

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AGENTVQA: A UNIFIED BENCHMARK FOR AGENTIC VISUAL UNDERSTANDING

Anonymous authors

Paper under double-blind review

Figure 1: **The AgentVQA Benchmark.** AgentVQA unifies 14 challenging datasets across five domains: Web Agents, Egocentric Videos, Robotics, Games, and Spatial Understanding, into a standard MCQ format. These tasks are diverse with some using action-histories to test episodic memory and others using video inputs to evaluate temporal understanding.

ABSTRACT

Vision-language models (VLMs) can perform a broad range of tasks across diverse settings. Yet their performance in agentic contexts remains poorly understood. Existing benchmarks are domain-specific, making comprehensive evaluation difficult, and they often require compute-expensive online simulators. To address this gap, we introduce AgentVQA, a benchmark for systematically evaluating agentic capabilities in VLMs. AgentVQA offers three key advantages: (1) *Comprehensive* – it consists of 14 datasets spanning five critical agentic domains: Web Agents, Robotics, Egocentric Videos, Games, and Spatial Understanding. (2) *Standardized* – we reformulate diverse tasks, like trajectory-based web navigation and gameplay, into a unified multiple-choice question (MCQ) format. We balance the sample distribution across multiple domains, data formats, and semantic categories. (3) *Challenging* – our data processing pipeline generates hard negative options in MCQs, which are then manually reviewed for correctness. Among all the models we evaluate, the best achieves a mere $\sim 60\%$ accuracy. Furthermore, our ablation studies highlight key error modes where current VLMs can be improved.

1 INTRODUCTION

Vision-Language Models (VLMs) are quickly becoming the decision-making core for agentic systems spanning robotics, wearable assistants, web navigation, or gameplay. With only prompting or minimal

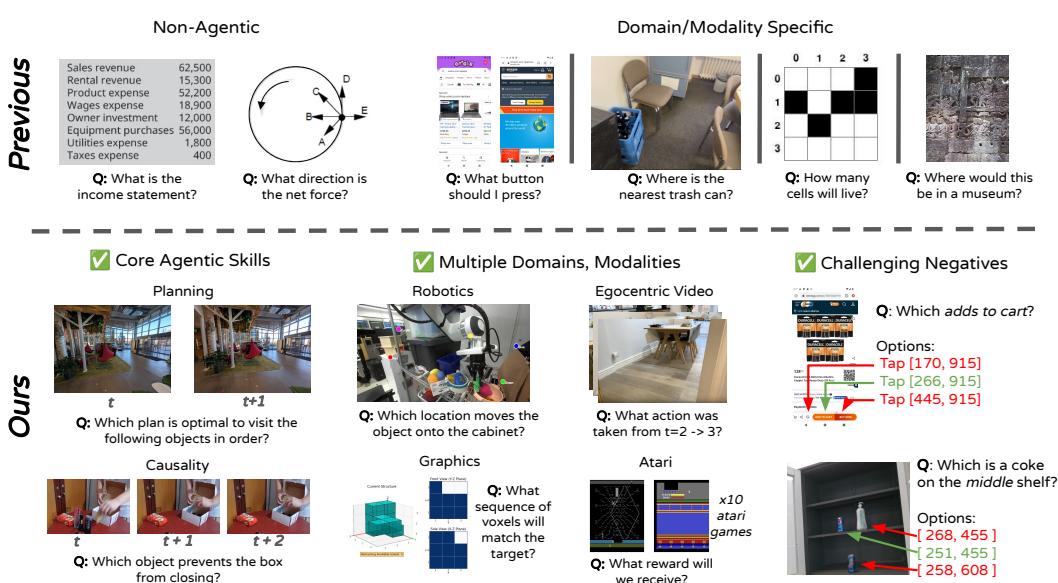
054 fine-tuning, VLMs often outperform their domain-specific counterparts (Koh et al., 2024; Black et al., 055 2024; Zhou et al., 2025; Zhang et al., 2025; Sarch et al., 2025). This approach promises a scalable 056 path to universal agentic behavior. However, our understanding of the real-world agentic capabilities 057 of these models is still limited.

058 In other domains like math or coding, standardized benchmarks systematically track model capabilities 059 and limitations (Jimenez et al., 2023; Balunović et al., 2025). For agents, online evaluations 060 in real or simulated environments remain the gold standard for assessing agentic performance (Yao 061 et al., 2024), but due to computational cost and reproducibility, they present significant practical 062 challenges for rapid, large-scale model comparison (Henderson et al., 2018; Dasari et al., 2022). 063

064 As a result, VLMs’ agentic capabilities lack comparable evaluation frameworks and remain 065 poorly understood. State-of-the-art models are often assessed on general-purpose benchmarks 066 like MMMU (Yue et al., 2024), MMBench (Liu et al., 2024) and GPQA (Rein et al., 2024). While 067 these track broad visual-language understanding, the questions and visual inputs do not reflect agentic 068 decision-making scenarios (visualized in Figure 2). Recent works (Yao et al., 2024; Yehudai et al., 069 2025; Wong et al., 2025) show that performance on general-purpose VQA benchmarks does not 070 reliably correlate with success in agentic tasks.

071 To address this limitation, several domain-specific agentic benchmarks have been proposed. These 072 benchmarks for agentic tasks have made valuable contributions to their respective domains (Majumdar 073 et al., 2024; Cheng et al., 2024a; Chen et al., 2025). However, they remain insufficient for evaluating 074 generalist agents, because they are fragmented across domains. They fail to provide comprehensive, 075 unified evaluations of the diverse domains and inputs expected from generalist agents.

076 Prior works, such as Li et al. (2023a), have made significant efforts in aggregating diverse, multi- 077 image tasks into a standardized format. Yet, their curation for agent-oriented tasks focuses on general 078 image understanding and classification of actions in videos. They largely avoid interactive decision- 079 making data required by agents in real-world, complex environments. This highlights the need for a 080 robust and standardized offline evaluation framework to track progress in agentic AI.



102 **Figure 2: Comparison between AgentVQA and previous benchmarks.** Examples above the 103 dashed line illustrate questions from existing VLM benchmarks, which are either non-agentic (Yue 104 et al., 2024) or domain-specific (Deng et al., 2023). AgentVQA addresses three evaluation gaps: (1) 105 it tests core agent skills by unifying the evaluation of agent tasks, which were previously isolated 106 in separate datasets; (2) it spans multiple domains and modalities, evaluating performance across 107 diverse domains, image/video modalities, and action trajectories; and (3) it incorporates challenging 108 negatives through distractors, including semantically similar and near-miss actions.

108 We introduce **AgentVQA**, a **comprehensive** benchmark designed to address these limitations and
 109 enable a systematic analysis of VLM capabilities for agentic tasks. AgentVQA unifies 14 challenging
 110 datasets across five domains: Web Agents, Egocentric Videos, Robotics, Games, and Spatial Under-
 111 standing. These domains are chosen for their relevance to the current frontiers of agentic AI research
 112 (visualized in Figure 1). AgentVQA consists of 13,400 MCQs spanning 18,400 images and 2,000
 113 videos from pre-existing trajectory and VQA datasets. Our analysis reveals substantial rank shifts
 114 between AgentVQA and MMMU, GPQA-Diamond, and OpenEQA (Table 4), indicating that the
 115 model rankings in our benchmark are largely uncorrelated with those in both general-purpose VQA
 116 and domain-specific benchmarks.

117 AgentVQA ensures **standardization** by filtering and transforming dynamic tasks, such as gameplay
 118 and trajectory-based web navigation, into a unified MCQ format. For instance, we transform gameplay
 119 datasets with multiple valid next steps into nuanced reward modeling questions that challenge a
 120 model’s understanding of optimal strategies. Similarly, we transform web trajectories by pairing the
 121 ground-truth action with other plausible but incorrect grounding options.

122 AgentVQA is a **challenging** benchmark. This is ensured by our methodology for generating plausible
 123 “hard negatives” distractor options. These distractors fall into two main categories: near-miss
 124 actions (e.g., clicking nearby but not on the correct button) and semantically similar options (e.g.,
 125 choosing apple instead of orange). The generation strategy itself is validated through an extensive
 126 initial analysis, followed by manual verification to ensure each distractor is both plausible and
 127 unambiguously incorrect. The benchmark’s resulting difficulty is reflected in our findings: even the
 128 top-performing model, GPT-5 (thinking-high), achieves an overall accuracy of only ~60%.

129 AgentVQA provides data-driven insights into the current state of the agentic capabilities of VLMs.
 130 Our evaluation across 15 open and closed-source models of varying sizes leads to a detailed anal-
 131 ysis. For instance, top-performing models in one category do not always perform best in other
 132 categories. While GPT-5 (thinking-high) dominates in Spatial Understanding (72%), Games (60%),
 133 and Egocentric Videos (70%), Qwen2.5-VL (72B) leads in Web Agents (57%) and Robotics (52%).

134 Furthermore, our error mode analysis, based on a manually crafted and verified categorization of
 135 reasoning outputs, reveals highly domain-specific failure patterns. The most prevalent error in
 136 Web Agents is grounding errors (46%). Spatial reasoning failures dominate other domains, with
 137 spatial confusion the top error in both Robotics (51%) and Egocentric Videos (35%), and spatial
 138 misconception in Spatial Understanding (28%). Finally, the errors in Games are largely high-level
 139 reasoning breakdowns (40%), pinpointing a clear split between low-level perceptual grounding and
 140 high-level abstract reasoning as the fundamental challenges in agentic tasks.

2 RELATED WORK

144 **VLM as agents.** Recent advances in multimodal AI have been driven by the development of Vision-
 145 Language Models (VLMs). These models, such as QwenVL (Bai et al., 2023), GPT-4o (Hurst et al.,
 146 2024), and Gemini (Comanici et al., 2025), are typically pretrained on vast, web-scale datasets of
 147 paired images and text. This equips them with a broad general-purpose understanding of both visual
 148 concepts and natural language, making them an ideal compute unit for agents. Several works have
 149 successfully adapted VLMs into specific domains, either by fine-tuning or scaffolding pre-trained
 150 models (Black et al., 2024; Koh et al., 2024; Zhou et al., 2025; Zhang et al., 2025; Sarch et al., 2025).
 151 However, this begs the question: how do we evaluate agentic capabilities *across domains*?

152 **General visual question answering.** A wealth of benchmarks have been developed to assess the
 153 general capabilities of VLMs, including SEED-Bench (Li et al., 2023a), MMBench (Liu et al.,
 154 2024), or MMMU (Yue et al., 2024). While invaluable for measuring core competencies and
 155 reasoning, they are ill-suited as proxies for agentic intelligence. Agentic tasks often require episodic
 156 memory (Majumdar et al., 2024) because either the modalities are iterative, e.g., a stream of image
 157 observations, or the task requires interactive reasoning, e.g., tool-calling. Yao et al. (2024) found that
 158 GPT-4o, despite excelling on traditional benchmarks, achieves a failure rate less than 50% on realistic
 159 customer service tasks requiring multi-turn interactions. In Fig. 4, we confirm this observation by the
 160 divergence between rankings in AgentVQA vs MMMU and GPQA-Diamond.

161 **Agentic benchmarks.** The agentic evaluation landscape is bifurcated into language-only benchmarks,
 e.g., SWE-bench (Jimenez et al., 2023) or AgentBench (Liu et al., 2023), that test code generation

and tool use, and vision-language benchmarks that require visual grounding and spatial reasoning. *AgentVQA* is the latter. Additionally, benchmarks are further split by execution pattern: online versus offline. Online benchmarks, e.g., (Savva et al., 2019; Fan et al., 2022; Li et al., 2023b; Koh et al., 2024; Zhang et al., 2025), are ideal because performant agents must handle non-deterministic environment interactions, which is fundamental to real-world deployment.

However, online evaluation can be time-consuming or require significant infrastructure (Henderson et al., 2018; Du et al., 2024), so offline agentic benchmarks have grown in popularity. Offline benchmarks, e.g., (Rawles et al., 2023; Yang et al., 2025a; Team et al., 2025; Tong et al., 2025; Gong et al., 2025), consist of verifiable question-answer tasks (often MCQ) paired with visual inputs. Existing offline agentic benchmarks are domain-specific, and the fragmented state of offline agentic evaluation makes it difficult to assess cross-domain visual generalization. (we outline a full comparison between canonical offline and online VLM datasets in Table 5). Aggregating performance across datasets is also problematic because they consist of non-uniform answer formats, varying degrees of answer choice “hardness”, and varying sample distributions. This makes it difficult to distinguish skills needed for cross-dataset or cross-domain generalization.

AgentVQA addresses these limitations by 1) curating relevant datasets across domains. 2) filtering and transforming representative subsets of the datasets into a standardized MCQ format focused on hard negatives. 3) annotating category metadata to understand cross-dataset skill distributions. In the following sections, we expand on each of these steps, as well as our evaluation on VLMs.

3 THE AGENTVQA BENCHMARK

To systematically analyze the agentic capabilities of general-purpose VLMs, a new evaluation framework is required. We define an agentic task as one requiring a model to perceive its environment, reason about dynamics, and select actions to achieve a goal (Bengio et al., 2025). Unlike passive VQA, agentic perception is instrumental, a prerequisite for downstream action (Reed et al., 2022). We provide a detailed taxonomy of these agentic skills in Appendix C. Existing benchmarks fall short, either by focusing on single domains (Majumdar et al., 2024; Cheng et al., 2024a), which prevents a holistic assessment, or by testing general VQA skills that are poor proxies for agentic competence (Yue et al., 2024; Rein et al., 2024). AgentVQA answers a central research question: where do modern, general-purpose VLMs succeed or fail across a broad range of agentic tasks? Its construction follows three core principles: **comprehensive** domain coverage to test for skill generality, a **standardized** MCQ format for scalable analysis, and the use of systematically generated hard negatives to ensure it is **challenging**.

