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Figure 1: The AgentVQA Benchmark. AgentVQA unifies 14 challenging datasets across five
domains: Web Agents, Egocentric Videos, Robotics, Games, and Spatial Understanding, into a
standard MCQ format. These tasks are diverse with some using action-histories to test episodic
memory and others using video inputs to evaluate temporal understanding.

ABSTRACT

Vision-language models (VLMs) can perform a broad range of tasks across diverse
settings. Yet their performance in agentic contexts remains poorly understood.
Existing benchmarks are domain-specific, making comprehensive evaluation diffi-
cult, and they often require compute-expensive online simulators. To address this
gap, we introduce AgentVQA, a benchmark for systematically evaluating agentic
capabilities in VLMs. AgentVQA offers three key advantages: (1) Comprehensive
— it consists of 14 datasets spanning five critical agentic domains: Web Agents,
Robotics, Egocentric Videos, Games, and Spatial Understanding. (2) Standardized
— we reformulate diverse tasks, like trajectory-based web navigation and gameplay,
into a unified multiple-choice question (MCQ) format. We balance the sample
distribution across multiple domains, data formats, and semantic categories. (3)
Challenging — our data processing pipeline generates hard negative options in
MCQs, which are then manually reviewed for correctness. Among all the models
we evaluate, the best achieves a mere ~60% accuracy. Furthermore, our ablation
studies highlight key error modes where current VLMs can be improved.

1 INTRODUCTION

Vision-Language Models (VLMs) are quickly becoming the decision-making core for agentic systems
spanning robotics, wearable assistants, web navigation, or gameplay. With only prompting or minimal
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fine-tuning, VLMs often outperform their domain-specific counterparts (Koh et al., 2024; Black et al.,
2024; Zhou et al., 2025; Zhang et al., 2025; Sarch et al., 2025). This approach promises a scalable
path to universal agentic behavior. However, our understanding of the real-world agentic capabilities
of these models is still limited.

In other domains like math or coding, standardized benchmarks systematically track model capabil-
ities and limitations (Jimenez et al., 2023; Balunovic¢ et al., 2025). For agents, online evaluations
in real or simulated environments remain the gold standard for assessing agentic performance (Yao
et al., 2024), but due to computational cost and reproducibility, they present significant practical
challenges for rapid, large-scale model comparison (Henderson et al., 2018; Dasari et al., 2022).

As a result, VLMs’ agentic capabilities lack comparable evaluation frameworks and remain
poorly understood. State-of-the-art models are often assessed on general-purpose benchmarks
like MMMU (Yue et al., 2024), MMBench (Liu et al., 2024) and GPQA (Rein et al., 2024). While
these track broad visual-language understanding, the questions and visual inputs do not reflect agentic
decision-making scenarios (visualized in Figure 2). Recent works (Yao et al., 2024; Yehudai et al.,
2025; Wong et al., 2025) show that performance on general-purpose VQA benchmarks does not
reliably correlate with success in agentic tasks.

To address this limitation, several domain-specific agentic benchmarks have been proposed. These
benchmarks for agentic tasks have made valuable contributions to their respective domains (Majumdar
et al., 2024; Cheng et al., 2024a; Chen et al., 2025). However, they remain insufficient for evaluating
generalist agents, because they are fragmented across domains. They fail to provide comprehensive,
unified evaluations of the diverse domains and inputs expected from generalist agents.

Prior works, such as Li et al. (2023a), have made significant efforts in aggregating diverse, multi-
image tasks into a standardized format. Yet, their curation for agent-oriented tasks focuses on general
image understanding and classification of actions in videos. They largely avoid interactive decision-
making data required by agents in real-world, complex environments. This highlights the need for a
robust and standardized offline evaluation framework to track progress in agentic Al
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Figure 2: Comparison between AgentVQA and previous benchmarks. Examples above the
dashed line illustrate questions from existing VLM benchmarks, which are either non-agentic (Yue
et al., 2024) or domain-specific (Deng et al., 2023). AgentVQA addresses three evaluation gaps: (1)
it tests core agent skills by unifying the evaluation of agent tasks, which were previously isolated
in separate datasets; (2) it spans multiple domains and modalities, evaluating performance across
diverse domains, image/video modalities, and action trajectories; and (3) it incorporates challenging
negatives through distractors, including semantically similar and near-miss actions.
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We introduce AgentVQA, a comprehensive benchmark designed to address these limitations and
enable a systematic analysis of VLM capabilities for agentic tasks. AgentVQA unifies 14 challenging
datasets across five domains: Web Agents, Egocentric Videos, Robotics, Games, and Spatial Under-
standing. These domains are chosen for their relevance to the current frontiers of agentic Al research
(visualized in Figure 1). AgentVQA consists of 13,400 MCQs spanning 18,400 images and 2,000
videos from pre-existing trajectory and VQA datasets. Our analysis reveals substantial rank shifts
between AgentVQA and MMMU, GPQA-Diamond, and OpenEQA (Table 4), indicating that the
model rankings in our benchmark are largely uncorrelated with those in both general-purpose VQA
and domain-specific benchmarks.

AgentVQA ensures standardization by filtering and transforming dynamic tasks, such as gameplay
and trajectory-based web navigation, into a unified MCQ format. For instance, we transform gameplay
datasets with multiple valid next steps into nuanced reward modeling questions that challenge a
model’s understanding of optimal strategies. Similarly, we transform web trajectories by pairing the
ground-truth action with other plausible but incorrect grounding options.

