
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DATA INTERPRETER:
AN LLM AGENT FOR DATA SCIENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model (LLM)-based agents have shown effectiveness across many
applications. However, their use in data science scenarios requiring solving long-
term interconnected tasks, dynamic data adjustments and domain expertise remains
challenging. Previous approaches primarily focus on individual tasks, making it
difficult to assess the complete data science workflow. Moreover, they struggle
to handle real-time changes in intermediate data and fail to adapt dynamically
to evolving task dependencies inherent to data science problems. In this paper,
we present Data Interpreter, an LLM-based agent designed to automatically
solve various data science problems end-to-end. Our Data Interpreter incorporates
two key modules: 1) Hierarchical Graph Modeling, which breaks down complex
problems into manageable subproblems, enabling dynamic node generation and
graph optimization; and 2) Programmable Node Generation, a technique that
refines and verifies each subproblem to iteratively improve code generation results
and robustness. Extensive experiments consistently demonstrate the superiority of
Data Interpreter. On InfiAgent-DABench, it achieves a 25% performance boost,
raising accuracy from 75.9% to 94.9%. For machine learning and open-ended tasks,
it improves performance from 88% to 95%, and from 60% to 97%, respectively.
Moreover, on the MATH dataset, Data Interpreter achieves remarkable performance
with a 26% improvement compared to state-of-the-art baselines. Code will be open-
sourced upon publication.

1 INTRODUCTION

Figure 1: Comparison across various open-source frameworks on various data science tasks. We
define a unified metric, the comprehensive score (Appendix D.2.), to standardize performance
evaluation across tasks with different metrics. A higher score indicates better performance.

Large Language Models (LLMs) have demonstrated remarkable adaptability across a wide range
of applications, excelling in areas such as software engineering (Hong et al., 2023), open-world

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

navigation (Wang et al., 2023a;b;c; Chen et al., 2024), collaborative intelligence (Zhuge et al., 2023;
2024; Zhang et al., 2024a), and scientific research (Tang et al., 2024). However, their performance in
data science remains limited.

Data science (De Bie et al., 2022; Hassan et al., 2023), the practice of extracting insights from
data, spanning from data gathering to model building and decision-making. It integrates multiple
disciplines such as computer science, statistics, data visualization, and mathematics (Zhang et al.,
2023). As discussed in (Zhang et al., 2024c; Zheng et al., 2021), data science workflows are inherently
complex, involving interconnected tasks such as data processing, feature engineering, and model
training. Solving these tasks requires iterative refinements and real-time adjustments, as both data
and requirements continuously evolve.

Leveraging the extensive knowledge and coding capabilities of LLMs, recent efforts (Shen et al.,
2024; Hollmann et al., 2023; Bordt et al., 2024; Zhang et al., 2024c; Liu et al., 2024) have integrated
LLMs into data science tasks. These approaches primarily focus on individual tasks, such as
feature engineering (Hollmann et al., 2023), model selection (Shen et al., 2024), and hyperparameter
optimization (Liu et al., 2024), often operating within fixed pipelines. However, they lack a holistic
evaluation of end-to-end workflows, making it difficult to assess the complete data science process.
Furthermore, these methods often struggle to handle real-time changes in intermediate data and adapt
dynamically to evolving task dependencies. While recent works (Wu et al., 2023b; Zhang et al.,
2023) have improved performance in data-related tasks, they remain inadequate for machine learning
or comprehensive data transformation tasks, involving intricate task interdependencies that require
continuous updates and dynamic global planning (Zhang et al., 2024c).

To address these challenges, we present Data Interpreter, an LLM agent that reframes the data
science workflows as a Hierarchical Graph Modeling problem, where interconnected tasks are
represented as nodes, and their dependencies as edges within the graph. This structured representation
enables dynamic and flexible task management, allowing the system to adjust to evolving data and
task requirements in real-time, and thus efficiently manages the complex, interdependent steps of data
science. Another core of Data Interpreter is Programmable Node Generation, a key innovation that
automates the real-time generation, refinement, and verification of nodes in the graph. This ensures
that each subproblem is accurately defined and executed, improving the robustness and precision of
the workflow. Leveraging the coding capabilities of LLMs, the system dynamically synthesizes and
optimizes the graph structure, making it highly adaptable to the demands of complex, evolving data
science tasks.

Our experiments demonstrate that Data Interpreter significantly outperforms existing methods across
several benchmarks, achieving a 25% performance boost on the public dataset InfiAgent-DABench,
and a 26% improvement on the MATH dataset. Compared to other open-source frameworks, Data
Interpreter consistently shows notable advancements in machine learning and open-ended tasks,
as illustrated in Figure 1. By rethinking how data science workflows are structured and managed,
Data Interpreter sets a new standard for adaptability and efficiency, offering a powerful solution for
complex, real-world applications.

2 RELATED WORK

LLMs as Data Science Agents Large language models (LLMs) have demonstrated expert-level
knowledge in machine learning and have made significant progress in automating data science tasks.
Early research focused on using LLMs to write code, aiming to simplify complex computations
involved in reasoning processes (Gao et al., 2023; Chen et al., 2022). Subsequent work introduced
code interpreters that leverage function-calling mechanisms, offering greater flexibility in solving
complex problems (Zhou et al., 2023; Gou et al., 2024; Wang et al., 2024a). This interpreter-based
approach has now become a mainstream method for enabling LLMs to handle complex reasoning
and scientific tasks (Huang et al., 2023b; Hassan et al., 2023; Qiao et al., 2023; Zhang et al., 2024b).
Recently, Zhang et al. (2023) introduces an LLM-based agent for data analysis, demonstrating
capabilities in data processing and exploration within a code-centric framework, but does not evaluate
its performance on predictive tasks such as machine learning pipelines. Guo et al. (2024) harness
LLMs and case-based reasoning to solve data science tasks, leveraging human expertise to enhance
the efficiency of LLM-based agents in data science, which is complementary to our work. Liu et al.
(2024) uses LLMs to perform hyperparameter tuning to automate machine learning tasks focusing on

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

single task rather than full pipeline construction and evaluation. Therefore, end-to-end evaluation
frameworks specifically designed for data science tasks remain insufficiently developed. To address
this gap, we propose a unified, general framework specifically designed for data science tasks. Our
framework has been rigorously benchmarked across diverse tasks and settings, offering valuable
insights into the application and effectiveness of LLMs in data science.

Enhancing LLM with Tools Recent research has focused on enhancing LLM capabilities by
integrating external tools (Schick et al., 2024; Paranjape et al., 2023). Zhuge et al. (2023); Shen et al.
(2024) introduced multi-agent systems to tackle multimodal tasks, while Yuan et al. (2023); Liu et al.
(2023) proposed frameworks for retrieval and automatic tool selection, eliminating the need to assign
tools for specific tasks statically. Recent efforts have increasingly focused on integrating tool-using
abilities into a structured pipeline, enabling sophisticated task planning, tool invocation (Wu et al.,
2023a; Shen et al., 2024; Liang et al., 2024). Qian et al. (2023); Yuan et al. (2024) discuss the
creation and instruction of the tool from code-form or lengthy tool documentation to enhance tool
utilization efficiency. In this paper, we further advance these ideas by enabling LLMs to dynamic
orchestration and combination of multiple tools. Our approach improves practicality by leveraging
execution experience, allowing LLMs to select and combine tools as needed independently.

Graph-Based Planning for LLM Agents Planning is a critical capability of LLM-based agents,
focusing on generating logically structured action or thought roadmaps for specific problems (Huang
et al., 2024b; Chen et al., 2024). Earlier works like CoT (Wei et al., 2022; Yao et al., 2022)
decompose complex tasks into subtasks and perform sequential planning. However, due to the
complexity of certain problems, a single plan generated by an LLM-based agent is often insufficient.
To address this, ToT (Yao et al., 2024) and GoT (Besta et al., 2023) introduce automatic tree or graph
structures that refine node-level LLM prompts, optimizing connectivity to improve performance.
Similarly, DSPy (Khattab et al., 2023) abstracts LLM pipelines as text transformation graphs, while
PRODIGY (Huang et al., 2023a) applies graph-based in-context learning and pre-training methods.
Further, Zhuge et al. (2024) enhance node prompts and agent coordination via graph connectivity
adjustments, and Vierling et al. (2024) develop a learnable model to dynamically generate edges
between agents in a graph, facilitating internal communication. While these planning approaches
excel in various domains, they often struggle with multi-step, task-dependent problems commonly
encountered in data science. In this paper, we explore the potential of integrating graph structures with
LLM-based agents for data science tasks—an area that remains largely untapped despite emerging
related work.

3 METHODOLOGY

In this section, we first present the foundational formulation of hierarchical graph modeling for
data science problems, defining the task graph and action graph in Section 3.1. Next, we detail the
iterative optimization process of the hierarchical graph structure in Section 3.2. Finally, in Section 3.3,
we introduce programmable node generation, explaining how we integrate expertise at different
granularities to improve the performance of LLMs.

3.1 HIERARCHICAL GRAPH MODELING FOR COMPLEX TASK DECOMPOSITION

Data science problems, particularly those involving machine learning, encompass extensive detailing
and long-range workflows, including data pre-processing, feature engineering, and model training.
This long-term planning complicates the direct planning of all detailed tasks and coding. Drawing
inspiration from the application of hierarchical planning in automated machine learning tasks (Mohr
et al., 2018; Mubarak & Koeshidayatullah, 2023), we organize the data science workflow via
hierarchical structure, which initially decomposes the intricate data science problem into manageable
tasks and further break down each task into specific actions executed through code (see Figure 2).

Therefore, solving a data science problem can be formulated as follows: given a task-oriented input
x, we seek to apply a series of operators, unified as a function P, to produce an output ŷ = P(x). Our
goal is for P to generate solutions that closely approximate or match the anticipated y. However, due
to the complexity of P, which may involve various operations and intermediate data, fully automating
the solution to a task is typically challenging.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Project

Read
CSV

Fill
Missing
Value

MinMax
Scale

1 - Data
Exploration

Correlation

Descriptive
Statistics

2 - Correlati
on Analysis

Isolation
Forest

3 - Outliers
Detection

General
Selection

Target
Mean

Encoder

Variance
Based

Selection

4 - Feature
Engineering

Data
Splitting

XGBoost

Random
Forest

5 - Model Training

Evaluation
6 - Model
Evaluation

Model
Serializati-

on

Confusion
Matrix

Classificat
-ion

Report

7 - Visualization

Project Task Action Task
Dependency

Action
Dependency

Hierarchical Graph Model

Task type:
Visualization

Task Instruction:
Visualize the analysis
and prediction
results with high-
quality graphs.

Project requirement: This is a dataset featuring sensor readings from water pump, aimed at
predicting machine operational status (normal or faulty). Your tasks include conducting a
comprehensive data analysis encompassing correlation analysis, causal inferences, data
exploration, anomaly detection, and feature engineering.