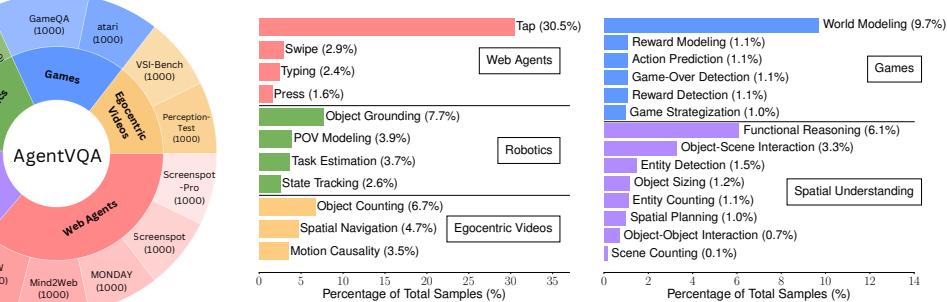


Figure 3: **Distribution of the 13,400 questions in the AgentVQA benchmark.** **Left:** The distribution across the 14 source datasets (with sample counts in parentheses), organized within the five core agentic domains. **Right:** A complementary view illustrating the sample distribution across our 25 defined sub-task categories.

3.1 DATASET OVERVIEW

An overview of our benchmark domains and evaluation types is summarized in Figure 3. AgentVQA is a large-scale, multi-domain benchmark. It comprises 13,400 standardized MCQ questions designed to probe the agentic intelligence of VLMs. The questions are curated from 14 diverse datasets spanning: Web Agents, Egocentric Videos, Robotics, Games, and Spatial Understanding.

216 Our domains were chosen to express distinct agentic interactions. These include digital interaction
 217 and GUI navigation (Web Agents) to embodied perception in the physical world (Robotics, Egocentric
 218 Videos), strategic decision-making (Games), and foundational spatial awareness (Spatial Understanding). We use agentic-relevance, public availability, MCQ-format potential, and verifiability as our
 219 selection criteria (more details in Appendix A).

221 A core feature of AgentVQA is its task diversity. To ensure multifaceted evaluation, questions
 222 are structured around 25 distinct sub-task categories (Figure 3). Our categories encompass a wide
 223 range of agentic skills, ranging from low-level action prediction (e.g., Tap/Click, Type) and spatial
 224 grounding to more complex trajectory-based reasoning, spatiotemporal understanding, and state-value
 225 estimation (e.g., Reward Modeling). Our categorization starts with manual inspection of raw samples
 226 to identify the most informative question types across datasets, then programmatically mapping each
 227 sample to a category (more details in Appendix D).

228 Unlike benchmarks focused solely on static images, 15% of our questions require reasoning over
 229 dynamic video clips from the Egocentric Videos. AgentVQA also includes a high concentration of
 230 sequential tasks - 26% of all questions are trajectory-based. So for either modality, these questions
 231 provide a crucial test of spatiotemporal understanding. AgentVQA’s diversity in domain, skill-
 232 categorization, and modality promote granular analysis of model capabilities. The overall distribution
 233 of questions across these axes is shown in Figure 3.

234

235 3.2 DATA COLLECTION

236

237 We chose datasets ripe with the following characteristics: agentic signal, domain/modality coverage,
 238 offline convertibility, availability, and scale. The full process is described in Appendix A, and this
 239 process yielded the following source datasets: AitW (Rawles et al., 2023), MONDAY (Jang et al.,
 240 2025), Mind2Web (Deng et al., 2023), Screenspot (Cheng et al., 2024a) and Screenspot-pro (Li et al.,
 241 2025) for Web Agents; ERQA (Team et al., 2025), Robo2VLM (Chen et al., 2025), and Roborefit (Lu
 242 et al., 2023) for Robotics; VSI-Bench (Yang et al., 2025a) and Perception-Test (Patraucean et al.,
 243 2023) for Egocentric Videos; GameQA (Zhang et al., 2025) and Atari (Zhang et al., 2020) for Games;
 244 SpaCE-10 (Gong et al., 2025) and EmbSpatial-Bench (Du et al., 2024) for Spatial Understanding.

245

246 We additionally show the composition of AgentVQA in Figure 3. To ensure a manageable yet
 247 representative benchmark, we subsample 1000 instances from each source dataset (except ERQA
 248 with 400). This is based on the smallest sample size that consistently yields <1% standard deviation
 249 in model performance (more details in Appendix E). Our curation yields 13400 questions, spanning
 18400 images and 2000 videos.

250

251 3.3 DATA ANNOTATION AND MCQ CONVERSION

252

253 To standardize the outputs and employ systematic evaluation, we convert all questions into multiple
 254 choice questions (MCQs). For the datasets which aren’t already in MCQ format, we systematically
 255 create two types of hard negatives. These are near-miss negatives (e.g., in Web Agents, clicking a
 256 few pixels away from the correct UI element) and semantically similar negatives (e.g., In Robotics,
 257 choosing coordinates of a mobile phone instead of a tablet.). We summarize our multiple choice
 258 conversion process below, with additional details in Appendix B.

259

260 Generating negatives. We generate our negatives using a VLM-assisted pipeline with Gemini
 261 2.5 Pro. The model receives context to assist generation including the visual input with ground-
 262 truth annotations overlaid, the task prompt, correct answer, action history for sequential tasks, and
 263 relevant metadata (e.g., coordinate formats, action types). We prompt the VLM to generate three hard
 264 negatives per question with a mix of near-miss and semantically similar options.

265

266 Quality control. To ensure accurate and challenging negatives, the generated negatives undergo
 267 quality control. First, for grounding tasks with available bounding boxes, we automatically filter
 268 out any negatives whose coordinates fall within the ground-truth region. Second, human annotators
 269 manually review a subset of samples for each domain to ensure the generated negatives are both
 270 plausible (could realistically confuse a model) and unambiguously incorrect (maintaining a single
 271 correct answer). This two-stage verification ensures our MCQs are accurate and challenging for
 272 fine-grained understanding.

270 271 272 273 274 275 276 277 278 279 280 281 282 283	270 271 272 273 274 275 276 277 278 279 280 281 282 283						270 271 272 273 274 275 276 277 278 279 280 281 282 283					
	270 271 272 273 274 275 276 277 278 279 280 281 282 283		270 271 272 273 274 275 276 277 278 279 280 281 282 283		270 271 272 273 274 275 276 277 278 279 280 281 282 283		270 271 272 273 274 275 276 277 278 279 280 281 282 283					
284 285 286 287 288 289 290 291 292 293 294 295 296 297	284 285 286 287 288 289 290 291 292 293 294 295 296 297						284 285 286 287 288 289 290 291 292 293 294 295 296 297					
Model	AitW ++	MONDAY ++	Mind2Web ++	Screenspot ++	Screenspot- pro ++	Avg	ERQA	Robo2VLM +	Roborefit ++	Avg		
GPT-5 thinking-high 🧠💡	61.9	51.6	72.2	48.5	41.9	55.2	58.9	46.3	48.3	51.2		
GPT-5 thinking-min 🧠💡	53.5	49.8	<u>68.1</u>	40.3	39.8	50.3	<u>57.0</u>	44.8	29.2	43.7		
Gemini 2.5 Pro 🧠💡	50.3	36.7	63.0	34.8	43.0	45.6	47.0	40.7	32.8	40.2		
GPT-4o 🧠💡	40.5	29.6	57.9	35.1	39.4	40.5	40.7	32.1	33.5	35.4		
GLM-4.1V-Thinking 🧠💡	42.0	33.5	63.4	30.6	42.2	42.3	43.3	35.7	24.8	34.6		
GLM-4.1V-Base	36.5	33.4	63.6	28.8	39.3	40.3	30.3	31.9	35.0	32.4		
Kimi-VL-Thinking 🧠💡	41.5	31.4	29.79	29.5	33.5	33.1	34.0	40.9	35.7	36.9		
Kimi-VL-Instruct	37.2	27.6	24.0	32.2	50.4	34.3	34.3	38.8	39.1	37.4		
Phi-4 Multimodal	33.2	35.0	50.0	21.7	28.5	<u>33.7</u>	38.8	35.9	23.2	32.6		
Llama 4 Scout	42.7	36.9	57.7	32.3	41.0	42.1	37.0	29.4	37.8	34.7		
Llama 4 Maverick	38.8	35.6	54.1	33.1	36.1	39.6	35.8	32.4	39.1	35.8		
Qwen2.5-VL (3B)	37.3	38.5	51.5	55.1	40.6	44.6	32.5	31.3	49.8	37.9		
Qwen2.5-VL (7B)	54.2	44.7	56.9	59.6	42.1	51.5	36.0	42.8	54.4	44.4		
Qwen2.5-VL (32B)	<u>47.5</u>	<u>50.6</u>	62.8	<u>73.8</u>	40.2	55.0	39.0	43.0	<u>61.1</u>	47.7		
Qwen2.5-VL (72B)	51.4	48.8	65.5	76.5	44.5	<u>57.3</u>	39.5	50.0	65.0	51.5		
Model	VSI- Bench +	Perception- Test +	Avg	GameQA +	atari ++	Avg	SpaCE- 10 +	EmbSpatial- Bench +	Avg			
GPT-5 thinking-high 🧠💡	65.7	<u>75.0</u>	70.4	64.9	55.4	60.2	59.8	83.2	71.5			
GPT-5 thinking-min 🧠💡	<u>57.9</u>	78.1	<u>68.0</u>	66.0	28.7	<u>47.4</u>	<u>54.8</u>	<u>78.1</u>	<u>66.5</u>			
Gemini 2.5 Pro 🧠💡	43.3	65.4	54.4	32.1	46.8	39.5	50.1	68.9	59.5			
GPT-4o 🧠💡	33.3	56.4	44.9	26.5	36.3	31.4	42.5	59.7	51.1			
GLM-4.1V-Thinking 🧠💡	32.6	56.6	44.6	41.0	29.4	35.2	48.0	76.3	62.2			
GLM-4.1V-Base	25.3	35.7	30.5	21.1	25.2	23.2	33.9	76.1	55.0			
Kimi-VL-Thinking 🧠💡	26.9	31.0	29.0	20.3	27.7	24.0	30.6	71.0	50.8			
Kimi-VL-Instruct	39.8	52.0	45.9	25.2	31.0	28.1	44.3	57.9	51.1			
Phi-4 Multimodal	41.2	70.6	<u>55.9</u>	29.2	24.0	26.6	45.5	70.5	58.0			
Llama 4 Scout	38.6	51.8	45.2	28.9	35.9	32.4	44.1	54.3	49.2			
Llama 4 Maverick	36.0	55.4	45.7	25.8	31.2	28.5	42.0	62.6	52.3			
Qwen2.5-VL (3B)	37.2	62.1	49.7	24.3	25.2	24.8	30.0	60.3	45.2			
Qwen2.5-VL (7B)	37.4	65.8	51.6	31.5	26.7	29.1	38.9	71.6	55.3			
Qwen2.5-VL (32B)	40.5	62.2	51.4	35.8	29.3	32.6	45.5	74.6	60.1			
Qwen2.5-VL (72B)	38.5	64.5	<u>51.5</u>	40.5	40.4	40.5	49.0	73.0	61.0			

Table 1: Performance of VLMs on AgentVQA across the five agentic domains by dataset.

🧠 represents Reasoning Models. 🧠💡 represents closed-source models. Bolded and underlined numbers indicate best and second-best rank per column, respectively. + denotes a filtered dataset, while ++ denotes a filtered and transformed dataset..

4 EXPERIMENTS

This section details our experimental setup, main performance results, in-depth analyses of model behaviors, and strengths/weaknesses across a variety of agentic dimensions.

4.1 EXPERIMENTAL SETUP

Models. We evaluate a diverse suite of 15 prominent VLMs to ensure a comprehensive assessment of the current landscape. Our selection includes closed-source, proprietary models: GPT-5 thinking-high/minimal (OpenAI, 2025), GPT-4o (Hurst et al., 2024), and Gemini 2.5 Pro (Comanici et al., 2025). We also include a wide range of open-source models: GLM-4.1V-Thinking/Base (Hong et al., 2025), Kimi-VL-A3B-Thinking/Instruct (Du et al., 2025) (for brevity we shorten Kimi-VL-A3B-Thinking-2506 to *Kimi-VL-Thinking*), Llama 4 Scout (Meta, 2025), Llama 4 Maverick (Meta, 2025), Phi-4-multimodal (Abdin et al., 2024), and the Qwen2.5-VL series (3B, 7B, 32B, and 72B) (Bai et al., 2025).

Models are categorized as “Reasoning” or “Non-Reasoning” based on their generation of intermediate thinking tokens. A complete list of evaluated models is provided in Table 1.

Evaluation setup. For models that do not natively support video input, we sample 32 frames at evenly spaced intervals. This number is validated by our own ablation studies and prior work (Yang et al., 2025a). Models are evaluated with a temperature of 0.8 and 0.2 for reasoning and non-reasoning models, respectively. For models without manual temperature (e.g., GPT-5), we use the default.