AgentVQA is a challenging benchmark. This is ensured by our methodology for generating plausible
“hard negatives” distractor options. These distractors fall into two main categories: near-miss
actions (e.g., clicking nearby but not on the correct button) and semantically similar options (e.g.,
choosing apple instead of orange). The generation strategy itself is validated through an extensive
initial analysis, followed by manual verification to ensure each distractor is both plausible and
unambiguously incorrect. The benchmark’s resulting difficulty is reflected in our findings: even the
top-performing model, GPT-5 (thinking-high), achieves an overall accuracy of only ~60%.

AgentVQA provides data-driven insights into the current state of the agentic capabilities of VLMs.
Our evaluation across 15 open and closed-source models of varying sizes leads to a detailed anal-
ysis. For instance, top-performing models in one category do not always perform best in other
categories. While GPT-5 (thinking-high) dominates in Spatial Understanding (72%), Games (60%),
and Egocentric Videos (70%), Qwen2.5-VL (72B) leads in Web Agents (57%) and Robotics (52%).

Furthermore, our error mode analysis, based on a manually crafted and verified categorization of
reasoning outputs, reveals highly domain-specific failure patterns. The most prevalent error in
Web Agents is grounding errors (46%). Spatial reasoning failures dominate other domains, with
spatial confusion the top error in both Robotics (51%) and Egocentric Videos (35%), and spatial
misconstruction in Spatial Understanding (28%). Finally, the errors in Games are largely high-level
reasoning breakdowns (40%), pinpointing a clear split between low-level perceptual grounding and
high-level abstract reasoning as the fundamental challenges in agentic tasks.

2 RELATED WORK

VLM as agents. Recent advances in multimodal AI have been driven by the development of Vision-
Language Models (VLMs). These models, such as QwenVL (Bai et al., 2023), GPT-40 (Hurst et al.,
2024), and Gemini (Comanici et al., 2025), are typically pretrained on vast, web-scale datasets of
paired images and text. This equips them with a broad general-purpose understanding of both visual
concepts and natural language, making them an ideal compute unit for agents. Several works have
successfully adapted VLMs into specific domains, either by fine-tuning or scaffolding pre-trained
models (Black et al., 2024; Koh et al., 2024; Zhou et al., 2025; Zhang et al., 2025; Sarch et al., 2025).
However, this begs the question: how do we evaluate agentic capabilities across domains?

General visual question answering. A wealth of benchmarks have been developed to assess the
general capabilities of VLMs, including SEED-Bench (Li et al., 2023a), MMBench (Liu et al.,
2024), or MMMU (Yue et al., 2024). While invaluable for measuring core competencies and
reasoning, they are ill-suited as proxies for agentic intelligence. Agentic tasks often require episodic
memory (Majumdar et al., 2024) because either the modalities are iterative, e.g., a stream of image
observations, or the task requires interactive reasoning, e.g., tool-calling. Yao et al. (2024) found that
GPT-40, despite excelling on traditional benchmarks, achieves a failure rate less than 50% on realistic
customer service tasks requiring multi-turn interactions. In Fig. 4, we confirm this observation by the
divergence between rankings in AgentVQA vs MMMU and GPQA-Diamond.

Agentic benchmarks. The agentic evaluation landscape is bifurcated into language-only benchmarks,
e.g., SWE-bench (Jimenez et al., 2023) or AgentBench (Liu et al., 2023), that test code generation
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and tool use, and vision-language benchmarks that require visual grounding and spatial reasoning.
AgentVQA is the latter. Additionally, benchmarks are further split by execution pattern: online
versus offline. Online benchmarks, e.g., (Savva et al., 2019; Fan et al., 2022; Li et al., 2023b; Koh
et al., 2024; Zhang et al., 2025), are ideal because performant agents must handle non-deterministic
environment interactions, which is fundamental to real-world deployment.

However, online evaluation can be time-consuming or require significant infrastructure (Henderson
et al., 2018; Du et al., 2024), so offline agentic benchmarks have grown in popularity. Offline
benchmarks, e.g., (Rawles et al., 2023; Yang et al., 2025a; Team et al., 2025; Tong et al., 2025;
Gong et al., 2025), consist of verifiable question-answer tasks (often MCQ) paired with visual
inputs. Existing offline agentic benchmarks are domain-specific, and the fragmented state of offline
agentic evaluation makes it difficult to assess cross-domain visual generalization. (we outline a full
comparison between canonical offline and online VLM datasets in Table 3). Aggregating performance
across datasets is also problematic because they consist of non-uniform answer formats, varying
degrees of answer choice “hardness”, and varying sample distributions. This makes it difficult to
distinguish skills needed for cross-dataset or cross-domain generalization.

AgentVQA addresses these limitations by 1) curating relevant datasets across domains. 2) filtering
and transforming representative subsets of the datasets into a standardized MCQ format focused on
hard negatives. 3) annotating category metadata to understand cross-dataset skill distributions. In the
following sections, we expand on each of these steps, as well as our evaluation on VLMs.

3 THE AGENTVQA BENCHMARK

To systematically analyze the agentic capabilities of general-purpose VLMs, a new evaluation frame-
work is required. Existing benchmarks fall short, either by focusing on single domains (Majumdar
et al., 2024; Cheng et al., 2024a), which prevents a holistic assessment, or by testing general VQA
skills that are poor proxies for agentic competence (Yue et al., 2024; Rein et al., 2024). AgentVQA
answers a central research question: where do modern, general-purpose VLMs succeed or fail across
a broad range of agentic tasks? Its construction follows three core principles: comprehensive domain
coverage to test for skill generality, a standardized MCQ format for scalable analysis, and the use
of systematically generated hard negatives to ensure it is challenging.
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Figure 3: Distribution of the 13,400 questions in the AgentVQA benchmark. Left: The distribu-
tion across the 14 source datasets (with sample counts in parentheses), organized within the five core
agentic domains. Right: A complementary view illustrating the sample distribution across our 25
defined sub-task categories.

