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Abstract

Large Language Models (LLMs) have achieved001
promising performance on Math Word Prob-002
lem (MWP) and Question Answering (QA)003
tasks. LLM fine-tuning is commonly based004
on cross-entropy loss minimization to perform005
accurate predictions. However, the standard006
cross-entropy function neither considers the un-007
derlying token distribution over training data008
nor weighs differently correct and misclassified009
samples. To address tasks such as closed-ended010
QA and step-by-step MWP resolution LLMs011
require advanced language reasoning capabili-012
ties. This prompts the adoption of established013
computer vision loss functions that optimize014
LLMs’ performance rather than simple accu-015
racy. This paper shows the higher effectiveness016
of combining cross-entropy with computer vi-017
sion loss functions across MWPs and closed-018
ended QA datasets. We show relevant LLMs’019
performance improvements with equal model020
complexity and the same number of training021
samples or even fewer. We also demonstrate022
the efficacy of reproducing step-by-step reason-023
ing on the MWP task.024

1 Introduction025

Despite their increasing popularity, Large Lan-026

guage Models (LLMs) encounter challenges in han-027

dling reading comprehension and formal language028

understanding tasks such as open-book Question029

Answering (QA), sentence completion, and Math030

Word Problems (MWPs). When the task subtends031

deep reasoning and elaboration of the input ques-032

tion and provides context, LLMs might struggle033

to achieve competitive performance when used in034

a zero-shot setting. To specialize deep learning035

models on specific subtasks, a common practice036

is to fine-tune the model on in-domain training037

data. However, this approach typically requires the038

availability of a large set of human-curated annota-039

tions (Min et al., 2024).040

Both LLM pre-training and fine-tuning are com- 041

monly based on cross-entropy loss minimization. 042

Cross-entropy optimizes the overall system accu- 043

racy (Li et al., 2020) but disregards relevant aspects 044

such as the presence of imbalances in token gener- 045

ation and errors. For example, in QA tasks such as 046

MWP a straightforward comparison between the 047

predicted and expected answer fails to capture the 048

text-relevant relations subtended by the formal lan- 049

guage (Liu, 2023). When the task involves multiple 050

formal steps, verifying the correctness of the final 051

result does not necessarily guarantee the quality 052

of the LLM outcome. In the worst-case scenario, 053

the reasoning steps are wrong, but the mistakes are 054

concealed by the random selection of the correct 055

answer, yielding an apparently high accuracy score 056

(Turpin et al., 2023). 057

Inspired by advances in computer vision, in this 058

work, we explore the use of the cross-entropy loss 059

combined with well-known semantic segmentation 060

loss functions in LLM fine-tuning for closed-ended 061

question answering and mathematical reasoning 062

in MWPs. We explore the use of loss functions 063

designed to take into account imbalance in clas- 064

sification (Lin et al., 2017) and optimize perfor- 065

mance metrics other than accuracy, such as Gener- 066

alized Dice Score (Sudre et al., 2017) and Jaccard 067

Index (Berman et al., 2018). The idea behind it 068

is to enhance LLM capabilities by incorporating 069

penalization terms in the loss functions that take 070

token probability distributions and classification 071

error rates into account. The modified objective 072

functions led to consistently better performance 073

without requiring additional training samples or 074

annotations. 075

The main contributions of the present work are: 076

• A discussion of the limitations of cross- 077

entropy loss in closed-ended question answer- 078

ing and step-by-step mathematical resolution 079

in MWPs (see Section 3); 080

1



• An exploration of the performance of well-081

known semantic segmentation losses in LLM082

fine-tuning for five different loss functions,083

four datasets, and two tasks, even with limited084

data (see Section 4);085

• An extensive performance analysis using086

MWP reasoning metrics (Golovneva et al.,087

2022) and a comparison between step-by-step088

reasoning and accuracy results and an error089

analysis of common errors done by LLMs in090

MWP reasoning steps (see Section 4.5).091

The source code to reproduce the exper-092

iments is available for research purposes093

at https://anonymous.4open.science/r/094

segmentation-losses-nlp-5B73.095

2 Related Works096

The main objective of the present work is to explore097

the use of different loss functions in natural lan-098

guage generation tasks such as closed-ended Ques-099

tion Answering and Math Word Problems. The100

contribution is rooted in the objective functions101

that are commonly used for semantic segmentation102

tasks.103

Common loss functions for semantic segmen-104

tation. The use of Weighted Cross-Entropy,105

Dice (Milletari et al., 2016) and Focal losses (Lin106

et al., 2017) is established for overcoming poten-107

tial imbalances in the classes to be predicted and108

to effectively penalize classification errors (Mil-109

letari et al., 2016; Berman et al., 2018). The goal110

is to optimize the overlap between the predicted111

and ground truth segmentation maps, which can112

be quantified using the Dice score or the Jaccard113

Index.114

Combining complementary loss functions to-115

gether (Taghanaki et al., 2019) has shown to im-116

prove segmentation performance (Yeung et al.,117

2022; Shit et al., 2021; Iantsen et al., 2021; Hu118

et al., 2021c). Transferring a similar approach to119

text generation tasks is particularly appealing and,120

to the best of our knowledge, appears to be limited.121

Common loss functions for natural language122

generation. Policy gradient or minimum risk123

training (Ranzato et al., 2015; Wang et al., 2019)124

have already been used to optimize the syntactic125

overlap between generated and expected output,126

quantified by the BLEU metric (Papineni et al.,127

2002). Reinforcement Learning suffers from high128

variance and instability during training. Most effi- 129

