Under review as a conference paper at ICLR 2025

DATA INTERPRETER:
AN LLM AGENT FOR DATA SCIENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model (LLM)-based agents have shown effectiveness across many
applications. However, their use in data science scenarios requiring solving long-
term interconnected tasks, dynamic data adjustments and domain expertise remains
challenging. Previous approaches primarily focus on individual tasks, making it
difficult to assess the complete data science workflow. Moreover, they struggle
to handle real-time changes in intermediate data and fail to adapt dynamically
to evolving task dependencies inherent to data science problems. In this paper,
we present Data Interpreter, an LLM-based agent designed to automatically
solve various data science problems end-to-end. Our Data Interpreter incorporates
two key modules: 1) Hierarchical Graph Modeling, which breaks down complex
problems into manageable subproblems, enabling dynamic node generation and
graph optimization; and 2) Programmable Node Generation, a technique that
refines and verifies each subproblem to iteratively improve code generation results
and robustness. Extensive experiments consistently demonstrate the superiority of
Data Interpreter. On InfiAgent-DABench, it achieves a 25% performance boost,
raising accuracy from 75.9% to 94.9%. For machine learning and open-ended tasks,
it improves performance from 88% to 95%, and from 60% to 97%, respectively.
Moreover, on the MATH dataset, Data Interpreter achieves remarkable performance
with a 26% improvement compared to state-of-the-art baselines. Code will be open-
sourced upon publication.

1 INTRODUCTION

AutoGen ——— Data Interpreter
—— Openlnterpreter —— OpenDevin
TaskWeaver

SCTP House Prices

Machine learning tasks

¢ SVPC: Santander Value Prediction Challenge

¢ ICR: Identifying Age-Related Conditions

¢ SCTP: Santander Customer Transaction Prediction
* BCW: Breast Cancer Wisconsin

* House Prices Prediction

« Titanic Survival Prediction

Real-world open-ended tasks

OCR: Optical Character Recognition
WSC: Web Search and Crawling
T2I: Text-to-Image

WPI: Web Page Imitation

WSC T21

Figure 1: Comparison across various open-source frameworks on various data science tasks. We
define a unified metric, the comprehensive score (Appendix |[D.2]), to standardize performance
evaluation across tasks with different metrics. A higher score indicates better performance.

Large Language Models (LLMs) have demonstrated remarkable adaptability across a wide range
of applications, excelling in areas such as software engineering (Hong et al., [2023)), open-world

Under review as a conference paper at ICLR 2025

navigation (Wang et al.,|2023a}bic; |Chen et al., [2024), collaborative intelligence (Zhuge et al., 2023}
2024; Zhang et al., 2024a), and scientific research (Tang et al.,[2024). However, their performance in
data science remains limited.

Data science (De Bie et al., [2022; Hassan et al., [2023)), the practice of extracting insights from
data, spanning from data gathering to model building and decision-making. It integrates multiple
disciplines such as computer science, statistics, data visualization, and mathematics (Zhang et al.,
2023)). As discussed in (Zhang et al.,[2024c;Zheng et al., 2021), data science workflows are inherently
complex, involving interconnected tasks such as data processing, feature engineering, and model
training. Solving these tasks requires iterative refinements and real-time adjustments, as both data
and requirements continuously evolve.

Leveraging the extensive knowledge and coding capabilities of LLMs, recent efforts (Shen et al.|
2024} Hollmann et al.} 2023; [Bordt et al., 2024} Zhang et al., [2024c} Liu et al., 2024) have integrated
LLMs into data science tasks. These approaches primarily focus on individual tasks, such as
feature engineering (Hollmann et al., |2023)), model selection (Shen et al.,|2024), and hyperparameter
optimization (Liu et al.| 2024)), often operating within fixed pipelines. However, they lack a holistic
evaluation of end-to-end workflows, making it difficult to assess the complete data science process.
Furthermore, these methods often struggle to handle real-time changes in intermediate data and adapt
dynamically to evolving task dependencies. While recent works (Wu et al., [2023b; Zhang et al.|
2023)) have improved performance in data-related tasks, they remain inadequate for machine learning
or comprehensive data transformation tasks, involving intricate task interdependencies that require
continuous updates and dynamic global planning (Zhang et al., [2024c)).

To address these challenges, we present Data Interpreter, an LLM agent that reframes the data
science workflows as a Hierarchical Graph Modeling problem, where interconnected tasks are
represented as nodes, and their dependencies as edges within the graph. This structured representation
enables dynamic and flexible task management, allowing the system to adjust to evolving data and
task requirements in real-time, and thus efficiently manages the complex, interdependent steps of data
science. Another core of Data Interpreter is Programmable Node Generation, a key innovation that
automates the real-time generation, refinement, and verification of nodes in the graph. This ensures
that each subproblem is accurately defined and executed, improving the robustness and precision of
the workflow. Leveraging the coding capabilities of LLMs, the system dynamically synthesizes and
optimizes the graph structure, making it highly adaptable to the demands of complex, evolving data
science tasks.

Our experiments demonstrate that Data Interpreter significantly outperforms existing methods across
several benchmarks, achieving a 25% performance boost on the public dataset InfiAgent-DABench,
and a 26% improvement on the MATH dataset. Compared to other open-source frameworks, Data
Interpreter consistently shows notable advancements in machine learning and open-ended tasks,
as illustrated in Figure|l| By rethinking how data science workflows are structured and managed,
Data Interpreter sets a new standard for adaptability and efficiency, offering a powerful solution for
complex, real-world applications.

2 RELATED WORK

LLMs as Data Science Agents Large language models (LLMs) have demonstrated expert-level
knowledge in machine learning and have made significant progress in automating data science tasks.
Early research focused on using LLMs to write code, aiming to simplify complex computations
involved in reasoning processes (Gao et al.,|2023; (Chen et al.| [2022). Subsequent work introduced
code interpreters that leverage function-calling mechanisms, offering greater flexibility in solving
complex problems (Zhou et al} 2023;|Gou et al.| 2024;|Wang et al.,|2024a). This interpreter-based
approach has now become a mainstream method for enabling LL.Ms to handle complex reasoning
and scientific tasks (Huang et al.,|2023b; [Hassan et al., [2023} |Q1ao0 et al.,|2023; Zhang et al., 2024b)).
Recently, Zhang et al.|(2023) introduces an LLM-based agent for data analysis, demonstrating
capabilities in data processing and exploration within a code-centric framework, but does not evaluate
its performance on predictive tasks such as machine learning pipelines. |Guo et al.[(2024) harness
LLMs and case-based reasoning to solve data science tasks, leveraging human expertise to enhance
the efficiency of LLM-based agents in data science, which is complementary to our work. |Liu et al.
(2024)) uses LLMs to perform hyperparameter tuning to automate machine learning tasks focusing on

Under review as a conference paper at ICLR 2025

single task rather than full pipeline construction and evaluation. Therefore, end-to-end evaluation
frameworks specifically designed for data science tasks remain insufficiently developed. To address
this gap, we propose a unified, general framework specifically designed for data science tasks. Our
framework has been rigorously benchmarked across diverse tasks and settings, offering valuable
insights into the application and effectiveness of LLMs in data science.

Enhancing LLM with Tools Recent research has focused on enhancing LLM capabilities by
integrating external tools (Schick et al.l 2024; |Paranjape et al.} 2023)). [Zhuge et al.|(2023)); [Shen et al.
(2024)) introduced multi-agent systems to tackle multimodal tasks, while Yuan et al.[(2023); Liu et al.
(2023)) proposed frameworks for retrieval and automatic tool selection, eliminating the need to assign
tools for specific tasks statically. Recent efforts have increasingly focused on integrating tool-using
abilities into a structured pipeline, enabling sophisticated task planning, tool invocation (Wu et al.}
2023a; [Shen et al.| 2024} Liang et al.l |2024). |Qian et al.| (2023)); |[Yuan et al|(2024) discuss the
creation and instruction of the tool from code-form or lengthy tool documentation to enhance tool
utilization efficiency. In this paper, we further advance these ideas by enabling LLMs to dynamic
orchestration and combination of multiple tools. Our approach improves practicality by leveraging
execution experience, allowing LLMs to select and combine tools as needed independently.

Graph-Based Planning for LLM Agents Planning is a critical capability of LLM-based agents,
focusing on generating logically structured action or thought roadmaps for specific problems (Huang
et al., |2024b; |Chen et al., [2024). Earlier works like CoT (Wei et al., [2022; [Yao et al., 2022)
decompose complex tasks into subtasks and perform sequential planning. However, due to the
complexity of certain problems, a single plan generated by an LLM-based agent is often insufficient.
To address this, ToT (Yao et al.| [2024)) and GoT (Besta et al., 2023) introduce automatic tree or graph
structures that refine node-level LLM prompts, optimizing connectivity to improve performance.
Similarly, DSPy (Khattab et al., 2023)) abstracts LLM pipelines as text transformation graphs, while
PRODIGY (Huang et al.l 2023a)) applies graph-based in-context learning and pre-training methods.
Further, Zhuge et al.|(2024) enhance node prompts and agent coordination via graph connectivity
adjustments, and |Vierling et al.| (2024) develop a learnable model to dynamically generate edges
between agents in a graph, facilitating internal communication. While these planning approaches
excel in various domains, they often struggle with multi-step, task-dependent problems commonly
encountered in data science. In this paper, we explore the potential of integrating graph structures with
LLM-based agents for data science tasks—an area that remains largely untapped despite emerging
related work.

3 METHODOLOGY

In this section, we first present the foundational formulation of hierarchical graph modeling for
data science problems, defining the task graph and action graph in Section Next, we detail the
iterative optimization process of the hierarchical graph structure in Section[3.2| Finally, in Section[3.3]
we introduce programmable node generation, explaining how we integrate expertise at different
granularities to improve the performance of LLMs.

3.1 HIERARCHICAL GRAPH MODELING FOR COMPLEX TASK DECOMPOSITION

Data science problems, particularly those involving machine learning, encompass extensive detailing
and long-range workflows, including data pre-processing, feature engineering, and model training.
This long-term planning complicates the direct planning of all detailed tasks and coding. Drawing
inspiration from the application of hierarchical planning in automated machine learning tasks (Mohr
et al.|l 2018} Mubarak & Koeshidayatullah| 2023), we organize the data science workflow via
hierarchical structure, which initially decomposes the intricate data science problem into manageable
tasks and further break down each task into specific actions executed through code (see Figure[2).

Therefore, solving a data science problem can be formulated as follows: given a task-oriented input
x, we seek to apply a series of operators, unified as a function P, to produce an output § = P(z). Our
goal is for P to generate solutions that closely approximate or match the anticipated y. However, due
to the complexity of P, which may involve various operations and intermediate data, fully automating
the solution to a task is typically challenging.

Under review as a conference paper at ICLR 2025

Hierarchical Graph Model
Task Action Task
Dependency

This is a dataset featuring sensor readings from water pump, aimed at
predicting machine operational status (normal or faulty). Your tasks include conducting a
comprehensive data analysis encompassing correlation analysis, causal inferences, data 0
exploration, anomaly detection, and feature engineering. .