3.1 DATASET OVERVIEW

An overview of our benchmark domains and evaluation types is summarized in Figure 3. AgentVQA
is a large-scale, multi-domain benchmark. It comprises 13,400 standardized MCQ questions designed
to probe the agentic intelligence of VLMs. The questions are curated from 14 diverse datasets
spanning: Web Agents, Egocentric Videos, Robotics, Games, and Spatial Understanding.

Our domains were chosen to express distinct agentic interactions. These include digital interaction
and GUI navigation (Web Agents) to embodied perception in the physical world (Robotics, Egocentric
Videos), strategic decision-making (Games), and foundational spatial awareness (Spatial Understand-
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ing). We use agentic-relevance, public availability, MCQ-format potential, and verifiability as our
selection criteria (more details in Appendix A).

A core feature of AgentVQA is its task diversity. To ensure multifaceted evaluation, questions
are structured around 25 distinct sub-task categories (Figure 3). Our categories encompass a wide
range of agentic skills, ranging from low-level action prediction (e.g., Tap/Click, Type) and spatial
grounding to more complex trajectory-based reasoning, spatiotemporal understanding, and state-value
estimation (e.g., Reward Modeling). Our categorization starts with manual inspection of raw samples
to identify the most informative question types across datasets, then programmatically mapping each
sample to a category (more details in Appendix C).

Unlike benchmarks focused solely on static images, 15% of our questions require reasoning over
dynamic video clips from the Egocentric Videos. AgentVQA also includes a high concentration of
sequential tasks - 26% of all questions are trajectory-based. So for either modality, these questions
provide a crucial test of spatiotemporal understanding. AgentVQA'’s diversity in domain, skill-
categorization, and modality promote granular analysis of model capabilities. The overall distribution
of questions across these axes is shown in Figure 3.

3.2 DATA COLLECTION

We chose datasets ripe with the following characteristics: agentic signal, domain/modality coverage,
offline convertibility, availability, and scale. The full process is described in Appendix A, and this
process yielded the following source datasets: AitW (Rawles et al., 2023), MONDAY (Jang et al.,
2025), Mind2Web (Deng et al., 2023), Screenspot (Cheng et al., 2024a) and Screenspot-pro (Li et al.,
2025) for Web Agents; ERQA (Team et al., 2025), Robo2VLM (Chen et al., 2025), and Roborefit (Lu
et al., 2023) for Robotics; VSI-Bench (Yang et al., 2025a) and Perception-Test (Patraucean et al.,
2023) for Egocentric Videos; GameQA (Zhang et al., 2025) and Atari (Zhang et al., 2020) for Games;
SpaCE-10 (Gong et al., 2025) and EmbSpatial-Bench (Du et al., 2024) for Spatial Understanding.

We additionally show the composition of AgentVQA in Figure 3. To ensure a manageable yet
representative benchmark, we subsample 1000 instances from each source dataset (except ERQA
with 400). This is based on the smallest sample size that consistently yields <1% standard deviation
in model performance (more details in Appendix D). Our curation yields 13400 questions, spanning
18400 images and 2000 videos.

3.3 DATA ANNOTATION AND MCQ CONVERSION

To standardize the outputs and employ systematic evaluation, we convert all questions into multiple
choice questions (MCQs). For the datasets which aren’t already in MCQ format, we systematically
create two types of hard negatives. These are near-miss negatives (e.g., in Web Agents, clicking a
few pixels away from the correct UI element) and semantically similar negatives (e.g., In Robotics,
choosing coordinates of a mobile phone instead of a tablet.). We summarize our multiple choice
conversion process below, with additional details in Appendix B.

Generating negatives. We generate our negatives using a VLM-assisted pipeline with Gemini
2.5 Pro. The model receives context to assist generation including the visual input with ground-
truth annotations overlaid, the task prompt, correct answer, action history for sequential tasks, and
relevant metadata (e.g., coordinate formats, action types). We prompt the VLM to generate three hard
negatives per question with a mix of near-miss and semantically similar options.