cient solutions rely on soft Q-learning (Guo et al., 130

2021), differentiable BLEU objectives (Shao et al., 131

2018, 2021), or EISL loss. The latter is insensitive 132

to the shift of n-grams in target sequences, making 133

it suitable for training with noisy data and weak 134

supervisions; however, its applicability is limited 135

to non-autoregressive models (Liu et al., 2022). 136

In Li et al. (2020), the use of Dice loss and its 137

self-adjusting version has been proposed for the 138

reading comprehension task with encoder-only ar- 139

chitectures. However, their benefits depend on the 140

specific task (Li et al., 2020). 141

Evaluation metrics for reasoning tasks. It is 142

quite common to evaluate the final outcome of the 143

reasoning task regardless of the intermediate steps 144

applied to achieve that result (e.g., (Liang et al., 145

2022; Cobbe et al., 2021; Hendrycks et al., 2021)). 146

State-of-the-art metrics like ROSCOE (Golovneva 147

et al., 2022) propose new ways to evaluate ratio- 148

nales, although they could not be easily optimized, 149

and the search for representative functions is al- 150

ready opened. 151

3 Methodology 152

In this section, we formally introduce the loss func- 153

tions, shortlisted from the classification presented 154

in Ma et al. (2021), and explain their rationale. For 155

the sake of simplicity, hereinafter we will consider 156

the binary formulation. The loss formulations can 157

be straightforwardly extended to the multi-class 158

scenario. 159

3.1 Distribution-based losses 160

This family of loss functions is derived from the 161

Kullback-Leibler Divergence. They aim to opti- 162

mize the model weights according to the differ- 163

ences between the observed and expected distribu- 164

tions. The traditional cross-entropy loss belongs to 165

this category. 166

Cross Entropy Loss. Cross-Entropy (CE) is an 167

accuracy-oriented function, i.e., it aims to maxi- 168

mize the accuracy (AC) metric globally in the pre- 169

dicted tokens (Li et al., 2020). AC and CE loss are 170

defined as follows: 171

AC =
1

N

N∑
i

1(ŷi = yi) (1) 172

CE(pt) = − log(pt) (2) 173
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where N is the total number of samples, ŷi and yi174

are the predicted and ground truth class for sam-175

ple i, respectively, and pt is the probability of the176

sample belonging to the positive class.177

CE is the most established loss for LLM pre-178

training and fine-tuning based on Next Token Pre-179

diction. Cross-entropy does not consider the under-180

lying structures of predictions or any differences181

between classes and errors. Imbalance is character-182

istic of language problems, where the number of183

classes is equal to the size of a language vocabu-184

lary (see Appendix B). Although weighted cross-185

entropy may address this issue, assigning a proper186

weight to each class can be challenging.187

Focal Loss. Focal loss (FL) is a variant of CE188

that is specifically designed to address the class189

imbalance problem. It aims to reduce the relative190

loss for well-classified examples while emphasiz-191

ing training on hard, misclassified ones. Focal loss192

can be defined as follows:193

FL(pt) = −(1− pt)
γ log(pt) (3)194

where pt is the probability of the sample belong-195

ing to the positive class while γ is the Focal sup-196

pression parameter. Although Focal loss does197

not directly consider the class distribution, it au-198

tonomously distinguishes between hard and easy199

samples (using (1− pt)). This proves beneficial in200

correctly predicting underrepresented classes. No-201

tably, this solution gives more importance to errors202

(i.e., wrongly predicted tokens) than cross-entropy.203

3.2 Region-based losses204

This family of loss functions optimizes the model’s205

weights according to the differences between two206

sets.207

Dice Loss. It is the main representative of the208

region-based loss family. The Dice Loss (DL) (Mil-209

letari et al., 2016) optimizes the Dice Score (DS)210

between two sets1. They are defined as follows:211

DS =
2|Ŷ ∩ Y |
|Ŷ |+ |Y |

=
2TP

2TP + FP + FN
(4)212

DL = 1−
2
∑

i piyi∑
i p

2
i +

∑
i y

2
i

(5)213

where Ŷ and Y are the prediction and ground truth214

sets, TP , FP , FN are the numbers of true posi-215

1It corresponds to the F1-Score in binary classification.

tives, false positives, and false negatives, respec- 216

tively, pi is the probability of the sample belonging 217

to the positive class, and yi is the ground truth label. 218

DL directly maximizes a soft version of the Dice 219

Score. It assigns different weights to errors and 220

correct predictions. However, according to Equa- 221

tion (4), correct predictions are deemed more rele- 222

vant than wrong predictions; therefore, errors may 223

not be sufficiently penalized. 224

Self-Adjusting Dice Loss. We also evaluate Self- 225

Adjusting Dice Loss (SADL) (Li et al., 2020), 226

which combines the intuitions of Dice and Focal 227

losses. It can be expressed as follows: 228

SADL = 1−
2
∑

i(1− pi)piyi∑
i(1− pi)pi + yi

(6) 229

where the Focal component in Equation (3) is 230

(1−pi). The rationale behind introducing the Focal 231

component in the Dice Loss is to address the im- 232

balance problem between well-classified and mis- 233

classified tokens, which is not adequately covered 234

by Dice Loss. 235

Generalized Dice Loss. A generalization of the 236

Dice score (Crum et al., 2006) was proposed to 237

consider each class’s volume. The corresponding 238

Generalized Dice Loss (GDL) (Sudre et al., 2017) 239

can be expressed as follows: 240

GDL = 1−
2
∑

l wl
∑

i pilyil∑
l wl

∑
i pil + yil

(7) 241

where wl = 1/(
∑

i yil)
2 for each class, while pi 242

and yi have the same meanings as defined in Equa- 243

tion (5). This formulation proposes to self-adjust 244

the weight of each class for each sample to address 245

the class imbalance issue. 246

Lovász Loss. Let Ŷ and Y represent the pre- 247

diction and ground truth sets, respectively. The 248

Jaccard Index (or Intersection-over-Union, IoU) is 249

defined as follows: 250

IoU =
|Ŷ ∩ Y |
|Ŷ ∪ Y |

=
TP

TP + FP + FN
(8) 251

Lovász surrogate Loss (LL) has the following 252

expression: 253
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∆J1 = 1− |{Ŷ = 1} ∩ {Y = 1}|
|{Ŷ = 1} ∪ {Y = 1}|