We use a standard, simple prompt structure that provides the question and any relevant context. This prompt queries the model to output only the single letter corresponding to its choice. Final answers are extracted programmatically using a set of parsing rules. All visual inputs are provided at their native resolution without resizing. Further details on the exact prompts used and the answer extraction logic are available in Appendices L and F.

4.2 OVERALL PERFORMANCE

Top VLMs struggle with AgentVQA. The averaged accuracy of each model is presented in Table 1. The results reveal a significant absolute performance gap across the board. The average performance across all 15 models ranges from 34% in Games to 53% in Spatial Understanding.

Even the top performing model, GPT-5 thinking-high, achieves an overall accuracy of only 60% across all domains. This underscores the difficulty of our benchmark. A clear tiering is observable: the largest proprietary models (GPT-5, Gemini 2.5 Pro) are at the top. This is followed by the largest dense, open-source models, Qwen2.5-VL 32B and 72B, then followed by the smaller, open-source models comprise the lower tiers. Among the five domains, models perform best on Spatial Understanding (avg. 53%) followed by Egocentric Videos (avg. 49%), Web Agents (avg. 44%), Robotics (avg. 40%) and worst on Games (avg. 34%). This indicates that tasks requiring passive observation are currently more tractable than those demanding active, strategic planning.

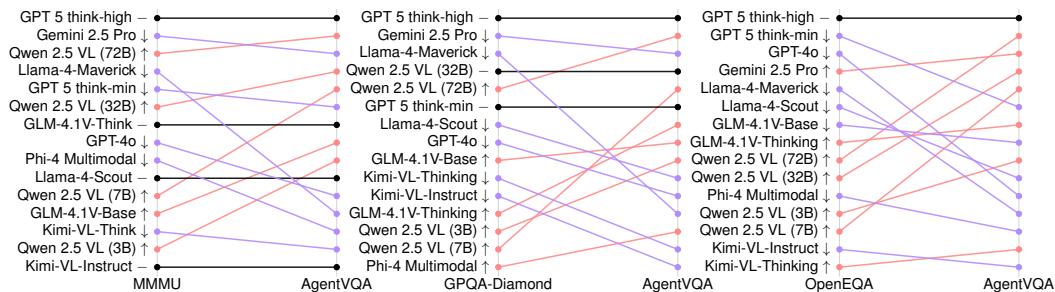


Figure 4: **Divergence in model performance rankings between AgentVQA and three existing benchmarks.** Lines are colored red if a model’s rank improves and purple if it degrades. The rank divergence shows that our benchmark is largely uncorrelated with general VQA and domain-specific agentic benchmarks. While a few models maintain their ranks, the relative positions of most other models change significantly. Notably, in the comparison with OpenEQA, only one model maintains its relative ranking.

4.3 RANK CORRELATION

Low correlation with existing benchmarks. To validate the necessity of a comprehensive and specialized agentic benchmark, we compare the performance rankings of models on AgentVQA to their rankings on both general-purpose VQA and Reasoning benchmarks (MMMU (Yue et al., 2024) and GPQA-Diamond (Rein et al., 2024)) and a domain-specific agentic benchmark (Open-EQA (Majumdar et al., 2024)). We ran our own evaluations with standardized prompts to ensure consistent and comparable model accuracies.

As shown in Figure 4, the model rankings of AgentVQA differ drastically to all. This finding is also quantitatively confirmed by low Spearman’s rank correlation coefficients against MMMU ($\rho \approx 0.69, p \approx 0.004$), GPQA-Diamond ($\rho = 0.52, p = 0.046$), and even Open-EQA ($\rho \approx 0.44$). Additionally, Open-EQA uses GPT-4 as an evaluator so ground-truth results are unreliable compared to the deterministic comparison put forth by AgentVQA, MMMU, or GPTQA-Diamond.

The relative ranking of the top model (GPT-5 thinking-high) remains consistent. However, other open-source models like Qwen2.5-VL series, across various sizes, are more performant on AgentVQA, while LLama 4 models worsen. In the next section, we introduce ablation studies that help explain factors underlying performance differences.

378 **Correlation with Online Agents.** To address concerns that offline MCQs may not predict online
 379 performance, we compared AgentVQA rankings against success rates on interactive benchmarks
 380 OSWorld (Xie et al., 2024) and VideoGameBench (Zhang et al., 2025). On VideoGameBench,
 381 rankings for Gemini-2.5-Pro, GPT-4o, and Llama-4-Maverick align exactly with our Games domain.
 382 On OSWorld, excluding outliers, we observe strong alignment: GPT-4o (1.8%) < Llama-4 (3.0%) \approx
 383 Qwen-32B (3.0%) < Qwen-72B (4.4%), mirroring their AgentVQA standings. Kimi-VL-Instruct is a
 384 notable outlier (high OSWorld score vs. low AgentVQA score); however, this model exhibits extreme
 385 volatility even across similar offline datasets (ranking 11th on Screenspot but 1st on Screenspot-
 386 Pro), suggesting it is an unstable baseline. This is quantitatively confirmed by the Spearman rank
 387 correlation, which improves from $\rho \approx 0.143$ to $\rho = 0.700$ when excluding this specific outlier.
 388 Overall, these results confirm AgentVQA is a predictive proxy for stable model families.
 389
 390

391 **Comparison with Original Open-Ended Benchmarks.** We evaluated five representative models
 392 on the original open-ended versions of Screenspot, RoboRefit, and MONDAY using their official
 393 evaluation protocols. As shown in Table 2, model rankings remain largely consistent within each
 394 dataset (e.g., Qwen2.5-VL scaling 32B $>$ 7B $>$ 3B is preserved), confirming that AgentVQA main-
 395 tains the intrinsic difficulty hierarchy. However, the absolute scores reveal AgentVQA’s **calibration**
 396 **effect**: it recovers performance for models penalized by rigid formatting in open-ended settings (e.g.,
 397 GLM-4V on MONDAY: 15.4% \rightarrow 33.4%) while enforcing stricter precision on tasks where original
 398 metrics (like bounding box IoU) were too lenient (e.g., Screenspot: 87.1% \rightarrow 73.8%).
 399

400 Table 2: Comparison of accuracy (%) between Original Open-Ended evaluation and AgentVQA
 401 (Ours) across three datasets. While rankings are consistent, AgentVQA calibrates scores by penalizing
 402 loose grounding (Screenspot) and rescuing valid logic from formatting errors (MONDAY).

403 404 Model	405 MONDAY		406 RoboRefit		407 Screenspot	
	408 Orig	409 Ours	410 Orig	411 Ours	412 Orig	413 Ours
414 Qwen2.5-VL-3B	415 22.7	416 38.5	417 28.5	418 49.8	419 70.7	420 55.1
421 Qwen2.5-VL-7B	422 36.7	423 44.7	424 44.8	425 54.4	426 80.2	427 59.6
428 Qwen2.5-VL-32B	429 40.6	430 50.6	431 81.5	432 61.1	433 87.1	434 73.8
436 GLM-4V-Base	437 15.4	438 33.4	439 32.4	440 35.0	441 62.4	442 39.3
445 Gemini-2.5-Pro	446 38.4	447 36.7	448 46.5	449 32.8	450 71.4	451 34.8

4.4 PERFORMANCE ANALYSIS

412 **Large variance per domain.** Our results in Table 1 suggest that current VLMs are comparatively
 413 stronger at tasks involving passive observation and spatial description (Spatial Understanding: 53%,
 414 Egocentric Videos: 49%) than at tasks requiring active, goal-directed interaction and planning
 415 (Robotics: 40%, Games: 34%, Web Agents: 44%). At the domain level, these patterns hold, but with
 416 clear variation across datasets. Within Spatial Understanding and Egocentric Videos, models perform
 417 well on EmbSpatial-Bench and Perception-Test (70–80%), whereas others such as VSI-Bench are
 418 still challenging.

419 In contrast, Web Agent datasets like Screenspot and Screenspot-pro remain highly challenging
 420 despite scale, while AitW and Mind2Web show relatively higher performance. Robotics have a
 421 similar breakdown. While ERQA and Roborefit are tractable (\sim 60%), Robo2VLM lags behind (50%).
 422 Games are universally difficult, with no dataset exceeding 66% even for the strongest reasoning
 423 models. These results highlight VLM performance on individual datasets does not necessarily
 424 correlate with holistic evaluation, strengthening the call for a unified benchmark like AgentVQA.

425 Furthermore, our analysis of the 25 distinct sub-task categories defined in Figure 3 (with results in
 426 Table 4) suggest that models excel on descriptive, VQA-like tasks such as object counting and entity
 427 detection (often $>75\%$ for top models). However, they consistently fail on tasks requiring reasoning
 428 over future timesteps. The lowest scores across the benchmark are in action prediction (avg. 26%),
 429 game-over detection (avg. 27%) and spatial planning (avg. 31%). This highlights a fundamental
 430 limitation: current VLMs are proficient at reactive, descriptive tasks but lack the coherent internal
 431 world models needed for multi-step planning and strategic reasoning.

432
 433 **Open-source models are catching up.** There is
 434 a clear gap between closed-source and open-source
 435 models. The closed-source models score in a range of
 436 40% (GPT-4o) to 60% (GPT-5 thinking-high), while
 437 open-source models span a lower range from 35%
 438 (Kimi-VL-Instruct) to 53% (Qwen2.5-VL (72B)).
 439 While the top closed-source model outperforms the
 440 top open-source model, top open-source models are
 441 highly competitive in specific domains. For instance,
 442 Qwen2.5-VL (72B) always outperforms GPT-4o, and
 443 even the small Qwen2.5-VL (3B) model (45%) sur-
 444 passes GPT-4o (41%) in the Web Agents domain.
 445

446 **Trajectories require action history.** Our ablation
 447 on web agent tasks reveals that providing action
 448 history is a consistent benefit (Figure 5). Across four
 449 models, providing the full trajectory history improved
 450 average performance by a substantial 8.5% on AITW
 451 and 3.1% on Mind2Web. The performance on MON-
 452 DAY remained relatively stable (changing by only
 453 -0.4%). This confirms that for complex, multi-step tasks,
 454 access to historical context is critical for effective
 455 decision-making. The stable performance in MONDAY
 456 can be hypothesized to the tasks being more state-local,
 457 where the immediate visual context is often sufficient for
 458 the next action.

459 **Reasoning offers varying results.** The impact of explicit reasoning is mixed. For the GPT-5
 460 series, the thinking-high variant (avg. 60%) substantially outperforms the thinking-minimal variant
 461 (avg. 47%). However, for Kimi-VL and GLM-4.1V, the thinking variants (35% and 43%) offer only
 462 marginal overall improvement over instruct or base models (35% and 41%).

463 This masks a more complex dynamic. In certain domains, the non-reasoning variants actually
 464 outperform their reasoning-enabled counterparts (e.g., Kimi-VL in Spatial Understanding (55% for
 465 Instruct vs 51% for Thinking) and GLM in Egocentric Videos (56% for Base vs 45% for Thinking)).
 466 Our results suggest that for perceptual tasks, base models can be more robust than reasoning models.
 467 We found that thinking models, like GLM-4.1V-Thinking and Kimi-VL-Thinking, can get stuck in
 468 “thinking loops” – a phenomenon we observed in Appendix K.

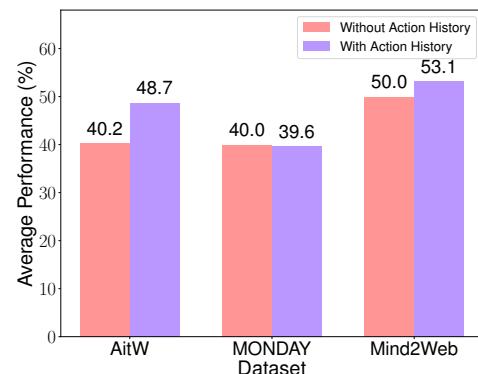


Figure 5: **Impact of action history on model performance in web agent tasks.** The figure shows the average performance change across four representative models (Gemini-2.5-Pro, Llama 4 Scout, Qwen2.5-VL-7B, and Kimi-VL-Thinking) when provided with full trajectory history versus no history.

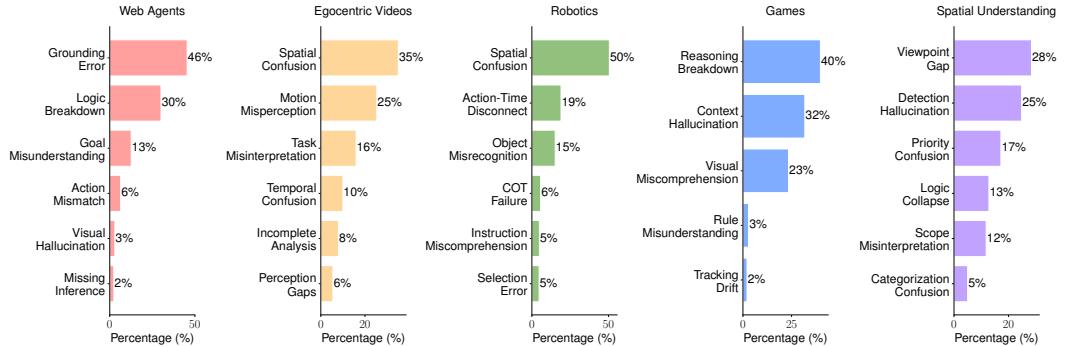


Figure 6: **Distribution of the most common error modes across the five agentic domains in AgentVQA.** The analysis is based on a semi-automated categorization of the incorrect predictions from Gemini-2.5-Pro and Qwen2.5-VL-7B. The chart is organized by domain, with each colored segment representing a primary domain. Each slice within a segment corresponds to a specific error mode, and its size reflects its prevalence (%), summed across the two models.

