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ABSTRACT

A recent line of work showed that various forms of convolutional kernel methods
can be competitive with standard supervised deep convolutional networks on
datasets like CIFAR-10, obtaining accuracies in the range of 87− 90% while being
more amenable to theoretical analysis. In this work, we highlight the importance of
a data-dependent feature extraction step that is key to the obtain good performance
in convolutional kernel methods. This step typically corresponds to a whitened
dictionary of patches, and gives rise to a data-driven convolutional kernel methods.
We extensively study its effect, demonstrating it is the key ingredient for high
performance of these methods. Specifically, we show that one of the simplest
instances of such kernel methods, based on a single layer of image patches followed
by a linear classifier is already obtaining classification accuracies on CIFAR-10
in the same range as previous more sophisticated convolutional kernel methods.
We scale this method to the challenging ImageNet dataset, showing such a simple
approach can exceed all existing non-learned representation methods. This is a
new baseline for object recognition without representation learning methods, that
initiates the investigation of convolutional kernel models on ImageNet. We conduct
experiments to analyze the dictionary that we used, our ablations showing they
exhibit low-dimensional properties.

1 INTRODUCTION

Understanding the success of deep convolutional neural networks on images remains challenging
because images are high-dimensional signals and deep neural networks are highly-non linear models
with a substantial amount of parameters: yet, the curse of dimensionality is seemingly avoided by
these models. This problem has received a plethora of interest from the machine learning community.
One approach taken by several authors (Mairal, 2016; Li et al., 2019; Shankar et al., 2020; Lu et al.,
2014) has been to construct simpler models with more tractable analytical properties (Jacot et al.,
2018; Rahimi and Recht, 2008), that still share various elements with standard deep learning models.
Those simpler models are based on kernel methods with a particular choice of kernel that provides a
convolutional representation of the data. In general, these methods are able to achieve reasonable
performances on the CIFAR-10 dataset. However, despite their simplicity compared to deep learning
models, it remains unclear which ones of the multiple ingredients they rely on are essential. Moreover,
due to their computational cost, it remains open to what extend they achieve similar performances on
more complex datasets such as ImageNet. In this work, we show that an additional implicit ingredient,
common to all those methods, consists in a data-dependent feature extraction step that makes the
convolutional kernel data-driven (as opposed to purely handcrafted) and is key for obtaining good
performances.
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Data driven convolutional kernels compute a similarity between two images x and y, using both their
translation invariances and statistics from the training set of images X . In particular, we focus on
similarities K that are obtained by first standardizing a representation Φ of the input images and then
feeding it to a predefined kernel k:

Kk,Φ,X (x, y) = k(LΦx, LΦy) , (1)

where a rescaling and shift is (potentially) performed by a diagonal affine operator L = L(Φ,X )
and is mainly necessary for the optimization step Jin et al. (2009): it is typically a standardization.
The kernel K(x, y) is said to be data-driven if Φ depends on training set X , and data-independent
otherwise. This, for instance, is the case if a dictionary is computed from the data (Li et al., 2019;
Mairal, 2016; Mairal et al., 2014) or a ZCA (Shankar et al., 2020) is incorporated in this representation.
The convolutional structure of the kernel K can come either from the choice of the representation Φ
(convolutions with a dictionary of patches (Coates et al., 2011)) or by design of the predefined kernel
k (Shankar et al., 2020), or a combination of both (Li et al., 2019; Mairal, 2016). One of the goal
of this paper is to clearly state that kernel methods for vision do require to be data-driven and this
is explicitly responsible for their success. We thus investigate, to what extent this common step is
responsible for the success of those methods, via a shallow model.

Our methodology is based on ablation experiments: we would like to measure the effect of incorpo-
rating data, while reducing other side effects related to the design of Φ, such as the depth of Φ or
the implicit bias of a potential optimization procedure. Consequently, we focus on 1-hidden layer
neural networks of any widths, which have favorable properties, like the ability to be a universal
approximator under non-restrictive conditions. The output linear layer shall be optimized for a classi-
fication task, and we consider first layers which are predefined and kept fixed, similarly to Coates
et al. (2011). We will see below that simply initializing the weights of the first layer with whitened
patches leads to a significant improvement of performances, compared to a random initialization, a
wavelet initialization or even a learning procedure. This patch initialization is used by several works
(Li et al., 2019; Mairal, 2016) and is implicitly responsible for their good performances. Other works
rely on a whitening step followed by very deep kernels (Shankar et al., 2020), yet we noticed that this
was not sufficient in our context. Here, we also try to understand why incorporating whitened patches
is helpful for classification. Informally, this method can be thought as one of the simplest possible in
the context of deep convolutional kernel methods, and we show that the depth or the non-linearities
of such kernels play a minor role compared to the use of patches. In our work, we decompose and
analyze each step of our feature design, on gold-standard datasets and find that a method based solely
on patches and simple non-linearities is actually a strong baseline for image classification.