(9)254

HLi(xi, yi) = max(0, 1− xiyi) (10)255

LL = ∆J1HL(X,Y ) (11)256

where ∆J1 is the Jaccard loss, HL is the hinge257

loss, xi ∈ X is the prediction logit associated to258

sample i, yi ∈ Y with yi ∈ {−1, 1}, and ∆J1 is259

the Lovász extension of the Jaccard loss.260

LL takes into account both errors and correct261

predictions. In contrast to Dice loss, which assigns262

more weight to correctly classified samples, the263

formulation of Lovász loss allows for an adequate264

penalty for misclassifications. In many language265

tasks, we aim not only to penalize errors but also266

to force the system to avoid introducing extra to-267

kens or omitting certain tokens. This objective can268

be reached by optimizing the Jaccard Index. We269

claim that optimizing this objective can be partic-270

ularly beneficial for the mathematical reasoning271

task where the model is required to generate the272

final answer and the intermediate reasoning steps.273

Specifically, in mathematical reasoning, the inter-274

mediate steps must adhere to a stringent structure275

in terms of syntax (i.e., Math is a formal language)276

and content (i.e., the sequence of steps required to277

answer the problem generally lacks many alterna-278

tive solutions). This makes the task suitable for279

optimization using Lovász loss.280

3.3 Combining loss functions281

LLM requires both input and ground truth during282

training since the training objective is the next to-283

ken prediction. So, the analyzed tasks require a284

training set consisting of question (Q) - answer (A)285

pairs. Let q and a be the number of tokens in Q and286

A, respectively. We define the fine-tuning language287

modeling loss as a convex combination (Taghanaki288

et al., 2019) of CE and one of the different loss289

functions L under consideration (i.e., FL, GDL,290

SADL, and LL):291

L = λCEQ,A + (1− λ)LA (12)292

where CE is applied to both the Q’s and A’s tokens,293

L is applied only to the A’s tokens of the answer,294

and λ is the mixing parameter (ranging between295

zero and one).296

As depicted in Figure 1, cross-entropy loss is297

applied to both the question and the answer, as298

commonly done to ensure good performance in the 299

next token prediction task. This is done following 300

the principle of combo losses, which aims to create 301

more robust training objectives. Conversely, the 302

second component of the loss is applied exclusively 303

to the answer (i.e., ground truth), representing the 304

actual target sequence of interest and following a 305

more rigid structure. Note that the second term 306

of the loss is not applied also to the question to- 307

kens as they lack a strict pattern. Consequently, 308

it may incorrectly emphasize underrepresented to- 309

kens, which, in this case, are not of interest. 310

Question & Answer Loss CEQ,A

Answer Loss LA

QT2 ... QTq AT0 ...QT1QT0 ATa

Figure 1: A graphical sketch on how to apply the com-
bined loss on question Q and answer A. QTs are ques-
tion tokens, ATs are answer tokens.

3.4 Evaluation Metrics 311

We consider both standard metrics that consider 312

the final result only (e.g., Exact Match) and met- 313

rics that are specifically employed to assess the 314

reasoning steps (suited to MWP only). 315

Exact Match. Exact Match (EM) is a modified 316

version of the accuracy metric quantifying the simi- 317

larity between the predicted and expected answers: 318

EM =
1

N

N∑
i

1(Âi = Ai) (13) 319

where Âi is the predicted answer, Ai is the ground 320

truth answer for sample i, and N is the number 321

of samples. Each answer may consist of multiple 322

tokens. The matching is exact if and only if Âi and 323

Ai contain precisely the same tokens. 324

Metrics for the reasoning steps. Our purpose is 325

to check whether the intermediate reasoning steps 326

are correct. To this end, we adopt the ROSCOE 327

metrics (Golovneva et al., 2022) and other met- 328

rics, thanks to the systematic and precise nature of 329

mathematical language: Jaccard Index (or IoU, in 330

short) (see Equation (8)); Precision (Prec); Recall 331

(Rec); Dice Score (see Equation (4)); Commuta- 332

tive IoU (C-IoU), which we define as a variant of 333

IoU that accounts for the commutative property of 334
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mathematical operations. These metrics are calcu-335

