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ABSTRACT

We propose an algebraic geometric framework to study the expressivity of piece-
wise linear activation neural networks. A particular quantity of neural networks
that has been actively studied is the number of linear regions, which gives a quan-
tification of the information capacity of the architecture. To study and evaluate in-
formation capacity and expressivity, we work in the setting of tropical geometry—
a combinatorial and polyhedral variant of algebraic geometry—where there are
known connections between tropical rational maps and feedforward neural net-
works. Our work builds on and expands this connection to capitalize on the rich
theory of tropical geometry to characterize and study various architectural aspects
of neural networks. Our contributions are threefold: we provide a novel tropi-
cal geometric approach to selecting sampling domains among linear regions; an
algebraic result allowing for a guided restriction of the sampling domain for net-
work architectures with symmetries; and a new open source OSCAR library to
analyze neural networks symbolically using their tropical representations, where
we present a new algorithm that computes the exact number of their linear re-
gions. We provide a comprehensive set of proof-of-concept numerical experi-
ments demonstrating the breadth of neural network architectures to which tropical
geometric theory can be applied to reveal insights on expressivity characteristics
of a network. Our work provides the foundations for the adaptation of both theory
and existing software from computational tropical geometry and symbolic compu-
tation to neural networks and deep learning.

1 INTRODUCTION

Deep learning has become the undisputed state-of-the-art for data analysis and has wide-reaching
prominence in many fields of computer science, despite still being based on a limited theoretical
foundation. Developing such a foundation to better understand the unparalleled success of deep
neural networks is one of the most active areas of research in modern statistical learning theory; with
attempts at characterising the expressivity — the space of representable functions — of deep neural
networks being one of the most important approaches to this Raghu et all (2017). Our focus is on
deep neural networks with piecewise linear activations since their expressivity has been extensively
studied using linear regions (e.g., Pascanu_ef all, POT3; Monfifar_ef all, D0T4; Arora_ef all, ZOIA;
Hanin & RolnicK, P0T9; Xiong et all, 2020; Goujon et all, P(074; Monfrifar ef all, 20727).

Tropical geometry is a reinterpretation of algebraic geometry that features piecewise linear and poly-
hedral constructions (see Appendix A7), where combinatorics naturally comes into play Mikhalkin
& Rari (e.g., P00Y9); Speyer & Sturmfeld (e.g., 20009); Maclagan & Sturmfels (e.g., Z021). Therefore,
tropical geometry is a natural framework for studying the linear regions in a neural network. The
intersection of deep learning theory and tropical geometry is a relatively new area of research with
great potential towards the ultimate goal of understanding how and why deep neural networks per-
form so well. In this paper, we expand the connection between deep learning theory and tropical
geometry by studying the linear regions of neural networks through a tropical lens. In doing so, we
introduce a novel perspective on studying neural network expressivity.

Related Work. Tropical geometry has emerged as a powerful tool for analyzing deep neural net-
works with piecewise linear activation functions, such as rectified linear units (ReL.Us) and maxout
units. Zhang et al] (Z0IX) first established that neural networks can be represented by tropical ratio-
nal functions, enabling the use of tropical techniques to study their properties. They also showed



that the decision boundary of a deep ReLU network is contained in a tropical hypersurface. (For
more details, see Appendix BA3.) Concurrently, Charisopoulos & Maragod (2018H) demonstrated
that the maxout activation function fits input data using a tropical polynomial. These initial works
focused on neural networks with Euclidean input domains. [Yoshida ef-all (Z023)) later extended this
approach to incorporate the tropical projective torus as an input domain, broadening the applicability
of tropical methods. Recently, Pasque et al] (2024) leveraged tropical geometry to construct convo-
lutional neural networks with improved robustness against adversarial attacks, demonstrating the
practical value of this theoretical framework. This growing body of research highlights the potential
of tropical geometry to enhance our understanding and design of neural networks.

Measures of quantifying neural network expressivity are important for facilitating the theoretical
and empirical investigation of neural network properties. Neural networks with piecewise linear ac-
tivations compute piecewise linear functions on areas of the input space referred to as the network’s
linear regions. The maximum number of distinct linear regions a class of neural networks can instan-
tiate provides an appropriate and quantifiable measure of its expressivity (e.g., Monfiifar ef all, DOT4).
Subsequent research has thus worked towards enumerating the number of linear regions in a given
neural network since this can provide a measure of how complex the function represented by the neu-
ral network is. Using mixed-integer programming, Serraefall (Z01X) provides an exact enumeration
of the number of linear regions in a bounded subset of the input domain. For unbounded domains,
Serra & Ramalingany (P018) give an analytic upper bound on the maximum number of linear regions
of a neural network along with a probabilistic lower bound, and Charisopoulos & Maragos (20T8a)
provide a probabilistic method for estimating the linear regions of a one-layer network, together with
some analytic bounds for various architectures. In recognition that many of these approaches are
intractable at large scales, linear region enumeration is often done approximately through numerical
sampling Goujon et al] (2024).

However, the work that is most related to ours are those that exactly characterise the linear regions,
beyond just enumerating them, in a computationally tractable manner. For instance, Humayun et al!
(2073) leverages spline theory to do so in bounded two-dimensional subspaces of the input domain.
Similarly, Masden (200272) characterises the polyhedral complex associated to the arrangement of the
linear regions. Our work differs from these in that we obtain an exact geometric characterisation of
the individual regions in the unbounded input domain.

Contributions. In this paper, we establish novel algebraic and geometric tools to obtain previ-
ously inaccessible geometric insights into the linear regions of a given neural network beyond just
their enumeration; enhancing the theoretical and empirical (exact or approximate) study of a neural
network’s linear regions. The main contributions of our work are the following:

* We provide a global geometric characterization of the arrangement of a neural network’s
linear regions: current numerical estimation of the number of linear regions is typically car-
ried out by random sampling in an arbitrarily bounded region of the input space, potentially
causing some linear regions of a neural network to be missed and resulting in an inaccurate
information capacity measure. We propose an effective sampling domain as a ball of radius
R that hits all of the linear regions of a given neural network. We compute bounds for
the radius R based on a combinatorial invariant known as the Hoffiman constant, giving a
guarantee on the positioning of the linear regions of a neural network.

* We exploit further geometric insight into the arrangement of linear regions of a neural
network to gain dramatic computational efficiency in the numerical estimation of linear
regions: when networks exhibit invariance under symmetry, we can restrict the sampling
domain to a fundamental domain of the group action and thus reduce the number of sam-
ples required. We experimentally demonstrate that sampling from the fundamental domain
provides an accurate estimate of the number of linear regions with a fraction of the compute
requirements.

* We provide an open source library integrated into the Open Source Computer Algebra
Research (OSCAR) system (OSCARI]) which converts arbitrary neural networks into alge-
braic symbolic objects, to facilitate the exact enumeration of the linear regions of neural
networks. Our library opens the door for the extensive theory and existing software on
symbolic computation and computational tropical geometry to be used to study neural net-



works beyond their linear regions. In particular, we propose an alternative measure of
neural network complexity, the monomial count.

The remainder of this paper is organized as follows. We devote a section to each of the contributions
listed above—Sections I, B, and B, respectively—in which we present our theoretical contributions
and numerical experiments. We close the paper with a discussion on limitations of our work and di-
rections for future research in Section B. The Appendix provides the necessary technical background
on tropical geometry and its connection to neural networks as well as all proofs.

2 BOUNDED DOMAIN SELECTION USING A HOFFMAN CONSTANT

Enumerating the number of linear regions of a given neural network is inherently challenging due to
its combinatorial nature. From an applications perspective, it is common to restrict to some bounded
input domain X C R™ such as [—R, R]" or [0, R]™, such that the number of linear regions in X
can be either estimated by computing the Jacobians of the network at sample points (see Appendix
O) or computed exactly using mixed-integer programming (e.g., Serraef-all, POTY). However, these
approaches are limited from both a theoretical and empirical perspective, since, one cannot guarantee
that X provides information about all the linear regions. In this section, we try to address the
discrepancy by inferring the unbounded case from the bounded case. More specifically, we provide
a method to determine the radius R of a ball centred at some point x, which intersects every linear
region.

Our approach proceeds from the recollection that neural networks can be formulated as tropical
Puiseux rational maps (see Appendix [B). Thus, characterizing R for neural networks is equivalent
to characterizing R for tropical Puiseux rational maps. The linear regions of tropical Puiseux poly-
nomials are made up of polyhedra, allowing us to connect the value R to a combinatorial invariant:
the Hoffman constant. We extend the definition of the Hoffman constant to tropical rational maps
and use it to derive bounds on R.

2.1 NEURAL HOFFMAN CONSTANTS

The Hoffman Constant for Polyhedra. A polyhedron can be constructed through a series of lin-
ear constraints. Intuitively, the Hoffman constant of a polyhedron captures the stability of points that
satisfy those constraints in terms of distance. That is, if the Hoffman constant is large, then the poly-
hedron has near-contradictory constraints such that points narrowly violating these constraints are
a relatively large distance away from the polyhedron. We formalise this using polyhedral geometry
which we introduce, along with relevant notation in Appendix [Al.