4.5 ERROR MODES

482 To gain a deeper, qualitative understanding of why models fail, we conduct a comprehensive error
 483 mode analysis. We first prompt each model to output its reasoning process along with its final answer.

486 Then, we subsample 500 error cases per domain and categorize the failures based on these reasoning
 487 outputs (approximately evenly distributed per dataset). The outputs are taken from two representative
 488 models: a closed-source model (Gemini 2.5 Pro) and an open-source model (Qwen2.5-VL (7B)). To
 489 categorize these failures, we first perform a manual analysis to establish a taxonomy of common error
 490 modes. Then, we use Gemini to assign each sample to a category. Finally, we manually verified the
 491 assignments for accuracy.

492 Our analysis identifies several recurring failure patterns. The most common error modes vary by
 493 domain. The most prevalent error in Web Agents is Grounding Error (46%). In contrast, domains
 494 requiring more abstract thought like Robotics and Egocentric Videos are dominated by various forms
 495 of spatial confusion (51% and 35% respectively). The spatial understanding domain is dominated by
 496 viewpoint gap (28%). Finally, in the games domain, the most frequent issue is reasoning breakdown
 497 (40%), meaning that the VLM incorrectly reasoned about the game mechanics or the agent dynamics.

498 The distribution of these errors, shown in Figures 10 and 6, reveals that failure modes are domain *and*
 499 model specific. In Web Agents, grounding error is far more pronounced in Gemini (50%). Conversely,
 500 in Games, while reasoning breakdown is a common error for Qwen, Gemini suffers from it to a much
 501 lesser extent. This suggests that different models have distinct architectural failure points; some are
 502 more prone to failing at the initial perception and grounding step, while others are more likely to
 503 perceive correctly but error in subsequent logical steps. More details about the error modes and their
 504 descriptions is available in Appendix H.

505

506 5 CONCLUSION

507

508 We introduce AgentVQA, a unified benchmark for evaluating VLM agents. Unlike existing bench-
 509 marks that are non-agenetic, focus on traditional VQA, or are domain-specific, AgentVQA consolidates
 510 agentic benchmarks into a balanced MCQ dataset with hard negatives. Evaluation of 15 state-of-the-
 511 art VLMs shows a significant performance gap, with top models achieving only ~60% accuracy. VLM
 512 rankings on AgentVQA differ substantially from traditional benchmarks, demonstrating AgentVQA’s
 513 value as a challenging evaluation framework for generalizable, agentic VLMs.

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 **LLM Usage Statement.** We used LLMs to help automate aspects to the manual review and
 541 summarization of our datasets. Additionally, we used LLMs to help improve sentence quality and
 542 improve conciseness.

543 **Reproducibility Statement.** To ensure our research is transparent and reproducible, all components
 544 of the AgentVQA benchmark will be made publicly available upon publication. This includes
 545 the full dataset, evaluation code, and detailed results. Our dataset is constructed from 14 publicly
 546 available sources (detailed in Section 3.2 and Appendix A), and the scripts for our VLM-assisted
 547 data generation pipeline will also be released. All models evaluated are either open-source or were
 548 accessed via standard APIs, with specifics provided in our paper. The complete evaluation codebase
 549 and configurations will be released to allow for the precise replication of our findings.

550
 551 **REFERENCES**
 552

553 Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
 554 Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical
 555 report. *arXiv preprint arXiv:2412.08905*, 2024.

556 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
 557 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

558 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 559 Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.

560
 561 Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Matharena:
 562 Evaluating llms on uncontaminated math competitions. *arXiv preprint arXiv:2505.23281*, 2025.

563
 564 Yoshua Bengio, Michael Cohen, Damiano Fornasiere, Joumana Ghosn, Pietro Greiner, Matt MacDer-
 565 mott, Sören Mindermann, Adam Oberman, Jesse Richardson, Oliver Richardson, Marc-Antoine
 566 Rondeau, Pierre-Luc St-Charles, and David Williams-King. Superintelligent agents pose catas-
 567 trophic risks: Can scientist ai offer a safer path?, 2025. URL <https://arxiv.org/abs/2502.15657>.

568
 569 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai,
 570 Lachy Groom, Karol Hausman, Brian Ichter, et al. π_0 : A vision-language-action flow model for
 571 general robot control. *arXiv preprint arXiv:2410.24164*, 2024.

572
 573 Kaiyuan Chen, Shuangyu Xie, Zehan Ma, Pannag R Sanketi, and Ken Goldberg. Robo2vlm: Visual
 574 question answering from large-scale in-the-wild robot manipulation datasets. *arXiv preprint
 575 arXiv:2505.15517*, 2025.

576
 577 Yi Chen, Yuying Ge, Yixiao Ge, Mingyu Ding, Bohao Li, Rui Wang, Ruifeng Xu, Ying Shan, and
 578 Xihui Liu. Egoplan-bench: Benchmarking multimodal large language models for human-level
 579 planning. *arXiv preprint arXiv:2312.06722*, 2023.

580
 581 Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing Zhang, and Zhiyong Wu.
 582 SeeClick: Harnessing GUI grounding for advanced visual GUI agents. In *ACL*, 2024a.

583
 584 Sijie Cheng, Kechen Fang, Yangyang Yu, Sicheng Zhou, Bohao Li, Ye Tian, Tingguang Li, Lei Han,
 585 and Yang Liu. Videogothink: Assessing egocentric video understanding capabilities for embodied
 586 ai. *arXiv preprint arXiv:2410.11623*, 2024b.

587
 588 Sijie Cheng, Zhicheng Guo, Jingwen Wu, Kechen Fang, Peng Li, Huaping Liu, and Yang Liu.
 589 Egothink: Evaluating first-person perspective thinking capability of vision-language models. In
 590 *CVPR*, 2024c.

591
 592 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 593 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
 594 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
 595 *arXiv preprint arXiv:2507.06261*, 2025.

596
 597 Sudeep Dasari, Jianren Wang, Joyce Hong, Shikhar Bahl, Yixin Lin, Austin Wang, Abitha Thankaraj,
 598 Karanbir Chahal, Berk Calli, Saurabh Gupta, et al. Rb2: Robotic manipulation benchmarking with
 599 a twist. *arXiv preprint arXiv:2203.08098*, 2022.

594 Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
 595 Mind2web: Towards a generalist agent for the web. *Advances in Neural Information Processing*
 596 *Systems*, 36, 2023.

597

598 Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin Zhang,
 599 Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. *arXiv preprint arXiv:2504.07491*, 2025.

600 Mengfei Du, Biniao Wu, Zejun Li, Xuanjing Huang, and Zhongyu Wei. Embsspatial-bench: Bench-
 601 marking spatial understanding for embodied tasks with large vision-language models. *arXiv*
 602 *preprint arXiv:2406.05756*, 2024.

603

604 Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
 605 De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
 606 agents with internet-scale knowledge. *Advances in Neural Information Processing Systems*, 35,
 607 2022.

608

609 Ziyang Gong, Wenhao Li, Oliver Ma, Songyuan Li, Jiayi Ji, Xue Yang, Gen Luo, Junchi Yan, and
 610 Rongrong Ji. Space-10: A comprehensive benchmark for multimodal large language models in
 611 compositional spatial intelligence. *arXiv preprint arXiv:2506.07966*, 2025.

612 Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Triantafyllos
 613 Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, et al. Ego-exo4d:
 614 Understanding skilled human activity from first-and third-person perspectives. In *CVPR*, 2024.

615

616 Danijar Hafner. Benchmarking the spectrum of agent capabilities. *arXiv preprint arXiv:2109.06780*,
 617 2021.

618 Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
 619 Deep reinforcement learning that matters. In *AAAI*, volume 32, 2018.

620

621 Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
 622 Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
 623 with scalable reinforcement learning. *arXiv e-prints*, 2025.

624

625 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 626 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 627 *arXiv:2410.21276*, 2024.

628

629 Lawrence Jang, Yinheng Li, Dan Zhao, Charles Ding, Justin Lin, Paul Pu Liang, Rogerio Bonatti,
 630 and Kazuhito Koishida. Videowebarena: Evaluating long context multimodal agents with video
 631 understanding web tasks. *arXiv preprint arXiv:2410.19100*, 2024.

632

633 Yunseok Jang, Yeda Song, Sungryull Sohn, Lajanugen Logeswaran, Tiange Luo, Dong-Ki Kim,
 634 Kyunghoon Bae, and Honglak Lee. Scalable video-to-dataset generation for cross-platform mobile
 635 agents. In *CVPR*, 2025.

636

637 Mengdi Jia, Zekun Qi, Shaochen Zhang, Wenyao Zhang, Xinqiang Yu, Jiawei He, He Wang, and
 638 Li Yi. Omnispatial: Towards comprehensive spatial reasoning benchmark for vision language
 639 models. *arXiv preprint arXiv:2506.03135*, 2025.

640

641 Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei,
 642 Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with multimodal
 643 prompts. *arXiv preprint arXiv:2210.03094*, 2(3), 2022.

644

645 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
 646 Narasimhan. Swe-bench: Can language models resolve real-world github issues? *arXiv preprint*
 647 *arXiv:2310.06770*, 2023.

648

649 Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
 650 Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
 651 multimodal agents on realistic visual web tasks. *arXiv preprint arXiv:2401.13649*, 2024.

648 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
 649 marking multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*,
 650 2023a.

651 Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martín-
 652 Martín, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, et al. Behavior-1k: A
 653 benchmark for embodied ai with 1,000 everyday activities and realistic simulation. In *CoRL*.
 654 PMLR, 2023b.

655 Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
 656 Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use.
 657 *arXiv preprint arXiv:2504.07981*, 2025.

658 Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
 659 Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. *arXiv preprint*
 660 *arXiv:2308.03688*, 2023.

661 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
 662 Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?
 663 In *ECCV*. Springer, 2024.

664 Yuhao Lu, Yixuan Fan, Beixing Deng, Fangfu Liu, Yali Li, and Shengjin Wang. Vi-grasp: a 6-dof
 665 interactive grasp policy for language-oriented objects in cluttered indoor scenes. In *IROS*. IEEE,
 666 2023.

667 Wufei Ma, Haoyu Chen, Guofeng Zhang, Yu-Cheng Chou, Celso M de Melo, and Alan Yuille.
 668 3dsrbench: A comprehensive 3d spatial reasoning benchmark. *arXiv preprint arXiv:2412.07825*,
 669 2024.

670 Arjun Majumdar, Anurag Ajay, Xiaohan Zhang, Pranav Putta, Sriram Yenamandra, Mikael Henaff,
 671 Sneha Silwal, Paul Mcvay, Oleksandr Maksymets, Sergio Arnaud, et al. Openeqa: Embodied
 672 question answering in the era of foundation models. In *CVPR*, 2024.

673 Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
 674 language-conditioned policy learning for long-horizon robot manipulation tasks. *IEEE Robotics
 675 and Automation Letters*, 7(3), 2022.

676 Meta. The Llama 4 herd: The beginning of a new era of natively multimodal AI innovation.
 677 <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>, 2025.

678 Stephanie Milani, Anssi Kanervisto, Karolis Ramanauskas, Sander Schulhoff, Brandon Houghton,
 679 and Rohin Shah. Bedd: The minerl basalt evaluation and demonstrations dataset for training and
 680 benchmarking agents that solve fuzzy tasks. *Advances in Neural Information Processing Systems*,
 681 36, 2023.

682 Jonghwan Mun, Paul Hongsuck Seo, Ilchae Jung, and Bohyung Han. Marioqa: Answering questions
 683 by watching gameplay videos. In *ICCV*, 2017.

684 Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
 685 Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist
 686 robots. *arXiv preprint arXiv:2406.02523*, 2024.

687 OpenAI. GPT-5 System Card. <https://cdn.openai.com/gpt-5-system-card.pdf>,
 688 August 2025.

689 Davide Paglieri, Bartłomiej Cupiał, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir Khan,
 690 Eduardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob Fergus, et al. Balrog: Benchmarking
 691 agentic llm and vlm reasoning on games. *arXiv preprint arXiv:2411.13543*, 2024.

692 Viorica Patraucean, Lucas Smaira, Ankush Gupta, Adria Recasens, Larisa Markeeva, Dylan Banarse,
 693 Skanda Koppula, Mateusz Malinowski, Yi Yang, Carl Doersch, et al. Perception test: A diagnostic
 694 benchmark for multimodal video models. *Advances in Neural Information Processing Systems*, 36,
 695 2023.

702 Aske Plaat, Max van Duijn, Niki van Stein, Mike Preuss, Peter van der Putten, and Kees Joost
 703 Batenburg. Agentic large language models, a survey, 2025. URL <https://arxiv.org/abs/2503.23037>.

704

705 Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An
 706 androidinthewild: A large-scale dataset for android device control. *Advances in Neural Information
 707 Processing Systems*, 36, 2023.

708

709 Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
 710 Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A dynamic
 711 benchmarking environment for autonomous agents. *arXiv preprint arXiv:2405.14573*, 2024.

712 Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
 713 Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom
 714 Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell,
 715 Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent, 2022. URL <https://arxiv.org/abs/2205.06175>.

716

717 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 718 Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
 719 *COLM*, 2024.

720

721 Gabriel Sarch, Balasaravanan Thoravi Kumaravel, Sahithya Ravi, Vibhav Vineet, and Andrew D
 722 Wilson. Grounding task assistance with multimodal cues from a single demonstration. *arXiv
 723 preprint arXiv:2505.01578*, 2025.