We investigate the effect of patch-based pre-processing for image classification through a simple
baseline representation that does not involve learning (up to a linear classifier) on both CIFAR-10
and ImageNet datasets: the path from CIFAR-10 to ImageNet had never been explored until now
in this context. Thus, we believe our baseline to be of high interest for understanding ImageNet’s
convolutional kernel methods, which almost systematically rely on a patch (or descriptor of a patch)
encoding step. Indeed, this method is straightforward and involves limited ad-hoc feature engineering
compared to deep learning approach: here, contrary to (Mairal, 2016; Coates et al., 2011; Recht
et al., 2019; Shankar et al., 2020; Li et al., 2019) we employ modern techniques that are necessary
for scalability (from thousands to million of samples) but can still be understood through the lens of
kernel methods (e.g., convolutional classifier, data augmentation, ...). Our work allows to understand
the relative improvement of such encoding step and we show that our method is a challenging baseline
for classification on Imagenet: we outperform by a large margin the classification accuracy of former
attempts to get rid of representation learning on the large-scale ImageNet dataset.

While the literature provides a detailed analysis of the behavior of a dictionary of patches for
image compression (Wallace, 1992), texture synthesis (Efros and Leung, 1999) or image inpainting
(Criminisi et al., 2004), we have a limited knowledge and understanding of it in the context of image
classification.

The behavior of those dictionaries of patches in some classification methods is still not well un-
derstood, despite often being the very first component of many classic vision pipelines (Perronnin
et al., 2010; Lowe, 2004; Oyallon et al., 2018b). Here, we proposed a refined analysis: we define a
Euclidean distance between patches and we show that the decision boundary between image classes
can be approximated using a rough description of the image patches neighborhood: it is implied for
instance by the fame low-dimensional manifold hypothesis (Fefferman et al., 2016).
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Our paper is structured as follows: first, we discuss the related works in Sec. 2. Then, Sec. 3 explains
precisely how our visual representation is built. In Sec. 4, we present experimental results on the
vision datasets CIFAR-10 and the large scale ImageNet. The final Sec. 4.3 is a collection of numerical
experiments to understand better the dictionary of patches that we used. Our code as well as commands
to reproduce our results are available here: https://github.com/louity/patches.

2 RELATED WORK

The seminal works by Coates et al. (2011) and Coates and Ng (2011) study patch-based representations
for classification on CIFAR-10. They set the first baseline for a single-layer convolutional network
initialized with random patches, and they show it can achieve a non-trivial performance (∼ 80%)
on the CIFAR-10 dataset. Recht et al. (2019) published an implementation of this technique and
conducted numerous experiments with hundreds of thousands of random patches, improving the
accuracy (∼ 85%) on this dataset. However, both works lack two key ingredients: online optimization
procedure (which allows to scale up to ImageNet) and well-designed linear classifier (as we propose
a factorization of our linear classifier).

Recently, (Li et al., 2019; Shankar et al., 2020) proposed to handcraft kernels, combined with deep
learning tools, in order to obtain high-performances on CIFAR-10. Those performances match
standard supervised methods (∼ 90%) which involve end-to-end learning of deep neural networks.
Note that the line of work (Li et al., 2019; Shankar et al., 2020; Mairal, 2016) employs a well-
engineered combination of patch-extracted representation and a cascade of kernels (possibly some
neural tangent kernels). While their works suggest that patch extraction is crucial, the relative
improvement due to basic-hyper parameters such as the number of patches or the classifier choice is
unclear, as well as the limit of their approach to more challenging dataset. We address those issues.