Let A be an m x n matrix with real entries. Then for any b € R™ such that P(A,b) is non-empty,
let
d(u, P(A,b)) = min{|lu — 2| : z € P(A,b)}

denote the distance of a point u € R™ to the polyhedron, measured under an arbitrary norm || - || on
R™. Then there exists a constant H (A) only depending on A such that
d(u, P(A,b)) < H(A) [[(Au =)+, (1

where £ = max(z, 0) is applied coordinate-wise (Hottman, 2003). H (A) is the Hoffinan constant
of A. Intuitively, ||(Au — b)4 || can be thought of as quantifying the degree to which w violates the
constraints of the polyhedron, and H(A) can be thought of as determining the extent to which this
affects the distance of u to the polyhedron.

The Hoffman Constant for Tropical Polynomials. Let f : R™ — R be a tropical Puiseux polyno-
mial and let!d = {Uy, ..., U, } be the set of linear regions of f. Say f(z) = ajnz1+. . .+ ainx,+b;
occurs on the region Uj, so that A = [a;], . is the matrix of exponents in the algebraic expression
of f. The linear region U; is defined by the inequalities

ailx1+--~+ai,an+bizaj1x1+---+aj,,,a:n+bj, Vj:1,2,---,m 2)
which can be written in matrix form as

(A — lai)a: S bi]. — b, (3)



where 1 is an all-1 column vector; a; is the ith row vector of A; and b is a column vector of all b;.
Denote Ay, := A — 1a; and by, := b;1 — b. Then the linear region U is captured by the linear
system of inequalities Ay, x < by,.

Definition 2.1. Let f : R™ — R be a tropical Puiseux polynomial. The Hoffiman constant of f is

H(f) = max H(Au,).

Thus, the Hoffman constant of f can be thought of as the maximum instability encountered by points
trying to satisfy the constraints of f’s linear regions.

The Hoffman Constant for Tropical Rational Maps. Care needs to be taken here as we can no
longer assume that all linear regions are defined by systems of linear inequalities, since such maps
can admit non-convex linear regions. To bypass this difficulty, we consider convex refinements of
linear regions induced by intersections of linear regions of tropical polynomials.

Definition 2.2. Let p©q be a difference of two tropical Puiseux polynomials. Let A (respectively A’)
be the m,, x n (respectively m, x n) matrix of exponents for p (respectively ¢), and a; (respectively
a}) the ith row vector of A (respectively A’). The Hoffman constant of p @ ¢ is

A a; . .
H(p®Q) ::maX{H< |:A/:| -1 |:a§:|> 1= 17 yMps ] = 1) 7mq}' (4)
Let f be a tropical Puiseux rational map. Then the Hoffiman constant of f is defined as the minimal
Hoffman constant of H(p @ ¢) over all possible expressions of f = p @ q.

As every neural network can be represented by a tropical Puiseux rational map, Definition 2 gives

a notion of Hoffman constants for neural networks.

Since the Hoffman constants contributing to the calculation of H(p @ g) represent the Hoffman
constants of polyhedra obtained by intersecting the ¢th linear region of p and the jth linear region
of ¢, H(p @ q) can be similarly interpreted as maximum instability encountered by points trying to
satisfy the constraints of p © ¢’s linear regions.

2.2 THE MINIMAL EFFECTIVE RADIUS

We can now utilise these ideas to grapple with the effective radius. For a neural network whose
tropical Puiseux rational map is f : R” — R, let i/ = {Uq,...,U,,} be the collection of its linear
regions. For any z € R", define the minimal effective radius of f at x as

Ry(z) :=min{r: B(z,r)NU # @, U e U}

where B(z,r) is the ball of radius r centered at . That is, Ry (z) is the minimal radius such that
the ball B(x, r) intersects all linear regions.

Lemma 2.3. Let f be a tropical Puiseux polynomial and x € R"™ be any point. Then

Ry(x) < H(f)max (|| (Avz —bu)<|])- )

In particular, we are interested in the case when R™ and R"™ are equipped with the co-norm, where
the minimal effective radius can be related to the Hoffman constant and function value of f = p@q.
For a tropical Puiseux polynomial p(x) = maxi<;j<m,{@;x+b; }, we set p(x) = mini<j<m, {a;z+
b;} to be its min-conjugate.

Proposition 2.4. Let f = p © q be a tropical Puiseux rational map. For any v € R", we have

Ry(x) < H(p @ q) max{p(x) — p(z), ¢(z) — 4(z)}. (6)

We have thus related the minimal effective radius of a tropical Puiseux rational map to its Hoffman
constant.



We started this section motivated to obtain a bound on the effective radius to provide guarantees
for the numerical sampling of a neural network’s linear region. Although we provide algorithms
to compute the value of the Hoffman constant exactly, along with lower and upper bounds — refer
to Section B — due to its combinatorial nature it seems largely intractable for practical purposes.
Despite this, we have still provided a theoretical connection between the bounded and unbounded
case, and we can leverage our intuition of the Hoffman constant to gain further insights. More
specifically, Proposition 4 encourages us to promote the construction of stable polyhedra around
points of interest (training data) or known complexities in the input domain; this would attract the
linear regions of the neural network to these regions, improving the network’s expressivity in these
regions. We leave it for future work to identify ways this could be achieved, say through initialisation
schemes, training methodologies or architectural choices.

3 SYMMETRY AND THE FUNDAMENTAL DOMAIN

Here we continue to leverage the geometric characterisation of linear regions as polyhedra to tangi-
bly optimise the empirical enumeration of neural network linear regions.

3.1 THE LINEAR STRUCTURE OF INVARIANT NETWORKS

The notions of invariance and equivariance under symmetries are central to geometric deep learning
(Bronsfem_efall, P0721]), which leverages the inherent symmetries of data so that models generalize
more effectively (Sannai & Imaiznmi, 20T9). In our setting, symmetries in a neural network induce
symmetries in the linear structure of the network (see Figure ), which we can exploit for computa-
tional gains.

(@ (b)

Figure 1: A visualisation of the linear regions, [d, and the corresponding linear maps, [H, of a
randomly initialized permutation invariant neural network. The regions are colour-coded according
to which linear maps operate on these regions.

Definition 3.1. Let f : R™ — R be a function and let G be a group acting on the domain R". f is
said to be invariant under the group action of G (or G-invariant) if forany g € G, fog = f.

It seems reasonable to incorporate the effect of the group action into constructing the sampling
domain for empirically enumerating the linear regions.

Definition 3.2. Let G be a group acting on R™. A subset A C R" is a fundamental domain if it
satisfies the two following conditions: (i) R" = |J ¢ ¢+ Asand (i) g - int(A) N A - int(A) = & for
all g,h € G with g # h.

Even though Definitions BTl and B2 apply to any group GG, we will consider G to be finite such that
the fundamental domain induces a periodic tiling of R™ by acting on A; which is very useful in
the context of numerical sampling since it means we can sample from a smaller subset of the input
domain with a guarantee to find all the linear regions in the limit. The upshot is that we can use far
fewer samples while maintaining the same density of points.



Theorem 3.3. Let f : R™ — R be a tropical rational map invariant under the group action G, where
G is finite. Let A C R"™ be a fundamental domain of G. Suppose U is the set of linear regions of f.
Define the sets

U ={AcU:ACA} and U.:={AcU:ANA# D}

Then G
Glltde] < U] < |Gllel + > S

acuiu, 1G4l
where |G 4| is the size of the stabilizer of A.

Theorem B3 gives us a method for estimating the total number of linear regions from sampling in
the fundamental domain using multiplicity, which we discuss next.

3.2 ESTIMATING LINEAR REGIONS USING THE FUNDAMENTAL DOMAIN

We now demonstrate the performance improvements in counting linear regions gained by exploiting
symmetry in the network architecture with a study of permutation invariant neural networks inspired
by DeepSets (Zaheer ef all, POT7). Our numerical sampling approach is detailed in Appendix O and
inspired by recent work in this area (Goujon et all, P074)). Here, we focus on a specific sampling
method for estimating the number of linear regions for illustrative purposes, but we emphasize that
our approach based on Theorem B3 is readily adaptable to any method for determining the number
of linear regions on a bounded domain.

A permutation invariant network is one that is invariant under the action of S,, on coordinates (see
Appendix [A4). Intuitively — and theoretically as a consequence of Lemma A—TY — this action has
fundamental domain

A:{(Ila"'axn):xl 2%2 > ... Z!En}H
since it is possible to map any point to A using a permutation, and A forms an n! piece tiling
of R™ under the S,-action. Thus, despite restricting sampling to A, we can still effectively gain
information about linear regions outside A.

Our method of numerical sampling characterises linear regions with Jacobians of the neural network
with respect to the inputs, meaning linear regions are identified by n-dimensional real vectors. Thus,
to estimate the number of linear regions of this neural network, we need to address the multiplicities
of these vectors.

Lemma 34. Let f : R™ — R be a permutation invariant neural network as given by equation B.
Let J be the Jacobian of the neural network at the point x € R™. Then f has at most

n!
HCEC(J) c!

distinct linear regions with the corresponding linear map having Jacobian J, where C(J) gives the
counts of each of the elements of J.

mult(J) =

By Lemma B4, the number of linear regions of the neural network can be estimated by
> e 7 ﬁi)c,, where J are the Jacobians of the linear regions in A computed by Algorithm
ce J :

B. Consequently, we can estimate the number of linear regions of the neural network while reduc-
ing the number of point samples by a factor of n!. This provides a dramatic gain in computational
efficiency via an upper bound rather than an exact number; see Appendix 3 for empirical demon-
strations.