724

725 Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
 726 Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied ai
 727 research. In *ICCV*, 2019.

728

729 Fatemeh Shiri, Xiao-Yu Guo, Mona Golestan Far, Xin Yu, Gholamreza Haffari, and Yuan-Fang Li.
 730 An empirical analysis on spatial reasoning capabilities of large multimodal models. *arXiv preprint
 731 arXiv:2411.06048*.

732

733 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 734 press Cambridge, 1998.

735

736 Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montserrat
 737 Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauza,
 738 Michiel Blokzijl, et al. Gemini robotics: Bringing ai into the physical world. *arXiv preprint
 739 arXiv:2503.20020*, 2025.

740

741 Jingqi Tong, Jixin Tang, Hangcheng Li, Yurong Mou, Ming Zhang, Jun Zhao, Yanbo Wen, Fan Song,
 742 Jiahao Zhan, Yuyang Lu, Chaoran Tao, Zhiyuan Guo, Jizhou Yu, Tianhao Cheng, Changhao Jiang,
 743 Zhen Wang, Tao Liang, Zhihui Fei, Mingyang Wan, Guojun Ma, Weifeng Ge, Guanhua Chen, Tao
 744 Gui, Xipeng Qiu, Qi Zhang, and Xuanjing Huang. Game-rl: Synthesizing verifiable game tasks at
 745 scale to boost vlms general reasoning. *arXiv preprint arXiv:2505.13886*, 2025.

746

747 Quan Vuong, Sergey Levine, Homer Rich Walke, Karl Pertsch, Anikait Singh, Ria Doshi, Charles
 748 Xu, Jianlan Luo, Liam Tan, Dhruv Shah, et al. Open x-embodiment: Robotic learning datasets and
 749 rt-x models. In *CoRL*, 2023.

750

751 Xin Wang, Taein Kwon, Mahdi Rad, Bowen Pan, Ishani Chakraborty, Sean Andrist, Dan Bohus,
 752 Ashley Feniello, Bugra Tekin, Felipe Vieira Frujeri, et al. Holoassist: an egocentric human
 753 interaction dataset for interactive ai assistants in the real world. In *ICCV*, 2023.

754

755 Ryan Wong, Jiawei Wang, Junjie Zhao, Li Chen, Yan Gao, Long Zhang, Xuan Zhou, Zuo Wang, Kai
 756 Xiang, Ge Zhang, et al. Widesearch: Benchmarking agentic broad info-seeking. *arXiv preprint
 757 arXiv:2508.07999*, 2025.

758

759 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
 760 Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
 761 Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
 762 for open-ended tasks in real computer environments, 2024. URL <https://arxiv.org/abs/2404.07972>.

756 Frank F Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z Wang,
 757 Xuhui Zhou, Zhitong Guo, Murong Cao, et al. Theagentcompany: benchmarking llm agents on
 758 consequential real world tasks. *arXiv preprint arXiv:2412.14161*, 2024.

759

760 Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
 761 space: How multimodal large language models see, remember, and recall spaces. In *CVPR*, 2025a.

762 Rui Yang, Hanyang Chen, Junyu Zhang, Mark Zhao, Cheng Qian, Kangrui Wang, Qineng Wang,
 763 Teja Venkat Koripella, Marziyeh Movahedi, Manling Li, et al. Embodiedbench: Comprehensive
 764 benchmarking multi-modal large language models for vision-driven embodied agents. *arXiv
 765 preprint arXiv:2502.09560*, 2025b.

766 Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. Tau-bench: A benchmark for
 767 tool-agent-user interaction in real-world domains. *arXiv preprint arXiv:2406.12045*, 2024.

768

769 Asaf Yehudai, Lilach Eden, Alan Li, Guy Uziel, Yilun Zhao, Roy Bar-Haim, Arman Cohan,
 770 and Michal Shmueli-Scheuer. Survey on evaluation of llm-based agents. *arXiv preprint
 771 arXiv:2503.16416*, 2025.

772 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 773 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal
 774 understanding and reasoning benchmark for expert agi. In *CVPR*, 2024.

775

776 Alex L Zhang, Thomas L Griffiths, Karthik R Narasimhan, and Ofir Press. Videogamebench: Can
 777 vision-language models complete popular video games? *arXiv preprint arXiv:2505.18134*, 2025.

778 Ruohan Zhang, Calen Walshe, Zhuode Liu, Lin Guan, Karl Muller, Jake Whritner, Luxin Zhang,
 779 Mary Hayhoe, and Dana Ballard. Atari-head: Atari human eye-tracking and demonstration dataset.
 780 In *AAAI*, volume 34, 2020.

781

782 Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
 783 Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
 784 autonomous agents. *arXiv preprint arXiv:2307.13854*, 2023.

785 Zhongyi Zhou, Yichen Zhu, Junjie Wen, Chaomin Shen, and Yi Xu. Vision-language-action model
 786 with open-world embodied reasoning from pretrained knowledge. *arXiv preprint arXiv:2505.21906*,
 787 2025.

788 Hao Zhu, Raghav Kapoor, So Yeon Min, Winson Han, Jiatai Li, Kaiwen Geng, Graham Neubig,
 789 Yonatan Bisk, Aniruddha Kembhavi, and Luca Weihs. Excalibur: Encouraging and evaluating
 790 embodied exploration. In *CVPR*, 2023.

791

793 A DATASET SELECTION AND CURATION RATIONALE

794

795 The construction of AgentVQA is guided by a principled selection process to ensure the final
 796 benchmark is comprehensive, robust, and effective for evaluating the agentic capabilities of Vision-
 797 Language Models (VLMs). Our domains: Web Agents, Egocentric Videos, Robotics, Games, and
 798 Spatial Understanding are chosen to represent a broad spectrum of agentic challenges, from digital
 799 interaction to embodied physical perception and strategic planning. The following five criteria are
 800 central to our selection of the 14 source datasets.

801 **802 High agentic signal** A primary requirement is that each dataset’s tasks must involve a strong
 803 “agentic signal.” This means moving beyond passive visual question answering (e.g., “What color
 804 is the car?”) to scenarios that demand active reasoning from an agent’s perspective. We prioritize
 805 datasets where the core task involves:

806

- 807 • Choosing actions or predicting the next optimal step.
- 808 • Evaluating the consequences of a sequence of actions.
- 809 • Understanding causality and the relationships between actions and outcomes.
- Strategic planning toward a specific goal.

810 This focus ensures that AgentVQA directly probes the decision-making and reasoning capabilities
 811 that are fundamental to agentic intelligence.
 812

813 **Comprehensive and distinct domain coverage** To test for generalist agentic behavior, we select
 814 datasets that span diverse domains and modalities. Each of the five chosen domains introduces a
 815 unique set of challenges and required skills not fully covered by the others:
 816

- 817 • Web Agents: Tests GUI navigation, grounding, and interaction in a digital environment.
 818
- 819 • Robotics & Egocentric Videos: Evaluate embodied perception, spatial awareness, and
 820 understanding of the physical world from a first-person perspective.
 821
- 822 • Games: Focus on strategic decision-making, reward modeling, and long-term planning in
 823 rule-based environments.
 824
- 825 • Spatial Understanding: Assesses foundational spatial awareness and reasoning, a critical
 826 component for any embodied agent.
 827

828 This multi-domain approach prevents the benchmark from being too narrow and allows for a holistic
 829 assessment of a VLM’s generalization ability.
 830

831 **Offline convertibility** A crucial practical consideration is the feasibility of converting each dataset
 832 into a standardized, offline format. This criterion requires that the source data (e.g., trajectories,
 833 videos) be sufficiently structured to allow for an unambiguous conversion into a Multiple-Choice
 834 Question (MCQ) format. Every resulting MCQ must have a single, verifiably correct answer to
 835 enable scalable, deterministic, and efficient evaluation without relying on resource-intensive online
 836 simulators.
 837

838 **Public availability and permissive licensing** To ensure transparency, reproducibility, and ac-
 839 cessibility for the broader research community, all selected datasets must be publicly available.
 840 Furthermore, their licenses must permit modification and redistribution as part of a new benchmark,
 841 allowing us to legally and ethically create and share AgentVQA.
 842

843 **Sufficient scale** The selected datasets need to be large enough to allow for statistically meaningful
 844 evaluation. We generally subsample 1,000 instances from each source dataset. Our analysis confirms
 845 that this sample size consistently yields a standard deviation in model performance of less than 1%,
 846 ensuring our results are stable and reliable. An exception is made for the ERQA dataset, from which
 847 we curate 400 instances. Despite its smaller size, its exceptional quality and high relevance to core
 848 robotic reasoning challenges make its inclusion essential.
 849

850 B HARD NEGATIVE GENERATION PIPELINE

851 The difficulty of AgentVQA is ensured by a systematic process for generating challenging distractor
 852 options, or “hard negatives.” This process transforms tasks that are not inherently multiple-choice,
 853 such as web navigation trajectories, into a standardized and rigorous MCQ format. Our pipeline
 854 creates negatives that are both plausible and unambiguously incorrect, forcing models to demonstrate
 855 fine-grained understanding rather than relying on simple heuristics. The process is detailed below.
 856

857 **VLM-assisted generation.** To select the generation model, we first conducted a preliminary
 858 study on a data subset using Gemini 2.5 Pro, GPT-4o, and Qwen 2.5 VL (7B). After manually
 859 comparing the generated samples for both difficulty and accuracy, we selected Gemini 2.5 Pro for
 860 its superior performance. We therefore employ a VLM-assisted pipeline centered around **Gemini**
 861 **2.5 Pro** to generate hard negatives. For each question, we provide the model with comprehensive
 862 context, including the primary image or screenshot, the task prompt, the ground-truth answer, any
 863 relevant action history for sequential tasks, and metadata such as image dimensions and coordinate
 864 formats (e.g., (x, y) for points, or (x_1, y_1, x_2, y_2) for bounding boxes). For grounding tasks, we also
 865 visually render the correct action’s location onto the image. Given this context, we prompt the
 866 model to generate three distinct hard negatives as a combination of two types: **near-miss negatives**
 867 and **semantically similar negatives**. Near-miss negatives are distractors spatially close to the
 868 correct answer that test precision, such as coordinates a few pixels away from a correct UI element.
 869

864 Semantically similar negatives are conceptually related to the correct answer and test the model’s
 865 ability to differentiate between similar objects, such as choosing a “Mobile” phone when the correct
 866 answer is a “Tablet.” The exact prompt used for generating these “hard negatives” is in Appendix M
 867

868 **Verification and filtering.** To ensure quality, the generated negatives undergo a two-stage ver-
 869 ification process. First, an automated script filters grounding-based distractors by verifying their
 870 coordinates fall outside the ground-truth bounding box, programmatically confirming the option is
 871 a “negative.” Following this, a subset of these samples undergoes a rigorous manual review. We
 872 manually verify each distractor for both plausibility, ensuring the option is a believable choice that
 873 could confuse a model, and unambiguous incorrectness, which guarantees there is only one correct
 874 answer to the MCQ. This final human-in-the-loop step is critical for guaranteeing the integrity and
 875 challenge of the AgentVQA benchmark.

C DEFINITION OF AGENTIC TASKS

880 The community defines agentic tasks as those requiring a system to "observe their environment
 881 and act in it in order to achieve goals" (Bengio et al., 2025), encompassing perception to sense
 882 the state, intelligence to reason and plan, and affordances to execute actions (Plaat et al., 2025).
 883 While traditional image VQA treats visual understanding as an end in itself, agentic VQA frames
 884 perception as a means to action. Here, each answer must inform executable decisions rather than
 885 merely describe what is seen (Reed et al., 2022). To ensure AgentVQA captures this full capability
 886 range, we structure our 25 sub-tasks into a unified hierarchy: Action Grounding tasks (e.g., Tap)
 887 test the critical translation of semantic intent into executable spatial actions (Reed et al., 2022);
 888 Spatiotemporal Reasoning tasks evaluate the dynamic mental maps required for movement; State
 889 Understanding tasks (e.g., Function Reasoning) ensure the agent can accurately parse the environment
 890 to inform decision-making; and Strategic Planning tasks (e.g., Reward Modeling) assessing long-term
 891 outcomes through multi-step reasoning (Sutton et al., 1998).

D SUB-TASK CATEGORIZATION METHODOLOGY

895 To enable a granular analysis of model capabilities, we structure the questions in AgentVQA into
 896 25 distinct sub-task categories. This provides a fine-grained breakdown of the specific agentic skills
 897 under evaluation. The creation and assignment of these categories follows a systematic methodology,
 898 beginning with manual taxonomy design and domain-specific programmatic mapping. The process
 899 begins with a manual inspection of a representative subset of the benchmark, ensuring equal distribu-
 900 tion across all domains and datasets. From this analysis, we established a new, unified taxonomy of
 901 25 sub-task categories that best represent agentic skills. Following this, we programmatically mapped
 902 every question to one of these categories, with logic tailored to each domain.