Dataset:

Graph ExecutorTask Graph Generator Action Graph Generator

Large Language Model

Input
project info

Output
task graph

Input
task graph

Output
action graph

Feedback &
Trajectory

Tools

Generate
task graph

Generate
action graph

Graph Generation
&

Execution Process

Execute
graph

Figure 2: Data Interpreter Example Workflow. The upper section illustrates how Data Interpreter
organizes a data science workflow using a hierarchical structure. The process begins by decomposing
project requirements into a task graph, which is then further broken down into actions executed
through code. The lower section highlights the core modules of Data Interpreter, including the task
graph generator, action graph generator, and graph executor. These modules work together to
manage task execution and provide real-time feedback. The graph executor efficiently executes the
action graph using reflection and integrated tools, delivering essential real-time feedback throughout
the process.

Leveraging the reasoning ability of LLMs for general task decomposition, our method decomposes
the solving process of P into a series of sub-processes p1,p2,p3, . . . that can be directly solved and
verified. The primary challenge lies in determining the relationships r = ⟨pi,pj⟩ ∈ R between these
sub-processes. Our framework represents all subprocesses as nodes within P, ultimately forming a
graph G that embodies the entire function P:

ŷ = G ({pi(x)}ni=1,R) , (1)

where G represents a Directed Acyclic Graph (DAG) composed of the sub-functions p1,p2,p3, . . .
interconnected through the relationships R. This graph illustrates how these sub-functions are
combined to generate the final output ŷ. Unlike traditional reinforcement learning (RL) methods for
planning (Moerland et al., 2023; Schmidhuber, 2003), which often require a substantial number of
demonstrations to perform domain-specific training, our approach leverages the in-context learning
of LLMs. This training-free nature allows our method more adaptable and efficient for general task
decomposition.

ImprovingR involves achieving an optimal node topology, which has demonstrated robust perfor-
mance and flexibility in prior research Zhuge et al. (2024). In our framework, all subprocesses
exchange intermediate results and parameters, represented as r = ⟨pi,pj⟩ ∈ R. Given the inherent
challenges in data science problems Hutter et al. (2019), this process can be complex. However, we

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

can optimize the graph topology by refining the relationships between subprocesses. Our objective is:

G∗ = argmax
G

Ex∼D [Performance (G ({pi(x)}ni=1,R) , y)] , (2)

where Ex∼D denotes the expectation over the data distribution D, and Performance measures the
accuracy of the predicted output ŷ against the target output y. Importantly, within G∗, if a subpro-
cess pi proves challenging to solve, it can be further decomposed into smaller, more manageable
subprocesses. Next, we will illustrate the core concepts in our hierarchical graph modeling with an
example.

Task Graph. Data Interpreter utilizes LLMs to perform task planning, providing only
the project requirement as the goal without relying on pre-defined steps, tasks and relation-
ships. As shown in Figure 2, an example workflow decomposed by Data Interpreter for a ma-
chine operational status prediction problem, might include tasks like: data exploration,
correlation analysis, outliers detection, feature engineering, model
training, model evaluation, and visualization. Each task node is defined within
the metadata and includes attributes such as task description, task type, status, execution feedback,
and dependencies, collectively form the task-level graph G, enabling structured task management and
execution. Consequently, during the solving process, the dynamic contextual data are automatically
constructed and acquired through the inter-dependencies among tasks, avoiding the need to retrieve
the entire context at once while maintaining the relevance of the input context, offering flexibility and
scalability for broader data science applications.

Action Graph. Data Interpreter breaks down each task into multiple actions using contextual
memory, thus forming an action graph. Action graphs can be executed and verified independently,
and the synthesis of each action node will be detailed in Section 3.3. As illustrated in Figure 2,
the visualization task is divided into three distinct actions, with the confusion matrix calculation
handled by sklearn. The solving process is represented as an action graph, visually captures the
relationships between these actions and serves as an implicit representation of the code. Additional
runtime examples are provided in Figure 7 in the Appendix.

At finer granularity, action graph iteratively adjusts to handle real-time execution feedback, such as
managing failures by refining code or incorporating verification processes, making it a sufficiently
granular unit for rapid task adjustments and validation. We explore this optimization process further
in Section 3.2.

3.2 TASK GRAPH: ITERATIVE GRAPH REFINEMENT

Task Graph Generation and Execution. A key advantage of our approach is its ability to dynami-
cally adjust the task graph in response to changing environments, unlike prior methods (Wei et al.,
2022; Besta et al., 2023; Yao et al., 2022) and frameworks such as OpenInterpreter (Lucas, 2023)
and AutoGen (Wu et al., 2023b), which generate static plans for one-time execution. Our method
introduces iterative graph optimization, allowing it to adapt to a dynamic environment through
continuous updates.

As shown in Figure 2, Data Interpreter uses a task graph generator to initialize the task graph as
discussed in Section 3.1. Each task is then translated into executable code by the action graph
generator, which takes into account the outcomes of prior tasks to ensure contextual consistency. The
generation process is detailed in Algorithm 1.

To ensure runtime verification and provide real-time feedback during execution, Data Interpreter
incorporates a stateful graph executor that manages both execution and debugging using reflection
mechanisms (Shinn et al., 2024). Specifically, if the execution encounters exceptions or fails a
verification check, the action graph generator dynamically reflects on the execution results, and then
regenerates the code to resolve the issue or optimize the output, providing data-driven feedback. This
process is collectively conducted by action graph generator and graph executor.

Task Graph Refinement. The task graph generator manages tasks, monitors their statuses and
dependencies, and dynamically adjusts the task graph by adding, removing, or modifying tasks as
needed. Each task is further decomposed into an action graph, which consists of one or several action
nodes. Each action graph can be executed and evaluated independently, allowing for granular control
and flexibility in the execution process.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Iterative Graph Execution
Input: User requirements req, large language model LLM , tool sets T
Output: Optimized graph G∗

1: Set M as the maximum number of iterations, R to denote runtime results
2: G← initialize_graph(req, LLM) ▷ Initialize the graph with user requirements
3: while not G.is_finished() do ▷ Iterative process until termination condition is met
4: tn← select_task_node(G,LLM) ▷ Monitor task execution and select the next task node
5: ag ← initialize_action_graph(tn, T, LLM) ▷ Generate codes based on task node
6: for i = 1 to M do ▷ Execute up to M iterations or until success
7: R← execute(ag) ▷ Execute the action graph and return runtime results
8: if is_success(R) then ▷ Determine if execution success or not
9: break ▷ Exit loop if the action is successful

10: end if
11: ag ← refine(tn,R, LLM) ▷ Refine the action graph based on runtime result
12: end for
13: tn← update_node_state(tn, ag,R) ▷ Update the state of the task node
14: G.task_graph← update_task_graph(G, tn) ▷ Integrate updates into the task graph
15: end while
16: G∗ ← finalize_graph(G) ▷ Save optimized graph
17: return G∗

During execution, a task is marked as Success if the corresponding code executes successfully. If
execution fails, Data Interpreter leverages LLMs to debug the code based on runtime errors, making
up to a predefined number of attempts to resolve the issue. If the problem persists after the set
attempts, the task node is flagged as Failure, as shown in Figure 3.

Task
1

Task
2

Task
3.1

Task
3.2

Task
3.3

Task
4

Task
1

Task
2

Task
3.1

Task
3.2

Task
3.3

Task
4.1

Task
4.2

Task
4.3

Task
5

Success Failure Not executed Updated

Task graph optimization
in case of execution failure

Figure 3: Task Graph refinement of Data Interpreter. Task graph refinement for the failed task.
After task execution, Task 3.3 fails. The refined task graph integrates existing success tasks, replaces
task 3.3 with the updated task 3.3, and introduces new tasks 4.1, 4.2, 4.3 and 5.

For failed tasks, Data Interpreter regenerates the task graph based on current episodic memory and the
execution context, as depicted in Figure 3. Given the task dependencies, the regenerated task graph
is sorted topologically and compared to the original using a prefix matching algorithm (Waldvogel,
2000) to identify differences in task descriptions. This comparison helps identify divergence points
(forks), and the final output includes all unchanged tasks before the fork, along with any new or
modified tasks after the fork. This approach allows Data Interpreter to efficiently locate the parent
node of the failed task and seamlessly integrate the newly generated task and its subsequent tasks
into the original graph. It directly leverages the completed memory of all dependent tasks during
re-execution, avoiding unnecessary code regeneration or redundant executions.

By employing continuous monitoring and iterative updates, Data Interpreter avoids the inefficiencies
associated with generating all tasks upfront. This dynamic adjustment of both the code and planning
levels based on task outcomes enables modifications at varying levels of granularity, significantly
improving overall efficiency.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3 ACTION GRAPH: PROGRAMMABLE NODE GENERATION

Action Node. An action node, as introduced in Section 3.1, represents an executable code snippet
that encapsulates the computational logic required for task execution. Each action node can encompass
data transformations, function calls, or other relevant operations, making it the fundamental unit
of execution within the action graph. It integrates both external functions and operators invoked
from various tools, as well as non-tool logic derived from libraries such as Pandas and NumPy. By
combining tool-based operations and library functions into a single executable code snippet, action
nodes ensure uniform and flexible execution across different tasks.

Tool Selection. Effective tool selection and integration, particularly in the context of task-specific
requirements, play a crucial role in the success of task execution, as noted in prior research (Qian
et al., 2023; Yuan et al., 2024; Huang et al., 2024a; Liu et al., 2023). In Data Interpreter, we leverage
task dependencies to enrich the task-specific context, thereby enhancing the decision-making process
for tool selection and code generation.

During the execution of each task pi ∈ G, where G represents the task graph, Data Interpreter first
retrieves suitable tools before generating the associated code. The task metadata q(pi), which includes
textual information such as task descriptions and types as well as graph-structured task dependencies,
is used as a query to retrieve a list of candidate tools from the available toolset T = {t1, t2, . . . , tn}.
The model ranks these tools by evaluating their semantic relevance to the task using their functionality
schemas S(tj). This produces a ranked list R(pi, T) = {r1, r2, . . . , rn}, where each tool tj is ranked
according to its suitability for the task. From this ranked list, Data Interpreter selects the top-k tools,
denoted as Tk(pi) ⊆ T , to assist in executing task pi. Importantly, Data Interpreter can bypass tool
selection when no suitable tools are found, relying solely on the LLM to generate appropriate code.
This flexibility ensures that the system can adapt to a wide range of task requirements without being
restricted by tool availability.

Programmable Node Generation. Unlike conventional LLM-based agent frameworks that
invoke tools through isolated function calls, Data Interpreter generates comprehensive code snippets
that seamlessly integrate selected tools within the broader logic of the task. Based on the tools
selected from Tk(pi), Data Interpreter dynamically incorporates them into the code, aligning their
functionality with the specific task context. This approach allows tools to function in the same manner
as standard libraries like NumPy, enabling adaptive tool usage that adjusts to evolving task conditions.
For example, in the deployment workflow, the CatCount tool dynamically utilizes its fit and transform
functions depending on the task context, as illustrated in Figure 6 in the Appendix.