Project yPe
Visualization

1 - Data 2 - Correlati 4 - Feature 5 - Model Training 7 - Visualization

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Exploration on Analysis Engineering }
— _— Visualize the analysis |
Data Random assiical loce and prediction !
Splitti F -ion Serializati- 4 p |
plitting orest Report on results with high- |
quality graphs. |

|

|

|

R

|

' |

|

8 |

|

|

|

|

|

|

|

|

|

|

|

Read
csv

General

Correlation Selection

Target
Mean
Encoder

3 - Outliers

. Variance
Detection

Based
Selection

Confusion
XGBoost Matrix
MinMax
Scale
Isolation . 6 - Model
Evaluation
Generate Generate

task graph action graph graph

Graph Generation
Task Graph Generator [Action Graph Generator] [Graph Executor] P &
Input Output Input 4 Output Feedback &
project info task graph task graph v action graph Trajectory v

|
|
|
|
|
I
i
Execution Process |
I
|
I
I
I
I
|
I
|

[Large Language Model H Tools J

Figure 2: Data Interpreter Example Workflow. The upper section illustrates how Data Interpreter
organizes a data science workflow using a hierarchical structure. The process begins by decomposing
project requirements into a task graph, which is then further broken down into actions executed
through code. The lower section highlights the core modules of Data Interpreter, including the task
graph generator, action graph generator, and graph executor. These modules work together to
manage task execution and provide real-time feedback. The graph executor efficiently executes the
action graph using reflection and integrated tools, delivering essential real-time feedback throughout
the process.

Leveraging the reasoning ability of LLMs for general task decomposition, our method decomposes
the solving process of P into a series of sub-processes p1, po, P3, . - - that can be directly solved and
verified. The primary challenge lies in determining the relationships 7 = (p;, p;) € R between these
sub-processes. Our framework represents all subprocesses as nodes within P, ultimately forming a
graph G that embodies the entire function P:

:l) =g <{pz(x)}:b:177?’)) (D

where G represents a Directed Acyclic Graph (DAG) composed of the sub-functions pq, ps, P3, - - -
interconnected through the relationships R. This graph illustrates how these sub-functions are
combined to generate the final output 3. Unlike traditional reinforcement learning (RL) methods for
planning (Moerland et al, 2023}, [Schmidhuber, [2003)), which often require a substantial number of
demonstrations to perform domain-specific training, our approach leverages the in-context learning
of LLMs. This training-free nature allows our method more adaptable and efficient for general task
decomposition.

Improving R involves achieving an optimal node topology, which has demonstrated robust perfor-
mance and flexibility in prior research [Zhuge et al| (2024). In our framework, all subprocesses
exchange intermediate results and parameters, represented as r = (p;,p;) € R. Given the inherent
challenges in data science problems Hutter et al.[(2019), this process can be complex. However, we

Under review as a conference paper at ICLR 2025

can optimize the graph topology by refining the relationships between subprocesses. Our objective is:

G* = arg mgax E.wp [Performance (g ({pz(ﬂﬁ) 1 R) ay)]) (2)

where E,..p denotes the expectation over the data distribution D, and Performance measures the
accuracy of the predicted output 3 against the target output y. Importantly, within G*, if a subpro-
cess p; proves challenging to solve, it can be further decomposed into smaller, more manageable
subprocesses. Next, we will illustrate the core concepts in our hierarchical graph modeling with an
example.

Task Graph. Data Interpreter utilizes LLMs to perform task planning, providing only
the project requirement as the goal without relying on pre-defined steps, tasks and relation-
ships. As shown in Figure [2] an example workflow decomposed by Data Interpreter for a ma-
chine operational status prediction problem, might include tasks like: data exploration,
correlation analysis, outliers detection, feature engineering, model
training, model evaluation, and visualization. Each task node is defined within
the metadata and includes attributes such as task description, task type, status, execution feedback,
and dependencies, collectively form the task-level graph G, enabling structured task management and
execution. Consequently, during the solving process, the dynamic contextual data are automatically
constructed and acquired through the inter-dependencies among tasks, avoiding the need to retrieve
the entire context at once while maintaining the relevance of the input context, offering flexibility and
scalability for broader data science applications.

Action Graph. Data Interpreter breaks down each task into multiple actions using contextual
memory, thus forming an action graph. Action graphs can be executed and verified independently,
and the synthesis of each action node will be detailed in Section [3.3] As illustrated in Figure [2]
the visualization task is divided into three distinct actions, with the confusion matrix calculation
handled by sklearn. The solving process is represented as an action graph, visually captures the
relationships between these actions and serves as an implicit representation of the code. Additional
runtime examples are provided in Figure[7]in the Appendix.

At finer granularity, action graph iteratively adjusts to handle real-time execution feedback, such as
managing failures by refining code or incorporating verification processes, making it a sufficiently
granular unit for rapid task adjustments and validation. We explore this optimization process further
in Section[3.21

3.2 TASK GRAPH: ITERATIVE GRAPH REFINEMENT

Task Graph Generation and Execution. A key advantage of our approach is its ability to dynami-
cally adjust the task graph in response to changing environments, unlike prior methods (Wei et al.,
2022; Besta et al., 2023} [Yao et al., |2022) and frameworks such as Openlnterpreter (Lucas) [2023))
and AutoGen (Wu et al.,[2023b), which generate static plans for one-time execution. Our method
introduces iterative graph optimization, allowing it to adapt to a dynamic environment through
continuous updates.

As shown in Figure [2| Data Interpreter uses a task graph generator to initialize the task graph as
discussed in Section [3.1] Each task is then translated into executable code by the action graph
generator, which takes into account the outcomes of prior tasks to ensure contextual consistency. The
generation process is detailed in Algorithm T}

To ensure runtime verification and provide real-time feedback during execution, Data Interpreter
incorporates a stateful graph executor that manages both execution and debugging using reflection
mechanisms (Shinn et al., [2024). Specifically, if the execution encounters exceptions or fails a
verification check, the action graph generator dynamically reflects on the execution results, and then
regenerates the code to resolve the issue or optimize the output, providing data-driven feedback. This
process is collectively conducted by action graph generator and graph executor.

Task Graph Refinement. The task graph generator manages tasks, monitors their statuses and
dependencies, and dynamically adjusts the task graph by adding, removing, or modifying tasks as
needed. Each task is further decomposed into an action graph, which consists of one or several action
nodes. Each action graph can be executed and evaluated independently, allowing for granular control
and flexibility in the execution process.

Under review as a conference paper at ICLR 2025

Algorithm 1 Iterative Graph Execution

Input: User requirements req, large language model L LM, tool sets T’
Output: Optimized graph G*

1: Set M as the maximum number of iterations, R to denote runtime results
2: G + initialize_graph(req, LLM) > Initialize the graph with user requirements
3: while not G.is_finished() do > Iterative process until termination condition is met
4: tn < select_task_node(G, LLM) > Monitor task execution and select the next task node
5: ag < initialize_action_graph(¢n, T, LLM) > Generate codes based on task node
6: fori=1to M do > Execute up to M iterations or until success
7: R < execute(ag) > Execute the action graph and return runtime results
8: if is_success(R) then > Determine if execution success or not
9: break > Exit loop if the action is successful
10: end if
11: ag « refine(tn, R, LLM) > Refine the action graph based on runtime result
12: end for
13: tn <+ update_node_state(tn, ag, R) > Update the state of the task node
14: G .task_graph < update_task_graph(G,tn) > Integrate updates into the task graph
15: end while
16: G* < finalize_graph(G) > Save optimized graph

17: return G*

During execution, a task is marked as Success if the corresponding code executes successfully. If
execution fails, Data Interpreter leverages LLMs to debug the code based on runtime errors, making
up to a predefined number of attempts to resolve the issue. If the problem persists after the set
attempts, the task node is flagged as Failure, as shown in Figure[3]

Task graph optimization
in case of execution failure

Figure 3: Task Graph refinement of Data Interpreter. Task graph refinement for the failed task.
After task execution, Task 3.3 fails. The refined task graph integrates existing success tasks, replaces
task 3.3 with the updated task 3.3, and introduces new tasks 4.1, 4.2, 4.3 and 5.

For failed tasks, Data Interpreter regenerates the task graph based on current episodic memory and the
execution context, as depicted in Figure[3] Given the task dependencies, the regenerated task graph
is sorted topologically and compared to the original using a prefix matching algorithm (Waldvogel,
[2000) to identify differences in task descriptions. This comparison helps identify divergence points
(forks), and the final output includes all unchanged tasks before the fork, along with any new or
modified tasks after the fork. This approach allows Data Interpreter to efficiently locate the parent
node of the failed task and seamlessly integrate the newly generated task and its subsequent tasks
into the original graph. It directly leverages the completed memory of all dependent tasks during
re-execution, avoiding unnecessary code regeneration or redundant executions.

By employing continuous monitoring and iterative updates, Data Interpreter avoids the inefficiencies
associated with generating all tasks upfront. This dynamic adjustment of both the code and planning
levels based on task outcomes enables modifications at varying levels of granularity, significantly
improving overall efficiency.

Under review as a conference paper at ICLR 2025

3.3 ACTION GRAPH: PROGRAMMABLE NODE GENERATION

Action Node. An action node, as introduced in Section[3.1} represents an executable code snippet
that encapsulates the computational logic required for task execution. Each action node can encompass
data transformations, function calls, or other relevant operations, making it the fundamental unit
of execution within the action graph. It integrates both external functions and operators invoked
from various tools, as well as non-tool logic derived from libraries such as Pandas and NumPy. By
combining tool-based operations and library functions into a single executable code snippet, action
nodes ensure uniform and flexible execution across different tasks.

Tool Selection. Effective tool selection and integration, particularly in the context of task-specific
requirements, play a crucial role in the success of task execution, as noted in prior research (Qian
et al.} 2023 |Yuan et al.,[2024; Huang et al.||20244a; |Liu et al., 2023)). In Data Interpreter, we leverage
task dependencies to enrich the task-specific context, thereby enhancing the decision-making process
for tool selection and code generation.

During the execution of each task p; € G, where G represents the task graph, Data Interpreter first
retrieves suitable tools before generating the associated code. The task metadata ¢(p;), which includes
textual information such as task descriptions and types as well as graph-structured task dependencies,
is used as a query to retrieve a list of candidate tools from the available toolset T" = {t1,t2,..., %, }.
The model ranks these tools by evaluating their semantic relevance to the task using their functionality
schemas S(¢;). This produces a ranked list R(p;, T') = {r1, 72, ..., 7y}, where each tool ¢; is ranked
according to its suitability for the task. From this ranked list, Data Interpreter selects the top-k tools,
denoted as Ty (p;) C T, to assist in executing task p;. Importantly, Data Interpreter can bypass tool
selection when no suitable tools are found, relying solely on the LLM to generate appropriate code.
This flexibility ensures that the system can adapt to a wide range of task requirements without being
restricted by tool availability.

Programmable Node Generation. Unlike conventional LLM-based agent frameworks that
invoke tools through isolated function calls, Data Interpreter generates comprehensive code snippets
that seamlessly integrate selected tools within the broader logic of the task. Based on the tools
selected from T} (p;), Data Interpreter dynamically incorporates them into the code, aligning their
functionality with the specific task context. This approach allows tools to function in the same manner
as standard libraries like NumPy, enabling adaptive tool usage that adjusts to evolving task conditions.
For example, in the deployment workflow, the CatCount tool dynamically utilizes its fit and transform
functions depending on the task context, as illustrated in Figure[6]in the Appendix.

Our programmable node generation approach not only ensures that tools are used in a context-aware
and task-specific manner but also facilitates the seamless integration of domain-specific expertise. By
allowing real-time adaptability and optimization of tool usage, Data Interpreter significantly enhances
the efficiency and robustness of task execution, representing a novel contribution to LLM-based task
automation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

InfiAgent-DABench: InfiAgent-DABench (Hu et al., 2024)) evaluates LLMs in data analysis tasks
across 257 challenges from 52 CSV files, covering 7 categories: summary statistics, feature engineer-
ing, correlation analysis, machine learning, distribution analysis, outlier detection, and comprehensive
data preprocessing. We used accuracy as the evaluation metric. Data Interpreter was primarily evalu-
ated with gpt—40 and gpt-4-061 3 (temperature=0), and compared against XAgent (Teamy, [2023)),
AutoGen (Wu et al.| | 2023b)), as well as other baselines reported from (Hu et al., 2024).