903 **Domain-specific mapping details.** For the Spatial Understanding domain, we adopted the category
 904 structure from SpaCE-10 and mapped questions from EmbSpatial-Bench by using pre-existing
 905 metadata. Questions involving the relations ‘above’, ‘under’, ‘left of’, ‘right of’, ‘on’, ‘in’, ‘behind’,
 906 ‘in front of’, or ‘touching’ were mapped to our Object-Object Interaction category. Questions
 907 with ‘close’ or ‘far’ relations were mapped to Object-Scene Interaction. For Web Agents, we
 908 extracted action keywords from the ground-truth text, except for datasets like Screenspot where
 909 all actions defaulted to Tap. For Robotics, we mapped fine-grained, pre-existing categories from
 910 source datasets to our unified high-level categories. For example, in ERQA, ‘Action Reasoning’ and
 911 ‘Trajectory Reasoning’ were mapped to Task Estimation, while in Robo2VLM, ‘relative_depth’ and
 912 ‘view_correspondence’ were mapped to POV Modeling. For Egocentric Videos, we used a similar
 913 approach; in VSI-Bench, categories like ‘route_planning’ were mapped to Spatial Navigation, while
 914 in Perception-Test, questions were categorized using keywords, such as those starting with “how
 915 many” being mapped to Object Counting. Finally, for Games, existing categories from GameQA were
 916 mapped to the bespoke categories we designed for the Atari dataset; for instance, ‘target perception’
 917 and ‘state prediction’ were mapped to World Modeling, and ‘strategy optimization’ was mapped to
 Reward Modeling.

918
919

D.1 SUB-TASK CATEGORY DEFINITIONS

920
921
922
923

Web agents. This domain tests interaction with graphical user interfaces. Tap and Press involve grounding a click or selection action on the correct UI element. Scroll tests the ability to infer the need for vertical or horizontal movement to reveal off-screen elements. Typing involves inputting text into the correct field.

924
925
926
927
928
929

Egocentric videos. This domain focuses on understanding first-person video. Object Counting requires quantifying static items in a scene, testing core visual perception. Spatial Navigation tests the ability to build a mental map of an environment and understand orientation from a specific viewpoint. Motion Causality involves interpreting dynamic events, understanding physical interactions, and reasoning about the consequences of actions over time.

930
931
932
933
934
935
936

Robotics. This domain assesses reasoning in physical, embodied scenarios. Object Grounding involves correctly identifying a target object based on its unique attributes, especially when similar distractors are present. POV Modeling requires understanding 3D spatial relationships, orientation, and object positions from a 2D camera perspective. Task Estimation tests the comprehension of a task’s overall goal and the logical sequence of actions required to achieve it. State Tracking involves assessing the current status of an object or the environment, such as its stability or configuration.

937
938
939
940
941
942

Games. This domain evaluates strategic and predictive reasoning in rule-based environments. Action Prediction involves determining the next valid move. Game-Over Detection requires recognizing conditions that end the game. Reward Detection involves identifying specific events that trigger a score change. Reward Modeling requires evaluating states or actions to determine which leads to a better outcome. Game Strategization involves high-level, multi-step planning. World Modeling tests the ability to predict a future game state given a sequence of actions.

943
944
945
946
947
948
949

Spatial understanding This domain tests foundational spatial intelligence. Entity Detection and Entity Counting involve identifying the presence and number of objects. Object Sizing and Scene Counting assess attributes of objects and the environment. Object-Object Interaction and Object-Scene Interaction require reasoning about the relative spatial relationships between different elements. Functional Reasoning and Spatial Planning test a deeper understanding of how objects can be used and how an agent can navigate or manipulate the environment to achieve a goal.

950
951

E SUBSAMPLING ROBUSTNESS ANALYSIS

952
953
954
955
956
957

To ensure AgentVQA is both manageable and statistically reliable, we conducted a robustness analysis to determine the optimal number of instances to subsample from each source dataset. Our goal was to find the smallest sample size that provides a stable and accurate estimate of model performance compared to the full dataset. We defined our stability criterion as achieving a 95% confidence interval width of less than 1.0% absolute.

958
959
960
961
962
963
964
965
966
967

Methodology. Our analysis begins by first running a full evaluation on the entire dataset to obtain a ground-truth response (correct or incorrect) for every question. Using this complete set of responses, we efficiently simulate the subsampling process by drawing smaller subsets of varying sizes to observe how the average accuracy changes. To dig deeper into the variance, we focus on subset sizes of 300, 500, 700, 1000, and 1200. For each of these sizes, we draw 50 independent, stratified random samples from our saved full-dataset results. Stratified sampling ensures that the proportional representation of sub-task categories is maintained. For each of the 50 runs, we compute the mean accuracy, sample standard deviation, and the standard error of the mean. Using a t-value for a 95% confidence level with 49 degrees of freedom, we construct the confidence interval for the mean accuracy at each sample size.

968
969
970
971

Results. The analysis, summarized in Figures 7, 8 and 9, demonstrate that as the sample size increases, the mean accuracy quickly converges to the full dataset’s performance, and the variance across runs decreases significantly. Our results show that a sample size of 1000 is the smallest size that consistently meets our stability criterion, yielding a confidence interval width of 0.75%. We observe

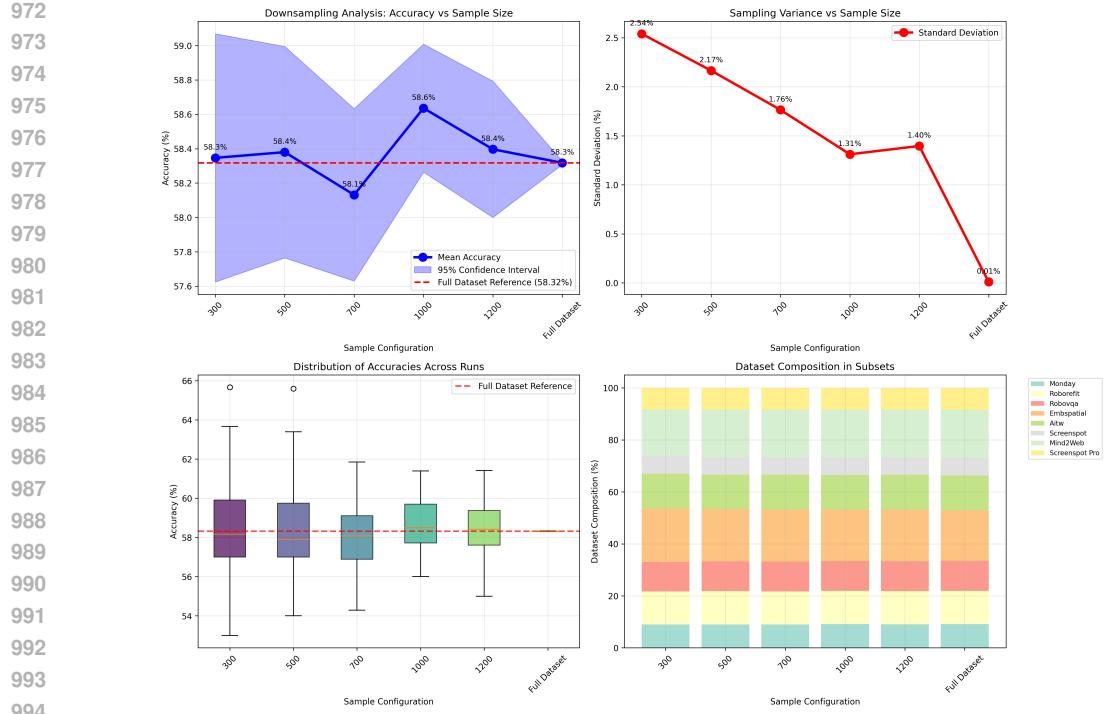


Figure 7: **Overall subsampling analysis.** The plots show that as the sample size increases towards the full dataset size, the mean accuracy (top-left) stabilizes and the sampling variance (top-right) decreases, demonstrating the reliability of using a large subsample.

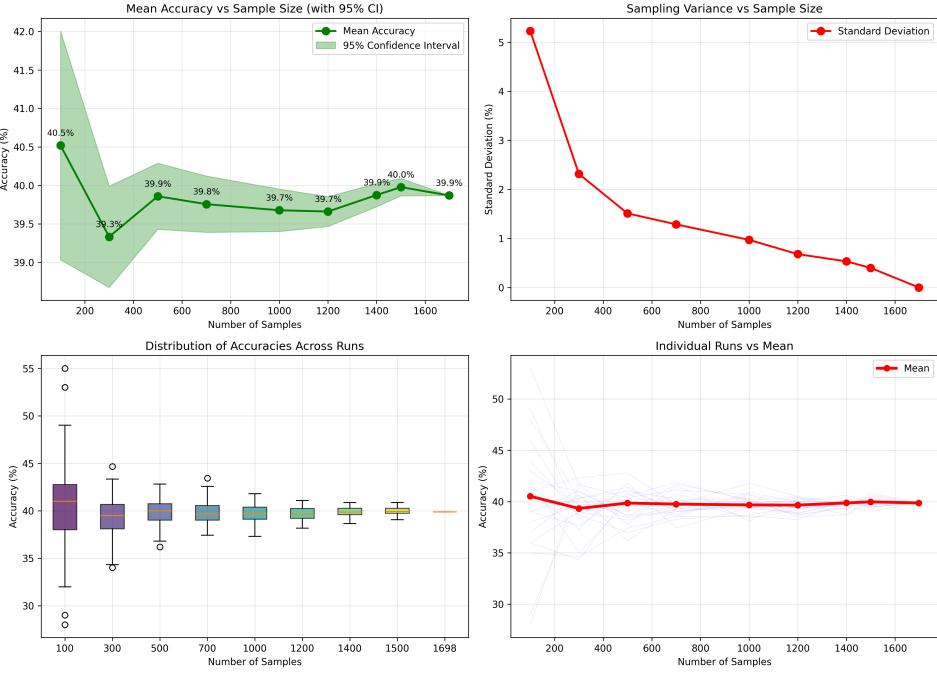


Figure 8: **Detailed robustness analysis for the MONDAY dataset.** This view illustrates how the 95% confidence interval (top-left, green shade) narrows significantly as the sample size increases, providing a stable estimate of the mean accuracy.

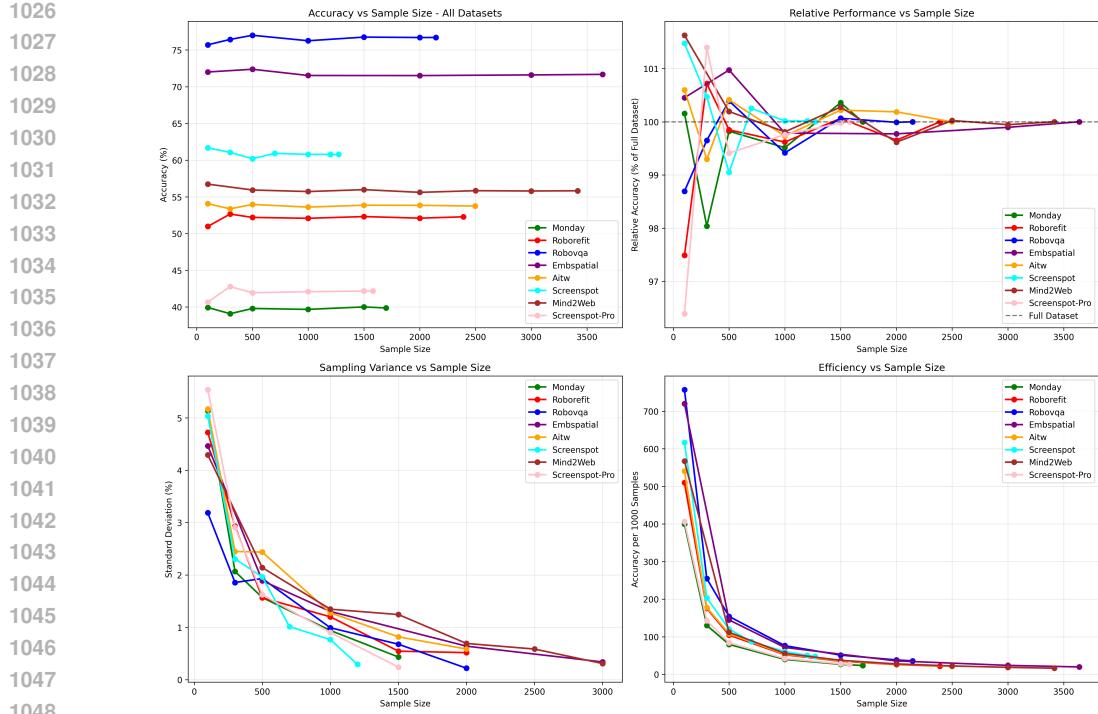


Figure 9: **Comparative subsampling analysis across multiple datasets.** The bottom-left plot is particularly illustrative, showing a consistent trend of decreasing sampling variance (standard deviation) for all datasets as the sample size approaches 1000.

that the 1000-sample size provides a strong balance of efficiency and statistical confidence. This empirical validation justifies our decision to standardize the benchmark’s datasets to 1000 instances each, ensuring that the performance metrics are reliable indicators of a model’s true capabilities.

F ANSWER EXTRACTION LOGIC

To ensure consistent and automated evaluation, we employ a multi-strategy answer extraction logic. Although the prompt instructs models to output only a single letter corresponding to their final choice, outputs can vary. Our programmatic parser is designed to robustly handle these variations.

Extraction strategy. The extraction process follows a prioritized sequence of rules. First, our parser attempts a direct match, checking if the model’s entire stripped output is exactly a single, valid option letter (e.g., ‘A’). If this primary strategy fails, it deploys a fallback routine that applies a series of regular expression patterns. These patterns are designed to find common answer declarations such as “Answer: A,” or “Option A.” We note that these regular expressions are occasionally adapted to accommodate the unique, consistent output formats of specific models. If no unambiguous answer can be identified after applying all strategies, the question is skipped and marked unevaluated to maintain the integrity of the evaluation. The complete prompt is available in Appendix L.