Quality control. To ensure accurate and challenging negatives, the generated negatives undergo
quality control. First, for grounding tasks with available bounding boxes, we automatically filter
out any negatives whose coordinates fall within the ground-truth region. Second, human annotators
manually review a subset of samples for each domain to ensure the generated negatives are both
plausible (could realistically confuse a model) and unambiguously incorrect (maintaining a single
correct answer). This two-stage verification ensures our MCQs are accurate and challenging for
fine-grained understanding.
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‘Web Agents Robotics
Model AitW  MONDAY Mind2Web Screenspot Screenspot-| Avg ERQA Robo2VLM Roborefit  Avg
++ ++ ++ ++ pro ++ + ++
GPT-5 thinking-high & &f 61.9 51.6 72.2 48.5 41.9 552 589 46.3 483 512
GPT-5 thinking-min &f 535 49.8 68.1 40.3 39.8 503 57.0 44.8 29.2 43.7
Gemini 2.5 Pro ¢ 50.3 36.7 63.0 34.8 43.0 456 47.0 40.7 328 40.2
GPT-40 ¥ 40.5 29.6 57.9 35.1 39.4 40.5 40.7 32.1 335 354
GLM-4.1V-Thinking & 42.0 335 63.4 30.6 422 423 433 35.7 24.8 34.6
GLM-4.1V-Base 36.5 33.4 63.6 28.8 39.3 40.3 303 319 35.0 32.4
Kimi-VL-Thinking & 41.5 31.4 29.79 29.5 335 33.1 340 40.9 35.7 36.9
Kimi-VL-Instruct 37.2 27.6 24.0 322 50.4 343 343 38.8 39.1 374
Phi-4 Multimodal 332 35.0 50.0 21.7 28.5 33.7 388 359 232 32.6
Llama 4 Scout 42.7 36.9 57.7 323 41.0 42.1 37.0 29.4 37.8 347
Llama 4 Maverick 38.8 35.6 54.1 33.1 36.1 39.6 358 32.4 39.1 35.8
Qwen2.5-VL (3B) 37.3 385 51.5 55.1 40.6 446 325 313 49.8 37.9
Qwen2.5-VL (7B) 542 4471 56.9 59.6 42.1 515 36.0 42.8 54.4 44.4
Qwen2.5-VL (32B) 475 50.6 62.8 73.8 40.2 55.0 39.0 43.0 61.1 47.7
Qwen2.5-VL (72B) 51.4 48.8 65.5 76.5 44.5 573 395 50.0 65.0 51.5
Egocentric Videos Games Spatial Understanding
Model VSI- Perception- GameQA atari SpaCE- EmbSpatial- | Avg
Bench + Test + + ++ 10 + Bench +
GPT-5 thinking-high & f 65.7 75.0 64.9 554 59.8 83.2 71.5
GPT-5 thinking-min ¥ 579 78.1 66.0 28.7 54.8 78.1 66.5
Gemini 2.5 Pro ¥ 43.3 65.4 32.1 46.8 50.1 68.9 59.5
GPT-40 ¥ 333 56.4 26.5 36.3 42.5 59.7 51.1
GLM-4.1V-Thinking & 32.6 56.6 41.0 29.4 48.0 76.3 62.2
GLM-4.1V-Base 25.3 35.7 21.1 25.2 339 76.1 55.0
Kimi-VL-Thinking 26.9 31.0 20.3 27.7 30.6 71.0 50.8
Kimi-VL-Instruct 39.8 52.0 25.2 31.0 443 57.9 511
Phi-4 Multimodal 41.2 70.6 29.2 24.0 455 70.5 58.0
Llama 4 Scout 38.6 51.8 28.9 359 44.1 54.3 49.2
Llama 4 Maverick 36.0 55.4 25.8 31.2 42.0 62.6 52.3
Qwen2.5-VL (3B) 37.2 62.1 24.3 25.2 30.0 60.3 45.2
Qwen2.5-VL (7B) 374 65.8 315 26.7 38.9 71.6 55.3
Qwen2.5-VL (32B) 40.5 62.2 35.8 29.3 45.5 74.6 60.1
Qwen2.5-VL (72B) 38.5 64.5 40.5 40.4 49.0 73.0 61.0

Table 1: Performance of VLMs on AgentVQA across the five agentic domains by dataset.

& represents Reasoning Models. ¥ represents closed-source models. Bolded and underlined numbers
indicate best and second-best rank per column, respectively. + denotes a filtered dataset, while ++
denotes a filtered and transformed dataset..

4 EXPERIMENTS

This section details our experimental setup, main performance results, in-depth analyses of model
behaviors, and strengths/weaknesses across a variety of agentic dimensions.

4.1 EXPERIMENTAL SETUP

Models. We evaluate a diverse suite of 15 prominent VLMs to ensure a comprehensive assessment of
the current landscape. Our selection includes closed-source, proprietary models: GPT-5 thinking-
high/minimal (OpenAl, 2025), GPT-4o0 (Hurst et al., 2024), and Gemini 2.5 Pro (Comanici et al.,
2025). We also include a wide range of open-source models: GLM-4.1V-Thinking/Base (Hong et al.,
2025), Kimi-VL-A3B-Thinking/Instruct (Du et al., 2025) (for brevity we shorten Kimi-VL-A3B-
Thinking-2506 to Kimi-VL-Thinking), Llama 4 Scout (Meta, 2025), Llama 4 Maverick (Meta, 2025),
Phi-4-multimodal (Abdin et al., 2024), and the Qwen2.5-VL series (3B, 7B, 32B, and 72B) (Bai
et al., 2025).

Models are categorized as “Reasoning” or “Non-Reasoning” based on their generation of intermediate
thinking tokens. A complete list of evaluated models is provided in Table 1.

Evaluation setup. For models that do not natively support video input, we sample 32 frames at evenly
spaced intervals. This number is validated by our own ablation studies and prior work (Yang et al.,
2025a). Models are evaluated with a temperature of 0.8 and 0.2 for reasoning and non-reasoning
models, respectively. For models without manual temperature (e.g., GPT-5), we use the default.
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We use a standard, simple prompt structure that provides the question and any relevant context. This
prompt queries the model to output only the single letter corresponding to its choice. Final answers
are extracted programmatically using a set of parsing rules. All visual inputs are provided at their
native resolution without resizing. Further details on the exact prompts used and the answer extraction
logic are available in Appendices H and E.

4.2 OVERALL PERFORMANCE

Top VLM:s struggle with AgentVQA. The averaged accuracy of each model is presented in Table 1.
The results reveal a significant absolute performance gap across the board. The average performance
across all 15 models ranges from 34% in Games to 53% in Spatial Understanding.