ML-Benchmark: To evaluate the performance of solving real-world machine learning challenges,
We collected 8 datasets from Kaggle for ML-Benchmark (details in Table We also detailed
the evaluation metrics on ML-Benchmark in Appendix [D.2] Baselines included XAgent, AutoGen,
Openlnterpreter (Lucas|, |2023)), TaskWeaver (Qiao et al.}2023), and OpenDevin (Wang et al.l 2024b).
As default, we used gpt—-4-1106-preview with temperature set to 0.

Under review as a conference paper at ICLR 2025

Table 1: Performance comparisons on InfiAgent-DABench. Results marked with an asterisk (*)
are reported by Hu et al.| (2024). Rows marked with a dagger symbol (f) indicate the w/o Agent
baseline for comparison. The A column represents the accuracy improvement of the agent framework
compared to the w/o agent setups. The best results are highlighted in bold.

Agent Framework Model ‘ Accuracy (%) ‘ A (%)
gemini-pro 56.42% -
gpt-3.5-turbo-0613 60.70* -

wio Agent gpt-4-0613 78.99% ,
gpt-4-0613 75.21 -
gpt-4o 75.92% -

XAgent gpt-4-0613 47.53% -31.46

AutoGen gpt-4-0613 71.49 -7.50

Data Interpreter gpt-4-0613 73.55 -5.44

Data Interpreter gpt-4o 94.93 +19.01

Table 2: Performance comparisons on ML-Benchmark. This table reports the comprehensive score
of each task. “WR”, “BCW?”, “ICR”, “SCTP”, and “SVPC” represent “Wine recognition”, “Breast
cancer wisconsin”, “ICR - Identifying age-related conditions”, “Santander customer transaction
prediction”, and “Santander value prediction challenge”, respectively.

Model /Task | WR BCW Titanic House Prices SCTP ICR SVPC | Avg. | Cost($)
AutoGen 096 099 087 0.86 083 077 073 | 0.86 -
Openlnterpreter 1.00 093 0.86 0.87 0.68 058 044 0.77 -
TaskWeaver 1.00 0.98 0.63 0.68 034 074 048 | 0.69 0.37
XAgent L00 097 042 0.42 0 034 001 | 045 | 20.09
OpenDevin 098 098 0.87 0.94 093 073 073 | 088 | 3.01
Data Interpreter | 0.98 0.9 091 0.96 0.94 096 089 | 095 | 0384

Open-ended task benchmark: To verify the capability for dynamic data handling, we also crafted
the Open-ended task benchmark comprising 20 tasks. Details about datasets are in the Appendix [D.1]
We adopted AutoGen and Openlnterpreter and OpenDevin as baselines with average results reported
over three runs. We adopted gpt—4-1106-preview with temperature set to 0.

MATH: We evaluated 4 categories (C.Prob, N.Theory, Prealg, Precalc) of level-5 problems from the
MATH dataset (Hendrycks et al.,[2021)), following the setting of (Wu et al., 2023c). Level-5 problems
were chosen for their complexity and the challenges in reliable numeric interpretation. We used
MathChat (Wu et al., 2023c)) and AutoGen (Wu et al., [2023b) as baselines for the MATH benchmark.

4.2 MAIN RESULT

Performance on InfiAgent-DABench. As demonstrated in Table |1} with gpt-4-0613, Data
Interpreter achieved a score of 73.55, outperforming AutoGen by 2.9%. Notably, it still did not surpass
the performance of directly invoking the LLM. We found this is primarily due to the growing context
overhead in the problem-solving process, where the context length exceeds the maximum window
size of gpt—4-061 3, leading to task failures. However, by incorporating LLMs like gpt -4 0 with
longer context windows, Data Interpreter demonstrated outstanding performance, improving results
by 25% compared to direct LLM inference. This indicates that Data Interpreter significantly enhances
the LLM’s multi-step reasoning capabilities across a wide range of data analysis tasks, especially as
the number of interaction rounds increases and the context overhead grows.

Performance on ML-Benchmark. As shown in Table[2] Data Interpreter achieved a comprehensive
score of 0.95 across tasks, outperforming AutoGen (0.86) and OpenDevin (0.88) by 10.3% and 7.9%,
respectively. It was the only framework to achieve a score above 0.9 on tasks such as Titanic, House
Prices, SCTP, and ICR. Additionally, the Data Interpreter demonstrated a significant advantage over
other frameworks, with improvements of 31.5% and 21.9% over OpenDevin on the ICR and SVPC

Under review as a conference paper at ICLR 2025

Table 3: Performance comparisons on Open-ended task benchmark. This table reports the
completion rate of each task. The tested tasks include “OCR" (Optical Character Recognition),
“WSC" (Web Search and Crawling), and “ER" (Email Reply), “WPI" (Web Page Imitation), “IBR"
(Image Background Removal), “T2I" (Text-to-Image), “I2C" (Image-to-Code) and “MGG" (Mini
Game Generation).

Model / Task | OCR WSC ER WPl IBR T2I I12C MGG | Avg. | Cost($)
AutoGen 067 065 0.0 026 1.00 0.10 020 0.67 | 046 -
OpenInterpreter | 0.50 030 0.10 036 100 050 025 020 | 0.40 -
OpenDevin 060 087 0.0 0.6 1.00 050 080 090 | 0.60 | 141

Data Interpreter | 0.85 096 098 1.00 1.00 1.00 1.00 093 | 0.97 0.41

tasks, respectively. Notably, Data Interpreter solved the tasks more efficiently, achieving an average
score of $ 0.84 while operating at only 27.9% of OpenDevin’s cost. Data Interpreter consistently
completed all mandatory processes across datasets, maintaining superior performance. Further details
can be found in Table[6]in the Appendix.

Performance on Open-ended tasks. Table [3]illustrates that the Data Interpreter achieved a
completion rate of 0.97, marking a substantial 110.8% improvement compared to AutoGen and 61.7%
improvement compared to OpenDevin. In OCR-related tasks, the Data Interpreter maintained an
average completion rate of 0.85, outperforming AutoGen, Openlnterpreter OpenDevin by 26.8%,
70.0% and 41.7%, respectively. In tasks requiring multiple steps and utilizing multimodal tools/in-
terfaces, such as WPI, 12C, and T2I, the Data Interpreter emerged as the sole method to execute all
steps. Baseline frameworks failed to log in and obtain the status for the ER task, resulting in a lower
completion rate. In contrast, Data Interpreter dynamically adjusted to task requirements, achieving a
completion rate of 0.97.

Performance on math problem. As illustrated in the Figure[d] Data Interpreter achieved the best
results across all tested categories, reaching 0.82 accuracy in the N.Theory category, marking a 0.16
improvement over the performance of AutoGen. In the most challenging category, Precalc, Data
Interpreter obtained an accuracy of 0.29, an increase of 0.17 compared to AutoGen. On average, our
Data Interpreter showed 26.5% relative improvement compared to AutoGen.

@ Mathchat @B AutoGen [Data Interpreter

0.82
0.8 0.74

0.68
0.66 0.63
0.59 0.6 0.6

0.6 52

Accuracy

0.29

0.19
0.2 0.12

C.Prob N.Theory Prealg Precalc

Figure 4: Performance on the MATH dataset. We evaluate all the problems with difficulty level 5
from 4 categories of the MATH dataset.

4.3 ABLATION STUDY

Ablation on core modules. We conducted ablation experiments with three configurations on the
ML-Benchmark. First, we used ReAct for code execution with simplified prompts,
followed by the addition of iterative graph refinement, and finally, programmable node generation was
introduced, using the Data Interpreter as the default. As shown in Table[d] iterative graph refinement
improved performance by 0.48, enhancing dataset preparation and real-time tracking. Programmable
node generation further boosted the comprehensive score by 10.6%, reaching 0.94. We detailed the
results in Table

Under review as a conference paper at ICLR 2025

Table 4: Ablation on core modules. Evaluated with Comprehensive Score on ML-Benchmark. “IGR"
stands for Iterative Graph Refinement, and “PNG" denotes Programmable Node Generation. “ICR",
“SCTP", and “SVPC" represent “ICR - Identifying age-related conditions", “Santander customer
transaction prediction”, and “‘Santander value prediction challenge", respectively.

Code execution IGR PNG ‘ House Prices SCTP SVPC ICR ‘ Avg.

v 0.51 0.17 0.66 0.17 | 0.37
v v 0.96 0.91 0.80 0.74 | 0.85
v v v 0.96 0.95 0.89 096 | 0.94
~—— GPT-4-Turbo —— Mixtral-8x7B ——— Llama2-13B-Chat —— Qwen-7B-Chat
—— GPT-3.5-Turbo —— Yi-34B-Chat —— Llama2-7B-Chat GPT-40
Qwen-72B-Chat —— Qwen-14B-Chat —— DeepSeek-7B-Chat GPT-40 mini
BCW

Figure 5: Evaluation on ML-Benchmark with different LLMs. Left: completion rate. Right:
comprehensive score.

Ablation on different base LLMs. Based on GPT-40 and GPT-40-mini, Data Interpreter shows
further improvement in task completion across a wide range of tasks, as illustrated in Figure 5]
In machine learning tasks, LLMs like Qwen-72B-Chat 2023) and Mixtral-8x7B
performed comparably to GPT-3.5-Turbo, while smaller LLMs experienced performance
degradation. Our Data Interpreter handled data loading and analysis effectively with smaller models
but had limitations with tasks requiring advanced coding proficiency. Mixtral-8x7B achieved high
completion rates in three tasks but faced challenges in the WSC task. Smaller LLMs also encountered
execution failures due to restricted coding abilities when acquiring images or parsing webpage results,
as shown in Figure[5]

5 CONCLUSION

In this work, we present the Data Interpreter, an LLM-based agent designed to tackle data science
challenges via hierarchical graph representation. Our framework continuously monitors data changes
and adapts to dynamic environments through iterative task refinement and graph optimization. It
enhances data analysis and machine learning performance, and improves reasoning capabilities
through hierarchical decomposition, fine-grained execution, validation, and iterative modifications.
Combined with the LLM’s planning and coding abilities, this approach effectively solves tasks
requiring complex multi-step reasoning. Extensive evaluations demonstrate that our Data Interpreter
outperforms various open-source frameworks in machine learning tasks, mathematical problems, and
real-world applications, marking a significant advancement in the capabilities of LLM-based agents
for data science.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report, 2023.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda,
Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. arXiv preprint, 2023.

Sebastian Bordt, Ben Lengerich, Harsha Nori, and Rich Caruana. Data science with llms and
interpretable models, 2024.

Jiaqi Chen, Yuxian Jiang, Jiachen Lu, and Li Zhang. S-agents: self-organizing agents in open-ended
environment, 2024.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks, 2022.

Tijl De Bie, Luc De Raedt, José Herndndez-Orallo, Holger H Hoos, Padhraic Smyth, and Christo-
pher KI Williams. Automating data science. Communications of the ACM, 65(3):76-87, 2022.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In ICML, 2023.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Minlie Huang, Nan Duan,
and Weizhu Chen. ToRA: A tool-integrated reasoning agent for mathematical problem solving.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=Ep0Tt jVoap.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Automated
data science by empowering large language models with case-based reasoning. arXiv preprint
arXiv:2402.17453, 2024.

Md Mahadi Hassan, Alex Knipper, and Shubhra Kanti Karmaker Santu. Chatgpt as your personal
data scientist, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.

