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Abstract

We propose a Reinforcement Learning-based approach to approximately solve
the Tree Decomposition problem. Recently, it was shown that learned heuristics
could successfully solve combinatorial problems. We establish that our approach
successfully generalizes from small graphs, where an optimal Tree Decomposition
can be found by exact algorithms, to large instances of practical interest, while still
having very low time-to-solution. On the other hand, the agent-based approach
surpasses all classical greedy heuristics by the quality of the solution.

1 Introduction

At the core of many practical tasks, such as probabilistic inference, decision making, planning,
and other problems, lies a combinatorial (NP-complete) optimization problem. The solution of
large NP-problems is often possible only with the help of heuristics. These heuristics are designed
manually, which is a complicated and time-consuming process. The resulting algorithm is also
typically domain-specific and can not be reused. Recently, Reinforcement Learning (RL) application
to design heuristics gained significant attention [2, 19, 15]. RL is a natural framework for the
automatic design of approximation algorithms for problems with an inherent cost function and large
search space, which is the essence of combinatorial optimization. In this work, we consider the
Tree Decomposition (TD) [6] problem. The TD is central to the analysis of the complexity and
the topological structure of graphs. An integer parameter treewidth characterizes the solution of
the TD problem. The treewidth quantifies the complexity of many NP-problems; the computational
cost of solving these problems is exponential in the treewidth, but only polynomial in the problem’s
graph size. Tree Decomposition emerges as a core step in various contexts, such as probabilistic
inference [14] or shortest path search [9]. The TD problem is usually solved on non-Euclidean
graphs, as opposed to the traveling salesman problem (TSP), which is the most common target of
recent studies of trainable heuristics [19, 2].

Several exact [13, 22, 7] and approximate [5] algorithms exist to solve the TD problem. We propose
a Reinforcement Learning-based approach for TD. In this work, we demonstrate that the resulting
policy can successfully generalize to problems with different graph structures and sizes. Our find-
ings show that the agent can be trained even on a single graph. The quality of the solution of our
agent-based procedure is superior compared to all simple greedy heuristics, and the time-to-solution
is much lower compared to advanced algorithms

2 Graph Convolutional Policy

We start with a formulation of Tree Decomposition as a linear ordering problem of a graph’s vertices.
Then we shortly define a graph agent, which finds an ordering to calculate a TD.

During tree decomposition, an arbitrary input graph is mapped to a tree graph. A full definition of
Tree Decomposition can be found in the original work [20] or in a classical review [6]. Informally,
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the Tree Decomposition measures how close a given graph resembles a tree. We provide a more
formal definition in Appendix A. The quality of TD is measured by treewidth, which should be
minimized across all possible trees. It can be shown that finding a tree with the lowest treewidth is
NP-hard [3]. Instead of building the tree directly, in this work, we will search for TD by using its
relation to the ordering of vertices [4]. The procedure to build a final tree given a permutation of
vertices is described in Appendix A.

A permutation π(u) : u ∈ U → [1 . . . |U |] of vertices of a graphG = (U,E) is called an elimination
order. Consequently, π−1(t) : t ∈ [1 . . . |U |] → U is an inverse function of the order. Given a
number π−1(t) returns a node. The elimination order of the graph can be used in the following
procedure for a graph G:

1. For t ∈ [1 . . . |U |], take the t-th node u = π−1(t).
2. Connect all neighbors of u into a clique (fully connected subgraph) and record the size of

the resulting clique. Remove u. This results in a new graph Gt.
3. Repeat the procedure until Gt is empty.

If G has treewidth at most k, then there is an elimination order π of G, such that each vertex has
at most k + 1 neighbors in the elimination procedure with respect to π [1]. We define the maximal
number of neighbors associated with a permutation π as cπ . The treewidth is a minimum of cπ − 1
across all possible permutations, i.e. tw(G) = min

π
cπ − 1. If the treewidth of a graph is small,

then it is tree-like. In particular, a tree has treewidth 1. We define our problem as follows: given
an undirected graph G, find an elimination order, i.e., a permutation of the vertices, such that the
number of neighbors in the elimination procedure along π is minimal across all permutations. The
example of the elimination procedure is shown in Appendix A.