Even the top performing model, GPT-5 thinking-high, achieves an overall accuracy of only 60%
across all domains. This underscores the difficulty of our benchmark. A clear tiering is observable:
the largest proprietary models (GPT-5, Gemini 2.5 Pro) are at the top. This is followed by the
largest dense, open-source models, Qwen2.5-VL 32B and 72B, then followed by the smaller, open-
source models comprise the lower tiers. Among the five domains, models perform best on Spatial
Understanding (avg. 53%) followed by Egocentric Videos (avg. 49%), Web Agents (avg. 44%),
Robotics (avg. 40%) and worst on Games (avg. 34%). This indicates that tasks requiring passive
observation are currently more tractable than those demanding active, strategic planning.

GPT 5 think-high - ————+  GPT 5 think-high - &———————  GPT 5 think-high - ¢——————¢

Gemini 2.5 Pro | Gemini 2.5 Pro | GPT 5 think-min |
Qwen 2.5 VL (72B) Llama-4-Maverick | GPT-40 |
Llama-4-Maverick | Qwen25VL (32B) — e——n———————————— Gemini 2.5 Pro 1
GPT 5 think-min | Qwen 2.5 VL (72B) Llama-4-Maverick |
Qwen 2.5 VL (32B) GPT 5 think-min — e—————————<—¢ Llama-4-Scout |
GLM-4.1V-Think — e————————— Llama-4-Scout | GLM-4.1V-Base |
GPT-40 | GPT-40 | GLM-4.1V-Thinking 1
Phi-4 Multimodal | GLM-4.1V-Base Qwen 2.5 VL (72B)
Llama-4-Scout — e—=————~————+¢  Kimi-VL-Thinking | Qwen 2.5 VL (32B)
Qwen 2.5 VL (7B) Kimi-VL-Instruct | Phi-4 Multimodal |
GLM-4.1V-Base GLM-4.1V-Thinking 1 Qwen 2.5 VL (3B)
Kimi-VL-Think | Qwen 2.5 VL (3B) t Qwen 2.5 VL (7B) t
Qwen 2.5 VL (3B) © Qwen 2.5 VL (7B) t Kimi-VL-Instruct |
Kimi-VL-Instruct — Phi-4 Multimodal + Kimi-VL-Thinking
MMMU AgentVQA GPQA-Diamond AgentVQA OpenEQA AgentVQA

Figure 4: Divergence in model performance rankings between AgentVQA and three existing
benchmarks. Lines are colored red if a model’s rank improves and if it degrades. The rank
divergence shows that our benchmark is largely uncorrelated with general VQA and domain-specific
agentic benchmarks. While a few models maintain their ranks, the relative positions of most other
models change significantly. Notably, in the comparison with OpenEQA, only one model maintains
its relative ranking.

4.3 RANK CORRELATION

Low correlation with existing benchmarks. To validate the necessity of a comprehensive and
specialized agentic benchmark, we compare the performance rankings of models on AgentVQA
to their rankings on both general-purpose VQA and Reasoning benchmarks (MMMU (Yue et al.,
2024) and GPQA-Diamond (Rein et al., 2024)) and a domain-specific agentic benchmark (Open-
EQA (Majumdar et al., 2024)). We ran our own evaluations with standardized prompts to ensure
consistent and comparable model accuracies.

As shown in Figure 4, the model rankings of AgentVQA differ drastically to all. This finding
is also quantitatively confirmed by low Spearman’s rank correlation coefficients against MMMU
(p = 0.69,p =~ 0.004), GPQA-Diamond (p = 0.52, p = 0.046), and even Open-EQA (p ~ 0.44).
Additionally, Open-EQA uses GPT-4 as an evaluator so ground-truth results are unreliable compared
to the deterministic comparison put forth by AgentVQA, MMMU, or GPTQA-Diamond.

The relative ranking of the top model (GPT-5 thinking-high) remains consistent. However, other open-
source models like Qwen2.5-VL series, across various sizes, are more performant on AgentVQA,
while LLama 4 models worsen. In the next section, we introduce ablation studies that help explain
factors underlying performance differences.
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4.4 PERFORMANCE ANALYSIS

Large variance per domain. Our results in Table 1 suggest that current VLMs are comparatively
stronger at tasks involving passive observation and spatial description (Spatial Understanding: 53%,
Egocentric Videos: 49%) than at tasks requiring active, goal-directed interaction and planning
(Robotics: 40%, Games: 34%, Web Agents: 44%). At the domain level, these patterns hold, but with
clear variation across datasets. Within Spatial Understanding and Egocentric Videos, models perform
well on EmbSpatial-Bench and Perception-Test (70-80%), whereas others such as VSI-Bench are
still challenging.

In contrast, Web Agent datasets like Screenspot and Screenspot-pro remain highly challenging
despite scale, while AitW and Mind2Web show relatively higher performance. Robotics have a
similar breakdown. While ERQA and Roborefit are tractable (~60%), Robo2VLM lags behind (50%).
Games are universally difficult, with no dataset exceeding 66% even for the strongest reasoning
models. These results highlight VLM performance on individual datasets does not necessarily
correlate with holistic evaluation, strengthening the call for a unified benchmark like AgentVQA.