G ROBUSTNESS ANALYSIS OF MCQ FORMAT

To ensure the reliability of the multiple-choice format, we conducted extensive ablation studies to quantify the impact of option ordering and rule out random guessing as a confounding factor.

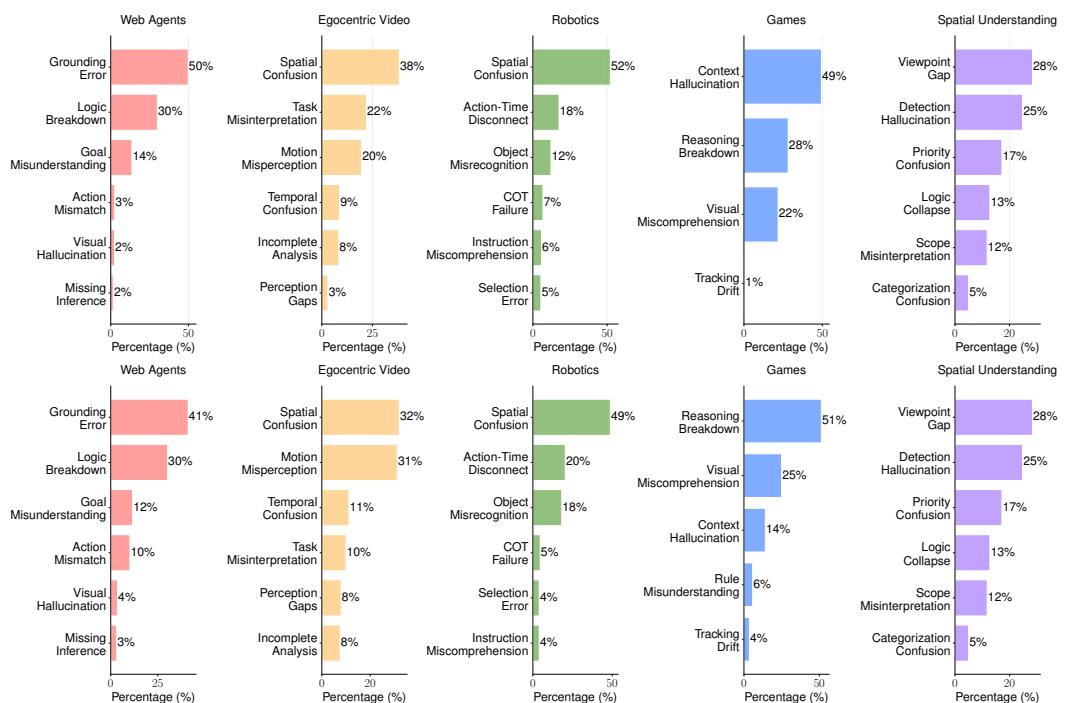
Robustness to Option Ordering. We evaluated 5 representative models across 6 datasets using 5 distinct, seeded random permutations of option orders. As shown in Table 3, the model performance

1080 remains highly consistent across permutations, with a standard deviation of approximately 1.9%.
 1081 This confirms that the rankings reported in AgentVQA are stable artifacts of model capability rather
 1082 than positional bias.

1084 Table 3: **Robustness to Option Ordering: Average accuracy across 5 random permutations of option
 1085 orders. The low standard deviation indicates high stability.**

Shuffle Iteration	0	1	2	3	4	Std. Dev
Average Accuracy	56.0%	54.8%	57.0%	51.7%	54.5%	~ 1.9%

1092 **Refuting Random Guessing.** To verify that model scores reflect genuine engagement with the
 1093 task, we evaluated constant-selection baselines (e.g., "Select All A", "Select All B") across 5 datasets.
 1094 These strategies yielded an average accuracy of **24.9%** (ranging from 18.6% to 28.9% across different
 1095 options), which aligns with the theoretical random baseline for 4-option MCQs. Since even the
 1096 lowest-performing models in AgentVQA consistently score significantly above this floor, we conclude
 1097 that the benchmark effectively measures agentic reasoning rather than chance.



1122 **Figure 10: Distribution of the most common error modes across the five agentic domains in
 1123 AgentVQA.** The analysis is based on a semi-automated categorization of incorrect predictions from
 1124 Gemini 2.5 Pro (top) and Qwen-2.5VL (7B) (bottom). In both charts, each colored segment represents
 1125 a primary domain, and each slice within a segment corresponds to a specific error mode, with its size
 1126 reflecting its prevalence (%).

H ERROR MODES

1131 To qualitatively understand model failures, we conduct an in-depth error mode analysis on two
 1132 representative models: a closed-source model (Gemini 2.5 Pro) and an open-source model (Qwen2.5-
 1133 VL (7B)). The process involves a three-stage methodology to develop a taxonomy, annotate failures,
 and verify the results. The resulting distribution of errors is visualized in Figure 10.

1134 **Taxonomy development and annotation** First, we prompt the models to output a reasoning chain
 1135 alongside their final answer for every question. We then manually review a diverse, stratified subset
 1136 of incorrect predictions to identify and define a comprehensive taxonomy of common failure patterns
 1137 for each of the five agentic domains. With this taxonomy established, we use Gemini 2.5 Pro for large-
 1138 scale annotation. For each failure, we provide the model with the visual input, all multiple-choice
 1139 options, the ground-truth answer, the model’s incorrect chosen option, the model’s full reasoning
 1140 chain, and any other relevant metadata. We then prompt it to assign the single most fitting error mode
 1141 from our predefined taxonomy. The prompt used for assigning error modes using Gemini is available
 1142 in Appendix N.

1143 **Verification** To ensure the quality of the automated annotations, we perform a final verification step.
 1144 We manually review a randomly selected subset of the error mode assignments across all domains and
 1145 for both models. This process confirms that the classifications made by Gemini 2.5 Pro are accurate
 1146 and consistent with our established definitions, ensuring the reliability of our qualitative analysis.
 1147

1148 H.1 ERROR MODE DEFINITIONS
 1149

1150 **Web agents.** Grounding Error occurs when the model understands the goal but fails to correctly
 1151 locate or ground the corresponding UI element, often confusing it with a visually similar or nearby
 1152 one. Logic Breakdown describes a failure to correctly process a sequence of steps, leading to a
 1153 logically inconsistent action based on the current state. Goal Misunderstanding is a fundamental
 1154 error where the model misinterprets or ignores a key part of the user’s instruction. Action Mismatch
 1155 happens when the model’s reasoning correctly identifies the right action, but its final output selects a
 1156 different, incorrect option. Missing Inference occurs when the model fails to deduce an implicit but
 1157 necessary action, such as scrolling to reveal an element. Visual Hallucination is when the model’s
 1158 reasoning relies on a UI element or piece of information that is not present in the visual input.

1159 **Egocentric video.** Spatial Confusion is a failure to build an accurate 3D mental map from video,
 1160 resulting in an incorrect understanding of object layout or orientation from a given viewpoint. Motion
 1161 Misperception occurs when the model fails to correctly interpret a process, motion, or physical
 1162 interaction as it unfolds over time. Task Misinterpretation arises when visual perception is correct,
 1163 but the model misunderstands the nuance or goal of the prompt. Temporal Confusion is a sequencing
 1164 error where the model correctly perceives individual events but gets their chronological order wrong.
 1165 Incomplete Analysis happens when the model perceives all necessary visual facts but fails to execute
 1166 the required logical steps to reach the correct conclusion. Perception Gaps are fundamental failures
 1167 in seeing, where the model incorrectly reports a basic, static fact like an object’s presence or count.
 1168

1169 **Robotics.** Spatial Confusion occurs when the model fails to correctly interpret the spatial relationships,
 1170 location, or orientation of objects in 3D space from a 2D image. Action-Time Disconnect is a
 1171 failure to understand the dynamics of a scene, such as predicting the outcome of an action or correctly
 1172 sequencing a task. Object Misrecognition happens when the model misidentifies an object or fails
 1173 to ground it based on all of its required attributes like color or size. Instruction Miscomprehension
 1174 occurs when the model perceives the scene correctly but fundamentally misunderstands the user’s
 1175 goal. COT Reasoning Gaps describe failures to handle specific quantitative values or fine-grained
 1176 distinctions within the reasoning process. Output Mapping Error is when the model’s reasoning is
 1177 correct, but it outputs the wrong corresponding letter for its final answer.

1178 **Games.** Reasoning Breakdown is a general failure where the model’s internal logic collapses
 1179 under the task’s complexity or becomes confused about the objective, leading to a flawed conclusion.
 1180 Context Hallucination occurs when the model’s reasoning becomes detached from the game state,
 1181 inventing information that does not exist. Visual Miscomprehension is a foundational failure to
 1182 correctly perceive the game’s visual and spatial information, such as object locations or relationships.
 1183 Rule Misunderstanding is a logical error where the model does not correctly apply the game’s explicit
 1184 rules or objectives. State Tracking Drift is a failure to mentally simulate and track how the game state
 1185 changes over time.

1186 **Spatial understanding.** Viewpoint gaps occur when the model identifies objects but fails to
 1187 construct an accurate 3D map of their relationships, leading to errors in judging depth or distance.

1188
 1189 Detection Hallucination is a fundamental perceptual failure where the model either misses a present
 1190 object or "sees" an object that is not there. Priority Confusion is a subtle reasoning error where the
 1191 model correctly identifies multiple true spatial facts but incorrectly prioritizes one that is irrelevant
 1192 to the question. Logic Collapse is a failure cascade where the model first fails to perceive an object
 1193 and then tries to compensate by inventing a logical path forward based on hallucinated information.
 1194 Scope Misinterpretation happens when the model misunderstands the required granularity or intent
 1195 of the question, particularly for counting or classification tasks. Categorization Confusion occurs
 1196 when perception is visually correct, but the model applies the wrong semantic label or category to an
 1197 object.
 1198

1198 Table 4: Comprehensive Evaluation of 15 VLMs on AgentVQA Across 5 Agentic Domains. 🤖 represents Reasoning Model. 🤖 represents closed-source models.

Model	Web Agents						Robotics						Egocentric-Videos			
	Tap	Typing	Scroll	Press	Avg.	TE	POV	ST	OG	Avg.	SN	MC	OC	Avg.		
GPT 5 thinking-high 🤖	55.3	74.4	47.6	37.1	55.2	53.9	38.5	63.9	52.1	51.2	63.5	68.8	76.0	70.4		
Gemini 2.5 Pro 🤖	49.3	72.5	49.2	41.9	50.3	47.9	34.3	28.3	39.5	40.2	40.3	48.3	67.4	54.4		
GPT 5 thinking-minimal 🤖	44.3	71.4	38.9	46.3	45.6	47.7	36.8	49.7	36.0	43.7	58.4	49.6	84.3	68.0		
GPT 4o 🤖	40.9	65.0	20.6	38.3	40.5	42.6	32.7	44.6	19.3	35.4	30.8	53.8	50.0	44.9		
GLM-4.IV-Thinking 🤖	40.9	71.1	36.2	35.9	42.3	38.7	41.0	28.9	24.8	34.6	29.7	37.7	58.5	44.6		
Kimi-VL-Thinking 🤖	32.0	58.6	33.1	34.6	33.1	38.4	34.2	31.3	36.0	36.9	41.0	22.5	23.9	29.0		
Phi-4 Multimodal	30.0	63.3	48.2	44.7	33.7	25.9	32.1	43.1	37.1	32.6	45.5	38.6	72.1	55.9		
GLM-4.IV-Base	37.5	69.8	41.8	53.4	40.3	36.3	33.1	36.7	21.9	32.4	15.0	30.9	41.0	30.5		
Kimi-VL-Instruct	32.8	40.5	24.3	19.1	34.3	38.1	30.2	26.0	35.4	37.4	41.6	38.1	52.9	45.9		
Llama-4-Scout	42.2	65.4	37.2	25.5	42.1	29.9	18.9	50.8	30.6	34.7	40.8	35.4	53.3	45.2		
Llama-4-Maverick	37.9	66.3	41.7	27.9	39.6	36.8	18.8	37.2	36.0	35.8	38.3	36.0	55.8	45.7		
Qwen 2.5 VL (3B)	44.6	64.3	34.9	35.9	44.6	32.6	30.2	43.8	52.4	37.9	35.8	37.8	65.5	49.7		
Qwen 2.5 VL (7B)	50.6	71.8	42.1	46.2	51.5	40.4	35.3	57.8	55.6	44.4	34.0	41.5	69.1	51.6		
Qwen 2.5 VL (32B)	54.8	74.5	46.3	52.2	55.0	43.7	34.2	58.3	62.0	47.7	39.6	36.7	67.3	51.4		
Qwen 2.5 VL (72B)	57.4	77.3	50.9	52.5	57.3	48.3	39.9	57.1	61.4	51.5	33.0	43.7	68.5	51.5		