From a kernel methods perspective, a dictionary of random patches can be viewed as the building block
of a random features method (Rahimi and Recht, 2008) that makes kernel methods computationally
tractable. Rudi et al. (2017) provided convergence rates and released an efficient implementation
of such a method. However, previously mentioned kernel methods (Mairal, 2016; Li et al., 2019;
Shankar et al., 2020) have not been tested on ImageNet to our knowledge.

Simple methods involving solely a single-layer of features have been tested on the ImageNet-2010
dataset1, using for example SIFT, color histogram and Gabor texture encoding of the image with
K-nearest neighbors, yet there is a substential gap in accuracy that we attempt to fill in this work
on ImageNet-2012 (or simply ImageNet). We note also that CNNs with random weights have been
tested on ImageNet, yielding to low accuracies (∼ 20% top-1, (Arandjelovic et al., 2017)).

The Scattering Transform (Mallat, 2012) is also a deep non-linear operator that does not involve
representation learning, which has been tested on ImageNet (∼ 45% top-5 accuracy (Zarka et al.,
2019) and CIFAR-10 (∼ 80%, (Oyallon and Mallat, 2015)) and is related to the HoG and SIFT
transforms (Oyallon et al., 2018a). Some works also study directly patch encoders that achieve
competitive accuracy on ImageNet but involve deep cascade of layers that are difficult to interpret
(Oyallon et al., 2017; Zarka et al., 2019; Brendel et al., 2019). Here, we focus on shallow classifiers.

3 METHOD

We first introduce our preliminary notations to describe an image. A patch p of size P of a larger
image x, is a restriction of that image to a squared domain of surface P 2. We denote by N2 the
size of the natural image x and require that P ≤ N . Hence, for a spatial index i of the image, pi,x
represents the patch of image x located at i. We further introduce the collection of all overlapping
patches of that image, denoted by: Px = {pi,x, i ∈ I} where I is a spatial index set such that
|I| = (N − P + 1)2. Fig. 1 corresponds to an overview of our classification pipeline that consist of
3 steps: an initial whitening step of a dictionary D of random patches, followed by a nearest neighbor
quantization of images patches via D that are finally spatially averaged.

1As one can see on the Imagenet2010 leaderboard http://image-net.org/challenges/LSVRC/2010/results, and
the accuracies on ImageNet2010 and ImageNet2012 are comparable.
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Whitening We describe the single pre-processing step that we used on our image data, namely a
whitening procedure on patches. Here, we view natural image patches of size P 2 as samples from
a random vector of mean µ and covariance Σ. We then consider whitening operators which act at
the level of each image patch by first subtracting its mean µ then applying the linear transformation
W = (λI + Σ)−1/2 to the centered patch. The additional whitening regularization with parameter λ
was used to avoid ill-conditioning effects.

Figure 1: Our classification pipeline described synthetically to explain how we build the representation
Φ(x) of an input image x.
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…
The whitening operation is defined up to an isometry, but the Euclidean distance between whitened
patches (i.e., the Mahanobolis distance (Chandra et al., 1936)) is not affected by the choice of such
isometry (choices leading to PCA, ZCA, ...), as discussed in Appendix A. In practice, the mean and
covariance are estimated empirically from the training set to construct the whitening operators. For
the sake of simplicity, we only consider whitened patches, and unless explicitly stated, we assume
that each patch p is already whitened, which holds in particular for the collection of patches in
Px of any image x. Once this whitening step is performed, the Euclidean distance over patches is
approximatively isotropic and is used in the next section to represent our signals.

Figure 2: An example of whitened dictionary D with patch size P = 6 from ImageNet-128 (Left),
ImageNet-64 (Middle), CIFAR-10 (Right). The atoms have been reordered via a topographic
algorithm from Montobbio et al. (2019) and contrast adjusted.

Q-Nearest Neighbors on patches The basic idea of this algorithm is to compare the distances
between each patch of an image and a fixed dictionary of patches D, with size |D| that is the number
of patches extracted. Note that we also propose a variant where we simply use a soft-assignment
operator. For a fixed dataset, this dictionary D is obtained by uniformly sampling patches from
images over the whole training set. We augmentD into ∪d∈D{d,−d} because it allows the dictionary
of patches to be contrast invariant and we observe it leads to better classification accuracies; we still
refer to it as D. An illustration is given by Fig. 2. Once the dictionary D is fixed, for each patch
pi,x we consider the set Ci,x of pairwise distances Ci,x = {‖pi,x − d‖ , d ∈ D}. For each whitened
patch we encode the Q-Nearest Neighbors of pi,x from the set D, for some Q ∈ N. More formally,
we consider τi,x the Q-th smallest element of Ci,x, and we define the Q-Nearest Neighbors binary
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encoding as follow, for (d, i) ∈ D × I:

φ(x)d,i =

{
1, if ‖pi,x − d‖ ≤ τi,x
0, otherwise.