Our programmable node generation approach not only ensures that tools are used in a context-aware
and task-specific manner but also facilitates the seamless integration of domain-specific expertise. By
allowing real-time adaptability and optimization of tool usage, Data Interpreter significantly enhances
the efficiency and robustness of task execution, representing a novel contribution to LLM-based task
automation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

InfiAgent-DABench: InfiAgent-DABench (Hu et al., 2024) evaluates LLMs in data analysis tasks
across 257 challenges from 52 CSV files, covering 7 categories: summary statistics, feature engineer-
ing, correlation analysis, machine learning, distribution analysis, outlier detection, and comprehensive
data preprocessing. We used accuracy as the evaluation metric. Data Interpreter was primarily evalu-
ated with gpt-4o and gpt-4-0613 (temperature=0), and compared against XAgent (Team, 2023),
AutoGen (Wu et al., 2023b), as well as other baselines reported from (Hu et al., 2024).

ML-Benchmark: To evaluate the performance of solving real-world machine learning challenges,
We collected 8 datasets from Kaggle for ML-Benchmark (details in Table 13. We also detailed
the evaluation metrics on ML-Benchmark in Appendix D.2. Baselines included XAgent, AutoGen,
OpenInterpreter (Lucas, 2023), TaskWeaver (Qiao et al., 2023), and OpenDevin (Wang et al., 2024b).
As default, we used gpt-4-1106-preview with temperature set to 0.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance comparisons on InfiAgent-DABench. Results marked with an asterisk (*)
are reported by Hu et al. (2024). Rows marked with a dagger symbol (†) indicate the w/o Agent
baseline for comparison. The ∆ column represents the accuracy improvement of the agent framework
compared to the w/o agent setups. The best results are highlighted in bold.

Agent Framework Model Accuracy (%) ∆ (%)

w/o Agent

gemini-pro 56.42* -
gpt-3.5-turbo-0613 60.70* -
gpt-4-0613 78.99*† -
gpt-4-0613 75.21 -
gpt-4o 75.92† -

XAgent gpt-4-0613 47.53* -31.46
AutoGen gpt-4-0613 71.49 -7.50
Data Interpreter gpt-4-0613 73.55 -5.44
Data Interpreter gpt-4o 94.93 +19.01

Table 2: Performance comparisons on ML-Benchmark. This table reports the comprehensive score
of each task. “WR”, “BCW”, “ICR”, “SCTP”, and “SVPC” represent “Wine recognition”, “Breast
cancer wisconsin”, “ICR - Identifying age-related conditions”, “Santander customer transaction
prediction”, and “Santander value prediction challenge”, respectively.

Model / Task WR BCW Titanic House Prices SCTP ICR SVPC Avg. Cost ($)

AutoGen 0.96 0.99 0.87 0.86 0.83 0.77 0.73 0.86 -
OpenInterpreter 1.00 0.93 0.86 0.87 0.68 0.58 0.44 0.77 -
TaskWeaver 1.00 0.98 0.63 0.68 0.34 0.74 0.48 0.69 0.37
XAgent 1.00 0.97 0.42 0.42 0 0.34 0.01 0.45 20.09
OpenDevin 0.98 0.98 0.87 0.94 0.93 0.73 0.73 0.88 3.01
Data Interpreter 0.98 0.99 0.91 0.96 0.94 0.96 0.89 0.95 0.84

Open-ended task benchmark: To verify the capability for dynamic data handling, we also crafted
the Open-ended task benchmark comprising 20 tasks. Details about datasets are in the Appendix D.1.
We adopted AutoGen and OpenInterpreter and OpenDevin as baselines with average results reported
over three runs. We adopted gpt-4-1106-preview with temperature set to 0.

MATH: We evaluated 4 categories (C.Prob, N.Theory, Prealg, Precalc) of level-5 problems from the
MATH dataset (Hendrycks et al., 2021), following the setting of (Wu et al., 2023c). Level-5 problems
were chosen for their complexity and the challenges in reliable numeric interpretation. We used
MathChat (Wu et al., 2023c) and AutoGen (Wu et al., 2023b) as baselines for the MATH benchmark.

4.2 MAIN RESULT

Performance on InfiAgent-DABench. As demonstrated in Table 1, with gpt-4-0613, Data
Interpreter achieved a score of 73.55, outperforming AutoGen by 2.9%. Notably, it still did not surpass
the performance of directly invoking the LLM. We found this is primarily due to the growing context
overhead in the problem-solving process, where the context length exceeds the maximum window
size of gpt-4-0613, leading to task failures. However, by incorporating LLMs like gpt-4o with
longer context windows, Data Interpreter demonstrated outstanding performance, improving results
by 25% compared to direct LLM inference. This indicates that Data Interpreter significantly enhances
the LLM’s multi-step reasoning capabilities across a wide range of data analysis tasks, especially as
the number of interaction rounds increases and the context overhead grows.

Performance on ML-Benchmark. As shown in Table 2, Data Interpreter achieved a comprehensive
score of 0.95 across tasks, outperforming AutoGen (0.86) and OpenDevin (0.88) by 10.3% and 7.9%,
respectively. It was the only framework to achieve a score above 0.9 on tasks such as Titanic, House
Prices, SCTP, and ICR. Additionally, the Data Interpreter demonstrated a significant advantage over
other frameworks, with improvements of 31.5% and 21.9% over OpenDevin on the ICR and SVPC

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Performance comparisons on Open-ended task benchmark. This table reports the
completion rate of each task. The tested tasks include “OCR" (Optical Character Recognition),
“WSC" (Web Search and Crawling), and “ER" (Email Reply), “WPI" (Web Page Imitation), “IBR"
(Image Background Removal), “T2I" (Text-to-Image), “I2C" (Image-to-Code) and “MGG" (Mini
Game Generation).

Model / Task OCR WSC ER WPI IBR T2I I2C MGG Avg. Cost ($)

AutoGen 0.67 0.65 0.10 0.26 1.00 0.10 0.20 0.67 0.46 -
OpenInterpreter 0.50 0.30 0.10 0.36 1.00 0.50 0.25 0.20 0.40 -
OpenDevin 0.60 0.87 0.10 0.16 1.00 0.50 0.80 0.90 0.60 1.41
Data Interpreter 0.85 0.96 0.98 1.00 1.00 1.00 1.00 0.93 0.97 0.41

tasks, respectively. Notably, Data Interpreter solved the tasks more efficiently, achieving an average
score of $ 0.84 while operating at only 27.9% of OpenDevin’s cost. Data Interpreter consistently
completed all mandatory processes across datasets, maintaining superior performance. Further details
can be found in Table 6 in the Appendix.

Performance on Open-ended tasks. Table 3 illustrates that the Data Interpreter achieved a
completion rate of 0.97, marking a substantial 110.8% improvement compared to AutoGen and 61.7%
improvement compared to OpenDevin. In OCR-related tasks, the Data Interpreter maintained an
average completion rate of 0.85, outperforming AutoGen, OpenInterpreter OpenDevin by 26.8%,
70.0% and 41.7%, respectively. In tasks requiring multiple steps and utilizing multimodal tools/in-
terfaces, such as WPI, I2C, and T2I, the Data Interpreter emerged as the sole method to execute all
steps. Baseline frameworks failed to log in and obtain the status for the ER task, resulting in a lower
completion rate. In contrast, Data Interpreter dynamically adjusted to task requirements, achieving a
completion rate of 0.97.

Performance on math problem. As illustrated in the Figure 4, Data Interpreter achieved the best
results across all tested categories, reaching 0.82 accuracy in the N.Theory category, marking a 0.16
improvement over the performance of AutoGen. In the most challenging category, Precalc, Data
Interpreter obtained an accuracy of 0.29, an increase of 0.17 compared to AutoGen. On average, our
Data Interpreter showed 26.5% relative improvement compared to AutoGen.

Figure 4: Performance on the MATH dataset. We evaluate all the problems with difficulty level 5
from 4 categories of the MATH dataset.

4.3 ABLATION STUDY

Ablation on core modules. We conducted ablation experiments with three configurations on the
ML-Benchmark. First, we used ReAct (Yao et al., 2022) for code execution with simplified prompts,
followed by the addition of iterative graph refinement, and finally, programmable node generation was
introduced, using the Data Interpreter as the default. As shown in Table 4, iterative graph refinement
improved performance by 0.48, enhancing dataset preparation and real-time tracking. Programmable
node generation further boosted the comprehensive score by 10.6%, reaching 0.94. We detailed the
results in Table 12.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Ablation on core modules. Evaluated with Comprehensive Score on ML-Benchmark. “IGR"
stands for Iterative Graph Refinement, and “PNG" denotes Programmable Node Generation. “ICR",
“SCTP", and “SVPC" represent “ICR - Identifying age-related conditions", “Santander customer
transaction prediction", and “Santander value prediction challenge", respectively.

Code execution IGR PNG House Prices SCTP SVPC ICR Avg.

✓ 0.51 0.17 0.66 0.17 0.37
✓ ✓ 0.96 0.91 0.80 0.74 0.85
✓ ✓ ✓ 0.96 0.95 0.89 0.96 0.94

Figure 5: Evaluation on ML-Benchmark with different LLMs. Left: completion rate. Right:
comprehensive score.

Ablation on different base LLMs. Based on GPT-4o and GPT-4o-mini, Data Interpreter shows
further improvement in task completion across a wide range of tasks, as illustrated in Figure 5.
In machine learning tasks, LLMs like Qwen-72B-Chat (Bai et al., 2023) and Mixtral-8x7B (Jiang
et al., 2024) performed comparably to GPT-3.5-Turbo, while smaller LLMs experienced performance
degradation. Our Data Interpreter handled data loading and analysis effectively with smaller models
but had limitations with tasks requiring advanced coding proficiency. Mixtral-8x7B achieved high
completion rates in three tasks but faced challenges in the WSC task. Smaller LLMs also encountered
execution failures due to restricted coding abilities when acquiring images or parsing webpage results,
as shown in Figure 5.

5 CONCLUSION

In this work, we present the Data Interpreter, an LLM-based agent designed to tackle data science
challenges via hierarchical graph representation. Our framework continuously monitors data changes
and adapts to dynamic environments through iterative task refinement and graph optimization. It
enhances data analysis and machine learning performance, and improves reasoning capabilities
through hierarchical decomposition, fine-grained execution, validation, and iterative modifications.
Combined with the LLM’s planning and coding abilities, this approach effectively solves tasks
requiring complex multi-step reasoning. Extensive evaluations demonstrate that our Data Interpreter
outperforms various open-source frameworks in machine learning tasks, mathematical problems, and
real-world applications, marking a significant advancement in the capabilities of LLM-based agents
for data science.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report, 2023.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda,
Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. arXiv preprint, 2023.

Sebastian Bordt, Ben Lengerich, Harsha Nori, and Rich Caruana. Data science with llms and
interpretable models, 2024.

Jiaqi Chen, Yuxian Jiang, Jiachen Lu, and Li Zhang. S-agents: self-organizing agents in open-ended
environment, 2024.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks, 2022.

Tijl De Bie, Luc De Raedt, José Hernández-Orallo, Holger H Hoos, Padhraic Smyth, and Christo-
pher KI Williams. Automating data science. Communications of the ACM, 65(3):76–87, 2022.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In ICML, 2023.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Minlie Huang, Nan Duan,
and Weizhu Chen. ToRA: A tool-integrated reasoning agent for mathematical problem solving.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=Ep0TtjVoap.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Automated
data science by empowering large language models with case-based reasoning. arXiv preprint
arXiv:2402.17453, 2024.

