https://huggingface.co/FacebookAI/
roberta-base

“https://huggingface.co/MoritzLaurer/
DeBERTa-v3-large-mnli-fever-anli-ling-wanli

15https://huggingface.co/cointegrated/
roberta-large-cola-krishna2020

16https://huggingface.co/openai—community/
gpt2-large
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https://huggingface.co/facebook/roscoe-512-roberta-base
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-base
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Model ‘ Loss ‘ HellaSwag OpenBookQA
CE 25.26 66.6
FL 45.91* 78.6*
RedPajama 3B | GDL 25.39 63.8
LL 26.05 77.2%
SADL 25.79% 67.0
CE 79.69 84.0
FL 85.69* 85.4
StableLM 3B | GDL 80.0 82.8
LL 82.97* 87.2%
SADL 80.49* 824
CE 25.16 74.8
FL 73.29* 81.6*
RedPajama 7B | GDL 25.04 75.8
LL 25.08 83.8*
SADL 25.1 76.6
CE 24.59 69.2
FL 68.51* 77.2%
Falcon 7B GDL 24.94 69.2
LL 70.72* 79.0*
SADL 26.67* 55.0%
CE 82.12 834
FL 85.03* 81.6
Llama-2 7B GDL 81.58 83.8
LL 85.6* 86.8*
SADL 51.1* 56.0%

Table 6: Results on Question Answering datasets. * indicates values for which p < 0.05.

is her book ? Answer: «divide(nO,nl)» «sub-
tract(const_1,#0)» «divide(n2,#1)» #### 270
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Model Loss ‘ EM IoU Prec Rec DS C-IoU
CE 9.33 11.03 14.66 15.51 14.69 14.76
FL 9.55 1146 1523 16.16 1533 15.21
RedPajama 3B | GDL 9.25 11.15 14.81 15.67 14.83 14.92
LL 11.45* 12.52* 16.66* 17.17* 16.52* 16.53*
SADL | 10.16 11.76 15.80* 16.19 15.60 15.73*
CE 2479 2096 26.05 2672 2593 24.56
FL 2479 21.81* 2736 2749 2695 25.51*
StableLM 3B | GDL 2487 21.01 26.11* 2675 2598 24.58
LL 28.66° 24.02* 29.42* 30.38* 29.38* 28.15*
SADL | 26.99* 21.08 2643 27.40 2639 25.20
CE 16.07 1539 1993 2038 19.76 19.76
FL 1494 1493 1992 1955 19.32 18.82
RedPajama 7B | GDL 13.19* 13.94* 18.27* 19.24* 18.33* 17.94*
LL 16.83 16.66* 21.57* 21.52 21.13* 20.91*
SADL | 13.95* 1494 19.32 20.41 19.44  18.85
CE 4.70 11.39 14.00 20.64 16.15 14.16
FL 3.49 9.19* 11.25* 1947 13.69* 11.92*
Falcon 7B GDL 4.40 11.16  13.65 20.85 1598 13.98
LL 5.00 11.59 1393 2209 1647 14.08
SADL | 5.08 12.04 1437 23.70 1718 15.00
CE 2428 18.85 23.62 2392 2335 23.13
FL 2428 18.07 2261 2378 2276 22.07
Llama-2 7B GDL 2329 1847 2326 23.64 23.01 22.07
LL 26.86* 22.14* 27.09* 27.74* 26.93* 25.83*
SADL | 23.37 1836 2298 24.03 23.01 22.78

Table 7: Results on GSMS8K dataset. * indicates values for which p < 0.05.
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Model Loss | EM IoU Prec Rec DS C-loU
CE 347 3026 3420 3532 3407 3029
FL 279 33.11% 37.29* 37.87° 36.88° 33.16"
RedPajama 3B | GDL | 2.45* 2898* 3296* 33.96* 32.72* 29.06%
LL 283  32.83* 3648 3844" 36.69" 32.86"
SADL | 279 26.54* 30.35* 32.55* 30.49* 26.58"
CE 821 6198 6486 6739 6536 6202
FL 10.06* 61.98* 6543* 67.47" 65.66° 62.04
StableLM 3B | GDL | 6.86 57.13* 60.16* 63.61* 61.03* 57.16*
LL 750  65.73* 68.51* 70.79° 69.06" 65.80"
SADL | 7.16 59.79* 62.85* 65.31* 63.33* 59.84*
CE 716 4035 4432 4501 43.98 4041
FL 878" 43.12* 47.72* 48.28* 47.16% 4317
RedPajama 7B | GDL | 7.05 41.21* 4487 4598* 4477* 41.27*
LL 6.82  46.34* 49.87* 51.27° 49.92* 46.41*
SADL | 6.10 3241* 39.17 36.75* 36.79 3248
CE 524 1134 1380 2172 1593 1144
FL 584 10.93* 1298* 24.59* 1577* 11.00%
Falcon 7B GDL | 569 11.07* 13.21* 2298 15.63* 11.14*
LL 535 1277 1500 26.07* 17.67° 12.87
SADL | 599 1057* 12.62* 21.50* 14.84* 10.63*
CE 1.51  39.69 4434 4545 4398 3975
FL 0.15*  19.51* 2229* 30.48* 24.43* 19.60*
Llama-2 7B GDL | 3.17* 43.12% 4556 57.74" 48.87* 43.16*
LL 128  58.56" 61.00° 66.16* 62.28" 58.62*
SADL | 0.38* 41.57* 4345 5887 47.77* 41.62*

Table 8: Results on MathQA dataset. * indicates values for which p < 0.05.
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CE FL GDL LL SADL

Faithfulness 8196 8197 8198 8221 81.96
Informativeness Step 80.61 81.09 81.11 80.82 81.10
Faithfulness WW 91.84 92.61 92.78 91.55 9277
Informativeness Chain 90.63 90.40 90.50 90.79 90.41
Repetition Word 12.59 13,58 9.80 15.67 1091
Repetition Step 1444 16.02 1230 17.40 13.30
Reasoning Alignment 92.47 9237 92.67 92.61 92.60
External Hallucination 97.59 97.60 97.57 97.70 97.58
Redundancy 88.71 88.60 88.69 89.06 88.62
Common Sense Error 9791 97.87 97.96 97.96 97.93
Missing Step 89.47 8947 89.89 89.82 89.74

Semantic Coverage Step | 98.14 98.25 98.31 98.32 98.27
Semantic Coverage Chain | 96.21 96.17 96.36 96.35 96.30
Discourse Representation | 42.71 4273 41.50 45.68 40.95

Perplexity Step 028 027 0.28 0.26 0.27
Coherence Step vs Step 1641 17.76 1421 19.00 1494
Perplexity Chain 6.08 642 674 549 6.84
Perplexity Step Max 0.14 013 0.14 0.14 0.15
Grammar Step 9427 94.18 94.12 94.28 94.18
Grammar Step Max 90.32 90.02 89.95 90.34 90.00
Mean Rank 32 3.45 2.8 1.95 3.2

Table 9: Results using ROSCOE metrics aggregated across models and datasets.

16



	Introduction
	Related Works
	Methodology
	Distribution-based losses
	Region-based losses
	Combining loss functions
	Evaluation Metrics

	Experimental Results
	Datasets
	Models
	Prompts
	Experimental settings
	Results for the MWP task
	Results on Question Answering

	Conclusion and Future Work
	Dataset Statistics
	Token Distribution
	Model Summary
	Extended Results
	Complete results on MWP
	Complete results on Question Answering

	Implementation Details
	Prompt Examples