Noah Hollmann, Samuel Miiller, and Frank Hutter. Large language models for automated data
science: Introducing caafe for context-aware automated feature engineering, 2023.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
multi-agent collaborative framework. In The Twelfth International Conference on Learning
Representations, 2023.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli Ma, Guoyin Wang, Xuwu Wang, Jing Su,
Jingjing Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Jiwei Li, Kun Kuang, Yang Yang, Hongxia Yang,
and Fei Wu. Infiagent-dabench: Evaluating agents on data analysis tasks, 2024.

Qian Huang, Hongyu Ren, Peng Chen, Gregor KrZzmanc, Daniel Zeng, Percy Liang, and Jure
Leskovec. Prodigy: Enabling in-context learning over graphs, 2023a.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Benchmarking large language models as ai
research agents, 2023b.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou, Xingshan
Zeng, Yasheng Wang, Lifeng Shang, et al. Planning, creation, usage: Benchmarking llms for
comprehensive tool utilization in real-world complex scenarios, 2024a.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of 1lm agents: A survey, 2024b.

11

https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap

Under review as a conference paper at ICLR 2025

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: methods, systems,
challenges. Springer Nature, 2019.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts, 2024.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
Matei Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into
self-improving pipelines, 2023.

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,
Shaoguang Mao, et al. Taskmatrix. ai: Completing tasks by connecting foundation models with
millions of apis. Intelligent Computing, 3:0063, 2024.

Siyi Liu, Chen Gao, and Yong Li. Large language model agent for hyper-parameter optimization.
arXiv preprint arXiv:2402.01881, 2024.

Zhaoyang Liu, Zeqiang Lai, Zhangwei Gao, Erfei Cui, Zhiheng Li, Xizhou Zhu, Lewei Lu, Qifeng
Chen, Yu Qiao, Jifeng Dai, et al. Controlllm: Augment language models with tools by searching
on graphs, 2023.

Zhengying Liu, Adrien Pavao, Zhen Xu, Sergio Escalera, Fabio Ferreira, Isabelle Guyon, Sirui Hong,
Frank Hutter, Rongrong Ji, Julio CS Jacques Junior, et al. Winning solutions and post-challenge
analyses of the chalearn autodl challenge 2019. TPAMI, 2021.

Killian Lucas. GitHub - KillianLucas/open-interpreter: A natural language interface for computers —
github.com. https://github.com/KillianLucas/open—-interpreter, 2023.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based rein-
forcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1-118,
2023.

Felix Mohr, Marcel Wever, and Eyke Hiillermeier. Ml-plan: Automated machine learning via
hierarchical planning. Machine Learning, 2018.

Yousef Mubarak and Ardiansyah Koeshidayatullah. Hierarchical automated machine learning
(automl) for advanced unconventional reservoir characterization. Scientific Reports, 2023.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models,
2023.

Cheng Qian, Chi Han, Yi Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. Creator: Tool creation for
disentangling abstract and concrete reasoning of large language models. In Findings of EMNLP,
2023.

Bo Qiao, Liqun Li, Xu Zhang, Shilin He, Yu Kang, Chaoyun Zhang, Fangkai Yang, Hang Dong, Jue
Zhang, Lu Wang, Minghua Ma, Pu Zhao, Si Qin, Xiaoting Qin, Chao Du, Yong Xu, Qingwei Lin,
Saravan Rajmohan, and Dongmei Zhang. Taskweaver: A code-first agent framework, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. NeurIPS, 2024.

Juergen Schmidhuber. Exploring the predictable. In Advances in evolutionary computing: theory
and applications, pp. 579-612. Springer, 2003.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. NeurIPS, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning, 2024.

12

https://github.com/KillianLucas/open-interpreter

Under review as a conference paper at ICLR 2025

Xiangru Tang, Qiao Jin, Kunlun Zhu, Tongxin Yuan, Yichi Zhang, Wangchunshu Zhou, Meng Qu,
Yilun Zhao, Jian Tang, Zhuosheng Zhang, et al. Prioritizing safeguarding over autonomy: Risks of
IIm agents for science, 2024.

XAgent Team. Xagent: An autonomous agent for complex task solving. https://github.com/
OpenBMB/XAgent, 2023.

Lukas Vierling, Jie Fu, and Kai Chen. Input conditioned graph generation for language agents, 2024.
URL https://arxiv.org/abs/2406.11555.

Marcel Waldvogel. Fast longest prefix matching: algorithms, analysis, and applications. Doctoral
dissertation, SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH, 2000.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better 1lm agents, 2024a.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Opendevin: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024b.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-world
multi-task agents. In NeurIPS, 2023b.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin, Zhaofeng
He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-world multi-task
agents with memory-augmented multimodal language models. arXiv preprint arXiv:2311.05997,
2023c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. NeurlIPS,
2022.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Vi-
sual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023a.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework, 2023b.

Yiran Wu, Feiran Jia, Shaokun Zhang, Qingyun Wu, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat
Lee, Richard Peng, and Chi Wang. An empirical study on challenging math problem solving with
gpt-4, 2023c.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. NeurlIPS, 2024.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R. Fung, Hao Peng, and Heng Ji. Craft: Customizing
Ilms by creating and retrieving from specialized toolsets, 2023.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Ren Kan, Dongsheng Li, and
Deqing Yang. Easytool: Enhancing llm-based agents with concise tool instruction, 2024.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, Xiaojun Chang, Junge Zhang, Feng Yin, Yitao Liang, and
Yaodong Yang. ProAgent: Building proactive cooperative agents with large language models. In
AAAI 2024a.

13

https://github.com/OpenBMB/XAgent
https://github.com/OpenBMB/XAgent
https://arxiv.org/abs/2406.11555

Under review as a conference paper at ICLR 2025

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleashing the
power of large language models in solving machine learning tasks, 2024b.

Wenqi Zhang, Yongliang Shen, Weiming Lu, and Yueting Zhuang. Data-copilot: Bridging billions of
data and humans with autonomous workflow. arXiv preprint arXiv:2306.07209, 2023.

Yuge Zhang, Qiyang Jiang, Xingyu Han, Nan Chen, Yuqing Yang, and Kan Ren. Benchmarking data
science agents, 2024c.

Xiawu Zheng, Yang Zhang, Sirui Hong, Huixia Li, Lang Tang, Youcheng Xiong, Jin Zhou, Yan
Wang, Xiaoshuai Sun, Pengfei Zhu, et al. Evolving fully automated machine learning via life-long
knowledge anchors. TPAMI, 2021.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia,
Lingi Song, Mingjie Zhan, et al. Solving challenging math word problems using gpt-4 code
interpreter with code-based self-verification, 2023.

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R Ashley, Rébert Csordds, Anand Gopalakr-
ishnan, Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vincent Herrmann, Kazuki Irie, et al.
Mindstorms in natural language-based societies of mind, 2023.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jurgen
Schmidhuber. Language agents as optimizable graphs, 2024.

14

Under review as a conference paper at ICLR 2025

A LIMITATIONS

Insufficient diversity and complexity. Our novel framework Data Interpreter outperforms other
open-source frameworks on machine learning problems, yet are limited to entry-level Kaggle datasets
and benchmarked against the capabilities of a junior human data scientist. These datasets are relatively
small (under S00MB), with a limited number of columns (in the hundreds) and rows (in the tens of
thousands), and mainly involve classification and regression tasks (as described in Appendix [F2)).
However, we have not yet evaluated our Data Interpreter on more challenging datasets involving
large-scale data or complex tasks such as time series analysis, multi-label classification, or multi-
table problems. In our future work, we plan to expand our dataset collection to include these types
of problems to thoroughly evaluate our framework’s performance and capabilities. Precise self-
improvement. Human data scientists usually perform multiple experiments on a dataset, focusing on
pipeline optimization and hyperparameter tuning |Liu et al.| (2021)); Hutter et al.[(2019). Our Data
Interpreter integrates experience to enhance the node generation quality. The experience primarily
involves tracking the progress of tasks and code. However, it does not use numerical feedback
from multiple experiences to develop and refine specific strategies, such as increasing the learning
rate or using an ensemble technique, to improve the performance continuously for a given dataset,
thus lacking the capability for automatic self-improvement. In the future, we aim to address this
limitation by developing mechanisms that allow our model to conduct multiple experiments and
derive insights from the numerical feedback for a given dataset on its own. DAG constraint detection
mechanism. Our current implementation does not include an explicit DAG constraint detection
mechanism, we rely on the LLM’s inherent ability to avoid cycles during task planning, as observed
in our experiments. However, such mechanisms could enhance robustness in handling less structured
domains or highly complex dependencies. Incorporating cycle detection and resolution strategies in
future iterations would ensure improved reliability and adaptability across diverse applications. Full-
scale evaluation on mathematical problems. For the MATH problem, our experiments are limited
to level-5 problems, primarily due to the budget constraints, we will explore more cost-effective
strategies for evaluating our Data Interpreter on a wider range of mathematical problems in future
studies.

B BROADER IMPACT

Our work has the potential to significantly reduce the costs associated with a wide range of customized
data science tasks, empowering professionals in the field to enhance their automation capabilities
and efficiency. However, the flexibility of tools integration, while convenient for local code snippets
integration, comes with potential risks. For instance, if users provide malicious code intended for
unauthorized system penetration or web attacks, it could lead to security vulnerabilities. In our
experiments, we mitigate this risk by prompting our Data Interpreter to check the codes before
generating new codes. Additional saftguards against these risks include collaborating exclusively
with LLMs that adhere to robust safety policies.

15

Under review as a conference paper at ICLR 2025

C IMPLEMTATION DETAILS

C.1 PROGRAMMABLE NODE GENERATION

We illustrate the process of node generation process with tools.

Think: Determine the task type based
on the task instruction provided

: Task Type Act: Classification on instruction } <
i Classification i
: = Task T M
: Task:] < feat askType:] :
: . eature_engineerin '
H "task_id": "3" import pandas as pd CodelContext g & :
: "dependent_task_ids": ["2"] | E= :
E "instruction": "Conduct (eI :
: f N pd.read_csv(train_data_path) Act: Recall tools from ToolLib ;
: 'eature engineering to . ’ S Dataset Info :
H improve model performance.” | [UEELEBE) ‘Numeric Columns': Act: Rank avalbale tools H
: " " train_data. [KCHRSIECSRE !
H task_type™: — "% of Numeric Columns": 81, based on {Task Type} H
H .. 'Shape': (0, 81) :

Top-k Tools l - J_ H

\ v v
PolynomialExpansion CatCount TargetMeanEncoder
class PolynomialExpansion(MLProcess): | class CatCount{MLProcess): TargetMeanEncoder(MLProcess):
(self, col: str): fef (self, col: str, label: str):
cols = cols e

: J (seHf, cols: s
H .encoder_dict= Non _encoder_dict=
: -poly = PolynomialFeatures(} fit(self, df: pd.DataFrame): fof fit(solf, df: pd.DataFrame):

H _encoder_dict= ...