lated between predicted rationales and ground truth336

reasoning steps. Unlike ROSCOE, adopting this337

approach eliminates reliance on external models,338

thus circumventing potential limitations inherent339

to the models used.340

ROSCOE metrics consider four perspectives: Se-341

mantic Alignment, Semantic Similarity, Logical342

Inference, and Language Coherence. Semantic343

Alignment (SA) measures the extent to which the344

generated reasoning is grounded in the source con-345

text and aligned with the reference steps, capturing346

potential hallucinations or missing steps; Semantic347

Similarity (SS) quantifies the degree of similarity348

between the generated reasoning and the context349

or among intermediate steps to identify repetitions;350

Logical Inference (LI) assesses the internal consis-351

tency of the generated reasoning steps and exam-352

ines for potential contradictions; Language Coher-353

ence (LC) evaluates the fluency and grammaticality354

of the entire reasoning chain. Each metric ranges355

between zero (worst) and one (best). While, for356

completeness, we evaluate all the proposed metrics,357

we argue that LC metrics might not be suitable358

for assessing mathematical steps, as they are not359

expressed in natural language.360

4 Experimental Results361

We perform an extensive experimental evaluation362

on two tasks for a total of four datasets, five mod-363

els, and five loss functions. In the following, we364

summarize the main results. Additional results are365

available in Appendix D.366

4.1 Datasets367

We select four datasets, each including at least train-368

ing and validation sets, therefore neglecting those369

containing only the test set (being designed for370

zero-shot benchmarking).371

Math World Problems. We consider the follow-372

ing two datasets on MWP: GSM8K (Cobbe et al.,373

2021) and MathQA (Amini et al., 2019). We have374

chosen these datasets because they include both the375

final result and the operational annotations (reason-376

ing steps) leading to the final answer.377

GSM8K is included in HELM benchmark (Liang378

et al., 2022). It collects open-ended questions in-379

volving a median of 3 steps to solve them. In con-380

trast, MathQA is designed to operate in a closed-381

ended QA fashion, with problems involving a me-382

dian of 4 reasoning steps.383

Closed-ended Question Answering. We select 384

two multiple-choice datasets both included in the 385

HELM benchmark, i.e., OpenBookQA (Mihaylov 386

et al., 2018) and HellaSwag (Zellers et al., 2019). 387

We consider these QA datasets because answers are 388

mainly based on reading comprehension rather than 389

relying on prior knowledge of the LLM models. 390

OpenBookQA comprises questions with multi- 391

ple choices and contexts to help the reader select 392

the correct answer, whereas HellaSwag provides 393

incomplete sentences with multiple options for ap- 394

propriate sentence completion. 395

Detailed information on the considered datasets, 396

including their training/validation/test set splits, are 397

available in Appendix A. 398

4.2 Models 399

We employ the following LLMs with a number of 400

parameters ranging from 3B to 7B: RedPajama- 401

Incite-3B (Together Computer, 2023), StableLM- 402

3B (Tow et al.), RedPajama-Incite-7B (Together 403

Computer, 2023), Falcon-7B (Almazrouei et al., 404

2023), and Llama-2-7B (Touvron et al., 2023). Ex- 405

cept for Llama-2 (which is selected as one of the 406

most well-known open-source models), the other 407

ones are selected with the following criteria: (1) 408

They are open-source; (2) They show promising re- 409

sults according to HELM benchmark (Liang et al., 410

2022); (3) The majority of their training datasets 411

are public or clearly stated to avoid overlapping 412

with analyzed datasets; (4) We consider only the 413

pre-trained version (without any instruction tuning 414

or tuning by human preferences). 415

More details about the selected models can be 416

found in Appendix C. 417

4.3 Prompts 418

We express the prompts to fine-tune the LLM mod- 419

els as follows: 420

Question: [Question Text] (Context: [Context text]) 421

Answer: [Answer Text] 422

where Context is optional as not every dataset in- 423

cludes it. The answer format can be either a single 424

letter corresponding to the answer for QA or a se- 425

ries of passages and a final answer for mathematical 426

problems. In the latter case, we adhere to the for- 427

mat of GSM8K: 428

«[Formula]» ... #### [Final answer] 429

where each Formula comprises operators and 430

operands, which can be numbers or symbols. This 431

is done to evaluate better mathematical steps, which 432

exhibit less ambiguity and adhere to stricter lexical 433
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rules than textual reasoning. Prompt examples can434

be seen in Appendix F.435

4.4 Experimental settings436

We set the number of training steps to around437

25000 and the batch size to 2. We employ the Low438

Rank Adaptation (Hu et al., 2021a), the AdamW439

optimizer (Loshchilov and Hutter, 2017), and a lin-440

ear learning rate scheduler with a warmup of 500441

steps. Further information about the experimental442

settings and implementation details are given in443

Appendix E.444

4.5 Results for the MWP task445

Table 1 reports the results achieved on two MWP446

datasets. We report the macro average of the perfor-447

mance metric achieved by the five models. For the448

ROSCOE metrics, we report the average for each449

category (SA, SS, LI, and LC) (Golovneva et al.,450

2022). Detailed results for each ROSCOE metric451

are reported in Table 9, whereas additional results452

are available in Appendix D.453

Reasoning step evaluation. On both MWP454

datasets, the combined loss with Lovász loss (LL)455

consistently outperforms the Cross-Entropy only456

setting. It achieves the best performance, likely due457

the effect of misclassified sample penalties. Specif-458

ically, while cross-entropy and Focal loss (FL) aim459

to maximize global accuracy, LL aims to maximize460

the global IoU, i.e., it considers both the absence461

of extra tokens and the presence of missing tokens.462

Contrasting results characterize the Self-463

Adjusting Dice Loss (SADL). It consistently per-464

forms better than CE on GSM8K. Conversely, it is465

less effective than CE on MathQA. This is probably466

due to the different ways of expressing mathemati-467

cal operations between the two datasets.468

Exact Match. The results obtained on GSM8K469

show that LLMs adopting the combined loss yield470

better results than cross-entropy (e.g., LL+CE471

+1.93% vs. CE).472

Correlation analysis between reasoning step473

metrics. We study the correlation between the474

ROSCOE metrics and the standard MWP metrics.475

The goal is to empirically verify whether enhancing476

LLM reasoning capabilities with ad hoc loss func-477

tions has a positive impact on the standard MWP478

metrics as well. In Table 2 we report the follow-479

ing ROSCOE metrics: Reasoning Alignment (RA),480

External Hallucination (EH), Redundancy (RD),481

Common Sense Error (CSE), Missing Step (MS), 482

and Semantic Coverage Chain (SCC). We disre- 483

gard natural language-oriented metrics, such as the 484

ones related to the language coherence metrics (i.e., 485

grammaticality, perplexity), which are deemed as 486

not relevant to mathematical reasoning. 487

As expected, all the standard metrics, except for 488

EM (accuracy-oriented), are correlated with the 489

ROSCOE ones, with Pearson correlation values 490

between ≈ 0.5 and ≈ 0.7. This confirms the effi- 491

cacy of the proposed strategy as jointly optimizing 492

reasoning and final results is beneficial. 493

General considerations. The results on MathQA 494

and GSM8K show that the final answer tends to be 495

wrong in many cases (low EM values), while the 496

reasoning steps tend to be quite accurate (high or 497

medium-high reasoning step metrics). This high- 498

lights that the models generally struggle to cor- 499

rectly predict the final result despite showing a 500

good capability in formulating the mathematical 501

reasoning steps. Often, LLMs identify the exact 502

sequence of reasoning steps needed to solve a math- 503

ematical task. However, the predicted final result 504

is wrong since they are not capable of applying the 505

identified steps to compute the final result. 506

The complete set of results for all metrics and 507

models on the MWP datasets are available in Ap- 508

pendix D, along with statistical tests for signifi- 509

cance between cross-entropy and the other loss 510

functions. 511

Error type analysis in MWP. We also analyze 512

the most common mistakes observed in the MWP 513

reasoning steps. We consider the following metrics 514

covering complementary types of reasoning errors2 515

• Extra Step (ES): proportion of predicted ratio- 516

nales not included in the gold annotations: 517

ES =
|PS −GTS|

|PS|
(14) 518

• Missing Step (MS): proportion of gold ratio- 519

nales not generated by the model: 520

MS =
|GTS − PS|

|GTS|
(15) 521

• Wrong Operators (WO): proportion of pre- 522

dicted rationales with correct operands but 523

wrong sign according to the gold rationales: 524

WO =
|PSwo|
|E|

(16) 525

2To the best of our knowledge, there are no standard met-
rics to evaluate mathematical reasoning.
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Accuracy Reasoning step Metrics
metric General Purpose metrics ROSCOE metrics

G
SM

8K

Loss EM IoU Prec Rec DS C-IoU SA SS LI LC

CE 15.83 15.52 19.65 21.43 19.98 19.27 81.14 65.75 34.91 37.58

FL
15.41 15.09 19.27 21.29 19.61 18.71 81.39 66.67 36.74 37.60
(-0.42) (-0.43) (-0.38) (-0.14) (-0.37) (-0.57) (+0.25) (+0.92) (+1.83) (+0.03)