4 SYMBOLIC NEURAL NETWORKS
In the previous sections we understood how our algebraic characterisation of neural networks can
be used to generate theoretical insights into the global geometry of its linear regions.

In this section, we present our threefold contribution of symbolic tools for neural networks, which
characterise the local geometry of linear regions as well as providing additional insights. We present



this as a new Julia library integrated into the OSCARI system: (i) an algorithm to determine algebraic
representations of the linear regions of arbitrary tropical Puiseux rational functions; (ii) methods for
computing the tropical representations of neural networks and simplifying them; and (iii) A new
algebraic measure of complexity for neural networks, monomial complexity.

The combinations of these tools allow us to compute algebraic representations of the linear regions
of arbitrary neural networks, and enumerate them exactly.

The Julia library forming a part of our symbolic contribution can be found in the following
anonymized repository:
https://anonymous.4open.sclience/r/tropical—expressivity/README .md,

4.1 LINEAR REGIONS OF TROPICAL PUISEUX RATIONAL FUNCTIONS

Overview of the Algorithm. We start by sketching our algorithm for determining the linear re-
gions of tropical Puiseux rational functions. A more precise formulation is given in the Appendix B
; see Algorithm [, together with a proof of correctness (Theorem ETl), and a Julia implementation.

When viewed as a function on the real numbers, a tropical Puiseux rational function f = p @ ¢
is simply the difference of two max terms: the numerator and the denominator. In particular, f is
linear on a region R C R"™ whenever p and ¢ are linear on R. This indicates that we should be able
to determine the linear regions of f once we know those of p and q. More precisely, notice that
if Uy, ..., Us are the linear regions of p and V7, ..., V; are the linear regions of ¢, then f is linear
on each of the intersections U; N V;, and these intersections cover the input space R™. However,
we cannot conclude that the linear regions of f are given by this collection of intersections, as the
following issues may arise: some intersections may be empty or have dimension less than n; and
some intersections may “glue” together to form a larger linear region of f (see Appendix H for
examples of these phenomena). Whether or not these arise usually depends on the U;’s and V;’s and
has to do with the combinatorics of the arrangement of these objects in R™. After filtering out empty
and lower-dimensional regions, and determining which intersections glue together, we obtain a list
of regions in R™ (polyhedra or unions of polyhedra), which correspond to the linear regions of f.

Combinatorics of Polyhedral Arrangements. In order for our tropical linear region algorithm to
be implementable, we need a way of computationally determining the combinatorics of the arrange-
ment of the U;’s and V}’s. The key here is the standard fact from tropical geometry that the linear
regions of a tropical (Puiseux) polynomial are polyhedra whose defining inequalities can be deter-
mined from the coefficients and exponents of the polynomial (see Appendix B3 for more detail).
Hence, we are left to deal with the combinatorics of polyhedral arrangements.

From Lemma [B74, we have that the intersections of the linear regions of p and ¢ are also polyhedra,
and thus determining the non-emptiness or dimension of such objects are well-understood problems
that can be solved using linear programming. This means that we can (computably!) detect when
some intersections may be empty or have dimension less than n using polyhedral geometric tools.

Next, to deal with gluing intersections, we can once again reduce to a problem of intersections of
polyhedra. Let us denote by L; the linear map representing p on P; and similarly, we write M; for
the linear map representing ¢ on ;. Then gluing intersections may arise when there exist tuples of
indices (i, j, k, £) that satisfy the following set of conditions, (x):
(1) The intersection (U; N V;) N (U N V) is non-empty;
(ii) f is represented by the same linear map on U; N V; and on Uy, N Vp; and
(iil) dim(U; NV;) = dim(Uy NVy) = n.
Notice that f is represented by the same linear map on U; N V; and on U, N V; if and only if the
equality of linear maps L; — M; = Lj, — M, holds. Thus we can computably determine when such
indices arise. For some fixed indices ¢, j such that dim U; N V; = n, two cases can arise:
(a) Either there are no pairs of indices (k, ¢) # (4, j) such that (4, j, k, £) satisfies (x); or
(b) There exist pairs of indices (k, £) # (i, ) such that (i, j, k, £) satisfies (%).


https://anonymous.4open.science/r/tropical-expressivity/README.md

When (a) occurs, U; NV} is a linear region of f. We now focus on (b): Set Z to be the set of all pairs
of indices (k, ¢) such that (7, j, k, £) satisfies (x) and F' = L; — M;. Then, f is represented by F' on
the (possibly disconnected) region

U Uk N W7
(k,0)€T
and the linear regions where f is represented by F' correspond to the connected components of
this region. We can determine these computationally as unions of polyhedra by considering which
pairwise intersections (U, N Vy) N (U N Vi) are empty for (k, £), (K',¢') € .

Hence, we have shown that given a tropical rational map we can computably determine its linear
regions. Therefore, to be able to determine a neural network’s linear regions we just need to compu-
tationally realise it as a tropical rational, which we discuss in the next section.

4.2 TROPICAL REPRESENTATIONS OF NEURAL NETWORKS

Our Contribution. Any neural network with integer weights can be viewed as the function
R™ — R associated to a tropical rational function (Zhang et al], POTR). This fact is used by Bran
denburg et all (Z024)) as a theoretical tool, but to the best of our knowledge, this has not yet been
implemented in practice for analyzing concrete neural networks. We fill this gap by leveraging the
Julia package OSCAR to computationally realise this representation using the constructive proof
provided in (Zhang et all, PUTX), see Section A3 for details.

However, non-zero tropical Puiseux rational maps (and polynomials) induce functions R” — R
which can be realised by different algebraic expressions, see 3 and 4 of Example BT4. In this
sense, the algebraic expressions contain strictly more information than the corresponding function.
Since for neural networks we are only concerned with the induced functions, it is natural to consider
whether the tropical representation of these neural networks is optimal, in the sense of having a
relatively few number of redundant monomials.

This observation extends to interpretability, where a goal is to find minimal expressions of neural
networks. Tropical geometry has been used for finding such representations (Smyrnis_et al], Z02(0;
Smyrnis & Maragod, Z020]), where the corresponding minimal representations have been studied in
algebraic statistics ([Itan & Wang, 2074). Our contribution brings a new perspective to expressivity
as well as interpretability using polyhedral geometry.

Pruning Tropical Expressions. If g = @;nzl o, T is a tropical Puiseux polynomial in n vari-
ables, then we can associate to each monomial a,,7“* a polytope P; C R" such that the maximum
in the expression
= . ¥ 5 7
g(e) = max  {da, +(a;,2)} 7
is attained at the sth term precisely when z € P; (see Appendix B3 for further details). The
following lemma gives a natural criterion for detecting which monomials are redundant — in the sense
that they do not effect the induced function — based on the geometry of their associated polyhedra.

Lemma 4.1. The ith monomial can be removed from the expression of g without changing the corre-
sponding function R™ — R if and only if dim P; < n.

In particular, this gives us a computable way of simplifying tropical expressions — presented in
Algorithm @ — of neural networks and measuring their monomial complexity. Henceforth, we refer
to the monomial count of a tropical rational map as the sum of the monomials in the numerator and
denominator of its pruned representation.

4.3 SYMBOLIC EXPERIMENTS

We now demonstrate the breadth of our symbolic contribution via exploratory experiments. We
aim to demonstrate the new possibilities that our approach opens up, rather than merely providing
performance metrics.

Throughout, we restrict our explorations to low-dimensional input spaces and small architectures,
due to the combinatorial nature of these computations. This is in line with explorations of similar



methods. For instance, Serraefall (201X); Huefall (2027); Masden (2022) analyse the linear regions
of neural networks with no more than 2 layers of width at most 16 on bounded input domains.
Our tools, however, consider the full input domain of these neural networks and provide an exact
geometric characterization of the linear regions; opening up previously inaccessible avenues for
analyzing the geometry of linear regions of networks. In Figure 1 we demonstrate how our tools can
be used for the exact enumeration of linear regions, and its connection to the notion of monomial
complexity.

Volumes of Linear Regions Through Training. Previously mentioned works that characterise
exactly the linear regions do not facilitate geometrical computations such as computing the volumes
of the individual regions. For instance, Humayun et all (2023) computes the average volume of the
regions within a bounded domain, whereas Masden (2022) extracts topological information of the
decision boundary.
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Figure 2: Statistics on the volumes of bounded linear regions in a neural network throughout train-
ing.

In Figure @ we compute the exact volumes of the bounded linear regions through training. Spikes
in the mean volumes indicate regions becoming unbounded. Interestingly we see a reduction in the
median volume of the regions until the point where train and test accuracy saturate, after which the
median volume increases.

Redundant Monomials. Our tools construct the tropical representation of a neural network
through a standard procedure involving the weights of the network, which leads to a native tropi-
cal representation of the neural network. As discussed previously we can prune this representation
of redundant monomials, a detailed investigation into the nature of these redundant monomials is
beyond the scope of this work, although Appendix IO outlines a basis for exploring the idea of mono-
mial complexity.