Graph Agent. At every step t of the elimination process we represent the graph Gt with n nodes
as the pair (At,Ht), where At is the adjacency matrix and Ht ∈ Rn×d is the node feature matrix,
assuming that the graph has d features. Input features Ht

0 is a constant matrix initialized with ones.
Ht

0 is passed through a graph neural network, which parameterizes our Graph Convolution Policy
(GCP), and is transformed into Ht. We experiment with different graph neural architectures, which
consist of three types of functions: message passing, aggregation, and update function. Our approach
to feature extraction is similar to the one used in the recent work [25]. The details of the architecture
are listed in Appendix B.1. To formulate the TD problem in the RL framework, we should define
a Markov decision process (MDP) for the agent. At each time step t, the agent selects a node of
the graph Gt based on the observed information, represented by the state features. The node is then
eliminated from Gt, and the graph Gt+1 is produced. We define the MDP as a tuple (S,A, P, r, γ),
where the A is a set of actions, S is a set of states and r is the cost for the sequential combinatorial
problem. A consists of nodes u ∈ Ut ⊂ U , which have not been eliminated at the current step.
For the TD problem, r is the size of a maximal clique in the graph obtained during the elimination
process. Each state st ∈ S directly defined as the embedding matrix H(l) and the structure of the
graph Gt. We use original GCN [17] to extract features on every step, and conduct experiments
with its extensions [26, 24]. Solving an MDP means finding an optimal policy Π, a mapping which
outputs a distribution of actions. We apply an Actor-Critic [18] algorithm to solve this problem.

3 Experiments

In this section, we demonstrate that the agent can successfully learn a heuristic. We compare our
results with common human-designed heuristics and show that our neural heuristic trained on a
single graph can generalize on the graphs with many vertices.

3.1 Data

We use three datasets with different structures for the experiments. The first dataset consists of ran-
dom Erdős–Rényi (ER) graphs [11] with edge probability 5/n, where n is the number of nodes. We
experimentally found that this choice of the edge probability leads to hard instances of TD problem
(the ER graphs contain many cycles and are not too dense). For the validation, we use a fixed set
D of 100 Erdős–Rényi graphs with 10 to 1000 nodes and the set Dsmall as first 50 graphs from D.
The second dataset is taken from the PACE2017 competition [10] on designing TD algorithms. The

2



0-250 250-500 500-750 750-1000
Number of Nodes

0.9

1.0

1.1

1.2

1.3

1.4

Ap
pr

ox
im

at
io

n 
Ra

tio

GCP (ours)
Min Fill-in
Min Degree
S2V-DQN
QuickBB
Tamaki

(a) Erdős–Rényi
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(b) PACE2017
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Figure 1: Approximation Ratio (less is better) of different methods averaged over all graphs in the respective
dataset. The red line shows the AR compared to Tamaki solver with 30 minutes time bound. The result of the
agent (trained on a single graph) is slightly better than all greedy human-designed heuristics.

third dataset comprises graphs that emerge during the simulation of random quantum circuits [8], a
common framework in the study of quantum computing supremacy. The main reason for using the
ER graphs is to simplify the reproducibility of the experiments. Our main results are obtained on
the PACE2017 dataset, explicitly created to test TD algorithms. The third dataset is selected as a
practical TD application example.

3.2 Baseline and Evaluation Details

Before starting to experiment with our model, we should introduce other algorithms used in this
work. We use two greedy heuristics, two specialized TD solvers and adapt the S2V-DQN [15]
method to the TD problem.

The greedy heuristics are minimal degree and minimal fill-in [6]. They work fast enough and are
accurate in practice [23]. The minimal degree heuristic selects nodes with a minimal number of
neighbors. The minimal fill-in algorithm selects the nodes such that the number of introduced edges
at each step is minimized.

Two specialized solvers are based on very different approaches, and both will produce an ex-
act solution if provided enough running time (exponential in the graph size). The first solver by
Tamaki et al. [22] employs the connection of TD and vertex separators. This method searches for
optimal TD directly in the space of tree graphs without referring to vertices’ ordering. It is a win-
ner algorithm on the PACE2017 competition. Another powerful solver is QuickBB [13], which is
based on the branch and bound algorithm. We restrict both solvers’ runtime to 30 minutes per graph
instance as in the PACE2017 competition [10].

We also compare with another Reinforcement Learning approach called S2V-DQN [15]. This algo-
rithm was previously used to solve sequential optimization problems on graphs, such as Minimum
Vertex Cover, and we adapt it to our tasks. We train the S2V-DQN model on a single graph to have
faster convergence.

To produce a solution using our RL-based heuristic, we sample 10 trajectories and take the one with
the lowest treewidth. We compare the performance of different solvers with respect to the Tamaki
solver [22]. As a performance metric an Approximation Ratio (AR), AR = twmethod(G)

twtamaki(G) is used. The
AR metric is the standard in the literature on approximation algorithms. The treewidth is calculated
from the elimination order π produced by the solvers.