Furthermore, our analysis of the 25 distinct sub-task categories defined in Figure 3 (with results in
Table 2) suggest that models excel on descriptive, VQA-like tasks such as object counting and entity
detection (often >75% for top models). However, they consistently fail on tasks requiring reasoning
over future timesteps. The lowest scores across the benchmark are in action prediction (avg. 26%),
game-over detection (avg. 27%) and spatial planning (avg. 31%). This highlights a fundamental
limitation: current VLMs are proficient at reactive, descriptive tasks but lack the coherent internal
world models needed for multi-step planning and strategic reasoning.

Open-source models are catching up. There is Without Action History
a clear gap between closed-source and open-source Wit Action History

models. The closed-source models score in a range of
40% (GPT-40) to 60% (GPT-5 thinking-high), while
open-source models span a lower range from 35%
(Kimi-VL-Instruct) to 53% (Qwen2.5-VL (72B)).
While the top closed-source model outperforms the
top open-source model, top open-source models are
highly competitive in specific domains. For instance,
Qwen2.5-VL (72B) always outperforms GPT-40, and
even the small Qwen2.5-VL (3B) model (45%) sur-

passes GPT-40 (41%) in the Web Agents domain. AitW MONDAY Mind2Web
Dataset

=

53.1
48.7 50.0

w

40.2 40.0 39.6

Average Performance (%)
8 8 5

=

Trajectories require action history. Our ablation  Fjgyre 5: Impact of action history on model
on web agent tasks reveals that providing action his- performance in web agent tasks. The figure
tory is a consistent benefit (Figure 5). Across four  shows the average performance change across
models, providing the full trajectory history improved  four representative models (Gemini-2.5-Pro,
average performance by a substantial 8.5% on AITW [ Jama 4 Scout, Qwen2.5-VL-7B, and Kimi-
and 3.1% on Mind2Web. The performance on MON-  y| -Thinking) when provided with full trajec-
DAY remained relatively stable (changing by only tory history versus no history.

-0.4%). This confirms that for complex, multi-step

tasks, access to historical context is critical for effective decision-making. The stable performance
in MONDAY can be hypothesized to the tasks being more state-local, where the immediate visual
context is often sufficient for the next action.

Reasoning offers varying results. The impact of explicit reasoning is mixed. For the GPT-5
series, the thinking-high variant (avg. 60%) substantially outperforms the thinking-minimal variant
(avg. 47%). However, for Kimi-VL and GLM-4.1V, the thinking variants (35% and 43%) offer only
marginal overall improvement over instruct or base models (35% and 41%).

This masks a more complex dynamic. In certain domains, the non-reasoning variants actually
outperform their reasoning-enabled counterparts (e.g., Kimi-VL in Spatial Understanding (55% for
Instruct vs 51% for Thinking) and GLM in Egocentric Videos (56% for Base vs 45% for Thinking)).
Our results suggests that for perceptual tasks, base models can be more robust than reasoning models.
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We found that thinking models, like GLM-4.1V-Thinking and Kimi-VL-Thinking, can get stuck in
“thinking loops” — a phenomenon we observed in Appendix G.

Web Agents Egocentric Videos Robotics Games Spatial Understanding
Grounding 46% Spatial 35% Spatial 50% Reasonin Viewpoint 28%
Error ° Confusion : Confusion ° B,eakdowﬁ 40% Gap °
Logic 30% § Motion 25% Action-Time 19% Detection 25%
Breakdown Misperception Disconnect Context 30% Hallucination
Hallucination
Goal 0/ Tasl o, Object o Priority o
Misunderstanding 18% Misinterpretation 16% Misrecognition 5% Visual Confusion 7%
isual 23%
Miscomprehension
Action ] go, Temporal 10% COT] g9, P Logic 13%
Mismatch Confusion Failure Collapse
) ' ) Rule {130,
Visual | 3o, Incomplete ) Instruction | 5o, Misunderstanding Scope o
: 3% h 8% " " 5% . . 12%
Hallucination Analysis Miscomprehension Misinterpretation
Missing | oo, Perception | g, Selection | |50, Tracking | oo/, Categorization | |50,
Inference Drift i

Gaps Error Confusion
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Figure 6: Distribution of the most common error modes across the five agentic domains in
AgentVQA. The analysis is based on an semi-automated categorization of the incorrect predictions
from Gemini-2.5-Pro and Qwen2.5-VL-7B. The chart is organized by domain, with each colored
segment representing a primary domain. Each slice within a segment corresponds to a specific error
mode, and its size reflects its prevalence (%), summed across the two models.

4.5 ERROR MODES

To gain a deeper, qualitative understanding of why models fail, we conduct a comprehensive error
mode analysis. We first prompt each model to output its reasoning process along with its final answer.
Then, we subsample 500 error cases per domain and categorize the failures based on these reasoning
outputs (approximately evenly distributed per dataset). The outputs are taken from two representative
models: a closed-source model (Gemini 2.5 Pro) and an open-source model (Qwen2.5-VL (7B)). To
categorize these failures, we first perform a manual analysis to establish a taxonomy of common error
modes. Then, we use Gemini to assign each sample to a category. Finally, we manually verified the
assignments for accuracy.

Our analysis identifies several recurring failure patterns. The most common error modes vary by
domain. The most prevalent error in Web Agents is Grounding Error (46%). In contrast, domains
requiring more abstract thought like Robotics and Egocentric Videos are dominated by various forms
of spatial confusion (51% and 35% respectively). The spatial understanding domain is dominated by
viewpoint gap (28%). Finally, in the games domain, the most frequent issue is reasoning breakdown
(40%), meaning that the VLM incorrectly reasoned about the game mechanics or the agent dynamics.