Here we demonstrate the implementation of Algorithm & by pruning the native tropical representa-
tion of 10 randomly initialised neural networks of architectures [2, k, 1] for &k € {4,5,6,7,8} and
[2,k,2,1] for k € {2,3,4,5,6}. Note that our choices of k allow us to compare neural networks
with the same number of hidden neurons.

From Figure B, we observe that the pruning rates are relatively high, in particular for deeper neural
networks. It will be left to future work to understand whether this is due to inefficiencies in the
construction algorithm, or an implicit bias from our method of random initalisation. Moreover,
Figure B demonstrates that depth provides exponentially more monomials than width, which concurs
with existing literature [[elgarsky| (Z0T6).

At the MNIST Scale. We now demonstrate the implementation of our tools on neural networks
with a practical input domain. We are not looking to derive any specific insights, but rather demon-
strate the potential utility of our tools. We train a neural network with a [784, 4, 10] architecture
on the MNIST dataset and achieve 85% accuracy on the train and test dataset. Using our tools we
can obtain the neural network’s tropical representation, which has 144 monomials. Moreover, we
enumerate exactly its 9 linear regions, along with their polyhedral representations. In particular, we
can deduce that 8 of the linear regions are on a single unbounded polyhedron; one linear region is a
collection of several very small bounded polyhedra and one unbounded polyhedron.
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Figure 3: Solid black lines represent the number of monomials in the native representation and the
dashed black lines correspond to the number of monomials in the pruned representation. The red
line corresponds to the pruning rate. Notice how the y-axes for monomial counts are logarithmic
and aligned. The z-axes are aligned such that relative points on the plots correspond to architectures
with the same number of hidden neurons.

S5 DISCUSSION: LIMITATIONS & DIRECTIONS FOR FUTURE RESEARCH

Our contributions offer theoretical and practical advancements in tropical deep learning, but are
subject to some important limitations which in turn inspire directions for future research, which we
now discuss.

Experimental Considerations. Our methods have shown promising results for networks of mod-
erate size, including those with input dimensions comparable to MNIST. However, as we scale to
more complex architectures and higher dimensions, computational challenges persist. To further im-
prove scalability, parallelization of our elementary computations could yield significant performance
gains, as many of our algorithms involve repeating similar operations multiple times.

Structural Considerations. Some of the problems we study are framed as combinatorial optimiza-
tion problems, which are inherently challenging. For instance, computing the Hoffman constant,
which is equivalent to the Stewart—Todd condition measure of a matrix, is known to be NP-hard
in general cases (Penia_ef all, PUTX; 20OT1Y). This challenge could be addressed by employing ap-
proximate algorithms or algorithms that provide upper bounds on the Hoffman constant, since these
would be sufficient for our purposes and computationally more tractable.

Our introduction of a new algebraic measure of complexity provides fresh insights but also opens
up new questions about its computational complexity and relationship to other complexity measures.
The neural network pruning methods we have developed show promise in reducing model com-
plexity while maintaining expressivity. However, further research is needed to fully understand the
trade-offs between model size, expressivity, and performance across a wider range of architectures
and tasks.

Future Directions. These limitations inspire future work on both the practical and theoretical
fronts. In practice, to achieve improved scalability, further studying and understanding where and
how symbolic computation algorithms can be made more efficient, e.g., by parallelization or novel
algorithmic approaches, would make our proposed methods more applicable to larger neural net-
works. Expanding our pruning methods to a broader range of architectures to investigate their im-
pact on model performance in diverse tasks is a pathway to developing improved pruning techniques.
Building on our initial empirical tests of theoretical expressivity results, a comprehensive empirical
validation could help bridge the gap between theory and practice in neural network expressivity.

Theoretically, our tropical contributions have the potential to capture both expressivity and inter-
pretability. Towards this end, a deeper exploration of our new algebraic expressivity measure, in-
cluding its theoretical properties and practical implications, could yield valuable insights into neural
network behaviour. Perhaps most importantly, ours is the first work to leverage tropical symbolic
computation to perform experiments on deep neural networks. Fostering collaboration between
these fields will lead to novel algorithms and insights that leverage the strengths of both areas.
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A TECHNICAL BACKGROUND

In this section, we provide the necessary technical background on the mathematics of neural net-
works and tropical geometry for our contributions.

A.1 NEURAL NETWORKS

Definition A.l. Given a function o : R — R, a neural network with activation o is a function
f:R™ — R™ of the form
cgoLgjo---o00l4

where L; : R™-1 — R™ is an affine map and the function o is applied to vectors element-wise.
The tuple of integers [nq, . . ., ng| is called the architecture of the neural network f.

Given such a neural network, we can always write the L; as L;(z) = A;x + b;, with A; as a weight
matrix and b; is a bias vector for the ith layer of the neural network; R" is the input domain of the
neural network, the output of L; is the preactivation output of the ¢th layer, and o o L; is the output

of the ith layer. For conciseness, we will write #(©) to denote the function giving the output of the
fth; i.e.,
V(l) :UOLZO"'OUOLl.

There are many choices for the activation function o, a popular choice is the rectified linear unit
(ReLU) function, o(t) = max(0, ). Neural networks with ReLU activation will be the main focus
of this work, and will usually be referred to simply as neural networks.

Definition A.2. A set U C R" of a neural network f : R™ — R™ is a linear region if it is a maximal
connected region (closure of an open set) on which f is linear.

A.2 POLYHEDRAL GEOMETRY

Polyhedra are geometric objects described by finitely many inequalities.

Definition A.3. A polyhedron is a subset of R™ of the form P = {x € R™ : Az < b}, where
A € R™*" b € R™, and the inequality is taken element-wise. Such a polyhedron is denoted by
P(A,b).

Lemma A.4. Let P(A,b) and P(A’,b") be polyhedra. Then
Al [b
P(A,b)ﬂP(A/,b/)_P<|:A/ a|:bl:|>'

Proof. Note that for x € R™ we have

A= ] =

if and only if Az < band A’x < /. Therefore, we conclude that
P(A,b)( P(A) = P (Lﬂ , B’D .
Example A.S.

.
1. A= G (1) (1)) andb=(0 1 1)—r give the the polyhedron in Figure B4.
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10 -1 0)'
2. A= ( 1) andb=(1 1 1 1) give the polyhedron in Figure EB.

T
11 0 1 0 -1 O T .
3. A= 10101 0 _1> andb=(0 1 1 1 1 1 1) give the poly-
hedron in Figure Bd.
(a) (b) (©)

Figure 4: Illustrations of the polyhedra constructed in Example B35.

Dimension Theory for Polyhedra.

Definition A.6. The affine hull of a polyhedron P C R™ is the smallest affine subspace of R™ that
contains P, and is denoted by AffHull(P)

Definition A.7. The dimension of a polyhedron P is the dimension of AffHull(P).
The description of a polytope as the set of points that satisfy a system comprising finitely many
linear inequalities may be needlessly complicated: some inequalities may be redundant and some

may be replaced by equalities without changing the set. We now make these notions more precise.

Definition A.8. An inequality (o, ) < §in the system Az < b is an implicit equality if for any z
that satisfies Az < b, we have (o, x) = 3.

Notation A.9. We can partition the system Az < b into two systems: the system of implicit equali-
ties, denoted by A=z < b~, and the system of remaining inequalities, denoted by ATz < b+.

The affine hull gives us a convenient way of dealing with the system of implicit equalities.

Lemma A.10. The affine hull of a polyhedron P = P(A,b) admits the following description:
AffHull(P) ={z: A"z =b"}

In particular, the dimension of P is given by

n —rank(A7).

Proof. See (Schrijvei, TY9%, §8.2). O

Once we know which defining inequalities of a polyhedron P (A, b) are implicit equalities, we can
always find a point in the polyhedron that make the remaining inequalities strict.

Lemma A.11. Let P = P(A,b) be a polyhedron. Then there exists a point T € P such that
Ata < bt

Proof. See (Schrijvei, 1998, §8.1). O
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A.3 TROPICAL GEOMETRY

Algebraic geometry studies geometric properties of solution sets of polynomial systems that can
be expressed algebraically, such as their degree, dimension, and irreducible components. Tropi-
cal geometry is a variant of algebraic geometry where the polynomials are defined in the tropical
semiring, R = (R U {—o0},®,®) where the addition and multiplication operators are given by
a®b=max(a,b) and a ® b = a + b, respectively. We additionally leta © b := a — b.

Tropical Polynomials. Using these operations, we can write polynomials as &, , a,, 7™, where

a; are coefficients, ' € R, and where the sum is indexed by a finite subset of N. In our work, we
consider the following generalizations of tropical polynomials.

Definition A.12. A tropical Puiseux polynomial in the indeterminates 71, ...,7T, is a formal ex-
pression of the form &, a,,T™ where the index m runs through a finite subset of Q%, and

™ =17 ©--- © T;™ with powers taken in the tropical sense.

Definition A.13. A tropical Puiseux rational map in T, ..., T, is a tropical quotient of the form
p @ q where p, g are tropical Puiseux polynomials.