Md Mahadi Hassan, Alex Knipper, and Shubhra Kanti Karmaker Santu. Chatgpt as your personal
data scientist, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.

Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated data
science: Introducing caafe for context-aware automated feature engineering, 2023.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
multi-agent collaborative framework. In The Twelfth International Conference on Learning
Representations, 2023.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli Ma, Guoyin Wang, Xuwu Wang, Jing Su,
Jingjing Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Jiwei Li, Kun Kuang, Yang Yang, Hongxia Yang,
and Fei Wu. Infiagent-dabench: Evaluating agents on data analysis tasks, 2024.

Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc, Daniel Zeng, Percy Liang, and Jure
Leskovec. Prodigy: Enabling in-context learning over graphs, 2023a.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Benchmarking large language models as ai
research agents, 2023b.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou, Xingshan
Zeng, Yasheng Wang, Lifeng Shang, et al. Planning, creation, usage: Benchmarking llms for
comprehensive tool utilization in real-world complex scenarios, 2024a.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey, 2024b.

11

https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: methods, systems,
challenges. Springer Nature, 2019.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts, 2024.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
Matei Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into
self-improving pipelines, 2023.

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,
Shaoguang Mao, et al. Taskmatrix. ai: Completing tasks by connecting foundation models with
millions of apis. Intelligent Computing, 3:0063, 2024.

Siyi Liu, Chen Gao, and Yong Li. Large language model agent for hyper-parameter optimization.
arXiv preprint arXiv:2402.01881, 2024.

Zhaoyang Liu, Zeqiang Lai, Zhangwei Gao, Erfei Cui, Zhiheng Li, Xizhou Zhu, Lewei Lu, Qifeng
Chen, Yu Qiao, Jifeng Dai, et al. Controlllm: Augment language models with tools by searching
on graphs, 2023.

Zhengying Liu, Adrien Pavao, Zhen Xu, Sergio Escalera, Fabio Ferreira, Isabelle Guyon, Sirui Hong,
Frank Hutter, Rongrong Ji, Julio CS Jacques Junior, et al. Winning solutions and post-challenge
analyses of the chalearn autodl challenge 2019. TPAMI, 2021.

Killian Lucas. GitHub - KillianLucas/open-interpreter: A natural language interface for computers —
github.com. https://github.com/KillianLucas/open-interpreter, 2023.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based rein-
forcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118,
2023.

Felix Mohr, Marcel Wever, and Eyke Hüllermeier. Ml-plan: Automated machine learning via
hierarchical planning. Machine Learning, 2018.

Yousef Mubarak and Ardiansyah Koeshidayatullah. Hierarchical automated machine learning
(automl) for advanced unconventional reservoir characterization. Scientific Reports, 2023.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models,
2023.

Cheng Qian, Chi Han, Yi Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. Creator: Tool creation for
disentangling abstract and concrete reasoning of large language models. In Findings of EMNLP,
2023.

Bo Qiao, Liqun Li, Xu Zhang, Shilin He, Yu Kang, Chaoyun Zhang, Fangkai Yang, Hang Dong, Jue
Zhang, Lu Wang, Minghua Ma, Pu Zhao, Si Qin, Xiaoting Qin, Chao Du, Yong Xu, Qingwei Lin,
Saravan Rajmohan, and Dongmei Zhang. Taskweaver: A code-first agent framework, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. NeurIPS, 2024.

Juergen Schmidhuber. Exploring the predictable. In Advances in evolutionary computing: theory
and applications, pp. 579–612. Springer, 2003.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. NeurIPS, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning, 2024.

12

https://github.com/KillianLucas/open-interpreter

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xiangru Tang, Qiao Jin, Kunlun Zhu, Tongxin Yuan, Yichi Zhang, Wangchunshu Zhou, Meng Qu,
Yilun Zhao, Jian Tang, Zhuosheng Zhang, et al. Prioritizing safeguarding over autonomy: Risks of
llm agents for science, 2024.

XAgent Team. Xagent: An autonomous agent for complex task solving. https://github.com/
OpenBMB/XAgent, 2023.

Lukas Vierling, Jie Fu, and Kai Chen. Input conditioned graph generation for language agents, 2024.
URL https://arxiv.org/abs/2406.11555.

Marcel Waldvogel. Fast longest prefix matching: algorithms, analysis, and applications. Doctoral
dissertation, SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH, 2000.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents, 2024a.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Opendevin: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024b.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-world
multi-task agents. In NeurIPS, 2023b.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin, Zhaofeng
He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-world multi-task
agents with memory-augmented multimodal language models. arXiv preprint arXiv:2311.05997,
2023c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS,
2022.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Vi-
sual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023a.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework, 2023b.

Yiran Wu, Feiran Jia, Shaokun Zhang, Qingyun Wu, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat
Lee, Richard Peng, and Chi Wang. An empirical study on challenging math problem solving with
gpt-4, 2023c.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. NeurIPS, 2024.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R. Fung, Hao Peng, and Heng Ji. Craft: Customizing
llms by creating and retrieving from specialized toolsets, 2023.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Ren Kan, Dongsheng Li, and
Deqing Yang. Easytool: Enhancing llm-based agents with concise tool instruction, 2024.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, Xiaojun Chang, Junge Zhang, Feng Yin, Yitao Liang, and
Yaodong Yang. ProAgent: Building proactive cooperative agents with large language models. In
AAAI, 2024a.

13

https://github.com/OpenBMB/XAgent
https://github.com/OpenBMB/XAgent
https://arxiv.org/abs/2406.11555

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleashing the
power of large language models in solving machine learning tasks, 2024b.

Wenqi Zhang, Yongliang Shen, Weiming Lu, and Yueting Zhuang. Data-copilot: Bridging billions of
data and humans with autonomous workflow. arXiv preprint arXiv:2306.07209, 2023.

Yuge Zhang, Qiyang Jiang, Xingyu Han, Nan Chen, Yuqing Yang, and Kan Ren. Benchmarking data
science agents, 2024c.

Xiawu Zheng, Yang Zhang, Sirui Hong, Huixia Li, Lang Tang, Youcheng Xiong, Jin Zhou, Yan
Wang, Xiaoshuai Sun, Pengfei Zhu, et al. Evolving fully automated machine learning via life-long
knowledge anchors. TPAMI, 2021.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia,
Linqi Song, Mingjie Zhan, et al. Solving challenging math word problems using gpt-4 code
interpreter with code-based self-verification, 2023.

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R Ashley, Róbert Csordás, Anand Gopalakr-
ishnan, Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vincent Herrmann, Kazuki Irie, et al.
Mindstorms in natural language-based societies of mind, 2023.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jurgen
Schmidhuber. Language agents as optimizable graphs, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A LIMITATIONS

Insufficient diversity and complexity. Our novel framework Data Interpreter outperforms other
open-source frameworks on machine learning problems, yet are limited to entry-level Kaggle datasets
and benchmarked against the capabilities of a junior human data scientist. These datasets are relatively
small (under 500MB), with a limited number of columns (in the hundreds) and rows (in the tens of
thousands), and mainly involve classification and regression tasks (as described in Appendix F.2).
However, we have not yet evaluated our Data Interpreter on more challenging datasets involving
large-scale data or complex tasks such as time series analysis, multi-label classification, or multi-
table problems. In our future work, we plan to expand our dataset collection to include these types
of problems to thoroughly evaluate our framework’s performance and capabilities. Precise self-
improvement. Human data scientists usually perform multiple experiments on a dataset, focusing on
pipeline optimization and hyperparameter tuning Liu et al. (2021); Hutter et al. (2019). Our Data
Interpreter integrates experience to enhance the node generation quality. The experience primarily
involves tracking the progress of tasks and code. However, it does not use numerical feedback
from multiple experiences to develop and refine specific strategies, such as increasing the learning
rate or using an ensemble technique, to improve the performance continuously for a given dataset,
thus lacking the capability for automatic self-improvement. In the future, we aim to address this
limitation by developing mechanisms that allow our model to conduct multiple experiments and
derive insights from the numerical feedback for a given dataset on its own. DAG constraint detection
mechanism. Our current implementation does not include an explicit DAG constraint detection
mechanism, we rely on the LLM’s inherent ability to avoid cycles during task planning, as observed
in our experiments. However, such mechanisms could enhance robustness in handling less structured
domains or highly complex dependencies. Incorporating cycle detection and resolution strategies in
future iterations would ensure improved reliability and adaptability across diverse applications. Full-
scale evaluation on mathematical problems. For the MATH problem, our experiments are limited
to level-5 problems, primarily due to the budget constraints, we will explore more cost-effective
strategies for evaluating our Data Interpreter on a wider range of mathematical problems in future
studies.

B BROADER IMPACT

Our work has the potential to significantly reduce the costs associated with a wide range of customized
data science tasks, empowering professionals in the field to enhance their automation capabilities
and efficiency. However, the flexibility of tools integration, while convenient for local code snippets
integration, comes with potential risks. For instance, if users provide malicious code intended for
unauthorized system penetration or web attacks, it could lead to security vulnerabilities. In our
experiments, we mitigate this risk by prompting our Data Interpreter to check the codes before
generating new codes. Additional saftguards against these risks include collaborating exclusively
with LLMs that adhere to robust safety policies.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C IMPLEMTATION DETAILS

C.1 PROGRAMMABLE NODE GENERATION

We illustrate the process of node generation process with tools.

Figure 6: Node generation pipeline in Data Interpreter. Tools are initially selected based on task
metadata classification, followed by tools organization process which combines multiple tools as
necessary to accomplish the tasks.

C.1.1 AN EXAMPLE OF TOOL SCHEMA

Below is an example of tool schema we design in our framework.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Tool schema for a feature engineering tool

type: class
description: Add value counts of a categorical column as new feature.
methods:
__init__:

type: function
description: Initialize self.
parameters:

properties:
col:
type: str
description: Column for value counts.

required:
- col

fit:
type: function
description: Fit a model to be used in subsequent transform.
parameters:

properties:
df:
type: pd.DataFrame
description: The input DataFrame.

required:
- df

fit_transform:
type: function
description: Fit and transform the input DataFrame.
parameters:

properties:
df:
type: pd.DataFrame
description: The input DataFrame.

required:
- df

returns:
- type: pd.DataFrame

description: The transformed DataFrame.
transform:
type: function
description: Transform the input DataFrame with the fitted model.
parameters:

properties:
df:
type: pd.DataFrame
description: The input DataFrame.

required:
- df

returns:
- type: pd.DataFrame

description: The transformed DataFrame.

C.1.2 TOOLS DETAILS

The tools of our Data Interpreter are listed in Table 5

C.1.3 TOOL USAGE PROMPTS

We use two types of prompts for tool utilization. For open-ended tasks, we use zero-shot prompts,
and for machine-learning tasks, we use one-shot prompts as illustrated below.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Tools of our Data Interpreter.