(2)

Eq. 2 can be viewed as a Vector Quantization (VQ) step with hard-assignment (Coates and Ng, 2011).
The representation φ encodes the patch neighborhood in a subset of randomly selected patches and
can be seen as a crude description of the topological geometry of the image patches. Moreover, it
allows to view the distance between two images x, y as a Hamming distance between the patches
neighborhood encoding as:

‖φ(x)− φ(y)‖2 =
∑
i,d

1φ(x)d,i 6=φ(y)d,i . (3)

In order to reduce the computational burden of our method, we perform an intermediary average-
pooling step. Indeed, we subdivide I in squared overlapping regions Ij ⊂ I, leading to the
representation Φ defined, for d ∈ D, j by:

Φ(x)d,j =
∑
i∈Ij

φ(x)d,i . (4)

Hence, the resulting kernel is simply given by K(x, y) = 〈Φ(x),Φ(y)〉. Implementation details
can be found in Appendix B. The next section describes our classification pipeline, as we feed our
representation Φ to a linear classifier on challenging datasets.

4 EXPERIMENTS

We train shallow classifiers, i.e. linear classifier and 1-hidden layer CNN (1-layer) on top of our
representation Φ on two major image classification datasets, CIFAR-10 and ImageNet, which consist
respectively of 50k small and 1.2M large color images divided respectively into 10 and 1k classes.
For training, we systematically used mini-batch SGD with momentum of 0.9, no weight decay and
using the cross-entropy loss.

Classifier parametrization In each experiments, the spatial subdivisions Ij are implemented as
an average pooling with kernel size k1 and stride s1. We then apply a 2D batch-normalization (Ioffe
and Szegedy, 2015) in order to standardize our features on the fly before feeding them to a linear
classifier. In order to reduce the memory footprint of this linear classifier (following the same line of
idea of a "bottleneck" (He et al., 2016)), we factorize it into two convolutional operators. The first
one with kernel size k2 and stride 1 reduces the number of channels from D to c2 and the second one
with kernel size k3 and stride 1 outputs a number of channel equal to the number of image classes.
Then we apply a global average pooling. For the 1-hidden layer experiment, we simply add a ReLU
non linearity between the first and the second convolutional layer.

4.1 CIFAR-10

Implementation details Our data augmentation consists in horizontal random flips and random
crops of size 322 after reflect-padding with 4 pixels. For the dictionary, we choose a patch size of
P = 6 and tested various sizes of the dictionary |D| and whitening regularization λ = 0.001 . In all
cases, we used Q = 0.4|D|. The classifier is trained for 175 epoch with a learning rate decay of 0.1
at epochs 100 and 150. The initial learning rate is 0.003 for |D| = 2k and 0.001 for larger |D|.

Single layer experiments For the linear classification experiments, we used an average pooling of
size k1 = 5 and stride s1 = 3, k2 = 1 and c2 = 128 for the first convolutional operator and k3 = 6
for the second one. Our results are reported and compared in Tab. 1a. First, note that contrary to
experiments done by Coates et al. (2011), our methods has surprisingly good accuracy despite the
hard-assignment due to VQ. Sparse coding, soft-thresholding and orthogonal matching pursuit based
representations used by Coates and Ng (2011); Recht et al. (2019) can be seen as soft-assignment
VQ and yield comparable classification accuracy (resp. 81.5% with 6.103 patches and 85.6% with
2.105 patches). However, these representations contain much more information than hard-assignment
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Table 1: Classification accuracies on CIFAR-10. VQ indicates whether vector quantization with
hard-assignment is applied on the first layer.

(a) One layer patch-based classification accuracies on CIFAR-10. Amongst methods relying on random patches
ours is the only approach operating online (and therefore allowing for scalable training).

Method |D| VQ Online P Acc.