H ef fit(sel, df: pd.DataFrame):

H ef transform(self, df: pd.DataFrame) : dof transform(solf, df: pd.DataFrame):
wpoly.fit{dffseff.cols] fillna(0)) ;

n new_df urn new_df

150 B &[]

Tools Organization

tool schema to understand how to use it

Act: Load tool schema and historical H
code to complete the coding task Combine Tools) LLM :

Think: I need to read and comprehend the]

i Combination

: Import Tools|
E from metagpt.tools.functions.libs.feature_engineering mean_encode = TargetMeanEncoder(col='"MSZoning', H
H import PolynomialExpansion, CatCount, label="SalePrice') :
E TargetMeanEncoder train_fe = mean_encode.fit_transform(train_fe) .
E # Step 1: Add polynomial and interaction features from sklearn ble import di stReg ,
H poly_expand = PolynomialExpansion(cols=num_cols, from sklearn.metrics import mean_squared_error H
: degree=2) import numpy as np -
train_fe = poly_expand.fit_transform(train_fe) # Define the model H
model = r gl (n_esti s=100, -
Step 2: Add value counts of a categorical column random_state=42) H
+|| neighborhood_count = CatCount(col='Neighborhood") '
train_fe = neighborhood_count.fit_transform(train_fe) valid_fe = poly_expand.transform(valid_fe) H
valid_fe = neighborhood_count.transform(valid_fe) '
' # Step 3: Add mean encoded feature '

Figure 6: Node generation pipeline in Data Interpreter. Tools are initially selected based on task
metadata classification, followed by tools organization process which combines multiple tools as
necessary to accomplish the tasks.

C.1.1 AN EXAMPLE OF TOOL SCHEMA

Below is an example of tool schema we design in our framework.

16

Under review as a conference paper at ICLR 2025

Tool schema for a feature engineering tool

type: class
description: Add value counts of a categorical column as new feature.
methods:
__init__ :
type: function
description: Initialize self.
parameters:
properties:
col:
type: str
description: Column for value counts.
required:
= @el
fit:
type: function
description: Fit a model to be used in subsequent transform.
parameters:
properties:
GliER
type: pd.DataFrame
description: The input DataFrame.
required:
- df
fit_transform:
type: function
description: Fit and transform the input DataFrame.
parameters:
properties:
df:
type: pd.DataFrame
description: The input DataFrame.
required:
- df
returns:
- type: pd.DataFrame
description: The transformed DataFrame.
transform:
type: function
description: Transform the input DataFrame with the fitted model.
parameters:
properties:
df:
type: pd.DataFrame
description: The input DataFrame.
required:
- df
returns:
- type: pd.DataFrame
description: The transformed DataFrame.

C.1.2 TOOLS DETAILS

The tools of our Data Interpreter are listed in Table[5]

C.1.3 TOOL USAGE PROMPTS

We use two types of prompts for tool utilization. For open-ended tasks, we use zero-shot prompts,
and for machine-learning tasks, we use one-shot prompts as illustrated below.

17

Under review as a conference paper at ICLR 2025

Table 5: Tools of our Data Interpreter.

Tool name ‘ Tool type Functions Domain
FillMissingValue Class 4 Machine learning
MinMaxScale Class 4 Machine learning
StandardScale Class 4 Machine learning
MaxAbsScale Class 4 Machine learning
LabelEncode Class 4 Machine learning
OneHotEncode Class 4 Machine learning
OrdinalEncode Class 4 Machine learning
RobustScale Class 4 Machine learning
CatCount Class 4 Machine learning
TargetMeanEncoder Class 4 Machine learning
KFoldTargetMeanEncoder Class 4 Machine learning
CatCross Class 5 Machine learning
SplitBins Class 4 Machine learning
GeneralSelection Class 4 Machine learning
TreeBasedSelection Class 4 Machine learning
VarianceBasedSelection Class 4 Machine learning
PolynomialExpansion Class 4 Machine learning
GPTvGenerator Class 3 Multimodal
SDEngine Class 5 Multimodal
scrape_web_playwright ‘ Function 1 Common

Zero-shot tool usage prompt

Instruction

Write complete code for ’Current Task’. And avoid duplicating code from finished tasks
, such as repeated import of packages, reading data, etc.

Specifically, {tool_type_usage_prompt}

Capabilities

- You can utilize pre-defined tools in any code lines from ’Available Tools’ in the
form of Python Class.

- You can freely combine the use of any other public packages, like sklearn, numpy,
pandas, etc..

Available Tools (can be empty) :

Each Class tool is described in JSON format. When you call a tool, import the tool
first.

{tool_schemas}

Constraints:

— Ensure the output new code is executable in the same Jupyter notebook with the
previous tasks code has been executed.

- Always prioritize using pre-defined tools for the same functionality.

18

Under review as a conference paper at ICLR 2025

One-shot tool usage prompt

Capabilities

- You can utilize pre-defined tools in any code lines from ’Available Tools’ in the
form of Python Class.

- You can freely combine the use of any other public packages, like sklearn, numpy,
pandas, etc..

Available Tools:

Each Class tool is described in JSON format. When you call a tool, import the tool
from its path first.

{tool_schemas}

Output Example:

when the current task is "do data preprocess, like fill missing value, handle outliers
, etc.", the code can be like:

python

Step 1: fill missing value

Tools used: ['FillMissingValue’]

from metagpt.tools.libs.data_preprocess import FillMissingValue

ERIRY

train_processed = train.copy ()
test_processed = test.copy ()
num_cols = train_processed.select_dtypes (include=’'number’) .columns.tolist ()
if ’label’ in num_cols:

num_cols.remove (’ label’)
fill missing_value = FillMissingValue (features=num_cols, strategy='mean’)
fill missing_value.fit (train_processed)
train_processed = fill missing_value.transform(train_processed)
test_processed = fill missing_value.transform(test_processed)

Step 2: handle outliers
for col in num_cols:
low, high = train_processed[col].quantile([0.01, 0.99])

train_processed[col] = train_processed[col].clip(low, high)
test_processed[col] = test_processed[col].clip(low, high)
‘Ylend

Constraints:

- Ensure the output new code is executable in the same Jupyter notebook with the
previous tasks code has been executed.

- Always prioritize using pre-defined tools for the same functionality.

- Always copy the DataFrame before processing it and use the copy to process.

D EXPERIMENT DETAILS

D.1 DATASET

InfiAgent-DABench InfiAgent-DABench focuses on evaluating the data analysis capabilities of
agents. It comprises 257 data analysis problems, categorized into the following seven areas and
their combinations: summary statistics, feature engineering, correlation analysis, machine learning,
distribution analysis, outlier detection, and comprehensive data preprocessing. Each category includes
problems of varying difficulty levels. Below, we present some specific prompt cases to provide an
intuitive understanding of the task settings in InfiAgent-DABench.

InfiAgent-DABench prompt

1. category: [’/Summary Statistics’] , level: easy.

prompt: Please write a Python code snippet to Calculate the mean and standard
deviation of the abs_diffsel column. based on the following details: The task is
to { The mean and standard deviation should be calculated directly from the '
abs_diffsel’ column. Do not remove any outliers or modify the data prior to
calculation. The mean and standard deviation should be computed directly from all

available data points. } and formatted as { @mean[mean_value] @std_dev|[

std_dev_value] where "mean_value" is a positive float number, rounded to two
decimal places. where "std_dev_value" is a positive float number, rounded to two
decimal places.. The data is stored in a file saved in "InfiAgent/examples/DA-
Agent/data/da-dev-tables/ferret-Pitt-2-preinf-1ib2-100_sitediffsel.csv", and the
difficulty level is easy.

19

Under review as a conference paper at ICLR 2025

2. category: [’Feature Engineering’, ’Correlation Analysis’] , level: medium.

prompt: Please write a Python code snippet to Create a new feature called ’'FamilySize’
by combining the ’SibSp’ and ’Parch’ columns, which represents the total number
of family members a passenger had aboard the Titanic. Then, find the correlation
coefficient between ’'FamilySize’ and ’Survived’. based on the following details:
The task is to Create ’'FamilySize’ by adding up ’SibSp’ and ’'Parch’, then
calculate the Pearson correlation coefficient between ’'FamilySize’ and ’Survived’.

and formatted as @correlation_coefficient [number] where "number" is the

calculated Pearson correlation coefficient between ’'FamilySize’ and ’Survived’,
rounded to two decimal places.. The data is stored in a file saved in "InfiAgent/
examples/DA-Agent/data/da-dev-tables/titanic.csv", and the difficulty level is
medium.

3. category: [’Comprehensive Data Preprocessing’, ’‘Distribution Analysis’] , level:
hard.
prompt: Please write a Python code snippet to 2. Preprocess the dataset by handling
missing values in the "24-Hour Passes Purchased (midnight to 11:59 pm)" and "7-
Day Passes Purchased (midnight to 11:59 pm)" columns. Use the mean imputation
method to fill in the missing values. Then, analyze the distribution of the "
Trips over the past 24-hours (midnight to 11:59pm)" column before and after the
missing value imputation process. Evaluate if the imputation has significantly
affected the distribution and what implications it has on the dataset analysis.
based on the following details: The task is to Use the mean imputation method to
fill in missing values for both the "24-Hour Passes Purchased (midnight to 11:59
pm) " and "7-Day Passes Purchased (midnight to 11:59 pm)" columns. Then, calculate
the mean, median, standard deviation, skewness, and kurtosis for the "Trips over
the past 24-hours (midnight to 11:59pm)" column before and after imputation.
and formatted as @pre_mean[mean_before] @pre_median[median_before] @pre_sd[
sd_before] @pre_skewness|[skew_before] @pre_kurtosis[kurt_before] @post_mean|
mean_after] @post_median[median_after] @post_sd[sd_after] @post_skewness]
skew_after] Qpost_kurtosis[kurt_after] where all variables represent the
corresponding statistical values calculated before (prefix: pre) and after (
prefix: post) the imputation, each rounded to two decimal places.. The data is
stored in a file saved in "InfiAgent/examples/DA-Agent/data/da-dev-tables/2014_qg4
.csv", and the difficulty level is hard.

ML-Benchmark This dataset encompassed eight representative machine learning tasks categorized
into three difficulty levels, ranging from easy (level 1) to most complex (level 3). Each task was
accompanied by data, a concise description, standard user requirements, suggested steps, and metrics
(see Table|13|in the Appendix). For tasks labeled as “toy", the data was not divided into training and
test splits, which required the framework to perform data splitting during modeling.

Open-ended task benchmark To evaluate the ability to generalize to real-world tasks, we devel-
oped the Open-ended task benchmark, comprising 20 tasks. Each task required the framework to
understand user needs, break down complex tasks, and execute code. They delineated their require-
ments, foundational data or sources, steps for completion, and specific metrics. The scope was broad,
encompassing common needs like Optical Character Recognition (OCR), web search and crawling
(WSC), automated email replies (ER), web page imitation (WPI), text-to-image conversion (T2I),
image-to-HTML code generation (I12C), image background removal (IBR), and mini-game generation
(MGG). We showcase about these tasks in Figure [TT] Figure 3] and Figure[T4]in the Appendix.

MATH dataset The MATH dataset|Hendrycks et al.[{(2021]) comprises 12,500 problems, with 5,000
designated as the test set, covering various subjects and difficulty levels. These subjects include
Prealgebra (Prealg), Algebra, Number Theory (N.Theory), Counting and Probability (C.Prob),
Geometry, Intermediate Algebra, and Precalculus (Precalc), with problems categorized from levels
"1" to "5" based on difficulty. Following the setting of Wu et al. Wu et al.| (2023c), we evaluated
four typical problem types (C.Prob, N.Theory, Prealg, Precalc), excluding level-5 geometry problems
from the test set.

20

Under review as a conference paper at ICLR 2025

D.2 EVALUATION METRICS

In the MATH benchmark |[Hendrycks et al.|(2021)), accuracy served as the chosen evaluation metric,
aligning with the setting proposed in Wu et al.|(2023c); Hendrycks et al.| (2021)).