Tool name Tool type Functions Domain

FillMissingValue Class 4 Machine learning
MinMaxScale Class 4 Machine learning
StandardScale Class 4 Machine learning
MaxAbsScale Class 4 Machine learning
LabelEncode Class 4 Machine learning
OneHotEncode Class 4 Machine learning
OrdinalEncode Class 4 Machine learning
RobustScale Class 4 Machine learning
CatCount Class 4 Machine learning
TargetMeanEncoder Class 4 Machine learning
KFoldTargetMeanEncoder Class 4 Machine learning
CatCross Class 5 Machine learning
SplitBins Class 4 Machine learning
GeneralSelection Class 4 Machine learning
TreeBasedSelection Class 4 Machine learning
VarianceBasedSelection Class 4 Machine learning
PolynomialExpansion Class 4 Machine learning

GPTvGenerator Class 3 Multimodal
SDEngine Class 5 Multimodal

scrape_web_playwright Function 1 Common

Zero-shot tool usage prompt

Instruction
Write complete code for ’Current Task’. And avoid duplicating code from finished tasks

, such as repeated import of packages, reading data, etc.
Specifically, {tool_type_usage_prompt}

Capabilities
- You can utilize pre-defined tools in any code lines from ’Available Tools’ in the

form of Python Class.
- You can freely combine the use of any other public packages, like sklearn, numpy,

pandas, etc..

Available Tools (can be empty):
Each Class tool is described in JSON format. When you call a tool, import the tool

first.
{tool_schemas}

Constraints:
- Ensure the output new code is executable in the same Jupyter notebook with the

previous tasks code has been executed.
- Always prioritize using pre-defined tools for the same functionality.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

One-shot tool usage prompt

Capabilities
- You can utilize pre-defined tools in any code lines from ’Available Tools’ in the

form of Python Class.
- You can freely combine the use of any other public packages, like sklearn, numpy,

pandas, etc..

Available Tools:
Each Class tool is described in JSON format. When you call a tool, import the tool

from its path first.
{tool_schemas}

Output Example:
when the current task is "do data preprocess, like fill missing value, handle outliers

, etc.", the code can be like:
‘‘‘python
Step 1: fill missing value
Tools used: [’FillMissingValue’]
from metagpt.tools.libs.data_preprocess import FillMissingValue

train_processed = train.copy()
test_processed = test.copy()
num_cols = train_processed.select_dtypes(include=’number’).columns.tolist()
if ’label’ in num_cols:

num_cols.remove(’label’)
fill_missing_value = FillMissingValue(features=num_cols, strategy=’mean’)
fill_missing_value.fit(train_processed)
train_processed = fill_missing_value.transform(train_processed)
test_processed = fill_missing_value.transform(test_processed)

Step 2: handle outliers
for col in num_cols:

low, high = train_processed[col].quantile([0.01, 0.99])
train_processed[col] = train_processed[col].clip(low, high)
test_processed[col] = test_processed[col].clip(low, high)

‘‘‘end

Constraints:
- Ensure the output new code is executable in the same Jupyter notebook with the

previous tasks code has been executed.
- Always prioritize using pre-defined tools for the same functionality.
- Always copy the DataFrame before processing it and use the copy to process.

D EXPERIMENT DETAILS

D.1 DATASET

InfiAgent-DABench InfiAgent-DABench focuses on evaluating the data analysis capabilities of
agents. It comprises 257 data analysis problems, categorized into the following seven areas and
their combinations: summary statistics, feature engineering, correlation analysis, machine learning,
distribution analysis, outlier detection, and comprehensive data preprocessing. Each category includes
problems of varying difficulty levels. Below, we present some specific prompt cases to provide an
intuitive understanding of the task settings in InfiAgent-DABench.

InfiAgent-DABench prompt

1. category: [’Summary Statistics’] , level: easy.
prompt: Please write a Python code snippet to Calculate the mean and standard

deviation of the abs_diffsel column. based on the following details: The task is
to { The mean and standard deviation should be calculated directly from the ’
abs_diffsel’ column. Do not remove any outliers or modify the data prior to
calculation. The mean and standard deviation should be computed directly from all
available data points. } and formatted as { @mean[mean_value] @std_dev[

std_dev_value] where "mean_value" is a positive float number, rounded to two
decimal places. where "std_dev_value" is a positive float number, rounded to two
decimal places.. The data is stored in a file saved in "InfiAgent/examples/DA-
Agent/data/da-dev-tables/ferret-Pitt-2-preinf-lib2-100_sitediffsel.csv", and the
difficulty level is easy.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

2. category: [’Feature Engineering’, ’Correlation Analysis’] , level: medium.
prompt: Please write a Python code snippet to Create a new feature called ’FamilySize’

by combining the ’SibSp’ and ’Parch’ columns, which represents the total number
of family members a passenger had aboard the Titanic. Then, find the correlation
coefficient between ’FamilySize’ and ’Survived’. based on the following details:
The task is to Create ’FamilySize’ by adding up ’SibSp’ and ’Parch’, then
calculate the Pearson correlation coefficient between ’FamilySize’ and ’Survived’.

and formatted as @correlation_coefficient[number] where "number" is the
calculated Pearson correlation coefficient between ’FamilySize’ and ’Survived’,
rounded to two decimal places.. The data is stored in a file saved in "InfiAgent/
examples/DA-Agent/data/da-dev-tables/titanic.csv", and the difficulty level is
medium.

3. category: [’Comprehensive Data Preprocessing’, ’Distribution Analysis’] , level:
hard.

prompt: Please write a Python code snippet to 2. Preprocess the dataset by handling
missing values in the "24-Hour Passes Purchased (midnight to 11:59 pm)" and "7-
Day Passes Purchased (midnight to 11:59 pm)" columns. Use the mean imputation
method to fill in the missing values. Then, analyze the distribution of the "
Trips over the past 24-hours (midnight to 11:59pm)" column before and after the
missing value imputation process. Evaluate if the imputation has significantly
affected the distribution and what implications it has on the dataset analysis.
based on the following details: The task is to Use the mean imputation method to
fill in missing values for both the "24-Hour Passes Purchased (midnight to 11:59
pm)" and "7-Day Passes Purchased (midnight to 11:59 pm)" columns. Then, calculate
the mean, median, standard deviation, skewness, and kurtosis for the "Trips over
the past 24-hours (midnight to 11:59pm)" column before and after imputation.

and formatted as @pre_mean[mean_before] @pre_median[median_before] @pre_sd[
sd_before] @pre_skewness[skew_before] @pre_kurtosis[kurt_before] @post_mean[
mean_after] @post_median[median_after] @post_sd[sd_after] @post_skewness[
skew_after] @post_kurtosis[kurt_after] where all variables represent the
corresponding statistical values calculated before (prefix: pre) and after (
prefix: post) the imputation, each rounded to two decimal places.. The data is
stored in a file saved in "InfiAgent/examples/DA-Agent/data/da-dev-tables/2014_q4
.csv", and the difficulty level is hard.

ML-Benchmark This dataset encompassed eight representative machine learning tasks categorized
into three difficulty levels, ranging from easy (level 1) to most complex (level 3). Each task was
accompanied by data, a concise description, standard user requirements, suggested steps, and metrics
(see Table 13 in the Appendix). For tasks labeled as “toy", the data was not divided into training and
test splits, which required the framework to perform data splitting during modeling.

Open-ended task benchmark To evaluate the ability to generalize to real-world tasks, we devel-
oped the Open-ended task benchmark, comprising 20 tasks. Each task required the framework to
understand user needs, break down complex tasks, and execute code. They delineated their require-
ments, foundational data or sources, steps for completion, and specific metrics. The scope was broad,
encompassing common needs like Optical Character Recognition (OCR), web search and crawling
(WSC), automated email replies (ER), web page imitation (WPI), text-to-image conversion (T2I),
image-to-HTML code generation (I2C), image background removal (IBR), and mini-game generation
(MGG). We showcase about these tasks in Figure 11, Figure 13, and Figure 14 in the Appendix.

MATH dataset The MATH dataset Hendrycks et al. (2021) comprises 12,500 problems, with 5,000
designated as the test set, covering various subjects and difficulty levels. These subjects include
Prealgebra (Prealg), Algebra, Number Theory (N.Theory), Counting and Probability (C.Prob),
Geometry, Intermediate Algebra, and Precalculus (Precalc), with problems categorized from levels
"1" to "5" based on difficulty. Following the setting of Wu et al. Wu et al. (2023c), we evaluated
four typical problem types (C.Prob, N.Theory, Prealg, Precalc), excluding level-5 geometry problems
from the test set.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.2 EVALUATION METRICS

In the MATH benchmark Hendrycks et al. (2021), accuracy served as the chosen evaluation metric,
aligning with the setting proposed in Wu et al. (2023c); Hendrycks et al. (2021).

For the ML-Benchmark, three evaluation metrics were utilized: completion rate (CR), normalized
performance score (NPS), and comprehensive score (CS). These metrics provided comprehensive
insights into the model’s performance and were defined as follows:

Completion rate (CR): In the task requirements description, there were T steps, and the task comple-
tion status of each step was denoted by a score st, with a maximum score smax of 2 and a minimum
score smin of 0. The task completion status categories were defined as follows: missing (score of 0),
fail (score of 0), success - non-compliant (score of 1), success-compliant (score of 2), and optional
step (not involved in scoring). To measure the completion level, we proposed a completion ratio
where the numerator was the sum of scores st for each step, and the denominator was the sum of the
maximum possible scores for all steps (smax × T):

CR =

∑T
t=1 st

smax × T
. (3)

Normalized performance score (NPS): In our ML-Benchmark, each task was associated with its
evaluation metric, which may vary between tasks, including metrics such as accuracy, F1, AUC and
RMSLE, etc. For metrics such as accuracy, F1, and AUC, we presented the raw values to facilitate
comparison across identical data tasks. We normalize all performance values s:

NPS =

1

1 + s
, if s is smaller the better

s, otherwise.
(4)

This transformation ensured that loss-based metrics like RMSLE are scaled from 0 to 1, with higher
normalized performance score values indicating better performance.

Comprehensive score (CS): To simultaneously assess both the completion rate of task requirements
and the performance of generated machine learning models, we calculated the weighted sum of CR
and NPS as follows:

CS = 0.5× CR + 0.5× NPS. (5)

Considering the lack of unified performance standards for open-ended tasks, we default to NPS = 0
and directly equate CS to CR.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D.3 ADDITIONAL RESULTS

D.3.1 ADDITIONAL RESULTS OF ML-BENCHMARK AND MATH DATASET

For a deeper understanding, Table 6 presents the results on the ML-benchmark for both Completion
Rate and Normalized Performance Score metrics. Additionally, Table 12 showcases the results of
ablation experiments on the ML-benchmark, focusing on the completion rate (CR) and normalized
performance score (NPS).

Table 6: Additional performance comparisons on ML benchmark. “WR", “BCW", “ICR",
“SCTP", and “SVPC" represent “Wine recognition"", “Breast cancer wisconsin", “ICR - Identifying
age-related conditions", “Santander customer transaction prediction", and “Santander value prediction
challenge", respectively. “Avg." denotes “Average".