Training Graph. Surprisingly, we find that the agent’s score does not significantly depend on
the source of the training graph, despite the graphs which we use have quite different structures.
Also, the training set’s size does not significantly affect final accuracy but rather resulted in longer
training times. More details are provided in Appendix B.2. This fact may be attributed to the
agent’s inefficiency or the uniform structure of the TD problem already for average-sized graphs
(with 50 nodes). We admit that this intriguing fact may need additional investigation. To simplify
the reproducibility of our experiments, we choose Erdős–Rényi graphs for further tests. As can be
seen from Figure 4a in Appendix B.3, the accuracy of the GCN-agent depends on the number of
nodes only slightly. For further experiments, we select a graph with 70 nodes.
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Method Approx.
Ratio

y Ratio
Max.

Avg.
Time, s

Exact solvers

Tamaki 1.0 1.0 17.01
QuickBB 1.09 ± 0.11 1.41 1617.27

Greedy heuristics

Min-Fill 1.24 ± 0.22 1.78 153.52
Min-Degree 1.31 ± 0.23 2.13 0.04
S2V-DQN 1.45 ± 0.44 1.79 0.9
Random agent 1.84 - -

Ours

GCP (sampling) 1.19 ± 0.16 1.44 30.93
GCP (greedy) 1.21 ± 0.13 1.41 3.564
GCP-GIN 1.34 ± 0.21 1.52 35.76
GCP-GAT 1.31 ± 0.14 1.42 32.12

Table 1: A summary of the agent’s performance on the PACE2017 dataset. The values are averaged over all
graphs with sizes from 10 to 1000 nodes. The GCP solver performs better than all greedy heuristics and has
lower time-to-solution, especially when using a greedy algorithm.

3.3 Comparison with Other Solvers

In this section, we compare our agent’s performance to other methods on the graphs of the differ-
ent sizes and structures. The agent is trained on the ER graph with 70 nodes. The results of all
experiments are summarized in Figure 1. The learned solver usually does not reach the accuracy
of specialized exact algorithms but outperforms greedy heuristics. It is interesting to see that one
can learn a relatively useful heuristic using only a single graph. The quality of the agent’s solution
deteriorates as the test graphs’ size grows, but usually slower than the quality of the solution found
by greedy heuristics.

The PACE2017 dataset results, which we consider the most representative, are summarized in Ta-
ble 1. We note that in addition to the high accuracy comparing to greedy heuristics (both on average
and in the worst case), the RL-based heuristic has very competitive time-to-solution, which is es-
sential for solving NP problems. Furthermore, this time can be significantly decreased, as sampling
can be trivially performed in parallel. One explanation of why the agent works this way is the ex-
cellent ability of graph neural networks to approximate dynamic programming algorithms, which is
demonstrated in [25].

4 Conclusion

This work formulates the elimination process for Tree Decomposition as a task for RL. We propose
a model that can directly learn how to solve this combinatorial optimization problem using a single
graph for training and simple GCN. The training procedure also can be performed using a large
set of graphs, but this work aims to show the generalization ability of a simple agent trained on a
single graph. We provide experiments that a learnable heuristic can surpass greedy, manually de-
signed ones. Our method can generalize to large problem instances without significantly sacrificing
the solution’s quality and without a large increase in computational time. Our preliminary results
suggest that this approach is a good starting point for learning heuristics for combinatorial problems
on graphs. Outperforming specialized algorithms is still a challenge in this setting. The generaliza-
tion ability of our agent-based approach could also be fruitful for algorithmic reasoning tasks. The
perspective direction of research is a combination of RL-based heuristics with local-search methods
and an extension of this method for tensor contraction task.
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APPENDIX

A Elimination Ordering

Here we provide examples of the elimination procedure and discuss its connection to tree decom-
position. Consider two elimination procedures of the same graph in Fig. 2. In the first case (upper
part), the maximal clique size is 3 (and hence the treewidth of the associated TD is 2). In the second
case, the treewidth is 1, and the order is optimal (since the graph is a tree). Note that the optimal or-
der may not be unique: nodes number 1 and 2 can be swapped, for example, but the same treewidth
is achieved.
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Figure 2: Elimination procedure for a given order of nodes π. The labels on nodes correspond to their order.
In red is shown a maximal clique that emerges during the elimination procedure. The second order is optimal:
the clique size is minimized

Let us formally introduce Tree Decomposition. A Tree Decomposition is a mapping of the initial
graph G = (U,E) into a tree graph F = (B, T ). Here U is the set of nodes, and E is the set of
edges of the initial graph; B is the set of bags (each bag b ∈ B is a subset of nodes of the graph G,
b ⊂ U ) and T is the set of the edges of the tree graph. A Tree Decomposition has to fulfill three
criteria to be valid:

1. Every node of G is in some bag, i.e., ∪b∈Bb = U .
2. For every edge (u, v) ∈ E there must be a bag such that both endpoints are in that bag, i.e.,
∃b : u ∈ b, v ∈ b.