Coates et al. (2011) 1k X × 6 68.6
Ba and Caruana (2014) 4k × X - 81.6

Wavelets (Oyallon and Mallat, 2015) - × × 8 82.2
Recht et al. (2019) 0.2M × × 6 85.6
SimplePatch (Ours) 10k X X 6 85.6
SimplePatch (Ours) 60k X X 6 86.7
SimplePatch (Ours) 60k × X 6 86.9

(b) Supervised accuracies on CIFAR-10 with comparable shallow supervised classifiers. Here, e2e stands for
end-to-end classifier and 1-layer for a 1-layer classifier.

Method VQ Depth Classifier Acc.

SimplePatch (Ours) X 2 1-layer 88.5
AlexNet (Krizhevsky et al., 2012) × 5 e2e 89.1

NK (Shankar et al., 2020) × 5 e2e 89.8
CKN (Mairal, 2016) × 9 e2e 89.8

(c) Accuracies on CIFAR-10 with Handcrafted Kernels classifiers with and without data-driven reprensentations.
For SimplePatch we replace patches with random gaussian noise. D-D stands for Data-Driven and D-I for
Data-Independent.

Method VQ Online Depth D-I Accuracy Data used
(D-D Improvement)

Linearized (Samarin et al., 2020) × X 5 65.6 (13.2) e2e
NK (Shankar et al., 2020) × × 5 77.7 (8.1) ZCA

Simple (random) Patch (Ours) X X 1 78.6 (8.1) Patches
CKN (Mairal, 2016) × × 2 81.1 (5.1)a Patches
NTK (Li et al., 2019) × × 8 82.2 (6.7) Patches

aThis result was obtained from a private communication with the author.

VQ as they allow to reconstruct a large part of the signal. We get better accuracy with only coarse
topological information on the image patches, suggesting that this information is highly relevant
for classification. To obtain comparable accuracies with a linear classifier, we use a single binary
encoding step compared to Mairal (2016) and we need a much smaller number of patches than Recht
et al. (2019); Coates and Ng (2011). Moreover, Recht et al. (2019) is the only work in the litterature,
besides us, that achieves good performance using solely a linear model with depth one. To test
the VQ importance, we replace the hard-assignment VQ implemented with a binary non-linearity
1‖pi,x−d‖≤τi,x (see Eq. 2) by a soft-assignment VQ with a sigmoid function (1 + e‖pi,x−d‖−τi,x)−1.
The accuracy increases by 0.2%, showing that the use soft-assignment in VQ which is crucial for
performance in Coates and Ng (2011) does not affect much the performances of our representation.

Importance of data-driven representations As we see in Tab.1c, the data-driven representation
is crucial for good performance of handcrafted kernel classifiers. We remind that a data-independent
kernel is built without using the dataset, which is for instance the case with a neural network randomly
initialized. The accuracies from Shankar et al. (2020) correspond to Myrtle5 (CNN and kernel),
because the authors only report an accuracy without ZCA for this model. As a sanity check, we
consider D whose atoms are sampled from a Gaussian white noise: this step leads to a drop of 8.1%.
This is aligned with the finding of each work we compared to: performances drop if no ZCA is
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Figure 3: CIFAR-10 ablation experiments, train accuracies in blue, test accuracies in red.

applied or if patches are not extracted. Using a dictionary of size |D| = 2048, the same model trained
end-to-end (including the learning of D) yields to the same accuracy (- 0.1 %), showing that here,
sampling patches is as efficient as optimizing them. Note that our method also outperforms linearized
deep neural networks (Samarin et al., 2020), i.e. trained in a lazy regime (Chizat et al., 2019).

Non-linear classification experiments To test the discriminative power of our features, we use a
1-hidden layer classifier with ReLU non-linearity and an average pooling of size k1 = 3 and stride
s1 = 2, k2 = 3, c2 = 2048 and k3 = 7 . Our results are reported and compared with other non-linear
classification methods in Tab.1b. Using a shallow non-linear classifier, our method is competitive
with end-to-end trained methods (Li et al., 2019; Shankar et al., 2020; Krizhevsky et al., 2012). This
further indicates the relevance of patches neighborhood information for classification task.