Model / Task WR BCW Titanic House Prices SCTP ICR SVPC Avg.

Completion rate

AutoGen 0.92 1.00 0.92 0.83 0.83 0.83 0.83 0.88
OpenInterpreter 1.00 0.90 0.92 0.88 0.85 0.91 0.88 0.90
TaskWeaver 1.00 1.00 0.83 0.88 0.67 0.83 0.80 0.86
XAgent 1.00 1.00 0.83 0.83 0 0.67 0 0.62
OpenDevin 1.00 1.00 0.92 1.00 1.00 0.83 1.00 0.96
Data Interpreter 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Normalized performance score

AutoGen 1.00 0.97 0.82 0.88 0.82 0.71 0.63 0.83
OpenInterpreter 1.00 0.96 0.81 0.87 0.52 0.25 0 0.63
TaskWeaver 1.00 0.96 0.43 0.49 0 0.65 0.17 0.53
XAgent 1.00 0.94 0 0 0 0 0 0.28
OpenDevin 0.96 0.96 0.81 0.87 0.86 0.62 0.45 0.79
Data Interpreter 0.96 0.99 0.82 0.91 0.89 0.91 0.77 0.89

Table 7: Additional performance comparisons on MATH dataset. “Avg." and “Std." denotes
“Average", “Standard Deviation" respectively.

Category MathChat AutoGen
Data Interpreter

Avg. Trial1 Trail2 Trail3 Std.(%)

C.Prob 0.52 0.59 0.68 0.70 0.66 0.68 2.05
N.Theory 0.60 0.66 0.82 0.81 0.82 0.82 0.99
Prealg 0.60 0.63 0.74 0.73 0.75 0.75 1.20
Precalc 0.19 0.12 0.29 0.28 0.30 0.29 1.13

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D.4 OVERHEAD ANALYSIS

We compared our token cost (average per task) and inference time (average per task) across the
ML-Benchmark, Open-ended Task Benchmark, MATH Dataset, and InfriAgent-DABench, while
also reporting our performance. Our framework demonstrates a state-of-the-art performance with
competitive efficiency.

Table 8: Overhead analysis on MATH Dataset.“Cost" represents the total cost in USD, “Time"
indicates the total execution time in seconds, “Avg." denotes “Average".

Model / Metric Cost ($)↓ Time (s)↓ Accuracy↑

AutoGen 0.242 120.99 0.500
Data Interpreter 0.336 211.57 0.633

Table 9: Overhead analysis on InfriAgent-DABench.“Cost" represents the total cost in USD,
“Time" indicates the total execution time in seconds, “Avg." denotes “Average".

Model / Metric Cost ($)↓ Time (s)↓ Accuracy↑

AutoGen (GPT-4o) 0.112 42.42 88.72
AutoGen (GPT-4-0613) 0.423 45.69 71.49
Data Interpreter (GPT-4o) 0.017 49.44 94.93
Data Interpreter (GPT-4-0613) 0.311 51.09 73.55

On specific domains like MATH Dataset (See Table 8) and InfriAgent-DABench (See Table 9), Data
Interpreter consistently shows superior accuracy (63.3% and 94.93% respectively) while maintaining
competitive efficiency, as demonstrated in Table 8 and Table 9. Notably, on InfriAgent-DABench,
our approach achieves better performance with lower cost (0.017 USD vs. 0.112 USD) compared to
AutoGen.

On ML-Benchmark (See Table 10), Data Interpreter achieves the highest comprehensive score (0.95)
among all frameworks, though with moderate cost (0.84 USD) and inference time (237.31s), as
shown in table 10. While frameworks like OpenInterpreter achieve lower costs (0.21 USD) through
one-time code generation, they show inferior performance (0.77).

In Table 11, for open-ended tasks, Data Interpreter significantly outperforms baselines with a
comprehensive score of 0.953, maintaining reasonable cost (0.34 USD) compared to OpenDevin
(1.41 USD) and AutoGen (0.30 USD).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 10: Overhead analysis on ML Benchmark. “SCTP", and “SVPC" represent “ICR - Identifying
age-related conditions", “Santander customer transaction prediction", and “Santander value prediction
challenge", respectively. “Cost" represents the total cost in USD, “Time" indicates the total execution
time in seconds, “Avg." denotes “Average".

Model / Task Titanic House ICR SCTP SVPC Avg.

Cost ($)↓

AutoGen 0.08 0.25 0.19 0.48 0.58 0.32
OpenInterpreter 0.26 0.15 0.27 0.18 0.21 0.21
OpenDevin 2.66 3.01 3.35 3.24 2.78 3.01
TaskWeaver 0.35 0.38 0.36 0.29 0.48 0.37
XAgent 21.15 17.16 27.81 14.12 20.23 20.09
Data Interpreter 0.65 0.84 0.76 0.54 1.41 0.84

Time (s)↓

AutoGen 124.71 84.11 136.91 280.60 244.04 174.07
OpenInterpreter 116.66 132.00 170.00 239.00 296.00 190.73
OpenDevin 164.00 133.00 148.00 282.00 212.00 187.80
TaskWeaver 109.76 279.25 151.97 182.13 119.62 168.55
XAgent 5400.00 5107.00 5400.00 6023.00 9000.00 6186.00
Data Interpreter 168.01 193.21 184.77 244.39 396.17 237.31

Comprehensive Score↑

AutoGen 0.87 0.86 0.83 0.77 0.73 0.86
OpenInterpreter 0.86 0.87 0.68 0.58 0.44 0.77
OpenDevin 0.87 0.94 0.93 0.73 0.73 0.88
TaskWeaver 0.63 0.68 0.34 0.74 0.48 0.69
XAgent 0.42 0.42 0.00 0.34 0.01 0.45
Data Interpreter 0.91 0.96 0.94 0.96 0.89 0.95

Table 11: Overhead comparison on Open-ended Tasks. “OCR", “WSC", “WPI", and “IBR"
represent “Optical Character Recognition", “Web Search and Crawling", “Web Page Imitation", and
“Image Background Removal", respectively. “Cost" represents the total cost in USD, “Time" indicates
the total execution time in seconds, “Avg." denotes “Average".

Model / Task OCR WSC WPI IBR Avg.

Cost ($)↓

AutoGen 0.10 0.18 0.43 0.48 0.30
OpenInterpreter 0.28 0.08 0.15 0.07 0.15
OpenDevin 1.27 1.88 1.26 1.24 1.41
Data Interpreter 0.275 0.69 0.23 0.18 0.34

Time (s)↓

AutoGen 68.85 57.28 154.46 79.26 90.05
OpenInterpreter 133.00 109.00 102.00 68.00 103.00
OpenDevin 190.00 196.00 94.00 146.00 156.50
Data Interpreter 77.00 293.00 65.00 34.00 117.25

Comprehensive Score↑

AutoGen 0.67 0.65 0.26 1.00 0.65
OpenInterpreter 0.50 0.30 0.36 1.00 0.54
OpenDevin 0.60 0.87 0.16 1.00 0.66
Data Interpreter 0.85 0.96 1.00 1.00 0.95

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D.4.1 ABLATION STUDY

Here we provide detailed ablation study results on core modules.

Table 12: Ablation on core modules. Evaluated with CR, NPS and CS on ML-Benchmark. “IGR"
stands for Iterative Graph Refinement, and “PNG" denotes Programmable Node Generation. “ICR",
“SCTP", and “SVPC" represent “ICR - Identifying age-related conditions", “Santander customer
transaction prediction", and “Santander value prediction challenge", respectively.

Code execution IGR PNG House Prices SCTP SVPC ICR Avg.

Completion rate

✓ 0.58 0.33 0.67 0.33 0.48
✓ ✓ 1.00 1.00 0.92 0.88 0.95
✓ ✓ ✓ 1.00 1.00 1.00 1.00 1.00

Normalized performance score

✓ 0.43 0 0.64 0 0.27
✓ ✓ 0.91 0.82 0.68 0.60 0.75
✓ ✓ ✓ 0.91 0.89 0.77 0.91 0.87

Comprehensive score

✓ 0.51 0.17 0.66 0.17 0.37
✓ ✓ 0.96 0.91 0.80 0.74 0.85
✓ ✓ ✓ 0.96 0.95 0.89 0.96 0.94

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E ADDITIONAL EXAMPLES

E.1 AN EXAMPLE OF TASK GRAPH

Here is the prompt used to generate the task graph.

Prompt for task graph generator

PLAN_PROMPT = """
Context:
{context}
Available Task Types:
{task_type_desc}
Task:
Based on the context, write a plan or modify an existing plan of what you should do to

achieve the goal. A plan consists of one to {max_tasks} tasks.
If you are modifying an existing plan, carefully follow the instruction, don’t make

unnecessary changes. Give the whole plan unless instructed to modify only one task
of the plan.

If you encounter errors on the current task, revise and output the current single task
only.

Output a list of jsons following the format:
[

{{
"task_id": str = "unique identifier for a task in plan, can be an ordinal",
"dependent_task_ids": list[str] = "ids of tasks prerequisite to this task",
"instruction": "what you should do in this task, one short phrase or sentence

",
"task_type": "type of this task, should be one of Available Task Types",

}},
...

]
"""

Here is an example of a task graph. The user requirement is: “This is a dataset featuring sensor
readings from industrial machines, aimed at predicting machine operational status (normal or faulty).
Visualize the analysis and prediction results with high-quality graphs. Train data path: {train_path},
eval data path: {eval_path}."

Task graph example

[
{

"task_id": "1",
"dependent_task_ids": [],
"instruction": "Perform data loading and preliminary exploration of the train

and eval datasets. Fill missing values and apply MinMax scaling.",
"task_type": "eda"

},
{

"task_id": "2",
"dependent_task_ids": [

"1"
],
"instruction": "Conduct correlation analysis and provide descriptive

statistics.",
"task_type": "eda"

},
{

"task_id": "3",
"dependent_task_ids": [

"1"
],
"instruction": "Perform outlier detection using Isolation Forest to identify

and handle anomalies.",
"task_type": "eda"

},
{

"task_id": "4",
"dependent_task_ids": [

"2",

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

"3"
],
"instruction": "Execute feature engineering, including General Selection,

Target Mean Encoding, and Variance Based Selection to prepare features for
model training.",

"task_type": "feature_engineering"
},
{

"task_id": "5",
"dependent_task_ids": [

"4"
],
"instruction": "Split the data and train predictive models using Random Forest

and XGBoost.",
"task_type": "model_train"

},
{

"task_id": "6",
"dependent_task_ids": [

"5"
],
"instruction": "Evaluate the model’s performance and generate an evaluation

report.",
"task_type": "model_evaluate"

},
{

"task_id": "7",
"dependent_task_ids": [

"5",
"6"

],
"instruction": "Visualize the analysis and prediction results, including

classification reports and confusion matrix, and serialize the model.",
"task_type": "visualization"

}
]

E.2 PROMPTS FOR ACTION GRAPH

Data Interpreter utilizes LLMs to generate an action graph for each task. For each task node, we
maintain execution context and task graph state via plan status, and generate executable code using
the following prompt:

Prompt for action graph generator

PLAN_STATUS = """
Finished Tasks
code
‘‘‘python
{code_written}
‘‘‘

execution result
{task_results}

Current Task
{current_task}

Task Guidance
Write complete code for ’Current Task’. And avoid duplicating code from ’Finished

Tasks’, such as repeated import of packages, reading data, etc.
Specifically, {guidance}
"""

Action_Graph_Prompt = """
User Requirement
{project_requirement}

Plan Status
{plan_status}

Tool Info

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

{tool_info}

Constraints
- Take on Current Task if it is in Plan Status, otherwise, tackle User Requirement

directly.
- Ensure the output new code is executable in the same Jupyter notebook as the

previous executed code.
- Always prioritize using pre-defined tools for the same functionality.