3. For every node u of G, the subgraph of the tree F , induced by all bags that contain u, is a
connected tree.

Tree decomposition is inherently related to the elimination procedure and can be built provided
some order of node eliminations is chosen. To build a TD, one has to add all cliques which emerge
during the elimination procedure as the vertices B. A minimum spanning tree T over B, which is
consistent with the criteria mentioned in the previous paragraph, is the TD. Pseudocode for building
a TD given an elimination order can be found, for example, in [21]. The treewidth is the size of the
maximal bag minus 1. Conversely, given a TD, multiple equivalent elimination orders (in the sense
of the maximal clique/treewidth) can be found. This procedure can also be found in [21].

B Additional Experiments

This section contains details of additional experiments. All of them are aimed at choosing the agent
training procedure and the analysis of generalization.

B.1 Training Details

Our code is based on the PyTorch Geometric [12]. We train all models with Adam [16] with pa-
rameters β1 = 0.9, β2 = 0.999 and learning rate lr = 0.008. We also set the parameters of the RL
algorithm as follows: the discount factor γ = 0.999, the GAE weight λ = 0.85, the weight of the
value loss βvalue = 1.0, and the multiplier of the entropy regularization βentropy = 0.001. The GCN
subnetwork contains three layers, and the hidden feature size is 64, as in [15]. A 2-layer perceptron
parameterizes policy and value heads with a hidden dimension equal to 64. All hyperparameters are
selected with grid search on the hold-out validation set. We train our model on the NVIDIA 1080ti
with one thread for sampling.
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Figure 3: Learning curves showing the Approximation Ratio (less is better) and number of updates (mean and
variance over 5 random seeds). The agents are trained on different training sets and compared on the same
validation set Dsmall. For training on a single graph, we choose the graph ”he064” from the PACE dataset with
|V | = 68, and the ER graph with the same number of nodes. For training on the graphs with |V | < 200, we
sample a new graph at every update step. The agent trained on a single graph achieves the same accuracy with
less training iterations.

B.2 Choice of the Training Graph

In this series of experiments, we would like to check how the choice of training dataset affects the
resulting agent performance. In deep RL, it is common to train the agent on a huge number of
problem instances and expect an increase in the model quality from a larger number of training
examples. We check this intuition in the following experiment. First, we train the agent on a single
graph. We choose one ER graph with 68 nodes and one graph from the PACE dataset (”he064”).
Next, we train on different ER and PACE graphs with up to 200 nodes. We randomly select a graph
for every training step. The performance of the agents is compared to the same validation set of
Erdős–Rényi graphs. The results are shown in Figure 3. It turns out it is sufficient to train our agent
for 10 epochs (around 20 minutes).
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B.3 Training Graph size

In this set of experiments, we consider training on graphs of different sizes. It is known that if the
action space is large, the RL methods may have problems with convergence due to the significant
variance of the gradients. It is hence desirable to keep the training graph size small (for example, less
than 100 nodes); however, training on larger instances may produce agents with better performance.
To check the influence of the training graph size on the learned heuristic accuracy, we train separate
agents on ER graphs with 10 to 210 nodes. The dependence of the AR is shown in Figure 4a.
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It can be noted that better accuracy is obtained for the graphs with 70 and 130 nodes, which is
approximately the GCN feature size or twice feature size. The final result on the validation set
slightly depends on the number of nodes on the training graph.

B.4 Agent Decision Making

In this section, we analyze the agent’s decision-making process in order to get insights into the
structure of the TD problem.

As mentioned earlier, in all experiments, we use sampling to get candidate solutions and select one
with the best score. We use a small sample of 10 trajectories, which is a stronger result compared to
other works on neural-based heuristics, where samples of size 1000 are common [19]. The efficiency
with a small sample size suggests that the agent learns a distribution close to the ”true” distribution
of solutions.

Another evidence in support of the high quality of the learned distribution is the behavior of the agent
on complete graphs. A fully connected graph with n nodes has treewidth n− 1, and all elimination
orders on it are equivalent. The policy learned by our agent produces a uniform distribution on the
complete graphs (after they appeared during the elimination process), as shown in Figure 4b.
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