GDL
15.00 15.15 19.22 21.23 19.63 18.70 81.08 65.73 34.70 37.60
(-0.83) (-0.38) (-0.43) (-0.20) (-0.35) (-0.58) (-0.06) (-0.03) (-0.21) (+0.02)

LL
17.76 17.39 21.73 23.78 22.09 21.10 81.38 66.33 36.00 37.46

(+1.93) (+1.86) (+2.08) (+2.35) (+2.11) (+1.83) (+0.24) (+0.57) (+1.09) (-0.12)

SADL
15.91 15.64 19.78 22.35 20.32 19.51 81.33 66.29 35.47 37.62

(+0.08) (+0.11) (+0.13) (+0.91) (+0.35) (+0.24) (+0.18) (+0.54) (+0.56) (+0.05)

M
at

hQ
A

CE 5.12 36.72 40.30 42.98 40.66 36.78 85.12 68.43 24.21 38.86

FL
5.52 33.73 37.14 41.74 37.98 33.79 85.29 68.39 23.75 38.80

(+0.41) (-2.99) (-3.16) (-1.24) (-2.68) (-2.99) (+0.17) (-0.05) (-0.46) (-0.06)

GDL
5.04 36.30 39.35 44.85 40.60 36.36 85.07 67.05 21.01 38.90

(-0.07) (-0.42) (-0.95) (+1.88) (-0.06) (-0.42) (-0.04) (-1.39) (-3.20) (+0.04)

LL
4.76 43.25 46.17 50.55 47.12 43.31 85.76 70.03 28.68 38.75

(-0.36) (+6.52) (+5.87) (+7.57) (+6.46) (+6.53) (+0.65) (+1.60) (+4.47) (-0.11)

SADL
4.48 34.18 37.69 43.00 38.64 34.23 84.97 67.05 20.42 38.95

(-0.63) (-2.55) (-2.62) (+0.02) (-2.02) (-2.55) (-0.15) (-1.39) (-3.79) (+0.09)

Table 1: Macro-average achieved on GSM8K and MathQA datasets. Absolute gains/losses w.r.t. CE results are
reported in brackets.

EM IoU Prec Rec DS C-IoU

RA (SA) 0.1615 0.6582 0.6891 0.6076 0.6739 0.6698
EH (SA) 0.1425 0.6058 0.6186 0.5115 0.5919 0.6074
RD (SA) 0.1607 0.6781 0.6911 0.5674 0.6600 0.6828
CSE (SA) 0.1559 0.5583 0.5314 0.5741 0.5596 0.5608
MS (SA) 0.1744 0.6461 0.6138 0.6595 0.6463 0.6523
SCC (SS) 0.1345 0.5403 0.5501 0.5005 0.5484 0.5495

Table 2: Pearson’s correlation between reasoning met-
rics (ROSCOE) and standard ones (EM, IoU, Prec, Rec,
DS, C-IoU) over all samples.

• Inverted Operands (IO): proportion of pre-526

dicted rationales in which the operands527

have an incorrect position, considering non-528

commutative operations:529

IO =
|PSio|
|E|

(17)530

where GTS and PS are, respectively, the ground531

truth and predicted reasoning steps, PSwo and532

PSio are predicted steps with a wrong operator533

and inverted operands, respectively, and E is the534

set of errors, i.e., the set of predicted reasoning535

steps that do not correspond to the gold rationales.536

The results are summarized in Table 3. Lovász537

loss yields the lowest percentages of errors across538

most error types, particularly in reducing the539

amount of missing steps. The errors related to540

wrong operators and inverted operands affect only 541

approximately 4-5% of the reasoning steps for all 542

loss functions. Overall, generating fully accurate 543

reasoning chains remains challenging, but losses 544

such as Lovász loss can help mitigate certain types 545

of errors, making it a preferable training loss than 546

cross-entropy. 547

Loss ES ↓ MS ↓ WO ↓ IO ↓

CE 67.60% 67.78% 4.68% 5.13%
FL 67.85% 68.48% 4.22% 4.66%
GDL 68.30% 66.95% 4.57% 5.00%
LL 62.87% 62.83% 4.27% 4.66%
SADL 70.40% 67.32% 4.71% 5.21%

Table 3: Mean errors in mathematical reasoning (see
the definitions in Section 4.5 - paragraph entitled Error
type analysis) across models and datasets.

4.6 Results on Question Answering 548

We analyze the EM results achieved on the Open- 549

BookQA and HellaSwag datasets. Cross-entropy 550

only proves to be a suboptimal choice in both cases. 551

On OpenBookQA, cross-entropy achieves 75.6, 552

while combining CE with Lovász and Focal losses 553

yields +7.2 and +5.28 improvements, respectively. 554

Conversely, combining CE with Self-adjusting 555

Dice and Generalized Dice losses worsens the per- 556
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formance by −8.20 and −0.20, respectively. On557