Linear Regions of Tropical Polynomials. Let f be a tropical polynomial in n variables. We

write f = @)L, an; T where aj = {aj1,...,a;,} € N" foreach j = 1,...,m. As a function
R™ — R, the map f is given by
r—  max Ao, + (i, )t . 8
je{l,..., m}{ s+ oy >} ®
Leti € {1,...,m}, and consider

Mai = {.’L‘ eR": f(ZE) = Qq,; T <Oéi,l'>},
that is M,,, is the subset of points at which the 7th term is the maximum term in the expression of f.
Equivalently, we have that
M,, = {z € R : aq, + (0, 2) > aa, + (o, z) forall j € {1,...,m}}

={zeR": (a; — ;,x) < aq, — aq, forall j € {1,...,m}}

={z eR": Az < b},
where A € R™*" with A = ajp — ok, and b € R™ with b; = a,, — aq;. Thatis, the subset M.,
is the polyhedron P(A,b).
We then consider the collection of polyhedral (Ma,)ic{1,...,m} to determine the linear regions of f.
That is, we determine the maximally connected sets, which will be some union of the M,;s, such
that on these sets f is a linear function.

Example A.14.

1. Consider the tropical polynomial f = 0 @ T @ T2. Then the map f is given by
x— max{0,1+z,14 2z},
thus
My = P(1,-1) = {z < —1},
M =P ([1, 1], m) —(~l1<z<0},
My = P(—1,0) = {x= > 0}.
The linear regions of f are then { My, M7, M>}.

2. Consider the tropical polynomial f = 7' @ 0T2. Then the map f is given by
x — max{l + z, 2z},

thus
M, =P(1,1) = {x <1}
My = P(1,-1) ={z > 1}.
The linear regions of f are then {M;, M>}.

15



3. Consider the tropical polynomial f = 17° & T @ T?. Then the map f is given by
x+— max{l,1+z,1+ 2z},

thus
My = P(1,0) = {z <0},

() e

—1,0) = {z > 0}.

The linear regions in this case are {MO, Ms}. Note how M; does not contribute to the
map f, so the monomial 7 is redundant. Algorithm & would detect this by noting that the
dimension of M; is less than the number of variables of f.

4. Consider the tropical polynomial f = T2 & T3 @ 2T*. Then the map f is given by
x +— max{1l + 2z, 1 + 3z, 2 + 4z},

thus

M= P (1) = {r <-4},

Ms =

My=P(-13) = {r > -4
Hence, the linear regions in this case are {Ms, My}. Note how M3 does not contribute to
the map f. Hence, the monomial T3 is redundant. One of the results of Section O, Lemma

g1, shows that this is related to the fact that the dimension of M3 is less than the number
of variables of f.

0*T~0 + I¥T 1 + 1¥T"2 DT 1 + 0% T2

(a) (b)

T¥T™0 + IFT71 + 1¥T~2 [ 1T2 4 1¥T~3 + 29T~4

(© (d)

Figure 5: Illustrations of the linear regions, depicted as horizontal lines on the horizontal axis, and
the corresponding linear maps of the tropical polynomials of Example AT4.

For a tropical polynomial f, a point that lies in two linear regions is a point at which the maximum
identified in equation B is attained at two different terms in the expression of f. In standard tropical
geometry terminology, these points are precisely those found on the tropical hypersurface cut of by

f.
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Tropical Expressions for Neural Networks. The first explicit connection between tropical geom-
etry and neural networks was established in Zhang et al] (Z01R); we adopt a similar notation.

One of the key observations for intersecting tropical geometry and deep learning is that, up to rescal-
ing of rational weights to obtain integers, neural networks can be written as tropical rational func-
tions (Zhang et al], P0T8, Theorem 5.2). From a more computational perspective, it is usually prefer-
able to avoid such rescaling and simply work with the original weights. The proof of Theorem 5.2
in [Zhang et all (Z0IX) can be directly adapted to show that any neural network can be written as the
function associated to a tropical Puiseux rational map. In their language, this corresponds to saying
that any neural network is a tropical rational signomial with nonnegative rational exponents.

Proof. Let f : R™ — R™ be a neural network with architecture [ng, ...,ng4). Let A1 = [a;;] €
Z™*™ and b € R™ be the weight and bias vectors respectively for the first layer of the network.
Let (A1)4 = [aj'j] where a;'; := max {a;;,0}, and let (4,)_ = [a;] where a;; := max {—a;;, 0}.

So that (A1) 4, (A1)- € N™*™ with A; = (41)+ — (A1)_. Observe,

o(A1z +b) =max (0, 412+ b) =0 ((A1)4x+ b, (A1) _z) — A_z.
That is, every coordinate of the output of the first layer of the network can be written as the difference
of tropical polynomials. Assume this is also true for the [ layer, where | < d, so we can write

VO(z) = FO(z) 0 GV (x),
where () and GV () are tropical polynomials. Then

Lipi o v (@) = ((Ais)y = (Ai1)_) (FO(@) = GO (@)) + by
= (A2, FO@) + (Ai) GO (@) + by )
- () 6V@) + (A FO @)
= B (@) - G (w)
where H(*1)(z) is a tropical polynomial. Therefore, the output of the (¢ + 1)st can be written as
v () = max {O, Lyyqo0 l/(l)}
— max {o, HED (z) - G<f+1>(x)}
= max { HD (@), GV (@) | - G (a)
= U (2) - GO (),

where, as before, F(¢t1) and G+, Hence, through inductive arguments, we deduce that the neural
network f can be written as a difference of tropical polynomials, that is f can be written as a tropical
rational map. O

The proof that neural networks can be written as tropical rational maps, provides a recursive con-
struction that we utilise to computationally obtain a tropical representation of a neural network.

A.4 PERMUTATION INVARIANT NEURAL NETWORKS

Informally, a permutation invariant neural network is a neural network whose output is unchanged
upon re-ordering its inputs.

Definition A.15. A permutation matrix P € R™*™ is a matrix of zeros with exactly one entry equal
to one in each row and column.

01 0 1 1 0
Example A.16. P, = <1 0 O) is a permutation matrix, whereas P, = <O 0 1) is not since
0 0 1 1 0 0

the first row contain two ones. Note that
T T2
P1 (1‘2) = <1‘1> .
x3 z3
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That is, left multiplication by P, has the effect of permuting the entries of the vector.
Definition A.17.

1. A function f : R™ — R™ is permutation invariant if f(Px) for every n X n permutation
matrix P.

2. A function f : R™ — R"™ is permutation equivariant if f(Px) = P f(x) for every n X n
permutation matrix P.

Lemma A.18 (Zaheer ef all (20I7)). An m X m matrix W acting as a linear operator of the form
W = M,xm + ’y(lTl), where A,y € R and I, x.m, is the m X m identity matrix, is permutation
equivariant.

Now consider the neural network f : R™ — R given by
n

fla) =) o (W), ©)

=1

where o is the ReLU activation function and W is as in Lemma BT8. Then f is permutation
invariant since

n
FPz) =Y o(WPz) “"EEN" Po(Wa) =Y o(Wa) = f(z),
where we have used the fact that the ReLU activation is applied element-wise, and summation is a

permutation invariant operation.

Lemma A.19. The set
A={(x1,...,¢n) 121 222> - > Ty}

is a fundamental domain of the action of S,, on R™ that permutes coordinates.

Proof. 1t suffices to show that conditions (i) and (ii) of Definition B are satisfied.
(): Letx = (z1,...,2,) € R™. Letg: {1,...,n} = {1,...,n} be a bijective function such that

Tg(1) = Tg(2) = 2 Tg(n)-

Then g € Sy, and g @ = (24(1), ..., Ty(n)) = & € A. Therefore,

r=g 1l i¢€ U h-A.
heSy,

Thus since clearly | J,c5 g+ A C R™, we deduce that R = |J,c5 9+ A.

(ii): Let g, € S,, be distinct. Suppose for contradiction that x € (g -int(A) N A -int(A)). Then
x=g-yandx = h- z, for some y, z € int(A). In particular, y and z are such that

Yy >Ya > - >ypand 2z > 29 > -0 > 2z,

We know that foreach j € {1,...,m} wehavey; = z; forsome k € {1,...,m}. Suppose y; = 2
then

Y1 > .. Yj—1 > Yj =2k > Rk+1 > 0 > Zpe
This means the ¥y, ...,y;_1 can only pair with the 21, ..., 21, and thus j = k. Therefore, y = z

which implies that ¢ = h which is a contradiction. We conclude then that g - int(A) N A - int(A) =
. O
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B SYMBOLIC ALGORITHMS

Algorithm 1 Linear regions of tropical Puiseux rational functions

Require: Tropical Puiseux polynomials p, ¢ in n variables.

1: Compute the linear regions Uy, ..., U, of p, and set L; = L(p, U;).
2: Compute the linear regions V1, ..., V,, of g, and set S; = L(q, V;).
3: Compute the pairs (¢, j) such that UZ- N V; has dimension n
4: for (7, 7) such that U; N V; has dimension n do
5: Compute the linear map T;; = L; — 5
6: Set S to be the set of all Tj;
7: for T € S do
8: Compute the set I(T') indices (¢, j) such that T = Tj;.
9: Compute the set C(T) of connected components of
U uvinv
(i,5)€I(T)

return | J .o C(T).

Algorithm 2 Pruning tropical expressions.