Output
While some concise thoughts are helpful, code is absolutely required. Always output

one and only one code block in your response. Output code in the following format:
‘‘‘python
your code
‘‘‘
"""

E.3 EXAMPLE OF DYNAMIC TASK GRAPH REFINEMENT

This section details how Data Interpreter resolves task failures and refines the task graph dynami-
cally. Initially, the task graph is created as described in Appendix E.1. When encountering task
execution failures (e.g., Task 4: feature engineering), Data Interpreter utilizes a reflection-based
debugging prompt (REFLECTION_PROMPT) to iteratively analyze errors and propose improved
implementations.

Prompt for reflection and debugging

REFLECTION_PROMPT = """
[example]
Here is an example of debugging with reflection.
{debug_example}
[/example]

[context]
{context}

[previous impl]:
{previous_impl}

[instruction]
Analyze your previous code and error in [context] step by step, provide me with

improved method and code. Remember to follow [context] requirement. Don’t forget
to write code for steps behind the error step.

Output a json following the format:
‘‘‘json
{{

"reflection": str = "Reflection on previous implementation",
"improved_impl": str = "Refined code after reflection.",

}}
‘‘‘
"""

After repeated failures (e.g., three unsuccessful attempts at executing the action graph), Data Inter-
preter restructures the task graph: Tasks 1-3 remain unchanged, but Task 4 is simplified to basic
feature creation, a new Task 5 for feature selection is introduced, and subsequent tasks (e.g., original
Task 5 becoming Task 6) are automatically reindexed with updated dependencies, as shown below:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Example of refined task graph

...
{

"task_id": "4",
"dependent_task_ids": [

"2",
"3"

],
"instruction": "Create engineered features from sensor readings",
"task_type": "feature_engineering"

},
{

"task_id": "5",
"dependent_task_ids": [

"4",
],

"instruction": "Perform feature selection using statistical methods and importance
analysis",

"task_type": "feature_engineering"
},
{

"task_id": "6",
"dependent_task_ids": [

"4",
"5"

],
"instruction": "Train a predictive model to determine machine status",
"task_type": "model_train"

},
...

E.4 RUNTIME RESULTS OF TASK GRAPH

We provide three distinct runtime results of our model, Data Interpreter, to offer an in-depth demon-
stration of its capabilities. These results meticulously showcase the intricacies of the task graph,
action graph, and the overall graph structure as shown in Figure 7.

Figure 7: Runtime examples of Data Interpreter: machine learning, webpage imitation, and math
problem solving

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

E.5 ADDITIONAL RESULTS OF OPEN-ENDED TASKS

We present the results by the Data Interpreter of several open-ended tasks in two figures: tasks 8, 9,
10, and 13 in Figure 8, and tasks 4, 14, and 15 in Figure 9.

E.6 RESULT OF DATA VISUALIZATION

Figure 10 illustrates the results of data analysis and visualization of the Data Interpreter.

Figure 8: Web page imitation by Data Interpreter

Figure 9: Image background removal / text-to-image / web search and crawling by Data Interpreter

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 10: Data analysis and visualization capabilities of Data Interpreter

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

F DETAILS OF DATASETS

F.1 OPEN-ENDED TASK DETAILS

Figures 11 to 14 showcase several typical open-ended tasks in the following illustrations. For each
task, we include the necessary data, user requirements, and assessment pipeline.

F.2 ML-BENCHMARK DATASET DESCRIPTION

Here are the details about the ML-Benchmark dataset. We collect several typical datasets from
Kaggle1 and machine learning. Details are in Table 13

Scenario Description: Scan all the necessary fields and amounts from the given file and then create an Excel sheet with the extracted data

User Requirement: This is an English invoice image.
Your goal is to perform OCR on the image, extract the total amount from ocr result and save as table, using PaddleOCR.
The PaddleOCR environment has been fully installed, try to use Paddleocr as much as possible.
Image path: ./workspace/CORD_test/image/receipt_00001.png

Pipeline Requirement:
1.Load and read images from a given folder/path
2.Install OCR tools/software
3.Using OCR tools/software to extract necessary fields and amounts
4.Collect results and convert them to a DataFrame
5.Save the result in a csv/xlsx forma

Performance Requirement: Recall / Precision / Accurac

(1) OCR (Task 1-3)

y

Data:
- Task 1: - Task 2: - Task 3:

(2) Web search and crawling (Task 4-7)

Scenario Description: Crawling and organizing web form information

Data: -

Pipeline Requirement:
1.Open target URL
2.Select and filter the required information
3.Download or transform the data, convert them into a specified format
4.Output in a tabular form

Performance Requirement: Recall / Precision / Accuracy

User Requirement:
- Task 4:
Get data from `paperlist` table in https://papercopilot.com/statistics/iclr-statistics/iclr-2024-statistics/, and save it to a csv file. paper title must
include `multiagent` or `large language model`.
notice: print key variables

Figure 11: Open-ended task cases (OCR and web search and crawling) We present task 4, omitting
similar tasks for brevity.

1https://www.kaggle.com/

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

(3) Email reply (Task 8)

Scenario Description: Filter through my emails and respond to them as necessary

User Requirement: You are an agent that automatically reads and replies to emails. I will give you your Outlook email account and password.
You need to check the content of the latest email and return it to me. If the email address suffix of this email is @communication.microsoft.com,
please automatically reply with "I've received your email and will reply as soon as possible. Thank you!"
Email account: englishgpt@outlook.com
Email Password: xxxx

Data: -

Pipeline Requirement:
1. Login to the target email account
2. Summarize and filter the email content accordingly.
3. set up an automatic reply to the sender with an email address that ends with a specific domain name.

Performance Requirement: -

(4) Web page imitation (Task 9-13)

Scenario Description: Using Selenium and WebDriver to access a webpage and convert it to an image, with the assistance of GPT-4V to mimic
the creation of a one-page website.

- Task 10:
This is a URL of webpage: https://pytorch.org/. Firstly, utilize Selenium and WebDriver for rendering. Secondly, convert image to a webpage
including HTML, CSS and JS in one go. Finally, save webpage in a file.
NOTE: All required dependencies and environments have been fully installed and configured.

- Task 11:
This is a URL of webpage: https://www.kaggle.com/. Firstly, utilize Selenium and WebDriver to render the webpage, ensuring the browser
window is maximized for an optimal viewing experience. Secondly, convert image to a webpage including HTML, CSS and JS in one go. Finally,
save webpage in a file. NOTE: All required dependencies and environments have been fully installed and configured.

- Task 12:
This is a URL of webpage: https://chat.openai.com/auth/login. Firstly, utilize Selenium and WebDriver to render the webpage, ensuring the
browser window is maximized for an optimal viewing experience. Secondly, convert image to a webpage including HTML, CSS and JS in one go.
Finally, save webpage in a file. NOTE: All required dependencies and environments have been fully installed and configured.

Data: (Task 10-12 in order)

Pipeline Requirement:
1. Open a target Web URL
2. Transform the Website into an image
3. Send the image to GPT-4V via API
4. Request a similar website generation using the code.

Performance Requirement: Similarity/Correctness

Figure 12: Open-ended task cases (email reply and web page imitation). We present tasks 10-12,
omitting similar tasks for brevity.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

(16) Image2Code

(5) Image Background Removal (Task 14)

Scenario Description: Remove the background of a given image

User Requirement: This is an image, you need to use python toolkit rembg remove the background of the image. image path:'./data/lxt.jpg'; save
path:'./data/lxt_result.jpg'

Data:

Pipeline Requirement:
1. Read a local image
2. Install image background removal tools/software
3. Using background removal tools/software to remove the background of the target image
4. Save the new image

Performance Requirement: Correctness

(6) Text2Img (Task 15)

Scenario Description: Use SD tools to generate images

User Requirement: I want to generate an image of a beautiful girl using the stable diffusion text2image tool, sd_url=""

Data: -

Pipeline Requirement: -

Performance Requirement: -

(7) Image2Code (Task 16-17)

Scenario Description: Web code generation

User Requirement:
- Task 16:
This is a image. First, check if the path exists, then convert the image to webpage code including HTML, CSS and JS in one go, and finally save
webpage code in a file.The image path: ./medium.png .NOTE: All required dependencies and environments have been fully installed and
configured.

- Task 17:
This is a image. First, check if the path exists, then convert the image to webpage code including HTML, CSS and JS in one go, and finally save
webpage code in a file.The image path: ./gemini.png .NOTE: All required dependencies and environments have been fully installed and configured.

Data: (Task 16-17 in order)

Pipeline Requirement: -

Performance Requirement: -

Figure 13: Open-ended task cases (image background removal, text-to-image, and image-to-
code)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

(18) Generate games using existing repo
(5) Generate games using existing repo (Task 18-20)

Scenario Description: Game tool usage (pyxel)

User Requirement:
- Task 18:
Create a Snake game. Players need to control the movement of the snake to eat food and grow its body, while avoiding the snake's head touching
their own body or game boundaries. Games need to have basic game logic, user interface. During the production process, please consider factors
such as playability, beautiful interface, and convenient operation of the game.
Note: pyxel environment already satisfied

- Task 20:
 Make a mouse click game that click button as many times as possible in 30 seconds using pyxel.
Note: pyxel environment already satisfied

Data: -

Pipeline Requirement: -

Performance Requirement: -

Figure 14: Open-ended task cases (mini-game generation) We present tasks 18 and 20, omitting
similar tasks for brevity.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922

Under review as a conference paper at ICLR 2025

Ta
bl

e
13

:D
et

ai
ls

of
th

e
M

L
-B

en
ch

m
ar

k
da

ta
se

t,
in

cl
ud

in
g

da
ta

se
tn

am
e,

de
sc

ri
pt

io
n,

st
an

da
rd

us
er

re
qu

ir
em

en
ts

,d
at

as
et

ty
pe

,t
as

k
ty

pe
,d

iffi
cu

lty
,a

nd
m

et
ri

c
us

ed
.