HellaSwag, cross-entropy achieves 47.36. Specifi-558

cally, Lovász, Focal, and Generalized Dice losses559

yield +10.72, +24.32, and +0.03 improvements,560

respectively. In contrast, Self-adjusting Dice loss561

experiences a decrease in performance of −5.53.562

The positive contributions of Focal and Lovász563

losses are likely due to the fact that FL underesti-564

mates the loss contributions of well-predicted sam-565

ples based on class distribution, whereas Lovász566

penalizes wrong predictions without suppressing567

well-predicted samples according to their distribu-568

tional behavior.569

For the sake of completenesse, in Appendix D570

we report the detailed results for every combina-571

tion of model and loss as well as the results of the572

statistical tests for significance.573

Results on a reduced number of samples We574

evaluate the effectiveness of the proposed approach575

on each task and dataset by reducing the num-576

ber of training samples to 40% and 10%, while577

also reducing the training duration by the same578

amount. In Table 4, we present the mean results579

for MWP datasets by loss. We show that cross-580

entropy does not generally yield satisfactory re-581

sults when the amount of data is reduced. Con-582

versely, losses such as Focal and Lovász demon-583

strate better capability in extracting desired knowl-584

edge even from fewer samples. The same trend585

is observed in QA datasets, where CE achieves586

76.15 and 82.46 for 10% and 40%, respectively.587

Focal yields improvements of +5.28 and +5.25,588

proving the most effective, while Lovász shows im-589

provements of +1.34 and +2.43. Generalized Dice590

achieves −3.30 and +0.07, while Self-adjusting591

Dice −0.27 and +0.68.592

5 Conclusion and Future Work593

In this work, we explored the application of594

losses from the semantic segmentation literature595

to improve Large Language Model efficient fine-596

tuning for mathematical reasoning and closed-597

ended question-answering tasks. Our experiments,598

performed using multiple models across four dif-599

ferent datasets, demonstrate that combining cross-600

entropy with established computer vision losses601

yields significant performance improvements.602

Math Word Problems the LLM fine-tuned with603

a combination of cross-entropy and Lovász loss604

achieved the best performance on most reasoning605

Loss CE GDL FL LL SADL

10
%

EM 9.67 9.56 10.08 10.67 9.61
IoU 11.50 11.51 11.94 12.63 11.05
Prec 15.20 15.25 15.62 16.52 14.61
Rec 16.43 16.43 17.04 17.79 15.89
C-IoU 13.16 13.18 13.55 14.39 12.75
DS 15.29 15.30 15.70 16.56 14.71

40
%

EM 15.48 15.16 17.78 19.94 13.62
IoU 23.60 23.70 24.09 27.39 22.48
Prec 31.52 32.11 32.88 35.60 30.49
Rec 33.31 33.77 34.55 36.83 32.26
C-IoU 29.44 29.93 30.89 33.18 28.46
DS 31.83 32.30 33.07 35.63 30.76

Table 4: Results with subsets of training dataset (10%
and 40%) on MWP datasets. Results are averaged across
models.

metrics on math word problems, outperforming 606

cross-entropy by over 5-10% absolute in some 607

cases. Standard metrics have shown to be corre- 608

lated with the state-of-the-art ROSCOE reasoning 609

evaluators. On question-answering datasets such as 610

OpenBookQA and HellaSwag, Lovász and Focal 611

losses consistently outperform cross-entropy. The 612

error analysis revealed that models still struggle 613

with fully accurate reasoning, often missing neces- 614

sary steps or adding extraneous ones. However, the 615

alternative losses help mitigate certain errors, with 616

Lovász loss yielding the lowest rates of missing 617

and useless steps. Overall, our results illustrate the 618

importance of choosing appropriate loss functions 619

during fine-tuning to optimize end evaluation met- 620

rics more effectively. Employing losses tailored 621

to the task of interest can boost performance even 622

without additional data. 623

Future work can explore the design of new ad- 624

hoc functions to optimize these tasks and other nat- 625

ural language generation tasks. Moreover, transfer 626

learning to other non-English languages could em- 627

phasize the imbalance in token distributions of the 628

target language. Therefore, additional experiments 629

on this stream of research could further support the 630

findings of our study. 631

Limitations 632

We analyzed only English language datasets from 633

the mathematical reasoning and reading compre- 634

hension domains. Additional experiments on other 635

languages and tasks would strengthen the general- 636

izability of our findings. It’s worth noting that we 637
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have limited our analysis to existing loss functions638

in computer vision, which could be suboptimal639

choices for the tasks under consideration. We an-640

alyzed tasks with strong constraints to verify the641

effectiveness of analyzed loss functions; however,642

this approach may pose limitations in datasets with643

more open-ended solutions lacking well-defined644

patterns.645

Ethics Statement646

The datasets employed in this study do not contain,647

from our understanding, any personal information,648

but they can contain some harmful or inappropriate649

content. This claim can be extended to the em-650

ployed models, which could provide non-factual,651

biased, harmful, or inappropriate answers. Their652

usage is subject to the limitations stated in their653

respective technical reports and licenses. Their an-654

swers are not intended to offend or harm anyone.655

Language models have environmental impacts due656

to high computing requirements during pre-training657

and fine-tuning. We have made efforts to be com-658

putationally responsible by reusing open-sourced659

pre-trained models and efficient fine-tuning with660

LoRA (Hu et al., 2021b) methods. The gains from661

improved losses help amortize the resource costs662

over higher utility. Overall, we have made rea-663

sonable efforts to ensure the transparency and au-664

ditability of our experimental methodology.665
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Appendices861

In this supplementary material, we provide addi-862

tional details as follows:863

• Appendix A: Dataset Statistics864

• Appendix B: Token Distribution865

• Appendix C: Model Summary866

• Appendix D: Extended Results867

• Appendix E: Implementation Details868

• Appendix F: Prompt Examples869

A Dataset Statistics870

• OpenBookQA3 (Mihaylov et al., 2018) con-871

tains questions that require multi-step reason-872

ing, use of additional common and common-873

sense knowledge, and rich text comprehen-874

sion. OpenBookQA is a new kind of question-875

answering dataset modeled after open-book876

exams for assessing human understanding of877

a subject. The training set contains 4960 sam-878

ples, validation 500, and test set 500.879

• HellaSwag4 (Zellers et al., 2019) introduced880

a task of commonsense natural language in-881

ference, which consists in selecting the most882

appropriate conclusion for a sentence from a883

set of possibilities. It contains 39900 samples884

in the train set and 10000 in validation (which885

is employed as the test set since the real one886

does not have ground truth). It is released887

under MIT license.888

• GSM8K5 (Cobbe et al., 2021) is a dataset of889

8.5K high-quality linguistically diverse grade890

school math word problems. The dataset was891

created to support answering questions on ba-892

sic mathematical problems requiring multi-893

step reasoning. It has 7470 samples in the894

training set and 1320 in the test set. It is re-895

leased under the MIT license.896

3https://huggingface.co/datasets/openbookqa
4https://huggingface.co/datasets/Rowan/

hellaswag
5https://huggingface.co/datasets/gsm8k

• MathQA6 (Amini et al., 2019) is a large-scale 897

dataset of math word problems enhancing 898

AQuA (Ling et al., 2017) providing fully- 899

specified operational programs for each prob- 900

lem. It is released under Apache-2.0 license. 901

It comprises 29800 samples in train, 4480 in 902

validation, and 2990 in test. 903

B Token Distribution 904

We report the distribution of tokens across the 905

datasets, highlighting the strong imbalance in to- 906

kens in Figure 2. Before the analysis, we exclude 907

all special tokens (25) from the tokenizer. We plot 908

the density against the token identifier in the log 909

scale to better highlight peaks and differences. 910
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Figure 2: Kernel Density Estimation in log scale for
token distributions in GSM8K, MathQA, OpenBookQA,
and HellaSwag datasets.