Require: Tropical Puiseux polynomial g in n variables.
1: for for each monomial ;7 do
2: Compute the corresponding polytope F;.
3: if P; has dimension less than n then

4: Discard the ith monomial
return g

C NUMERICAL ESTIMATION OF LINEAR REGIONS

C.1 OVERVIEW

The method of numerical estimation we use is inspired by the recent work of Goujon et al] (2074).
Specifically, to numerically estimate the number of linear regions of a neural network, we exploit the
fact that the linear regions of a neural network correspond to regions where the gradient is constant.
We evaluate the gradient on a sample of points in some bounded region X and identify the number of
unique gradients we obtain. Care needs to be taken at this step, since it may be the case that the same
linear function operates on disconnected regions. In our symbolic approach, this would correspond
to distinct linear regions. To try and account for this in our numerical approach, for points with the
same Jacobian, we sample the model at their midpoint and compare this to the midpoint provided
by the linear map. If these values differ, then the regions are disconnected. However, if the values
do not differ, we still cannot be certain whether the region is connected or disconnected. Therefore,
our numerical approach is likely to underestimate the number of linear regions in this instance. We
summarize this technique with Algorithm B.

There are a few sources of errors that arise in our method of numerical approximation that are
important to note:
1. We cannot be sure if our search radius captures all of the linear regions.

2. It may be the case that disconnected regions are acted on by the same linear map. The
symbolic approach would count these regions as distinct. In our numerical approach, we
try to resolve this by additionally sampling at the midpoint of points with the same Jacobian,
however, this does not guarantee that we identify disconnected regions.

3. From exploratory experiments, we observe that some linear regions are very small. There-
fore, a highly refined grid would be required to identify them. As the dimension of the
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Algorithm 3 Numerical estimation of neural network linear regions

Require: A linear activation neural network f with scalar output, a bounded subset of the input
domain X, N number of points to sample.
Sample NV points from X
Compute the Jacobian matrices of the network at each point.
Round the Jacobians matrices to 10 decimal places to avoid floating point errors.
Count the Jacobians that appear uniquely.
for Duplicate Jacobians do
Obtain the corresponding sample midpoint.
Obtain the midpoint of the model output at the sample points.
if Model at the sample midpoint is equal to the midpoint of the output midpoints then
Count the duplicate as a single linear region.
else

Count the duplicate as separate linear regions.
return The number of linear regions.

,_
TRYRIADIUNRLD

—

input increases, we require exponentially more points to maintain a certain density level,
which quickly becomes infeasible.

C.2 COMPARISON WITH THE SYMBOLIC APPROACH

Our contributions provide a symbolic approach for computing the linear regions of a given neural
network. Specifically, we compute the tropical expression for a neural network and then use Algo-
rithm [ to compute its linear regions. The advantage of this approach is that we obtain an exact
characterization of the linear regions of a neural network. However, as expected and as we will
show, this approach is more computationally expensive and thus takes more time than numerical
approaches such as Algorithm B. Therefore, in practical situations, numerical approaches may still
be preferred. However, our symbolic method can be used to assess the precision of these numerical
approaches by comparing them to the ground truth.

Here we use both Algorithm 0 and Algorithm B to obtain the number of linear regions of neural
networks of different architectures. We implement Algorithm B with X as a cube of radius R for
multiple values of R and using various sample sizes, due to the lack of an efficient method to set
these parameters optimally. For each algorithm and configuration, we sample 25 neural networks.
The results are presented in Table [I. For the tables containing the results of the numerical approach,
N denotes the number of points and R denotes the search radius.

We find here that the numerical approximations are on par with the symbolic computations but have
the advantage of running faster. However, this precision is not guaranteed and we see it deteriorates
for neural networks with larger architectures, probably as a consequence of some of the issues out-
lined above. One particular issue is too small a search radius, which cannot capture all of the linear
regions. Indeed, for 4-layered networks, increasing the search radius improves the approximation.

C.3 IMPLEMENTATION ON INVARIANT NETWORKS

We can apply this method of numerical sampling to assess the optimisation provided by our introduc-
tion of a fundamental domain for invariant neural networks. In Figure B, we present a comparison
between the estimate of the number of linear regions of a permutation invariant when we utilize the
fundamental domain and when we do not. We first initialize a permutation invariant network with

n input dimensions. Then we apply Algorithm B with X = [—20,20]" and N = 10" to obtain an
estimate that does not account for the symmetries of the network. To account for the symmetries, we
instead apply Algorithm B with X = [-20,20]" N A, N = 17(1)—,” and account for the multiplicities

using Lemma B4. We record the ratio of these estimates as well as the ratios of their execution times.
Figure B shows the average of these values across 10 iterations of this procedure.

We observe that the fundamental domain estimate performs well for low dimensional inputs and
provides significant improvements in execution time. Despite the divergence as the input dimension
increases, this estimate is still useful because we are often more concerned with obtaining an upper
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Figure 6: Ratio estimates for different input sizes with standard deviation error bars.

bound on the complexity of a neural network rather than an exact figure and the fundamental domain
estimate does not undercount the number of linear regions.

D MONOMIALS AS A MEASURE OF COMPLEXITY

Various measures of neural network complexity have been proposed and studied, such as counting
the linear regions of ReLU neural networks (Monfiifar ef all, P0T4); measuring the effect of forward
propagation on the length of 1D curves (Raghu et all, POT6); and evaluating the sum of the Betti
numbers of decision regions (Bianchini_ef all, P0T4). Our work focuses on the number of linear
regions of the input domain partitioned by the neural network. We provide tools to evaluate this
measure exactly by capitalizing on the representation of neural networks as tropical Puiseux rational
functions. As a consequence of this approach, we obtain another measure of neural network com-
plexity, namely the number of monomials in the tropical expression of the neural network which
quantifies its algebraic complexity.

Definition D.1. Let f be a neural network, and g © h a tropical representation of f, i.e., a tropical
Puiseux rational function whose underlying real-valued function equals f. If g has m irredundant
monomials and h has n irredundant monomials then we define the monomial complexity of the
representation g @ h to be the pair (m, n).

Intuitively, this captures how many linear terms needed to express the neural network. Notice that
this measure is closely related to, but not identical to, the number of linear regions of a neural
network.

Example D.2.

1. If g is a tropical polynomial then the number of irredundant monomials of g is equal to the
number of linear regions of g.

2. If f is a neural network with a tropical representation of monomial complexity (m, n) then
f has at most mn linear regions.

We emphasize that the number of linear regions and the number of monomials of a tropical expres-
sion — which we just take to be the sum of the monomials present in the numerator and denominator
— are linked, but distinct. To provide intuition for how these two quantities are connected, Figure
@ shows the evolution of the number of linear regions as we vary the number of monomials of
randomly generated Puiseux rational functions in 3 and 4 variables.
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E COMPUTING AND ESTIMATING HOFFMAN CONSTANTS

The PVZ Algorithm. In Pena“ef-all (2018), the authors proposed a combinatorial algorithm to
compute the precise value of the Hoffman constant for a matrix A € R"*"™, which we refer to as
the Peiia—Vera—Zuluaga (PVZ) algorithm and sketch its main steps here.

Definition E.1. A set-valued map @ : R™ — R™ assigns a set &(x) C R™. The map is surjective
if 8(R™) = U, P(x) = R™. Let A € R™*". Forany J C {1,2,...,m}, let A; be the submatrix
of A consisting of rows with indices in J. The set J is called A-surjective if the set-valued map
O(x) = Ayx + {y € R’ : y > 0} is surjective.

Notice that A-surjectivity is a generalization of linear independence of row vectors. We illustrate
this observation in the following two examples.

Example E.2.

1. If J is such that A is full-rank, then J is A-surjective, since for any y € R”, there exists
x € R" such thaty = A .

2. Let A = 1,, 4, be the m X n matrix whose entries are 1’s. For any subset J of {1,...,m}
and for any y € R”, let z € R such that >, z; < min{y;,j € J}. Theny — Az > 0.
Thus any J is A-surjective.

The PVZ algorithm is based on the following characterization of the Hoffman constant.

Proposition E.3. (Peiia_ef all, PUIS, Proposition 2) Let A € R™*", Equip R™ and R™ with norm
I - || and denote its dual norm by || - ||*. Let S(A) be the set of all A-surjective sets. Then

H(A) = H;(A 10
(A) S 7(A) (10)
where
1
Hj;(A)= max min ||z|| = . (11)
) yeR™ [ly[<1 weR” Il min ||A—Jrv||
Ajzsys UERi,Hv”*:l

This characterization is particularly useful when R™ and R™ are equipped with the co-norm, since
the computation of equation T reduces to a linear programming (LP) problem. The key prob-
lem is how to maximize over all A-surjective sets. To do this, the PVZ algorithm maintains three
collections of sets F, Z, and J where during every iteration: (i) F contains J such that J is A-
surjective; (ii) Z contains J such that .J is not A-surjective; and (iii) J contains candidates .J whose
A-surjectivity will be tested.
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To detect whether a candidate J € J is surjective, the PVZ algorithm requires solving

min [[Ajv||,, s.t.v € R, [jv]; = 1. (12)

If the optimal value is positive, then J is A-surjective, and J is assigned to F and all subsets of .J
are removed from 7. Otherwise, the optimal value is 0 and there is v € R_{_ such that A}v = 0. Let
I(v) = {i € J:v; >0} and assign I(v) to Z. Let J € J be any set containing (v). Replace all
such J by sets J\{i},7 € I(v) which are not contained in any sets in F.