For the ML-Benchmark, three evaluation metrics were utilized: completion rate (CR), normalized
performance score (NPS), and comprehensive score (CS). These metrics provided comprehensive
insights into the model’s performance and were defined as follows:

Completion rate (CR): In the task requirements description, there were T steps, and the task comple-
tion status of each step was denoted by a score s;, with a maximum score S, of 2 and a minimum
score Sy,in of 0. The task completion status categories were defined as follows: missing (score of 0),
fail (score of 0), success - non-compliant (score of 1), success-compliant (score of 2), and optional
step (not involved in scoring). To measure the completion level, we proposed a completion ratio
where the numerator was the sum of scores s, for each step, and the denominator was the sum of the
maximum possible scores for all steps (S;qz X 1):

3

Normalized performance score (NPS): In our ML-Benchmark, each task was associated with its
evaluation metric, which may vary between tasks, including metrics such as accuracy, F1, AUC and
RMSLE, etc. For metrics such as accuracy, F1, and AUC, we presented the raw values to facilitate
comparison across identical data tasks. We normalize all performance values s:

1

NPS=<1+s
S, otherwise.

, if s is smaller the better

“

This transformation ensured that loss-based metrics like RMSLE are scaled from O to 1, with higher
normalized performance score values indicating better performance.

Comprehensive score (CS): To simultaneously assess both the completion rate of task requirements
and the performance of generated machine learning models, we calculated the weighted sum of CR
and NPS as follows:

CS = 0.5 x CR+4 0.5 x NPS. 5)

Considering the lack of unified performance standards for open-ended tasks, we default to NPS = 0
and directly equate CS to CR.

21

Under review as a conference paper at ICLR 2025

D.3 ADDITIONAL RESULTS
D.3.1 ADDITIONAL RESULTS OF ML-BENCHMARK AND MATH DATASET

For a deeper understanding, Table[6] presents the results on the ML-benchmark for both Completion
Rate and Normalized Performance Score metrics. Additionally, Table @] showcases the results of
ablation experiments on the ML-benchmark, focusing on the completion rate (CR) and normalized
performance score (NPS).

Table 6: Additional performance comparisons on ML benchmark. “WR", “BCW", “ICR",
“SCTP", and “SVPC" represent “Wine recognition"", “Breast cancer wisconsin", “ICR - Identifying
age-related conditions", “Santander customer transaction prediction", and “Santander value prediction
challenge", respectively. “Avg." denotes “Average".

Model / Task WR BCW Titanic House Prices SCTP ICR SVPC | Avg.

Completion rate

AutoGen 092 1.00 0.92 0.83 0.83 0.83 0.83 0.88
Openlnterpreter 1.00 090 0.92 0.88 0.85 091 0.88 0.90
TaskWeaver 1.00 1.00 0.83 0.88 0.67 083 0.80 0.86
XAgent 1.00 1.00 0.83 0.83 0 0.67 0 0.62
OpenDevin 1.00 1.00 0.92 1.00 1.00 0.83 1.00 0.96
Data Interpreter | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Normalized performance score

AutoGen 1.00 097 0.82 0.88 082 071 0.63 0.83
Openlnterpreter 1.00 0.96 0.81 0.87 0.52 0.25 0 0.63
TaskWeaver 1.00 0.96 0.43 0.49 0 065 0.17 | 0.53
XAgent 1.00 0.94 0 0 0 0 0 0.28
OpenDevin 0.96 0.96 0.81 0.87 0.86 0.62 045 0.79
Data Interpreter | 0.96 0.99 0.82 0.91 089 091 077 | 0.89

Table 7: Additional performance comparisons on MATH dataset. “Avg." and “Std." denotes
“Average", “Standard Deviation" respectively.

Data Interpreter
Cat MathChat AutoG
ategory At WOV Ave. Triall Trail2 Trail3 Std(%)
C.Prob 0.52 0.59 068 070 066 0.68 2.05
N.Theory 0.60 0.66 082 081 082 082 0.99
Prealg 0.60 0.63 074 073 075 075 1.20
Precalc 0.19 0.12 029 028 030 029 113

22

Under review as a conference paper at ICLR 2025

D.4 OVERHEAD ANALYSIS

We compared our token cost (average per task) and inference time (average per task) across the
ML-Benchmark, Open-ended Task Benchmark, MATH Dataset, and InfriAgent-DABench, while
also reporting our performance. Our framework demonstrates a state-of-the-art performance with
competitive efficiency.

Table 8: Overhead analysis on MATH Dataset. “Cost" represents the total cost in USD, “Time"
indicates the total execution time in seconds, “Avg." denotes “Average".

Model / Metric ‘Cost ($)l Time(s)] Accuracyt

AutoGen 0.242 120.99 0.500
Data Interpreter 0.336 211.57 0.633

Table 9: Overhead analysis on InfriAgent-DABench.“Cost" represents the total cost in USD,
“Time" indicates the total execution time in seconds, “Avg." denotes “Average".

Model / Metric ‘ Cost ($)] Time (s)| Accuracyt
AutoGen (GPT-40) 0.112 42.42 88.72
AutoGen (GPT-4-0613) 0.423 45.69 71.49
Data Interpreter (GPT-40) 0.017 49.44 94.93
Data Interpreter (GPT-4-0613) 0.311 51.09 73.55

On specific domains like MATH Dataset (See Table E[) and InfriAgent-DABench (See Table E[), Data
Interpreter consistently shows superior accuracy (63.3% and 94.93% respectively) while maintaining
competitive efficiency, as demonstrated in Table [§]and Table 9] Notably, on InfriAgent-DABench,
our approach achieves better performance with lower cost (0.017 USD vs. 0.112 USD) compared to
AutoGen.

On ML-Benchmark (See Table [T0), Data Interpreter achieves the highest comprehensive score (0.95)
among all frameworks, though with moderate cost (0.84 USD) and inference time (237.31s), as
shown in table[T0] While frameworks like OpenlInterpreter achieve lower costs (0.21 USD) through
one-time code generation, they show inferior performance (0.77).

In Table [TT] for open-ended tasks, Data Interpreter significantly outperforms baselines with a
comprehensive score of 0.953, maintaining reasonable cost (0.34 USD) compared to OpenDevin
(1.41 USD) and AutoGen (0.30 USD).

23

Under review as a conference paper at ICLR 2025

Table 10: Overhead analysis on ML Benchmark. “SCTP", and “SVPC" represent “ICR - Identifying
age-related conditions", “Santander customer transaction prediction", and “Santander value prediction
challenge", respectively. “Cost" represents the total cost in USD, “Time" indicates the total execution
time in seconds, “Avg." denotes “Average".

Model / Task Titanic House ICR SCTP SVPC Avg.
Cost ($))

AutoGen 0.08 0.25 0.19 0.48 0.58 0.32
Openlnterpreter 0.26 0.15 0.27 0.18 0.21 0.21
OpenDevin 2.66 3.01 3.35 3.24 2.78 3.01
TaskWeaver 0.35 0.38 0.36 0.29 0.48 0.37
XAgent 21.15 17.16 27.81 14.12 20.23 20.09
Data Interpreter 0.65 0.84 0.76 0.54 1.41 0.84
Time (s)|

AutoGen 124.71 84.11 136.91 280.60 244.04 174.07
Openlnterpreter 116.66 132.00 170.00 239.00 296.00 190.73
OpenDevin 164.00 133.00 148.00 282.00 212.00 187.80
TaskWeaver 109.76 279.25 151.97 182.13 119.62 168.55
XAgent 5400.00 5107.00 5400.00 6023.00 9000.00 | 6186.00

Data Interpreter 168.01 193.21 184.77 244.39 396.17 237.31

Comprehensive Score?t

AutoGen 0.87 0.86 0.83 0.77 0.73 0.86
Openlnterpreter 0.86 0.87 0.68 0.58 0.44 0.77
OpenDevin 0.87 0.94 0.93 0.73 0.73 0.88
TaskWeaver 0.63 0.68 0.34 0.74 0.48 0.69
XAgent 0.42 0.42 0.00 0.34 0.01 0.45
Data Interpreter 0.91 0.96 0.94 0.96 0.89 0.95

Table 11: Overhead comparison on Open-ended Tasks. “OCR", “WSC", “WPI", and “IBR"
represent “Optical Character Recognition", “Web Search and Crawling", “Web Page Imitation", and
“Image Background Removal", respectively. “Cost" represents the total cost in USD, “Time" indicates
the total execution time in seconds, “Avg." denotes “Average".

Model / Task OCR WSC WPI IBR Avg.
Cost ($)].

AutoGen 0.10 0.18 0.43 0.48 0.30
Openlnterpreter 0.28 0.08 0.15 0.07 0.15
OpenDevin 1.27 1.88 1.26 1.24 1.41
Data Interpreter | 0.275 0.69 0.23 0.18 0.34
Time (s)].

AutoGen 68.85 57.28 154.46 79.26 90.05
Openlnterpreter 133.00 109.00 102.00 68.00 103.00
OpenDevin 190.00 196.00 94.00 146.00 | 156.50

Data Interpreter 77.00 293.00 65.00 34.00 117.25

Comprehensive Scoret

AutoGen 0.67 0.65 0.26 1.00 0.65
Openlnterpreter 0.50 0.30 0.36 1.00 0.54
OpenDevin 0.60 0.87 0.16 1.00 0.66

Data Interpreter 0.85 0.96 1.00 1.00 0.95

24

Under review as a conference paper at ICLR 2025

D.4.1 ABLATION STUDY

Here we provide detailed ablation study results on core modules.

Table 12: Ablation on core modules. Evaluated with CR, NPS and CS on ML-Benchmark. “IGR"
stands for Iterative Graph Refinement, and “PNG" denotes Programmable Node Generation. “ICR",
“SCTP", and “SVPC" represent “ICR - Identifying age-related conditions", “Santander customer
transaction prediction”, and “Santander value prediction challenge", respectively.

Code execution IGR PNG | House Prices SCTP SVPC ICR | Avg.
Completion rate
v 0.58 0.33 0.67 033 | 048
v v 1.00 1.00 092 088 | 095
v v v 1.00 1.00 1.00 1.00 | 1.00
Normalized performance score
v 0.43 0 0.64 0 0.27
v v 0.91 0.82 0.68 0.60 | 0.75
v v v 0.91 0.89 0.77 091 | 0.87
Comprehensive score
v 0.51 0.17 0.66 0.17 | 0.37
v v 0.96 0.91 0.80 0.74 | 0.85
v v v 0.96 0.95 0.89 096 | 0.94

25

Under review as a conference paper at ICLR 2025

E ADDITIONAL EXAMPLES

E.1 AN EXAMPLE OF TASK GRAPH

Here is the prompt used to generate the task graph.

Prompt for task graph generator

PLAN_PROMPT = """
Context:
{context}
Available Task Types:
{task_type_desc}
Task:
Based on the context, write a plan or modify an existing plan of what you should do to
achieve the goal. A plan consists of one to {max_tasks} tasks.
If you are modifying an existing plan, carefully follow the instruction, don’t make
unnecessary changes. Give the whole plan unless instructed to modify only one task
of the plan.
If you encounter errors on the current task, revise and output the current single task
only.
Output a list of jsons following the format:
[
i
"task_id": str = "unique identifier for a task in plan, can be an ordinal",
"dependent_task_ids": list[str] = "ids of tasks prerequisite to this task",
"instruction": "what you should do in this task, one short phrase or sentence

n

"task_type": "type of this task, should be one of Available Task Types"

]

nnn

Here is an example of a task graph. The user requirement is: “This is a dataset featuring sensor
readings from industrial machines, aimed at predicting machine operational status (normal or faulty).
Visualize the analysis and prediction results with high-quality graphs. Train data path: {train_path},
eval data path: {eval_path}."