ID
D

at
as

et
N

am
e

U
se

rR
eq

.
D

at
as

et
Ty

pe
D

at
as

et
D

es
cr

ip
tio

n
Ta

sk
Ty

pe
D

iffi
cu

lty
M

et
ri

c

01
Ir

is
R

un
da

ta
an

al
ys

is
on

sk
le

ar
n

Ir
is

da
ta

se
t,

in
cl

ud
in

g
a

pl
ot

To
y

Su
ita

bl
e

fo
rE

D
A

,
si

m
pl

e
cl

as
si

fic
at

io
n

an
d

re
gr

es
si

on

E
D

A
1

02
W

in
e

re
co

gn
iti

on
R

un
da

ta
an

al
ys

is
on

sk
le

ar
n

W
in

e
re

co
gn

iti
on

da
ta

se
t,

in
cl

ud
e

a
pl

ot
,a

nd
tr

ai
n

a
m

od
el

to
pr

ed
ic

tw
in

e
cl

as
s

w
ith

20
%

as
te

st
se

t,
an

d
sh

ow
pr

ed
ic

tio
n

ac
cu

ra
cy

To
y

Su
ita

bl
e

fo
rE

D
A

,
si

m
pl

e
cl

as
si

fic
at

io
n

an
d

re
gr

es
si

on

C
la

ss
ifi

ca
tio

n
1

A
C

C

03
B

re
as

tC
an

ce
r

R
un

da
ta

an
al

ys
is

on
sk

le
ar

n
W

is
co

ns
in

B
re

as
tC

an
ce

r
da

ta
se

t,
in

cl
ud

e
a

pl
ot

,t
ra

in
a

m
od

el
to

pr
ed

ic
tt

ar
ge

ts
(2

0%
as

va
lid

at
io

n)
,a

nd
sh

ow
va

lid
at

io
n

ac
cu

ra
cy

To
y

Su
ita

bl
e

fo
rE

D
A

,
bi

na
ry

cl
as

si
fic

at
io

n
to

pr
ed

ic
tb

en
ig

n
or

m
al

ig
na

nt

C
la

ss
ifi

ca
tio

n
1

A
C

C

04
Ti

ta
ni

c
T

hi
s

is
a

Ti
ta

ni
c

pa
ss

en
ge

r
su

rv
iv

al
da

ta
se

t,
an

d
yo

ur
go

al
is

to
pr

ed
ic

t
pa

ss
en

ge
r

su
rv

iv
al

ou
tc

om
es

.
T

he
ta

rg
et

co
lu

m
n

is
Su

rv
iv

ed
.

Pe
rf

or
m

da
ta

an
al

ys
is

,
da

ta
pr

e-
pr

oc
es

si
ng

,
fe

at
ur

e
en

gi
ne

er
in

g,
an

d
m

od
el

in
g

to
pr

ed
ic

t
th

e
ta

rg
et

.
R

ep
or

t
ac

cu
-

ra
cy

on
th

e
ev

al
da

ta
.

Tr
ai

n
da

ta
pa

th
:

’d
at

as
et

\ti
ta

ni
c\

sp
lit

_t
ra

in
.c

sv
’,

ev
al

da
ta

pa
th

:
’d

at
as

et
\ti

ta
ni

c\
sp

lit
_e

va
l.c

sv
’.

B
eg

in
ne

r
B

in
ar

y
cl

as
si

fic
at

io
n

of
su

rv
iv

al
,s

in
gl

e
ta

bl
e

C
la

ss
ifi

ca
tio

n
2

A
C

C

05
H

ou
se

Pr
ic

es
T

hi
s

is
a

ho
us

e
pr

ic
e

da
ta

se
t,

an
d

yo
ur

go
al

is
to

pr
ed

ic
tt

he
sa

le
pr

ic
e

of
a

pr
op

er
ty

ba
se

d
on

its
fe

at
ur

es
.

T
he

ta
rg

et
co

lu
m

n
is

Sa
le

Pr
ic

e.
Pe

rf
or

m
da

ta
an

al
ys

is
,

da
ta

pr
e-

pr
oc

es
si

ng
,f

ea
tu

re
en

gi
ne

er
in

g,
an

d
m

od
el

in
g

to
pr

ed
ic

tt
he

ta
rg

et
.R

ep
or

tR
M

SE
be

tw
ee

n
th

e
lo

ga
ri

th
m

of
th

e
pr

ed
ic

te
d

va
lu

e
an

d
th

e
lo

ga
ri

th
m

of
th

e
ob

se
rv

ed
sa

le
s

pr
ic

e
on

th
e

ev
al

da
ta

.
Tr

ai
n

da
ta

pa
th

:
’d

at
as

et
\h

ou
se

-p
ri

ce
s-

ad
va

nc
ed

-r
eg

re
ss

io
n-

te
ch

ni
qu

es
\s

pl
it_

tr
ai

n.
cs

v’
,e

va
ld

at
a

pa
th

:’
da

ta
se

t\h
ou

se
-p

ri
ce

s-
ad

va
nc

ed
-r

eg
re

ss
io

n-
te

ch
ni

qu
es

\s
pl

it_
ev

al
.c

sv
’.

B
eg

in
ne

r
Pr

ed
ic

tin
g

ho
us

e
pr

ic
es

th
ro

ug
h

pr
op

er
ty

at
tr

ib
ut

es
,

re
gr

es
si

on
,s

in
gl

e
ta

bl
e

R
eg

re
ss

io
n

2
R

M
SL

E

06
Sa

nt
an

de
rC

us
to

m
er

T
hi

s
is

a
cu

st
om

er
’s

fin
an

ci
al

da
ta

se
t.

Y
ou

r
go

al
is

to
pr

ed
ic

t
w

hi
ch

cu
st

om
er

s
w

ill
m

ak
e

a
sp

ec
ifi

c
tr

an
sa

ct
io

n
in

th
e

fu
tu

re
.

T
he

ta
rg

et
co

lu
m

n
is

th
e

ta
rg

et
.

Pe
rf

or
m

da
ta

an
al

ys
is

,
da

ta
pr

ep
ro

ce
ss

in
g,

fe
at

ur
e

en
gi

ne
er

in
g,

an
d

m
od

el
in

g
to

pr
ed

ic
t

th
e

ta
rg

et
.

R
ep

or
t

A
U

C
on

th
e

ev
al

da
ta

.
Tr

ai
n

da
ta

pa
th

:
’d

at
as

et
\s

an
ta

nd
er

-c
us

to
m

er
-

tr
an

sa
ct

io
n-

pr
ed

ic
tio

n\
sp

lit
_t

ra
in

.c
sv

’,
ev

al
da

ta
pa

th
:

’d
at

as
et

\s
an

ta
nd

er
-c

us
to

m
er

-
tr

an
sa

ct
io

n-
pr

ed
ic

tio
n\

sp
lit

_e
va

l.c
sv

’.

In
du

st
ry

B
in

ar
y

cl
as

si
fic

at
io

n
to

pr
ed

ic
tc

us
to

m
er

tr
an

sa
ct

io
ns

,s
in

gl
e

ta
bl

e

C
la

ss
ifi

ca
tio

n
2

A
U

C

07
IC

R
-I

de
nt

if
yi

ng
T

hi
s

is
a

m
ed

ic
al

da
ta

se
t

w
ith

ov
er

fif
ty

an
on

ym
iz

ed
he

al
th

ch
ar

ac
te

ri
st

ic
s

lin
ke

d
to

th
re

e
ag

e-
re

la
te

d
co

nd
iti

on
s.

Y
ou

r
go

al
is

to
pr

ed
ic

t
w

he
th

er
a

su
bj

ec
t

ha
s

or
ha

s
no

t
be

en
di

ag
no

se
d

w
ith

on
e

of
th

es
e

co
nd

iti
on

s.
T

he
ta

rg
et

co
lu

m
n

is
C

la
ss

.
Pe

r-
fo

rm
da

ta
an

al
ys

is
,d

at
a

pr
ep

ro
ce

ss
in

g,
fe

at
ur

e
en

gi
ne

er
in

g,
an

d
m

od
el

in
g

to
pr

ed
ic

t
th

e
ta

rg
et

.
R

ep
or

t
F1

Sc
or

e
on

th
e

ev
al

da
ta

.
Tr

ai
n

da
ta

pa
th

:
’d

at
as

et
\ic

r-
id

en
tif

y-
ag

e-
re

la
te

d-
co

nd
iti

on
s\

sp
lit

_t
ra

in
.c

sv
’,

ev
al

da
ta

pa
th

:’
da

ta
se

t\i
cr

-i
de

nt
if

y-
ag

e-
re

la
te

d-
co

nd
iti

on
s\

sp
lit

_e
va

l.c
sv

’.

In
du

st
ry

B
in

ar
y

cl
as

si
fic

at
io

n
of

he
al

th
sy

m
pt

om
s,

si
ng

le
ta

bl
e

C
la

ss
ifi

ca
tio

n
2

F1

08
Sa

nt
an

de
rV

al
ue

T
hi

s
is

a
cu

st
om

er
’s

fin
an

ci
al

da
ta

se
t.

Y
ou

r
go

al
is

to
pr

ed
ic

t
th

e
va

lu
e

of
tr

an
sa

c-
tio

ns
fo

r
ea

ch
po

te
nt

ia
l

cu
st

om
er

.
T

he
ta

rg
et

co
lu

m
n

is
th

e
ta

rg
et

.
Pe

rf
or

m
da

ta
an

al
ys

is
,

da
ta

pr
ep

ro
ce

ss
in

g,
fe

at
ur

e
en

gi
ne

er
in

g,
an

d
m

od
el

in
g

to
pr

ed
ic

t
th

e
ta

r-
ge

t.
R

ep
or

t
R

M
SL

E
on

th
e

ev
al

da
ta

.
Tr

ai
n

da
ta

pa
th

:
’d

at
as

et
\s

an
ta

nd
er

-v
al

ue
-

pr
ed

ic
tio

n-
ch

al
le

ng
e\

sp
lit

_t
ra

in
.c

sv
’,

ev
al

da
ta

pa
th

:’
da

ta
se

t\s
an

ta
nd

er
-v

al
ue

-p
re

di
ct

io
n-

ch
al

le
ng

e\
sp

lit
_e

va
l.c

sv
’.

In
du

st
ry

Pr
ed

ic
tin

g
tr

an
sa

ct
io

n
va

lu
es

,r
eg

re
ss

io
n,

si
ng

le
ta

bl
e,

5k
co

lu
m

ns
,s

ui
ta

bl
e

fo
r

co
m

pl
ex

al
go

ri
th

m
s

R
eg

re
ss

io
n

3
R

M
SL

E

36

	Introduction
	Related Work
	Methodology
	Hierarchical Graph Modeling for Complex Task Decomposition
	Task graph: Iterative Graph Refinement
	Action Graph: Programmable Node Generation

	Experiments
	Experimental setup
	Main result
	Ablation study

	Conclusion
	Limitations
	Broader impact
	Implemtation details
	Programmable Node Generation
	An example of tool schema
	Tools details
	Tool usage prompts

	Experiment details
	Dataset
	Evaluation metrics
	Additional results
	Additional results of ML-benchmark and Math dataset

	Overhead analysis
	Ablation study

	Additional Examples
	An Example of Task Graph
	Prompts for action graph
	Example of dynamic task graph refinement
	Runtime results of task graph
	Additional results of Open-ended tasks
	Result of data visualization

	Details of datasets
	Open-ended task details
	ML-Benchmark dataset description