Lower and Upper Bounds. A limitation of the PVZ algorithm is that during each loop, every set
in J needs to be tested, and each test requires solving an LP problem. Although solving one LP
problem in practice is fast, a complete while loop calls the LP solver many times.

Here, we propose algorithms to estimate lower and upper bounds on the Hoffman constant. An intu-
itive way to estimate the lower bound is to sample a number of random subsets from {1, ..., m} and
test for A-surjectivity. This method bypasses optimizing combinatorially over S(A) of A-surjective
sets and gives a lower bound of Hoffman constant by Proposition EZ3.

To get an upper bound on the Hoffman constant, we use the following result from Giilerefall (IT9975).
Theorem E.4. (Giiler ef all, 7993, Theorem 4.2) Let A € R™*™. Let D(A) be a set of subsets of

J C{1,...,m} suchthat A is full rank. Let D*(A) be the set of maximal elements in D(A). Then
the Hoffman constant measured under 2-norm is bounded by

1

H(A) < max = (13)
(4) Jep*(A) p(Ay)
where p(A) is the smallest singular value of A.
Using the fact that || - || > || - ||2, and the characterization from equation [l we see that the upper

bound also holds when R™ and R™ are equipped with the co-norm. We use equation [3 as an
approximation to the solution of the LP problem in equation 2. Although this replaces solving an
LP problem with finding singular values, which is a lot more efficient in practice, it still requires a
combinatorial search.

Algorithm 4 Exact computation of the Hoffman constant

Require: A: an m X n matrix
1: Initialize H = 0.
2: for subset J of all subsets of {1,...,m} do
3: Solve equation [2. Let ¢ be the optimal value;
4 if ¢ > 0 then
5: J is surjective. Update H = max {H, % ;
return Hoffman constant H.

Algorithm 5 Lower bound for Hoffman constant

Require: A: an m x n matrix, B number of iterations
1: Initialize Hy, = 0.
2: fori e {1,...,B} do

3: Sample a random integer K.

4: Sample a random subset J for {1,...,m} of size K.
5: Solve equation [2. Let ¢ be the optimal value;

6: if t > 0 then

7:

J is surjective. Update H;, = max {F?b %}
return Lower bound for Hoffman constant H,.

Numerical Verification. We verify our approaches on synthetic data. More specifically, we gen-
erate Puiseux rational maps by randomly generating two tropical Puiseux polynomials p and ¢, with
m,, and m, monomials respectively. We do so by constructing an m,, X n matrix A, and an m, X n
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Algorithm 6 Upper bound for Hoffman constant

Require: A: an m X n matrix
1: Initialize Hy = 0.
2: for subset J of all subsets of {1,...,m} do
3: Compute the minimal singular value of p(A )
if p(Ay) > 0 then
Update Hy = max iHU, %},
return Upper bound for Hoffman constant Hy;.

oo

matrix A, by uniformly sampling entries from [0, 1]. We then form the matrix of equation @ and
compute the exact Hoffman constant along with approximations of its lower and upper bound by
our proposed Algorithms B and B. However, upon careful investigations of the public code provided
by Pena ef all (2(11X), we find the output numerical values are unstable. To complete our exper-
iments, we then tested examples without using the public code, and instead implemented a brute
force computation by computing equation I over all submatrices. The brute force approach is
given by Algorithm B.

For the combination of different values m,,, m,, n and B, we repeat all computations 8 times.
The true Hoffman constants, lower bounds, upper bounds, and the computation time can be found
in Tables B. Although we did not use PVZ algorithm to compute the exact values, for the sake
of completeness, we also record the computation time and the number of calls to solve the LP
problem within the loop of the PVZ algorithm. The number of iterations of the PVZ algorithm
with the average time to solve the LP problems during each stage can be found in Tables Za,0H,d.
From the tables, we see that computing the true Hoffman constants requires solving over 1000 LP
problems, which is computationally expensive. Although the lower and upper bounds can be loose,
the computational times are much faster, which illustrates their practicality in real data applications.

F PROOFS

F.1 PROOF OF PROPOSITION 4

Proof. The polyhedra defined by

(4] ()= o

form a convex refinement of linear regions of f. Let

)= ([4] -1 = 13 7]

denote the residual of x to the polyhedron. We have
Ry(x) < H(p @ q) max {|[res; j(2)4[|oc : 1 <1 < myp; 1 < j <mg}.
Note that

Az +b—1(a;z + by)
[resi () +]loo = Alr + b — 1(ajz + b))

= max {(Az +b)i — (az +b;), (Ax+ ') — (afz + b)), 0}

= max {p(z) — (a;z + b;), q(z) — (= + b)), 0}
i.j

Therefore,
i s (1) oo = s {p(e) — (02 +b0). a(e) — (o +15), 0}
— max {p<x> — min{agz + b}, g(x) — min{a}z + ¥}, o}
i j

= max {p(z) — p(z), q(z) — 4(x)}

which proves equation B. l
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F.2 PROOF OF LEMMA 23

Proof. From the definition of minimal effective radius, we have
R¢(z) =min{r: B(z,r)NU; # &,U; € U}
=min{r : d(z,U;) <r,U; € U}
= max{d(z,U;) : U; € U}.
For each linear region U; characterized by gUi z < EU7 by equation [l we have
d(w,U;) < H(Ay)[|(Av,z = bu,)+ |
Passing to the maximum we have
Ry(z) = maxd(, U)
< max H(Ayp, H Ay,x — by, H
< max H(Ay,) max || (Ay, — by, )+

= H(J) max H(ﬁuisc —Eui)+H :

F.3 PROOF OF THEOREM B3

Proof. For any linear region A, we denote the orbit of A by [A]. The action of G partitions I/ into a
set of orbits [U/], and thus
U= > Al

[Alelu]
From property (i) in the definition of a fundamental domain, we have
Ua=o-a,
AeU oeG
which implies the following estimate:
= > Al = |Gl
Ael,

For any A € U, the orbit stabilizer theorem states that |[A]||G 4| = |G|. Thus we have
G|
U < YNl <G+ Y Gal’
Ael. Aeu N, A
O

Theorem F.1 (Correctness of Algorithm M). Algorithm [ computes the exact number of linear re-
gions of a Puiseux rational function f = p @ q.

Proof. Let Uy, ..., U, be the linear regions of p and L; = L(p, U;). Similarly let V3, ..., V,, be the
linear regions of ¢, and set S; = L(q,V;). We take T;; = L; — S; and set

S = {T;; | U; NV, has dimension n} .
ForT € S, let I(T') be the set of pairs (4, j) such that T' = T;;, and C(T") the connected components

of
U uvinv.
(&,9)€I(T)
We need to check that the set of linear regions of f is precisely the union
u=Jom).
TeS

It suffices to check that:
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(i) The elements of this set cover R";
(i1) f is linear on each region in I/; and

(iii)) Each element D in U/ is maximal in the sense that there is no (connected) region E' contain-
ing D as a strict subset such that f is linear on F.

(i) follows from the fact that the sets {U; N V;|dimU; N V; = n} cover R™; (ii) holds because by
definition, any element of ¢/ is a subset of

U uiny
(i-)€1(T)

for some T and the set of indices I (7") was constructed precisely so that f can be represented by the
linear map 7" on this union. For (iii) it suffices to notice that

U U;NV; = {z € R"| There exists an open N such that z € N, and f|y = T|n}
(4,5)€I(T)

so connected components of this union are maximal connected regions of R™ on which f is linear.

O

F.4 PROOF OF LEMMA B4

Proof. Note that since f is permutation invariant, the Jacobian at Pz, for a permutation matrix
P, is equal to J. If J has distinct elements, then the region is contained within the interior of
the fundamental region, and thus by property (ii) of Definition B2 we obtain n! factorial distinct
regions with Jacobian J. On the other hand, if J has an entry repeated m times, then the region
is symmetric under m! permutations of S,,. Thus, there exists at most ;‘T’, regions with Jacobian J,
since some transformed regions may be connected and thus not be distinguished as separate linear
regions. Generalizing this argument, it follows that a given Jacobian J corresponds to at most

n!

linear regions. O

F.5 PROOF OF LEMMA 1

Proof. Let g = @, a; T be a tropical Puiseux polynomial, and let P;, be the polytope associated to
the kth monomial of the expression of g. Recall that Py is defined by the system of linear inequalities
(%)

(0, z) + a; < (o, x) + ay forall j # k.
Assume dim Py < n. Then, the system () must contain at least one implicit equality
(o, z) + a; < (o, ) + ag

such that o; # aj. In particular, the maximum in g(z) = max;(a;, ) + a; is attained at the jth
term whenever it is attained at the kth term, and we can remove the kth term from the expression
without modifying the corresponding function.