Task graph example

"task_id": "1V,

"dependent_task_ids": [],

"instruction": "Perform data loading and preliminary exploration of the train
and eval datasets. Fill missing values and apply MinMax scaling.",

"task_type": "eda"

"task_id": "2",

"dependent_task_ids": [
wim

1)

"instruction": "Conduct correlation analysis and provide descriptive
statistics.",

"task_type": "eda"

"task_id": "3",
"dependent_task_ids": [
wim
1y
"instruction": "Perform outlier detection using Isolation Forest to identify
and handle anomalies.",
"task_type": "eda"

"task_id": "4",
"dependent_task_ids": [
nom,

26

Under review as a conference paper at ICLR 2025

n3m

1,

"instruction": "Execute feature engineering, including General Selection,
Target Mean Encoding, and Variance Based Selection to prepare features for
model training.",

"task_type": "feature_engineering"

"task_id": "5",
"dependent_task_ids": [
wyn
1,
"instruction": "Split the data and train predictive models using Random Forest
and XGBoost.",
"task_type": "model_train"

"task_id": "6",
"dependent_task_ids": [
ngm
1,
"instruction": "Evaluate the model’s performance and generate an evaluation
report.",
"task_type": "model_evaluate"

"task_id": "7V,
"dependent_task_ids": [
ngn
ngn
1,
"instruction": "Visualize the analysis and prediction results, including
classification reports and confusion matrix, and serialize the model.",
"task_type": "visualization"

E.2 PROMPTS FOR ACTION GRAPH

Data Interpreter utilizes LLMs to generate an action graph for each task. For each task node, we
maintain execution context and task graph state via plan status, and generate executable code using
the following prompt:

Prompt for action graph generator

PLAN_STATUS = """
Finished Tasks
code

‘Y 'python
{code_written}

AIRIRY

execution result
{task_results}

Current Task
{current_task}

Task Guidance

Write complete code for ’Current Task’. And avoid duplicating code from ’'Finished
Tasks’, such as repeated import of packages, reading data, etc.

Specifically, {guidance}

nnn

Action_Graph_Prompt = """
User Requirement
{project_requirement}

Plan Status
{plan_status}

Tool Info

27

Under review as a conference paper at ICLR 2025

{tool_info}

Constraints

— Take on Current Task if it is in Plan Status, otherwise, tackle User Requirement
directly.

- Ensure the output new code is executable in the same Jupyter notebook as the
previous executed code.

- Always prioritize using pre-defined tools for the same functionality.

Output

While some concise thoughts are helpful, code is absolutely required. Always output
one and only one code block in your response. Output code in the following format:

‘Y 'python

your code

[IRRY

nnn

E.3 EXAMPLE OF DYNAMIC TASK GRAPH REFINEMENT

This section details how Data Interpreter resolves task failures and refines the task graph dynami-
cally. Initially, the task graph is created as described in Appendix When encountering task
execution failures (e.g., Task 4: feature engineering), Data Interpreter utilizes a reflection-based
debugging prompt (REFLECTION_PROMPT) to iteratively analyze errors and propose improved
implementations.

Prompt for reflection and debugging

REFLECTION_PROMPT = """

[example]

Here is an example of debugging with reflection.
{debug_example}

[/example]

[context]
{context}

[previous impl]:
{previous_impl}

[instruction]

Analyze your previous code and error in [context] step by step, provide me with
improved method and code. Remember to follow [context] requirement. Don’t forget
to write code for steps behind the error step.

Output a json following the format:

AIRRY

json

i
"reflection": str = "Reflection on previous implementation",
"improved_impl": str = "Refined code after reflection.",

b}

AIRRY

nnn

After repeated failures (e.g., three unsuccessful attempts at executing the action graph), Data Inter-
preter restructures the task graph: Tasks 1-3 remain unchanged, but Task 4 is simplified to basic
feature creation, a new Task 5 for feature selection is introduced, and subsequent tasks (e.g., original
Task 5 becoming Task 6) are automatically reindexed with updated dependencies, as shown below:

28

Under review as a conference paper at ICLR 2025

Example of refined task graph

"task_id": "4",
"dependent_task_ids": [
now,
w3n

1,
"instruction":
"task_type":

"Create engineered features from
"feature_engineering"”

sensor readings",

"task_id": "5",
"dependent_task_ids": [
wgn,
1,
"instruction": "Perform feature selection using
analysis",
"task_type": "feature_engineering"

statistical methods and importance

"task_id": "6",
"dependent_task_ids": [
wgn,
ngm

1,
"instruction":
"task_type":

"Train a predictive model to determine machine status",
"model_train"

E.4 RUNTIME RESULTS OF TASK GRAPH

We provide three distinct runtime results of our model, Data Interpreter, to offer an in-depth demon-
stration of its capabilities. These results meticulously showcase the intricacies of the task graph,
action graph, and the overall graph structure as shown in Figure|[7]

 path). NOTE: All

S5 and JSin one go, and

This is amath

Nis divided by §365?

faulty).

O
TaskGraph

i Action Graph
1pata Exploration

ReadCsy _Fillissinglalue _ MinMaxScale
O Correlation Descriptivestatistcs

3 0utlersDetection

solationForest

aFeature

Engineering
Oe— General TargeiMean VarianceBased
Selection Encoder Selection

SModelTaining O RandomForest

O xesoost
evatuation O

83—0

ConfusionMatrix

Datasplitting

6 Model Evaluation

7Visualization

Problem Solving Graph [code & Result

[Olrask

[ClRequirement

(a) Machine Learning Problem

's status. Visualize the environments have been fully installed and configured.

Q

Task Graph

O

Action Graph Task Graph i Action Graph

Image Analyze Sum of digits.
- - 2 owsilycrece
3 Identify Results

" SaveHTML code

& code & Result

N
=—a= AT @
Problem solving Graph HmL
[Olaction [Sldata [O]node > Execution

(b) Open-ended Problem

SaveCSScode Save HTML code

Generation

4 Combine Remainders

Final Remainer

[code & Result

——> Dependency Relation

(c) Mathematical Problem

Figure 7: Runtime examples of Data Interpreter: machine learning, webpage imitation, and math

problem solving

29

Under review as a conference paper at ICLR 2025

E.5 ADDITIONAL RESULTS OF OPEN-ENDED TASKS

We present the results by the Data Interpreter of several open-ended tasks in two figures: tasks 8, 9,
10, and 13 in Figure[8] and tasks 4, 14, and 15 in Figure[9]

E.6 RESULT OF DATA VISUALIZATION

Figure [T0]illustrates the results of data analysis and visualization of the Data Interpreter.

Medium Qurstory Membership ~ Wite Signin

Welcome to the ni era
Stay curious.

Discover stories, thinking, and expertise from writers on any topic.

Startreading

Cnaiop

Recommend a dish to impress a date
who's a picky eater

PyTorc
NEW ANNOUNCEMENTS
Cachopanthel i kaggle

Courses

Compatiions Datasats Models Code Discussions

e

Level up with the largest Al & ML community

Join over 16M+ machine oarmors o sharo,stess tost,and stay up-t-dato on al the latest ML tochniques and tochnologios. Discover @
huge repository of communy-published modes, daa & code for your et project

Rogistarwith Email

PYTORCH 2.1

Learners Developers Researchers
Dive o Kaggl courses, competiions & Loverage Kaggle's madels, notebooks & Advance ML wih our pre-rained model hub &
foums dotasets competions

Figure 8: Web page imitation by Data Interpreter

metagpt.tools. web_scraping scrape_web_playwright
target_url
html_content scrape_web_playwright(url=target_url)

print (html_content [1[:500])
Title Scroll to Fetch More (Shown 500 Records)Click to Fetch All R Rating Conf. Confidence RO. Avg. Initial & A R. Avg. Rating Mean Conf. Avg. Con
8888 3555 675125 450

Turning large language models into cognitive models

34 Curiosity-driven Red-teaming for Large Language Models 8888 3334 5.7548:2.25 8.00 3.25 A

57 GenSim: Generating Robotic Simulation Tasks via Large Language Models 8888 4334 7.50 8:0.50 800 350 - Spotiight
198 Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning 6,888 6.7548:0.75 7.50 3.25 1

219 ToolChain*: Efficient Action Space Navigation in Large Language Models with A* Search 6,8,8,8 6.758:0.75 7.50 375 ‘\,

379 L2MAC: Large Language Model Automatic Computer for Unbounded Code Generation 6,6,8,8,8 6.60 4:0.60 7.20 3.60

380 Beyond Memorization: Violating Privacy via Inference with Large Language Models 6,6,888 7.20 4:0.00 7.20 3.60

Unveiling the Pifalls of Knowledge Editing for Large Language Models 6.50 4:0.50 7.00 325

Figure 9: Image background removal / text-to-image / web search and crawling by Data Interpreter

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651

1652
1653
1654
1655
1656
1657
1658
1659
1660
1661

1662
1663
1664
1665
1666
1667
1668
1669
1670
1671

1672
1673

Under review as a conference paper at ICLR 2025

Correlation Matrix

ITII N R RN T TTTEINTY:

138983 Ts

Figure 10: Data analysis and visualization capabilities of Data Interpreter

31

Under review as a conference paper at ICLR 2025

F DETAILS OF DATASETS

F.1 OPEN-ENDED TASK DETAILS

Figures [IT]to[I4] showcase several typical open-ended tasks in the following illustrations. For each
task, we include the necessary data, user requirements, and assessment pipeline.

F.2 ML-BENCHMARK DATASET DESCRIPTION

Here are the details about the ML-Benchmark dataset. We collect several typical datasets from
Kaggkﬂ and machine learning. Details are in Table

[wocratsers |

Scenario Description: Scan all the necessary fields and amounts from the given file and then create an Excel sheet with the extracted data

User Requirement: This is an English invoice image.

Your goal is to perform OCR on the image, extract the total amount from ocr result and save as table, using PaddleOCR.
The PaddleOCR environment has been fully installed, try to use Paddleocr as much as possible.

Image path: ./workspace/CORD _test/image/receipt_00001.png

Pipeline Requirement:

1.Load and read images from a given folder/path

2.Install OCR tools/software

3.Using OCR tools/software to extract necessary fields and amounts
4.Collect results and convert them to a DataFrame

5.Save the result in a csv/xlsx forma

Performance Requirement: Recall / Precision / Accuracy

Data:
- Task 1: - Task 2: - Task 3:
— [L.
wonisizo KF 12270057 e | Nontpet lar vermont
- L 802 226 6183 e

£ 259 P

[E6 07-24-2017 08:58 £

Gl

L J

(2) Web search and crawling (Task 4-7)

Scenario Description: Crawling and organizing web form information

Data: -

Pipeline Requirement:

1.0pen target URL

2.Select and filter the required information

3.Download or transform the data, convert them into a specified format
4.Output in a tabular form

Performance Requirement: Recall / Precision / Accuracy

User Requirement:

- Task 4:

Get data from “paperlist’ table in https://papercopilot.com/statistics/iclr-statistics/iclr-2024-statistics/, and save it to a csv file. paper title must
include ‘multiagent’ or ‘large language model".

notice: print key variables

Figure 11: Open-ended task cases (OCR and web search and crawling) We present task 4, omitting
similar tasks for brevity.

"https://www.kaggle.com/

32

Under review as a conference paper at ICLR 2025

Scenario Description: Filter through my emails and respond to them as necessary

User Requirement: You are an agent that automatically reads and replies to emails. I will give you your Outlook email account and password.
You need to check the content of the latest email and return it to me. If the email address suffix of this email is @communication.microsoft.com,
please automatically reply with "I've received your email and will reply as soon as possible. Thank you!"

Email account: englishgpt@outlook.com

Email Password: xxxx

Data: -

Pipeline Requirement:

1. Login to the target email account

2. Summarize and filter the email content accordingly.

3. set up an automatic reply to the sender with an email address that ends with a specific domain name.