The distribution of these errors, shown in Figures 10 and 6, reveals that failure modes are domain and
model specific. In Web Agents, grounding error is far more pronounced in Gemini (50%). Conversely,
in Games, while reasoning breakdown is a common error for Qwen, Gemini suffers from it to a much
lesser extent. This suggests that different models have distinct architectural failure points; some are
more prone to failing at the initial perception and grounding step, while others are more likely to
perceive correctly but error in subsequent logical steps. More details about the error modes and their
descriptions is available in Appendix F.

5 CONCLUSION

We introduce AgentVQA, a unified benchmark for evaluating VLM agents. Unlike existing bench-
marks that are non-agentic, focus on traditional VQA, or are domain-specific, AgentVQA consolidates
agentic benchmarks into a balanced MCQ dataset with hard negatives. Evaluation of 15 state-of-the-
art VLMs shows a significant performance gap, with top models achieving only ~60% accuracy. VLM
rankings on AgentVQA differ substantially from traditional benchmarks, demonstrating AgentVQA’s
value as a challenging evaluation framework for generalizable, agentic VLMs.
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LLM Usage Statement. We used LLMs to help automate aspects to the manual review and
summarization of our datasets. Additionally, we used LLMs to help improve sentence quality and
improve conciseness.

Reproducibility Statement. To ensure our research is transparent and reproducible, all components
of the AgentVQA benchmark will be made publicly available upon publication. This includes
the full dataset, evaluation code, and detailed results. Our dataset is constructed from 14 publicly
available sources (detailed in Section 3.2 and Appendix A), and the scripts for our VLM-assisted
data generation pipeline will also be released. All models evaluated are either open-source or were
accessed via standard APIs, with specifics provided in our paper. The complete evaluation codebase
and configurations will be released to allow for the precise replication of our findings.
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A  DATASET SELECTION AND CURATION RATIONALE

The construction of AgentVQA is guided by a principled selection process to ensure the final
benchmark is comprehensive, robust, and effective for evaluating the agentic capabilities of Vision-
Language Models (VLMs). Our domains: Web Agents, Egocentric Videos, Robotics, Games, and
Spatial Understanding are chosen to represent a broad spectrum of agentic challenges, from digital
interaction to embodied physical perception and strategic planning. The following five criteria are
central to our selection of the 14 source datasets.

High agentic signal A primary requirement is that each dataset’s tasks must involve a strong
“agentic signal.” This means moving beyond passive visual question answering (e.g., “What color
is the car?”) to scenarios that demand active reasoning from an agent’s perspective. We prioritize
datasets where the core task involves:

* Choosing actions or predicting the next optimal step.

 Evaluating the consequences of a sequence of actions.

* Understanding causality and the relationships between actions and outcomes.
* Strategic planning toward a specific goal.

This focus ensures that AgentVQA directly probes the decision-making and reasoning capabilities
that are fundamental to agentic intelligence.

Comprehensive and distinct domain coverage To test for generalist agentic behavior, we select
datasets that span diverse domains and modalities. Each of the five chosen domains introduces a
unique set of challenges and required skills not fully covered by the others:

* Web Agents: Tests GUI navigation, grounding, and interaction in a digital environment.

* Robotics & Egocentric Videos: Evaluate embodied perception, spatial awareness, and
understanding of the physical world from a first-person perspective.

* Games: Focus on strategic decision-making, reward modeling, and long-term planning in
rule-based environments.

» Spatial Understanding: Assesses foundational spatial awareness and reasoning, a critical
component for any embodied agent.

This multi-domain approach prevents the benchmark from being too narrow and allows for a holistic
assessment of a VLM’s generalization ability.

14



Under review as a conference paper at ICLR 2026

Offline convertibility A crucial practical consideration is the feasibility of converting each dataset
into a standardized, offline format. This criterion requires that the source data (e.g., trajectories,
videos) be sufficiently structured to allow for an unambiguous conversion into a Multiple-Choice
Question (MCQ) format. Every resulting MCQ must have a single, verifiably correct answer to
enable scalable, deterministic, and efficient evaluation without relying on resource-intensive online
simulators.

Public availability and permissive licensing To ensure transparency, reproducibility, and ac-
cessibility for the broader research community, all selected datasets must be publicly available.
Furthermore, their licenses must permit modification and redistribution as part of a new benchmark,
allowing us to legally and ethically create and share AgentVQA.

Sufficient scale The selected datasets need to be large enough to allow for statistically meaningful
evaluation. We generally subsample 1,000 instances from each source dataset. Our analysis confirms
that this sample size consistently yields a standard deviation in model performance of less than 1%,
ensuring our results are stable and reliable. An exception is made for the ERQA dataset, from which
we curate 400 instances. Despite its smaller size, its exceptional quality and high relevance to core
robotic reasoning challenges make its inclusion essential.

B HARD NEGATIVE GENERATION PIPELINE

The difficulty of AgentVQA is ensured by a systematic process for generating challenging distractor
options, or “hard negatives.” This process transforms tasks that are not inherently multiple-choice,
such as web navigation trajectories, into a standardized and rigorous MCQ format. Our pipeline
creates negatives that are both plausible and unambiguously incorrect, forcing models to demonstrate
fine-grained understanding rather than relying on simple heuristics. The process is detailed below.