Hyper-parameter analysis CIFAR-10 is a relatively small dataset that allows fast benchmarking,
thus we conducted several ablation experiments in order to understand the relative improvement due
to each hyper-parameter of our pipeline. We thus vary the size of the dictionary |D|, the patch size P ,
the number of nearest neighbors Q and the whitening regularization λ which are the hyper-parameters
of Φ. Results are shown in Fig. 3. Note that even a relatively small number of patches is competitive
with much more complicated representations, such as Oyallon and Mallat (2015). While it is possible
to slightly optimize the performances according to P or Q, the fluctuations remain minor compared
to other factors, which indicate that the performances of our method are relatively stable w.r.t. this set
of hyper-parameters. The whitening regularization behaves similarly to a thresholding operator on
the eigenvalues of Σ1/2, as it penalizes larger eigenvalues. Interestingly, we note that under a certain
threshold, this hyper-parameter does almost not affect the classification performances. This goes in
hand with both a fast eigenvalue decay and a stability to noise, that we discuss further in Sec. 4.3.

4.2 IMAGENET

Implementation details To reduce the computational overhead of our method on ImageNet, we
followed the same approach as Chrabaszcz et al. (2017): we reduce the resolution to 642, instead
of the standard 2242 length. They observed that this does not alter much the top-performances
of standard models (5% to 10% drop of accuracy on average), and we also believe it introduces
a useful dimensionality reduction, as it removes high-frequency part of images that are unstable
(Mallat, 1999). We set the patch size to P = 6 and the whitening regularization to λ = 10−2.
Since ImageNet is a much larger than CIFAR-10, we restricted to |D| = 2048 patches. As for
CIFAR-10, we set Q = 0.4|D|. The parameters of the linear convolutional classifier are chosen to be:
k1 = 10, s1 = 6, k2 = 1, c2 = 256, k3 = 7. For the 1-hidden layer experiment, we used kernel size
of k2 = 3 for the first convolution. Our models are trained during 60 epochs with an initial learning
rate of 0.003 decayed by a factor 10 at epochs 40 and 50. During training, similarly to Chrabaszcz
et al. (2017) we use random flip and we select random crops of size 64, after a reflect-padding of size
8. At testing, we simply resize the image to 64. Note this procedure differs slightly from the usual
procedure, which consists in resizing images while maintaining ratios, before a random cropping.

Classification experiments Tab.2a reports the accuracy of our method, as well as the accuracy of
comparable methods. Despite a smaller image resolution, our method outperforms by a large margin
( ∼ 10% Top5) the Scattering Transform (Mallat, 2012), which was the previous state-of-the-art-
method in the context of no-representation learning. Note that our representation uses only 2.103

randomly selected patches which is a tiny fraction of the billions of ImageNet patches.
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Table 2: Accuracy of our method on ImageNet.

(a) Handcrafted accuracies on ImageNet, via a linear classifier. No other weights are explicitely optimized.

Method |D| VQ P Depth Resolution Top1 Top5

Random (Arandjelovic et al., 2017) - × - 9 224 18.9 -
Wavelets (Zarka et al., 2019) - × 32 2 224 26.1 44.7

SimplePatch (Ours) 2k X 6 1 64 33.2 54.3
SimplePatch (Ours) 2k X 12 1 128 35.9 57.4
SimplePatch (Ours) 2k × 12 1 128 36.0 57.6

(b) Supervised accuracies on ImageNet, for which our model uses |D| = 2048 patches. e2e, 1-layer respectively
stand for end-to-end, 1-hidden layer classifier.

Method VQ P Depth Resolution Classifier Top1 Top5

Belilovsky et al. (2018) × - 1 224 e2e - 26
Belilovsky et al. (2018) × - 2 224 e2e - 44

SimplePatch (Ours) X 6 2 64 1-layer 39.4 62.1
BagNet (Brendel et al., 2019) × 9 50 224 e2e - 70.0

In Tab.2b, we compare our performances with supervised models trained end-to-end, which also
use convolutions with small receptive fields. Here, D = 2k. BagNets (Brendel et al., 2019) have
shown that competitive classification accuracies can be obtained with patch-encoding that consists
of 50 layers. The performance obtained by our shallow experiment with a 1-hidden layer classifier
is competitive with a BagNet with similar patch-size. It suggests once again that hard-assignment
VQ does not degrade much of the classification information. We also note that our approach with a
linear classifier outperforms supervised shallow baselines that consists of 1 or 2 hidden-layers CNN
(Belilovsky et al., 2018), which indicates that a patch based representation is a non-trivial baseline.