C Model Summary 911

Table 5 summarizes the characteristics of the mod- 912

els used in this work: RedPajama-Incite-3B7, 913

StableLM-3B8, RedPajama-Incite-7B9, Falcon- 914

7B10, and Llama-2-7B11. For each of them, the 915

following characteristics are reported: model name, 916

number of parameters, license, availability of the 917

pre-training datasets, and mean win rate according 918

to HELM benchmark (Liang et al., 2022). 919

6https://huggingface.co/datasets/math_qa
7https://huggingface.co/togethercomputer/

RedPajama-INCITE-Base-3B-v1
8https://huggingface.co/stabilityai/

stablelm-3b-4e1t
9https://huggingface.co/togethercomputer/

RedPajama-INCITE-7B-Base
10https://huggingface.co/tiiuae/falcon-7b
11https://huggingface.co/meta-llama/

Llama-2-7b-hf

11
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https://huggingface.co/datasets/openbookqa
https://huggingface.co/datasets/Rowan/hellaswag
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Model # Parameters License Pre-Training Datasets HELM Win Rate

RedPajama-Incite 3B Apache 2.0 Public 0.311
StableLM 3B CC BY-SA-4.0 Public –
RedPajama-Incite 7B Apache 2.0 Public 0.378
Falcon 7B Apache 2.0 90% Public 0.378
Llama-2 7B Llama-2 Public 0.607

Table 5: Model characteristics.

D Extended Results920

In the following, we report the extended re-921

sults for the mathematical reasoning and question-922

answering tasks.923

D.1 Complete results on MWP924

In Tables 7 and 8, we present the detailed perfor-925

mance of each model and loss function on MWP926

datasets. We use McNemar’s test for exact match927

and t-tests (Dietterich, 1998) for other metrics to928

determine if differences are statistically significant.929

Using our metrics in GSM8K, Lovász provides the930

best mean performance across all models, except931

on Falcon, in which Self-adjusting Dice provide932

the best ones. Although, they do not show any933

statistical differences, probably due to the model’s934

limitations. In MathQA, Lovász provides the best935

performance across most metrics, while regarding936

the exact match, Focal provides 2 times over 5 the937

best results. The results for ROSCOE in Table 9938

across both MWP datasets show Lovász as the best939

in most metrics, as highlighted by mean rank, too.940

D.2 Complete results on Question Answering941

In Table 6, we present the detailed performance of942

each model and loss function on closed-ended QA943

datasets. We perform McNemar’s test (Dietterich,944

1998) to assess whether differences compared to945

cross-entropy loss are statistically significant. In 9946

cases, Lovász loss provides the best improvements947

in 4 cases, while Focal obtains the best results. The948

main differences are seen when Lovász fails; Focal949

still gets improvement. In the inverse case, the950

results are similar.951

E Implementation Details952

Based on preliminary experiments, we set the lan-953

guage modeling loss mixing parameter to λ = 0.6.954

The Focal suppression parameter was set to γ = 2.955

The maximum learning rate was set to 1e− 4 for956

all datasets, except in GSM8K, for which it is set 957

to 1e− 5. 958

We selected the checkpoint according to the best 959

validation loss. We train less than 1% of the to- 960

tal parameters using LoRA. During training, the 961

context size is chosen to include most samples with- 962

out truncation according to 75% percentiles: 128 963

for GSM8K, MathQA, OpenBookQA, and 256 for 964

HellaSwag. We employ gradient accumulation for 965

context size 256. 966

We employed Transformers and Peft libraries. 967

Full requirements, versions, and losses’ licenses 968

are available in the code repository. For ROSCOE 969

evaluation, we employed the models suggested in 970

the original paper: SimCSE12 for sentence embed- 971

ding, RoBERTa13 for word embedding model, De- 972

BERTa14 as NLI model, RoBERTa15 as grammar 973

model, and GPT-216 as perplexity model. 974

We run our experiments on a machine equipped 975

with Intel® CoreTM i9-10980XE CPU, 1 × 976

NVIDIA® RTX A6000 48GB GPU, 128 GB of 977

RAM running Ubuntu 22.04 LTS. 978

F Prompt Examples 979

GSM8K Question: John takes care of 10 dogs. 980

Each dog takes .5 hours a day to walk and take care 981

of their business. How many hours a week does 982

he spend taking care of dogs? Answer: «10*.5=5» 983

«5*7=35» #### 35 984

MathQA Question: Sophia finished 2 / 3 of 985

a book . she calculated that she finished 90 986

more pages than she has yet to read . how long 987

12https://huggingface.co/facebook/
roscoe-512-roberta-base

13https://huggingface.co/FacebookAI/
roberta-base

14https://huggingface.co/MoritzLaurer/
DeBERTa-v3-large-mnli-fever-anli-ling-wanli

15https://huggingface.co/cointegrated/
roberta-large-cola-krishna2020

16https://huggingface.co/openai-community/
gpt2-large

12
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Model Loss HellaSwag OpenBookQA

RedPajama 3B

CE 25.26 66.6
FL 45.91∗ 78.6∗
GDL 25.39 63.8
LL 26.05 77.2∗

SADL 25.79∗ 67.0

StableLM 3B

CE 79.69 84.0
FL 85.69∗ 85.4
GDL 80.0 82.8
LL 82.97∗ 87.2∗
SADL 80.49∗ 82.4

RedPajama 7B

CE 25.16 74.8
FL 73.29∗ 81.6∗

GDL 25.04 75.8
LL 25.08 83.8∗
SADL 25.1 76.6

Falcon 7B

CE 24.59 69.2
FL 68.51∗ 77.2∗

GDL 24.94 69.2
LL 70.72∗ 79.0∗
SADL 26.67∗ 55.0∗

Llama-2 7B

CE 82.12 83.4
FL 85.03∗ 81.6
GDL 81.58 83.8
LL 85.6∗ 86.8∗
SADL 51.1∗ 56.0∗

Table 6: Results on Question Answering datasets. ∗ indicates values for which p < 0.05.

is her book ? Answer: «divide(n0,n1)» «sub-988

tract(const_1,#0)» «divide(n2,#1)» #### 270989

13



Model Loss EM IoU Prec Rec DS C-IoU

RedPajama 3B

CE 9.33 11.03 14.66 15.51 14.69 14.76
FL 9.55 11.46 15.23 16.16 15.33 15.21
GDL 9.25 11.15 14.81 15.67 14.83 14.92
LL 11.45∗ 12.52∗ 16.66∗ 17.17∗ 16.52∗ 16.53∗
SADL 10.16 11.76 15.80∗ 16.19 15.60 15.73∗