Performance Requirement: -

(4) Web page imitation (Task 9-13)

Scenario Description: Using Selenium and WebDriver to access a webpage and convert it to an image, with the assistance of GPT-4V to mimic
the creation of a one-page website.

- Task 10:

This is a URL of webpage: https://pytorch.org/. Firstly, utilize Selenium and WebDriver for rendering. Secondly, convert image to a webpage
including HTML, CSS and JS in one go. Finally, save webpage in a file.

NOTE: All required dependencies and environments have been fully installed and configured.

- Task 11:

This is a URL of webpage: https://www.kaggle.com/. Firstly, utilize Selenium and WebDriver to render the webpage, ensuring the browser
window is maximized for an optimal viewing experience. Secondly, convert image to a webpage including HTML, CSS and JS in one go. Finally,
save webpage in a file. NOTE: All required dependencies and environments have been fully installed and configured.

- Task 12:

This is a URL of webpage: https://chat.openai.com/auth/login. Firstly, utilize Selenium and WebDriver to render the webpage, ensuring the
browser window is maximized for an optimal viewing experience. Secondly, convert image to a webpage including HTML, CSS and JS in one go.
Finally, save webpage in a file. NOTE: All required dependencies and environments have been fully installed and configured.

Data: (Task 10-12 in order)

#
Level up with the largest Al 5~ W
& ML community A B

Pipeline Requirement:

1. Open a target Web URL

2. Transform the Website into an image

3. Send the image to GPT-4V via API

4. Request a similar website generation using the code.

Performance Requirement: Similarity/Correctness

Figure 12: Open-ended task cases (email reply and web page imitation). We present tasks 10-12,
omitting similar tasks for brevity.

33

Under review as a conference paper at ICLR 2025

(5) Image Background Removal (Task 14)

Scenario Description: Remove the background of a given image

User Requirement: This is an image, you need to use python toolkit rembg remove the background of the image. image path:'./data/Ixt.jpg'; save
path:'/data/Ixt_result.jpg’

Data:

Pipeline Requirement:

1. Read a local image

2. Install image background removal tools/software

3. Using background removal tools/software to remove the background of the target image
4. Save the new image

Performance Requirement: Correctness

Scenario Description: Use SD tools to generate images
User Requirement: I want to generate an image of a beautiful girl using the stable diffusion text2image tool, sd_url=""
Data: -

Pipeline Requirement: -

Performance Requirement: -

Scenario Description: Web code generation

User Requirement:

- Task 16:

This is a image. First, check if the path exists, then convert the image to webpage code including HTML, CSS and JS in one go, and finally save
webpage code in a file.The image path: ./medium.png .NOTE: All required dependencies and environments have been fully installed and
configured.

- Task 17:
This is a image. First, check if the path exists, then convert the image to webpage code including HTML, CSS and JS in one go, and finally save

webpage code in a file.The image path: ./gemini.png .NOTE: All required dependencies and environments have been fully installed and configured.

Data: (Task 16-17 in order)

O Medium P -)
e Welcome to
5w the Gemini era
Pipeline Requirement: -
Performance Requirement: -
\ J

Figure 13: Open-ended task cases (image background removal, text-to-image, and image-to-
code)

34

Under review as a conference paper at ICLR 2025

(5) Generate games using existing repo (Task 18-20)

Scenario Description: Game tool usage (pyxel)

User Requirement:

- Task 18:

Create a Snake game. Players need to control the movement of the snake to eat food and grow its body, while avoiding the snake's head touching
their own body or game boundaries. Games need to have basic game logic, user interface. During the production process, please consider factors
such as playability, beautiful interface, and convenient operation of the game.

Note: pyxel environment already satisfied

- Task 20:

Make a mouse click game that click button as many times as possible in 30 seconds using pyxel.
Note: pyxel environment already satisfied

Data: -

Pipeline Requirement: -

Performance Requirement: -

Figure 14: Open-ended task cases (mini-game generation) We present tasks 18 and 20, omitting
similar tasks for brevity.

35

Under review as a conference paper at ICLR 2025

sunuode xordwoo
10J 9[qBIINS ‘SUWN[OD
3G ‘2[qe) [SuIs
‘uorssoI3aI ‘sonfea
uonoesuen FunoIpald

Ansnpup

" AsoTead J1fds\aSuareyo
-uonarpaid-anea-1opuejuesyioseiep, yjed eyep [ead ¢ aso uren jjds\a3udyreyo-uonompaid
-on[ea-1opuejuesyleselep, :yied ejep urel], -ejep [eAd oY) uo gISINY Modoy 108
-1e) oy 101paxd 03 Surepow pue ‘SunreuISud armed) ‘Jurssooordoid eyep ‘sisAreue
elep wiIojiod 395I1ey oyl SI uwnjod joSIe) Y, Iowoisnd [enudjod yoes I0j suon
-oesuel) Jo anjeA ay) 101paid 0) SI [e0S INOX “JOSLIEp [BIOUBUY S JOWOISND © ST SIY],

an[eA Jopuejues

80

J1qe) o[3urs
‘swoydwiAs yreay jo
uonesyIsse[o Areurg

Ansnpup

* ASO'TeAd Jds\suonIpuod
-pare[a1-a3e-Anuopr-onjeseiep, :yied vjep [eAd ¢ Aso uren Jds\suonIpuoo-paje[aI-ose
-Kynyuopr-1onjoseiep, :yied vIep ulBl], ‘BJEp [BAD 9y} UO 2100S [Modoy e81e) oy
1o1pa1d 01 Surepowr pue ‘SurreduIdud aanjed) ‘Surssadordard eyep ‘sisA[eue elep wIoj
-19d 'SSB[D SI UWN[od 1o5Ie) OU, 'SUONIPUOD 9SAY) JO SUO YIIM PasouSerp uedq jou
sey] 10 sey 109[qns © 1oyloym 1o1paid 03 ST [e0S INOX "SUONIPUOD PIJL[AI-aTe 1Y)
0] PayUI] SONSLIAIOBIRYD YI[eay paziwAuoue K)jIj I0A0 YIIm JSBIEP [EIIPAW B ST SIY],

Surkynuapy - YOI

L0

dqe

o[3uIs ‘suonoesuer)
Jowosnd 3o1paid 0}
uonedyIsse[o Areurg

Ansnpup

* Aso'TeAd J1[ds\uonorpaid-uonoesuen
-Iowo)snd-1opueiues\loseep, :yred eiep [ead ‘ Aso'urenjds\uonsipaid-uonoesuen
-Iowo)snd-IopueIues\loseIep, :yied eyep uUrel], "eIep [eAd 9y} uo DV Hodoy -1eS1e)
o 101paid 01 Surepow pue ‘Funredursud armyedy ‘Jurssaoordaid ejep ‘sisA[eue ejep
WI0JId 1951} 9y} SI UWN[Od JSIe) Ay, "AININJ Ay} Ul uondesuen oyroads e ayew
1A SI9WO0ISND Yorym 101pa1d 0) ST [20T INOX “19SLIEp [RIOUBUY S IOUIOISNO © ST SIYJ,

Jowoisny) Jopueyues

90

a1qel

9[3urs ‘uorssoIfor
‘soynque K)radoxd
y3noayy seoud
asnoy 3unorpaid

Jouurdog

* ASOTeAd 1fds\sonbruyooy
-U01ss1321-pasurApe-saotid-asnoy\1aserep, :yped ejep [ead ¢ Aso urenJnds\sonbruyod
-UOISSAIFaI-padueApe-saoLId-osnoy\joseiep, :yjed ejep urel], ‘eiep [ead oy uo doud
So[es PAAISSqO) JO WiLIESO] Y} pue an[ea paydIpaid oy Jo WYILESO[AY) UAIMIIq
ASINY Hoday 19518} 93 1o1pard 03 Surjopowt pue ‘SuLIdoUISUL AINedy ‘Surssaoord-oxd
BIEp ‘SISATRUE BJED WIOJQJ “90LJo[eS SI uwnjod joSIe) 9y, 'SoInjedy s U0 paseq
Ky1edoid e jo ooud ores oy 101paid 03 st [e03 INOA pue 9asejep 2oud asnoy e SI SIy L,

SA0LIJ ASNOY

SO

aqel
9[3uIS ‘[BAIAINS JO
uoneoyisse[d Areurg

Iouurdog

* AsOTeA JdS\OTuBIN\IOSEIRD,
1yped eyep [ead ¢ asoruren jpds\orueinyeserep, :yped ejep urel], "ejep [ead oy uo Koel
-nooe 110doy “3031e1 O J01pard 03 Suropowr pue ‘SurreourSus armyes) ‘Surssooord
-a1d ejep ‘SIsA[eue eJep ULIOJIJ “PIAIAING SI UWN[OD Jo5IL) AU, "SAWOIINO [BAIAINS
103uassed 1o1pard 03 st [eo3 oK pue ‘Josejep [ealains rofuossed omuelL], B ST SIYJ,

S

JueUSI[RW

J0 uS1uaq Jo1paxd 03
uoneoyIsse[d Areurq
‘Vad 10§ a1qenng

Koy,

KoBINOOE UOTIEPI[EA MOYS PUE ‘(UOTEPI[RA SE 9(7) S1981e) 101paid 0) [opow
e uren ‘o[d ® 9pn[oUI JOSBIBP J90UL)) ISBAIF UISUOISIA\ UIBS[YS UO SISA[RUR BIEp uny

Jadue)) jsearyq

€0

HTISINY € UOISSAITY
14 4 UONEOYISSE[D)
onv 4 uonedyIsse)
HTISINY T UOISSAITY
20V T uonedYISSe[)
20V I UONEIYISSE[D)
20V I uonedyISSe[)
I vad

uoIssoI3aI pue
uoneoyisseo oydurs
‘Vad 10§ 21qeing
UOISSI3aI pue
uoneoyisse[d oduwrs
‘Vag 10§ 21qeing

Ko,

KoJ,

Kornooe uonorpaid moys pue 9as 159) Se 9,0 YPIM Sse[d duim 191paid 0)
[opow & urex) pue jojd & opn[our Jasejep UoNIUS0daI AUIA| UIBI[YS UO SISA[eUR BIep uny

jord & Surpnpour ‘}asejep SHJ WIS UO SISA[eue Blep uny

uonNIuUS00aT QUIN

LY

0

10

omelN Anogig odAT, yser,

uondrosa(19sereq

od£7, 19881

‘boy 1080y

qureN Jesereq

ar

‘pasn ommaw pue ‘A)noygip ‘odAy ysey ‘odAy jeserep ‘sjusurernbar 1osn prepuels ‘uondrosap ‘Owreu Jasejep SUIPN[OUL ‘JaseIep YTeWYouag-TIA oY) JO s[re1e €1 9[qel

36

	Introduction
	Related Work
	Methodology
	Hierarchical Graph Modeling for Complex Task Decomposition
	Task graph: Iterative Graph Refinement
	Action Graph: Programmable Node Generation

	Experiments
	Experimental setup
	Main result
	Ablation study

	Conclusion
	Limitations
	Broader impact
	Implemtation details
	Programmable Node Generation
	An example of tool schema
	Tools details
	Tool usage prompts

	Experiment details
	Dataset
	Evaluation metrics
	Additional results
	Additional results of ML-benchmark and Math dataset

	Overhead analysis
	Ablation study

	Additional Examples
	An Example of Task Graph
	Prompts for action graph
	Example of dynamic task graph refinement
	Runtime results of task graph
	Additional results of Open-ended tasks
	Result of data visualization

	Details of datasets
	Open-ended task details
	ML-Benchmark dataset description