To measure the importance of the resolution on the performances, we run a linear classification
experiment on ImageNet images with twice bigger resolution (N = 1282, Q = 12, k1 = 20, s1 =
12). We observe that it improves classification performances. Note that the patches used are in a space
of dimension 432� 1: this improvement is surprising since distance to nearest neighbors are known
to be meaningless in high-dimension (Beyer et al., 1999). This shows a form of low-dimensionality
in the natural image patches, that we study in the next Section.

4.3 DICTIONARY STRUCTURE

The performance obtained with the surprisingly simple classifier hints to a low dimensional structure in
the classification problem that is exploited by the patch based classifier we proposed. This motivates
us to further analyse the structure of the dictionary of patches to uncover a lower dimensional
structure and to investigate how the whitening, which highly affects performance, relates to such
lower-dimensional structure.

Spectrum of D As a preliminary analysis, we propose to analyse the singular values (spectrum)
of Σ1/2 sorted by a decreasing order as λ1 ≥ ... ≥ λdext with dext = 3P 2 being the extrinsic
dimension (number of colored pixels in each patch). From this spectrum, it is straightforward to
compute the covariance dimension dcov of the patches defined as the smallest number of dimensions
needed to explain 95% of the total variance. In other words, dcov is the smallest index such that∑dcov
i=1 λi ≥ 0.95

∑dext

i=1 λi. Fig. 4 (top) shows the spectrum for several values of P , normalized
by λ1 on CIFAR-10 and ImageNet-32. The first observation is that patches from ImageNet-32
dataset tend to be better conditioned than those from CIFAR-10 with a conditioning ratio of 102

for ImageNet vs 103 for CIFAR-10. This is probably due to the use of more diverse images than
on CIFAR-10. Second, note that the spectrum tends to decay at an exponential rate (linear rate in
semi-logarithmic scale). This rate decreases as the size of the patch increases (from dark brown
to light brown) suggesting an increased covariance dimension for larger patches. This is further
confirmed in Fig. 4(bottom-left) which shows the covariance dimension dcov as a function of the
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Figure 4: (Top) Spectrum of Σ1/2 on CIFAR-10 (top-left) and ImageNet-64 (top-right) using small
patch sizes in dark-brown to larger patch sizes in light-brown. Covariance dimension (bottom-left)
and nearest neighbor dimension (bottom right) as a function of the extrinsic dimension of the patches.
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extrinsic dimension dext, with and without whitening. Before whitening, this linear dimension is
much smaller than the ambient dimension: whitening the patches increases the linear dimensionality
of the patches, which still increases at a linear growth as a function of P 2.

Intrinsic dimension of D We propose to refine our measure of linear dimensionality to a non-
linear measure of the intrinsic dimension. Under the assumption of low-dimensional manifold, if the
manifold is non-linear, the linear dimensionality is only an upper bound of the true dimensionality of
image patches. To get more accurate non-linear estimates, we propose to use the notion of intrinsic
dimension dint introduced in (Levina and Bickel, 2004). It relies on a local estimate of the dimension
around a patch point p, obtained by finding the k-Nearest Neighbors to this patch in the whole dataset
and estimating how much the Euclidean distance τk(p) between the k-Nearest Neighbor and patch p
varies as k increases up to K ∈ N:

dint(p) =

(
1

K − 1

K−1∑
k=1

log
τK(p)

τk(p)

)−1

. (5)

In high dimensional spaces, it is possible to have many neighbors that are equi-distant to p, thus τk(p)
would barely vary as k increases. As a result the estimate dint(p) will have large values. Similarly, a
small dimension means large variations of τk(p) since it is not possible to pack as many equidistant
neighbors of p. This results in a smaller value for dint(p). An overall estimate of the dint is then
obtained by averaging the local estimate dint(p) over all patches, i.e. dint = 1

|D|
∑
p∈D dint(p). Fig.

4 (bottom-right) shows the intrinsic dimension estimated using K = 4 · 103 and a dictionary of size
|D| = 16 · 103. In all cases, the estimated intrinsic dimension dint is much smaller than the extrinsic
dimension dext = 3P 2. Moreover, it grows even more slowly than the linear dimension when the
patch size P increases. Finally, even after whitening, dint is only about 10% of the total dimension,
which is a strong evidence that the natural image patches are low dimensional.