Model	Games						Spatial Understanding								Avg.	
	WM	RM	GS	AP	GOD	RD	ED	OO	EC	FR	OSI	OS	SP	SC		
GPT 5 thinking-high 🤖	60.0	94.0	67.5	31.9	51.4	36.9	60.2	83.6	84.0	31.3	45.4	60.9	82.7	57.9	46.8	71.5
Gemini 2.5 Pro 🤖	33.4	50.5	27.5	34.5	34.5	37.5	39.5	31.3	60.9	25.1	45.8	54.7	65.3	37.5	31.4	59.5
GPT 5 thinking-minimal 🤖	42.4	84.5	31.1	30.5	31.5	40.0	47.4	41.8	71.4	33.3	58.0	55.4	70.4	26.8	48.0	66.5
GPT 4o 🤖	49.3	21.7	43.7	26.5	18.6	20.7	31.4	77.3	76.3	28.9	43.6	54.1	78.2	44.4	35.4	51.1
GLM-4.IV-Thinking 🤖	39.1	30.3	25.5	25.7	26.3	29.0	35.2	57.1	79.4	29.8	50.0	55.0	70.7	36.8	24.4	62.2
Kimi-VL-Thinking 🤖	25.7	24.9	26.9	23.7	31.5	26.5	24.0	30.7	75.8	22.4	32.6	43.5	34.2	27.5	31.3	50.8
Phi-4 Multimodal	25.9	58.6	22.5	27.1	24.6	25.6	26.6	46.8	67.9	33.4	47.0	46.5	53.0	37.2	15.9	58.0
GLM-4.IV-Base	26.6	35.3	20.4	18.0	27.2	19.9	23.2	28.5	69.9	30.3	42.2	54.1	62.1	35.0	51.4	55.0
Kimi-VL-A3B-Instruct	25.4	22.8	23.6	31.5	23.0	32.5	28.1	25.1	88.9	30.9	39.3	44.6	51.0	24.7	27.4	51.1
Klama-4-Scout	29.5	62.0	23.1	23.0	28.5	30.0	32.4	29.3	62.1	34.0	39.7	47.0	52.6	26.3	54.5	49.2
Klama-4-Maverick	29.1	78.5	19.8	19.0	15.5	31.0	28.5	35.2	57.1	31.2	56.9	47.6	49.3	5.7	45.7	52.3
Qwen 2.5 VL (3B)	24.0	28.0	27.7	23.5	29.0	26.0	24.8	16.8	64.0	20.2	37.0	42.7	47.4	21.1	12.8	45.2
Qwen 2.5 VL (7B)	30.4	28.7	30.2	24.2	17.7	30.7	29.1	26.6	72.2	31.6	41.3	54.2	51.4	20.6	39.3	55.3
Qwen 2.5 VL (32B)	33.3	49.7	33.2	24.7	20.7	26.2	32.6	27.2	78.6	37.2	51.4	52.7	64.7	31.6	41.0	60.1
Qwen 2.5 VL (72B)	40.8	73.1	34.8	32.1	23.6	31.6	40.5	47.8	76.1	35.1	59.6	52.7	60.9	26.3	43.0	61.0

1223
 1224 Table 5: Here we list canonical Vision-Language model agentic benchmarks, organized by domain
 1225 and their offline/online categorization. We **bold** datasets that are apart of AgentVQA and suffix
 1226 datasets that have been filtered or filtered and transformed with + or ++ suffixes, respectively.

Domain	Mode	Datasets
Web Agents	Offline	AitW++ (Rawles et al., 2023), Mind2Web++ (Deng et al., 2023), ScreenSpot++ (Cheng et al., 2024a), Monday++ (Jang et al., 2025), Screenspot-Pro++ (Li et al., 2025)
	Online	WebArena (Zhou et al., 2023), VisualWebArena (Koh et al., 2024), TheAgentCompany (Xu et al., 2024), AndroidWorld (Rawles et al., 2024), VideoWebArena (Jang et al., 2024)
Egocentric Videos	Offline	Perception-Test+ (Patraucean et al., 2023), VSI-Bench+ (Yang et al., 2025a), VidEgoThink (Cheng et al., 2024b), Ego-Exo4D (Grauman et al., 2024), OpenEQA (Majumdar et al., 2024)
	Online	EgoThink (Cheng et al., 2024c), EgoPlan-Bench (Chen et al., 2023)
Robotics	Offline	RoboReFit++ (Lu et al., 2023), ERQA (Team et al., 2025), Robo2VLM+ (Chen et al., 2025), HoloAssist (Wang et al., 2023), X-Embodiment (Vuong et al., 2023)
	Online	CALVIN (Mees et al., 2022), VIMA-Bench (Jiang et al., 2022), BEHAVIOR-1K (Li et al., 2023b), RoboCasa (Nasiriany et al., 2024), EmbodiedBench (Yang et al., 2025b)
Games	Offline	Atari++ (Zhang et al., 2020), GameQA+ (Tong et al., 2025), MarioQA (Mun et al., 2017), BASALT (Milani et al., 2023)
	Online	Crafter (Hafner, 2021), MineDojo (Fan et al., 2022), VideoGameBench (Zhang et al., 2025), BALROG (Paglieri et al., 2024)
Spatial Understanding	Offline	EmbSpatial-Bench+ (Du et al., 2024), SpaCE-10+ (Gong et al., 2025), Spatial-MM (Shiri et al.), OmniSpatial (Jia et al., 2025), 3DSRBench (Ma et al., 2024)
	Online	HabitatChallenge (Savva et al., 2019), EXCALIBUR (Zhu et al., 2023)

1242

1243

1244

I LIMITATIONS OF OPEN-ENDED GROUNDING METRICS

In this section, we visualize why standard open-ended evaluation metrics (Bounding Box IoU and Distance Thresholds) introduce significant noise into agentic evaluation, and how AgentVQA’s MCQ format resolves this ambiguity. As illustrated in Figure 11, open-ended metrics often force a

(a) Ambiguous Bounding Box (Scissors)

(b) Ambiguous Bounding Box (Mouse)

Figure 11: **Failure Modes of Open-Ended Grounding Evaluation.** **(a) False Positive Risk:** The target object (scissors) has a highly irregular, diagonal shape. A standard rectangular bounding box (red) necessarily includes a large area of empty space and adjacent objects (e.g., the wooden spoon). A model prediction falling into this empty void would be counted as a "hit" under standard IoU metrics despite missing the object itself. **(b) Threshold Sensitivity:** For the dark blue wireless mouse, the bounding box is relatively large. A strict center-point distance threshold might reject a valid click near the edge of the mouse, while a loose threshold could incorrectly credit a click on the adjacent black mouse.

trade-off: loose thresholds or large bounding boxes allow false positives on irregular shapes (like the scissors), while strict thresholds punish valid actions on large elements (like the mouse). AgentVQA circumvents this by transforming the continuous coordinate space into a discrete decision problem, where distractors are programmatically ensured to be incorrect (e.g., outside the ground truth bounds) yet plausible enough to test precision.

J IMPLICATIONS AND SUGGESTIONS FOR PRACTITIONERS

AgentVQA provides unique diagnostic data unavailable in general VQA benchmarks. Based on the granular failure modes identified in our experiments, we offer the following concrete recommendations for future agentic model design and training:

- **Accelerate Model Iteration:** AgentVQA provides a scalable testbed for cross-domain performance. Evaluating 13,400 complex questions with a reasoning model judge (generating around 2,000 tokens/decision) would require 26.8 million output tokens for a single pass. AgentVQA mitigates these massive computational costs by enabling rapid, deterministic scoring for faster development cycles.
- **Bridge the Semantic Gap:** Our analysis reveals a "semantic-spatial disconnect" where models know what to do (semantic) but fail to locate where to do it (spatial)—for instance, models often correctly identify the next step in Web Agents but fail the precise coordinate grounding (46% error rate). This indicates that scaling model size is insufficient, and researchers must prioritize specialized grounding pre-training to link high-level intent with low-level execution.

- **Adopt Adaptive Inference:** Since reasoning models often underperform on perception tasks, we recommend adaptive architectures that decouple fast, robust perception modules (for spatial awareness) from expensive Chain-of-Thought (for planning) to prevent “Thinking Loops.”
- **Implement Domain-Specific Curricula:** The lack of correlation between general VQA and agentic performance suggests generic tuning is inadequate. Our granular error profiles suggest a move toward domain-specific curriculum learning, targeting 3D spatial data for Robotics versus causal reasoning for Games.
- **Deploy Offline Safety Gates:** We propose using AgentVQA as a standardized diagnostic filter to detect critical reliability risks such as hallucinations and recursive loops before deploying agents into high-stakes, open-ended environments.

K ANALYSIS OF "THINKING LOOPS" AS A FAILURE MODE

During our analysis of different reasoning models, we identified some models like GLM-4.1V-Thinking and Kimi-VL-Thinking getting stuck in a repetitive cycle of reasoning without making any forward progress. For instance, when analyzing one model’s reasoning process, we observed it getting stuck in the loop shown below:

```
<think> The person in the video is seen placing a small triangle on the table. The next shape that the person places is a large circle. The person then places another triangle next to the circle. The person then places another triangle next to the circle and the triangle. The person then places another triangle next to the circle and the triangle. The person then places another triangle next to the circle and the triangle. ...
```

L EVALUATION PROMPT

We use a standard, simple prompt structure that provides the model with the question, any relevant context such as action history, and concludes by instructing it to output only the single letter corresponding to its final choice. The sample prompt structure is mentioned below (Action History would be removed in case of non-trajectory based questions):

Evaluation Prompt Template

This is the standard template used for model evaluation. Placeholders like {episode_goal} are replaced with the specific data for each question.

Goal: {episode_goal}

Action History:

```
{action_history if action_history.strip() else "No previous actions"}
```

Question: {question}

Options:

```
{options_text}
```

Based on the provided screenshot, goal, action history, and question, select the single best option from the list above.

IMPORTANT: Your response must be EXACTLY one character (A, B, C, or D) with no other text, explanation, or formatting.

Answer:

1350 M HARD NEGATIVE GENERATION PROMPT
13511352 This is the primary prompt template used to generate hard negative distractors for datasets like AITW;
1353 we use a similar but tailored schema for other datasets requiring transformation.
13541355 **Context:**1356 • The UI screenshot has dimensions `{width}x{height}` pixels.
1357 • The image provided has a green dot marking the location of the correct action if it is
1358 a tap.
1359 • The correct action is: `{correct_action_string}`1360 **Goal:** `{goal}`1361 **Previous Actions (History):**1362 `{history if history else "This is the first step."}`
1363
1364
13651366 **Your Task:**1367 Generate **three** distinct and plausible but **incorrect** distractor actions. These distractors
1368 should be designed to confuse a tester. Use a mix of the following strategies:
13691370 1. **Near-Miss:** An action of the same type as the correct one but slightly off (e.g.,
1371 tapping right next to the correct button).
1372 2. **Semantic-Confusion:** An action on a different but visually or functionally similar
1373 element (e.g., tapping 'Bluetooth Settings' when 'Wi-Fi Settings' is correct).1374 **Supported Action Formats (Use these formats EXACTLY):**1375 • Tap: `[x, y]` (where x and y are integer pixel coordinates)
1376 • Swipe: `DIRECTION` (where DIRECTION is one of 'Up', 'Down', 'Left',
1377 'Right')
1378 • Type: `'text to type'` (where 'text to type' is a plausible but incorrect
1379 string)
1380 • Button: `ACTION` (where ACTION is one of 'Press Back', 'Press Home', 'Press
1381 Enter')1383 **Important Rules:**1384 • Do **NOT** generate the correct answer (`{correct_action_string}`).
1385 • Ensure all tap coordinates are within the image bounds (`width: {width}, height:
1386 {height}`).
1387 • For "Tap" distractors, analyze the image to choose locations that are genuinely
1388 incorrect but tempting.
1389 • Generate a diverse set of three distractors.
1390 • You also need to ensure that for near miss in tap the point is actually a negative.
13911392 Respond **ONLY** with a valid JSON object in the following format:
13931394 `{"distractors": ["ACTION_TYPE: value", "ACTION_TYPE: value",
1395 "ACTION_TYPE: value"]}`1396
1397
1398
1399
1400
1401
1402
1403

1404 N ERROR MODE ANNOTATION PROMPT
14051406 The following prompt is used to have Gemini 2.5 Pro assign a specific error mode to a model's
1407 incorrect prediction; the prompt provides full context about the question and the model's failure,
1408 along with a detailed taxonomy of all possible error modes and their definitions.
14091410 You are an expert AI agent evaluator specializing in embodied robotics and robotic reasoning
1411 tasks. Your task is to analyze why a vision-language model failed on a specific question and
1412 categorize the failure.
14131414 N.1 CONTEXT
14151416 QUESTION: {question}
14171418 QUESTION TYPE: {question_type}
14191420 NUMBER OF IMAGES: {num_images}
14211422 DATASET: {dataset_name}
14231424 N.2 VISUAL ANALYSIS
14251426 Some description about the expected image scene.
14271428 N.3 FAILURE DETAILS
14291430 MODEL'S PREDICTION: {model_prediction}
1431 CORRECT ANSWER: {correct_answer}
1432 MODEL'S REASONING: {reasoning (if available)}
14331434 TASK
14351436 Analyze the model's failure in this embodied robotics reasoning task. Consider whether the
1437 model correctly understood the spatial relationships, identified objects and their attributes,
1438 predicted action outcomes, handled quantitative aspects, comprehended the instruction, and
1439 mapped its reasoning to the correct output. Focus on identifying the root cause using the
1440 specialized robotics error modes below.
14411442 ERROR MODES
14431444 *{A detailed list of all error modes and their definitions is provided here.}*
14451446 Respond with a JSON object containing the 'error_mode' and a brief 'justification' for your
1447 choice. If you think that none of the error_modes apply then write NaN in error mode and
1448 justify in justification and also propose some new error mode in the justification and explain
1449 how this one aligns well with this sample as compared to others. It is not always necessary
1450 that an error mode applies so you can output NaN along with the justification and closest
1451 error mode from list and your idea of error mode for this.
1452