Conversely, let us assume that we can remove the kth monomial from the expression of g without
changing the corresponding function. Suppose for a contradiction that P}, has dimension n. This
implies that the system has no implicit equalities, and thus by Lemma BT we can find a point
Z € Py such that all the inequalities in (x) are strict. This contradicts our assumption on the
redundancy of the kth monomial. [
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G FURTHER EXPERIMENTAL DETAILS

Experiments were run on an i7-1165G7 CPU with 16GB of RAM. Table B lists the time taken by
each experiment. Given that our experiments do not include training on large datasets, the experi-
ments are not particularly expensive from the perspective of memory usage, and all the code can be
run on a laptop. The detail provided in the paper corresponds roughly to the amount of computa-
tional resources that were used for this work, omitting trial and testing runs.

The code used to run the experiments, including the Julia library forming a part of our symbolic
contribution, can be found in the following anonymized repository:
https://anonymous.4open.sclience/r/tropical-expressivity/README .md
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H COMPUTATIONAL DEMONSTRATION

We randomly initialize a ReLU neural network of architecture [2, 6, 1], and deduce various properties
using our tools. The native tropical representation of the network is
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As we noted previously, redundant monomials may exist within this representation. Removing these
gives the following reduced representation,

2028240960365167042394725128601 T 8112963841460668169578900514406
2

18014398509481984 "1
113798118771065816597402430375 6889937869568708339499981031275  75444231325898099640798371358899

2028240960365167042394725128601 T 8112963841460668169578900514406
2
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2
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2
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2
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2
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2
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1 2
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Since we have a 2-dimensional input domain, we can visualize the linear regions in which the neural
network partitions the input domain, Figure Ba. By leveraging the capabilities of the OSCAR library,
we can further compute geometric quantities of the linear regions, such as their volumes, Table B.
The extent to which these measurements are useful for applications such as interpretability is left for
future work.

Note how linear regions may be constructed as unions of convex polyhedra to form non-convex re-
gions, for instance in Figure Bd, we see that linear region 6 is constructed as the union of various
convex polyhedra. Moreover, despite the same linear map acting on different polyhedra, these poly-
hedra may be disconnected and thus form separate linear regions, for instance in Figure Bd linear
region 5 is acted on by the same linear map as linear region 6 but it is disconnected from linear re-
gion 6. Our Algorithm [l accounts for both of these scenarios to ensure that an accurate enumeration
of the linear regions is provided.
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(a) (b

Figure 8: Left: The linear regions of a 2, 6, 1] randomly initialized neural network. Each region is
annotated first with its linear region number and secondly by an index identifying which linear map
acts on that region, Table B. Right: Visualization of the linear maps acting on these linear regions.

In Table B, we explicitly identify the linear maps acting on the identified linear regions.
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TABLES

Architecture | Linear regions | Runtime (s)
2,6,1] 11.84 2.57

3,5,1] 20.88 4.76

4,4,1] 14.2 1.05

5,3,1] 7.4 0.35
6,2,1] 4.0 0.167
3,2,2,1] 5.56 25.18
3,3,2,1] 14.72 38.51

(a) Symbolic calculation

Architecture | Linear regions | Runtime (s) A2r06hiiecture Ifjl“gar regions I(){Li%tgime (s)
2,6,1] 16.84 0.214 ,6,1] . ,

3,5,1] 20.8 0.217 3,5,1] 19.76 0.191
4,4,1] 14.4 0.217 4,4,1] 15.44 0.153
5,3,1] 7.96 0.205 5,3,1] 8.0 0.147
6,2,1] 4.0 0.197 6,2, 1] 4.0 0.165
3,2,2,1] 6.72 0.187 3,2,2,1] 5.96 0.176
3,3,2,1] 12.12 0.172 3,3,2,1] 11.84 0.172

(b) Numerical calculation, N = 1000 and R = 5 (ZC(? Numerical calculation, N = 1000 and R =

Architecture | Linear regions | Runtime (s) Architecture | Linear regions | Runtime (s)
2,6,1] 8.6 0.849 2,6,1] 17.04 0.731
3,5,1] 21.56 0.903 3,5, 1] 21.32 0.818
4,4,1] 14.84 1.031 [4,4,1] 15.2 0.746
5,3,1] 7.96 0.971 5,3,1] 8.0 0.747
6,2,1] 4.0 0.743 (6,2, 1] 4.0 0.749
3,2,2,1] 6.16 1.007 3,2,2,1 6.04 0.912
3,3,2,1] 12.92 0.969 3,3,2,1] 13.32 0.967

(d) Numerical calculation, N = 5000 and R = 5

(e) Numerical calculation, N = 5000 and R =

20

Table 1: Comparison between numerical and symbolic calculations.

Table 2: Number of iterations in the PVZ algorithm and average time to solve LP during each

iteration.
# iterations 94 86 67 83 99 86 75 83
Time per LP | 0.0042 | 0.0026 | 0.0025 | 0.0026 | 0.0025 | 0.0025 | 0.0026 | 0.0026
(@ mp =10,mg =5andn = 3.
# iterations 2437 1110 1731 1441 1432 1706 1741 1095
Time per LP | 0.0152 | 0.0093 | 0.0092 | 0.0098 | 0.0098 | 0.0102 | 0.0095 | 0.0097
(b) mp =15, mg =9 andn = 6.
# iterations 2 607 525 80 194 355 78 19
Time per LP | 0.0027 | 0.0027 | 0.0026 | 0.0027 | 0.0032 | 0.0027 | 0.0028 | 0.0027

(c)mp =15, mg =5andn = 7.
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Table 3: Lower bounds and true values of Hoffman constants

Sample 1 2 3 4 5 6 7
Lower bounds Hy, | 0.239 | 0.153 | 0.209 | 0.316 | 0.366 | 0.361 | 0.374 | 0.399
Time Hp, 0.206 | 0.205 | 0.204 | 0.206 | 0.206 | 0.207 | 0.211 | 0.216
True values H 0.555 | 0.621 | 0.594 | 1.105 | 1.142 | 0.649 | 0.778 | 1.876
Time H 0.644 | 0.686 | 0.651 | 0.638 | 0.674 | 0.638 | 0.657 | 0.676
Upper bounds HY | 1.033 | 0.906 | 0.899 | 1.966 | 1.784 | 1.183 | 1.448 | 2.728
Time HY 0.001 | 0.001 | 0.002 | 0.001 | 0.001 | 0.002 | 0.001 | 0.001
@ mp=2,mg=3andn =6
Sample 1 2 3 4 5 6 7
Lower bounds Hy, | 0.214 | 0.271 | 0.237 | 0.222 | 0.323 | 0.145 | 0.159 | 0.371
Time Hp, 0.448 | 0.430 | 0.443 | 0.420 | 0.441 | 0.443 | 0.446 | 0.440
True values H 0.970 | 0.901 | 1.045 | 0.555 | 1.023 | 1.402 | 0.530 | 0.843
Time H 5.619 | 5.535 | 5.593 | 5.567 | 5.614 | 5.705 | 5.489 | 5.605
Upper bounds HY | 1.426 | 1.437 | 2.129 | 1.058 | 2.328 | 2.607 | 1.208 | 1.748
Time HY 0.007 | 0.007 | 0.006 | 0.007 | 0.007 | 0.008 | 0.006 | 0.007
b)ymp =3, mg=4andn =9
Sample 1 2 3 4 5 6 7 8
Lower bounds Hy, | 0.287 0.180 | 0.186 | 0.243 0.329 0.304 | 0.246 0.177
Time H, 0.708 0.693 0.745 0.749 0.719 0.701 0.710 | 0.687
True values H 1.870 1.219 2.158 1.287 1.156 1.075 1.855 2.138
Time H 36.456 | 36.089 | 37.885 | 37.785 | 36.299 | 36.562 | 35.724 | 33.566
Upper bounds HY | 3.970 3.098 4.973 3.727 | 10.342 | 1.960 6.269 5.535
Time HY 0.086 | 0.085 0.084 | 0.050 | 0.052 0.051 0.084 | 0.083
(c)mp =5 mg=4andn =8
Sample 1 2 3 4 5 6 7 8
Lower bounds Hy, | 0.194 | 0.229 0.246 | 0.194 | 0.190 0.216 | 0.199 0.231
Time Hj, 0.791 0.980 | 0.736 | 0.666 0.693 0.662 | 0.698 0.680
True values H 1.079 0.768 0.932 | 0.797 0.895 0.826 | 0.672 0.985
Time H 91.833 | 95.885 | 71.201 | 69.635 | 69.700 | 69.030 | 69.494 | 69.137
Upper bounds HY | 3.280 1.679 2.711 4.417 6.425 2.642 2.359 2.016
Time HY 0.295 0.176 0.160 | 0.160 | 0.129 0.190 | 0.159 0.128
dmp=7,mg=3andn =12
Experiment Compute time
Redundant Monomials 52.93 minutes
At the MNIST-level 2.68 minutes

Table [, symbolic calculations
Table [, numerical calculations
Linear regions of invariant neural networks, Figure B

29.06 minutes
6.13 minutes
24.63 minutes

Table 4: Compute details.
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Table 5: The linear maps referenced in the

annotations of Figure Ea.

Linear Region Volume
1 3.9158
2 Unbounded
3 0.0196
4 3.8078
5 0.0043
6 Unbounded
7 Unbounded
8 Unbounded
9 0.1942
10 0.029
11 1.7305
12 1.0766
13 Unbounded
14 Unbounded

Table 6: Volumes of the linear regions
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identified in Figure K4.
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