5 CONCLUSION

In this work, we shed light on data-driven kernels: we emphasize that they are a necessary steps
of any methods which perform well on challenging datasets. We study this phenomenon through
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ablation experiments: we used a shallow, predefined visual representations, which is not optimized
by gradient descent. Surprisingly, this method is highly competitive with others, despite using only
whitened patches. Due to limited computational resources, we restricted ourselves on ImageNet
to small image resolutions and relatively small number of patches. Conducting proper large scale
experiments is thus one of the next research directions.
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A MAHANALOBIS DISTANCE AND WHITENING

The Mahalanobis distance (Chandra et al., 1936; McLachlan, 1999) between two samples x and x′
drawn from a random vector X with covariance Σ is defined as

DM (x, x′) =
√

(x− x′)TΣ−1(x− x′)
If the random vector X has identity covariance, it is simply the usual euclidian distance :

DM (x, x′) = ‖x− x′‖ .

Using the diagonalization of the coraviance matrix, Σ = PΛPT , the affine whitening operators of
the random vector X are the operators

w : X 7→ OΛ−1/2PT (X− µ), ∀O ∈ On(R) . (6)

For example, the PCA whitening operator is

wPCA : X 7→ Λ−1/2PT (X− µ)

and the ZCA whitening operator is

wZCA : X 7→ PΛ−1/2PT (X− µ) .

For all whitening operator w we have

‖w(x)− w(x′)‖ = DM (x, x′)

since

‖w(x)− w(x′)‖ = ‖OΛ−1/2PT (x− x′)‖

=
√

(x− x′)TPΛ−1/2OTOΛ−1/2PT (x− x′)

=
√

(x− x′)TPΛ−1PT (x− x′)
= DM (x, x′) .

B IMPLEMENTATION OF THE PATCHES K-NEAREST-NEIGHBORS ENCODING

In this section, we explicitly write the whitened patches with the whitening operator W . Recall that
we consider the following set of euclidean pairwise distances:

Ci,x = {‖Wpi,x −Wd‖ d ∈ D} .

For each image patch we encode the K nearest neighbors of Wpi,x in the set Wd, d ∈ D, for some
K ∈ 1 . . . |D|. We can use the square distance instead of the distance since it doesn’t change the K
nearest neighbors. We have

‖Wpi,x −Wd‖2 = ‖Wpi,x‖2 − 2〈pi,x,WTWd〉+ ‖Wd‖2

The term ‖Wpi,x‖2 doesn’t affect the K nearest neighbors, so the K nearest neighbors are the K
smallest values of {‖Wd‖2

2
+ 〈pi,x,−WTWd〉, d ∈ D

}
This can be implemented in a convolution of the image using −WTWd as filters and ‖Wd‖2/2 as
bias term, followed by a "vectorwise" non-linearity that binary encodes the K smallest values in the
channel dimension. Once this is computed, we can then easily compute{‖Wd‖2

2
+ 〈pi,x,WTWd〉, d ∈ D

}
which is the quantity needed to compute the K nearest neighbors in the set of negative patches
D. This is a computationally efficient way of doubling the number of patches while making the
representation invariant to negative transform.
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C ABLATION STUDY ON CIFAR-10

For this ablation study on CIFAR-10, the reference experiment uses |D| = 2048 patches, a patch
size Q = 6 a number of neighbors K = 0.4× 2048 = 820 and a whitening regularizer λ = 1e− 3,
and yields 82.5% accuracy. Figure 5 shows the results in high resolution. We further performed an
experiment, where we replaced the patches of CIFAR-10 by the patches of ImageNet: this leads to
a drop of 0.4% accuracy compared to the reference model. Note that the same model without data
augmentation performs about 2% worse than the reference model.

Figure 5: CIFAR-10 ablation experiments, train accuracies in blue, test accuracies in red.
Number of patches |D| varies in {512, 1024, 2048, 4096}, number of neighbors K varies in
{10, 50, 100, 500, 800, 1000, 1500}, patch size Q varies in {4, 5, 6, 7, 8}, whitening regularization λ
varies in {0, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}.

D INTRINSIC DIMENSION ESTIMATE

The following estimate of the intrinsic dimension dint is introduced in Levina and Bickel (2004) as
follows

dint(p) =

(
1

K − 1

K−1∑
k=1

log
τK(p)

τk(p)

)−1

, (7)

where τk(p) is the euclidean distance between the patch p and it’s k-th nearest neighbor int the
training set.
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