StableLM 3B

CE 24.79 20.96 26.05 26.72 25.93 24.56
FL 24.79 21.81∗ 27.36∗ 27.49 26.95∗ 25.51∗

GDL 24.87 21.01 26.11∗ 26.75 25.98 24.58
LL 28.66∗ 24.02∗ 29.42∗ 30.38∗ 29.38∗ 28.15∗
SADL 26.99∗ 21.08 26.43 27.40 26.39 25.20

RedPajama 7B

CE 16.07 15.39 19.93 20.38 19.76 19.76
FL 14.94 14.93 19.92 19.55 19.32 18.82
GDL 13.19∗ 13.94∗ 18.27∗ 19.24∗ 18.33∗ 17.94∗

LL 16.83 16.66∗ 21.57∗ 21.52 21.13∗ 20.91∗
SADL 13.95∗ 14.94 19.32 20.41 19.44 18.85

Falcon 7B

CE 4.70 11.39 14.00 20.64 16.15 14.16
FL 3.49 9.19∗ 11.25∗ 19.47 13.69∗ 11.92∗

GDL 4.40 11.16 13.65 20.85 15.98 13.98
LL 5.00 11.59 13.93 22.09 16.47 14.08
SADL 5.08 12.04 14.37 23.70 17.18 15.00

Llama-2 7B

CE 24.28 18.85 23.62 23.92 23.35 23.13
FL 24.28 18.07 22.61 23.78 22.76 22.07
GDL 23.29 18.47 23.26 23.64 23.01 22.07
LL 26.86∗ 22.14∗ 27.09∗ 27.74∗ 26.93∗ 25.83∗
SADL 23.37 18.36 22.98 24.03 23.01 22.78

Table 7: Results on GSM8K dataset. ∗ indicates values for which p < 0.05.

14



Model Loss EM IoU Prec Rec DS C-IoU

RedPajama 3B

CE 3.47 30.26 34.20 35.32 34.07 30.29
FL 2.79 33.11∗ 37.29∗ 37.87∗ 36.88∗ 33.16∗
GDL 2.45∗ 28.98∗ 32.96∗ 33.96∗ 32.72∗ 29.06∗

LL 2.83 32.83∗ 36.48∗ 38.44∗ 36.69∗ 32.86∗

SADL 2.79 26.54∗ 30.35∗ 32.55∗ 30.49∗ 26.58∗

StableLM 3B

CE 8.21 61.98 64.86 67.39 65.36 62.02
FL 10.06∗ 61.98∗ 65.43∗ 67.47∗ 65.66∗ 62.04∗

GDL 6.86 57.13∗ 60.16∗ 63.61∗ 61.03∗ 57.16∗

LL 7.50 65.73∗ 68.51∗ 70.79∗ 69.06∗ 65.80∗
SADL 7.16 59.79∗ 62.85∗ 65.31∗ 63.33∗ 59.84∗

RedPajama 7B

CE 7.16 40.35 44.32 45.01 43.98 40.41
FL 8.78∗ 43.12∗ 47.72∗ 48.28∗ 47.16∗ 43.17∗

GDL 7.05 41.21∗ 44.87∗ 45.98∗ 44.77∗ 41.27∗

LL 6.82 46.34∗ 49.87∗ 51.27∗ 49.92∗ 46.41∗
SADL 6.10 32.41∗ 39.17 36.75∗ 36.79 32.48∗

Falcon 7B

CE 5.24 11.34 13.80 21.72 15.93 11.44
FL 5.84 10.93∗ 12.98∗ 24.59∗ 15.77∗ 11.00∗

GDL 5.69 11.07∗ 13.21∗ 22.98∗ 15.63∗ 11.14∗

LL 5.35 12.77 15.00∗ 26.07∗ 17.67∗ 12.87
SADL 5.99 10.57∗ 12.62∗ 21.50∗ 14.84∗ 10.63∗

Llama-2 7B

CE 1.51 39.69 44.34 45.45 43.98 39.75
FL 0.15∗ 19.51∗ 22.29∗ 30.48∗ 24.43∗ 19.60∗

GDL 3.17∗ 43.12∗ 45.56 57.74∗ 48.87∗ 43.16∗

LL 1.28 58.56∗ 61.00∗ 66.16∗ 62.28∗ 58.62∗
SADL 0.38∗ 41.57∗ 43.45 58.87∗ 47.77∗ 41.62∗

Table 8: Results on MathQA dataset. ∗ indicates values for which p < 0.05.
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CE FL GDL LL SADL

Faithfulness 81.96 81.97 81.98 82.21 81.96
Informativeness Step 80.61 81.09 81.11 80.82 81.10
Faithfulness WW 91.84 92.61 92.78 91.55 92.77
Informativeness Chain 90.63 90.40 90.50 90.79 90.41
Repetition Word 12.59 13.58 9.80 15.67 10.91
Repetition Step 14.44 16.02 12.30 17.40 13.30
Reasoning Alignment 92.47 92.37 92.67 92.61 92.60
External Hallucination 97.59 97.60 97.57 97.70 97.58
Redundancy 88.71 88.60 88.69 89.06 88.62
Common Sense Error 97.91 97.87 97.96 97.96 97.93
Missing Step 89.47 89.47 89.89 89.82 89.74
Semantic Coverage Step 98.14 98.25 98.31 98.32 98.27
Semantic Coverage Chain 96.21 96.17 96.36 96.35 96.30
Discourse Representation 42.71 42.73 41.50 45.68 40.95
Perplexity Step 0.28 0.27 0.28 0.26 0.27
Coherence Step vs Step 16.41 17.76 14.21 19.00 14.94
Perplexity Chain 6.08 6.42 6.74 5.49 6.84
Perplexity Step Max 0.14 0.13 0.14 0.14 0.15
Grammar Step 94.27 94.18 94.12 94.28 94.18
Grammar Step Max 90.32 90.02 89.95 90.34 90.00

Mean Rank 3.2 3.45 2.8 1.95 3.2

Table 9: Results using ROSCOE metrics aggregated across models and datasets.
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