VLM-assisted generation. To select the generation model, we first conducted a preliminary
study on a data subset using Gemini 2.5 Pro, GPT-40, and Qwen 2.5 VL (7B). After manually
comparing the generated samples for both difficulty and accuracy, we selected Gemini 2.5 Pro for
its superior performance. We therefore employ a VLM-assisted pipeline centered around Gemini
2.5 Pro to generate hard negatives. For each question, we provide the model with comprehensive
context, including the primary image or screenshot, the task prompt, the ground-truth answer, any
relevant action history for sequential tasks, and metadata such as image dimensions and coordinate
formats (e.g., (x,y) for points, or (z1, Y1, T2, y2) for bounding boxes). For grounding tasks, we also
visually render the correct action’s location onto the image. Given this context, we prompt the
model to generate three distinct hard negatives as a combination of two types: near-miss negatives
and semantically similar negatives. Near-miss negatives are distractors spatially close to the
correct answer that test precision, such as coordinates a few pixels away from a correct UI element.
Semantically similar negatives are conceptually related to the correct answer and test the model’s
ability to differentiate between similar objects, such as choosing a “Mobile” phone when the correct
answer is a “Tablet.” The exact prompt used for generating these “hard negatives” is in Appendix [

Verification and filtering. To ensure quality, the generated negatives undergo a two-stage ver-
ification process. First, an automated script filters grounding-based distractors by verifying their
coordinates fall outside the ground-truth bounding box, programmatically confirming the option is
a “negative.” Following this, a subset of these samples undergoes a rigorous manual review. We
manually verify each distractor for both plausibility, ensuring the option is a believable choice that
could confuse a model, and unambiguous incorrectness, which guarantees there is only one correct
answer to the MCQ. This final human-in-the-loop step is critical for guaranteeing the integrity and
challenge of the AgentVQA benchmark.

C SuB-TASK CATEGORIZATION METHODOLOGY

To enable a granular analysis of model capabilities, we structure the questions in AgentVQA into
25 distinct sub-task categories. This provides a fine-grained breakdown of the specific agentic skills
under evaluation. The creation and assignment of these categories follows a systematic methodology,
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beginning with manual taxonomy design and domain-specific programmatic mapping. The process
begins with a manual inspection of a representative subset of the benchmark, ensuring equal distribu-
tion across all domains and datasets. From this analysis, we established a new, unified taxonomy of
25 sub-task categories that best represent agentic skills. Following this, we programmatically mapped
every question to one of these categories, with logic tailored to each domain.

Domain-specific mapping details. For the Spatial Understanding domain, we adopted the category
structure from SpaCE-10 and mapped questions from EmbSpatial-Bench by using pre-existing
metadata. Questions involving the relations ‘above’, ‘under’, ‘left of”, ‘right of’, ‘on’, ‘in’, ‘behind’,
‘in front of’, or ‘touching’ were mapped to our Object-Object Interaction category. Questions
with ‘close’ or ‘far’ relations were mapped to Object-Scene Interaction. For Web Agents, we
extracted action keywords from the ground-truth text, except for datasets like Screenspot where
all actions defaulted to Tap. For Robotics, we mapped fine-grained, pre-existing categories from
source datasets to our unified high-level categories. For example, in ERQA, ‘Action Reasoning’ and
‘Trajectory Reasoning’” were mapped to Task Estimation, while in Robo2VLM, ‘relative_depth’ and
‘view_correspondence’ were mapped to POV Modeling. For Egocentric Videos, we used a similar
approach; in VSI-Bench, categories like ‘route_planning” were mapped to Spatial Navigation, while
in Perception-Test, questions were categorized using keywords, such as those starting with “how
many” being mapped to Object Counting. Finally, for Games, existing categories from GameQA were
mapped to the bespoke categories we designed for the Atari dataset; for instance, ‘target perception’
and ‘state prediction’” were mapped to World Modeling, and ‘strategy optimization’ was mapped to
Reward Modeling.

C.1 SUB-TASK CATEGORY DEFINITIONS

Web agents. This domain tests interaction with graphical user interfaces. Tap and Press involve
grounding a click or selection action on the correct Ul element. Scroll tests the ability to infer the
need for vertical or horizontal movement to reveal off-screen elements. Typing involves inputting
text into the correct field.

Egocentric videos. This domain focuses on understanding first-person video. Object Counting
requires quantifying static items in a scene, testing core visual perception. Spatial Navigation tests the
ability to build a mental map of an environment and understand orientation from a specific viewpoint.
Motion Causality involves interpreting dynamic events, understanding physical interactions, and
reasoning about the consequences of actions over time.

Robotics. This domain assesses reasoning in physical, embodied scenarios. Object Grounding
involves correctly identifying a target object based on its unique attributes, especially when similar
distractors are present. POV Modeling requires understanding 3D spatial relationships, orientation,
and object positions from a 2D camera perspective. Task Estimation tests the comprehension of a
task’s overall goal and the logical sequence of actions required to achieve it. State Tracking involves
assessing the current status of an object or the environment, such as its stability or configuration.

Games. This domain evaluates strategic and predictive reasoning in rule-based environments. Ac-
tion Prediction involves determining the next valid move. Game-Over Detection requires recognizing
conditions that end the game. Reward Detection involves identifying specific events that trigger a
score change. Reward Modeling requires evaluating states or actions to determine which leads to a
better outcome. Game Strategization involves high-level, multi-step planning. World Modeling tests
the ability to predict a future game state given a sequence of actions.

Spatial understanding This domain tests foundational spatial intelligence. Entity Detection and
Entity Counting involve identifying the presence and number of objects. Object Sizing and Scene
Counting assess attributes of objects and the environment. Object-Object Interaction and Object-
Scene Interaction require reasoning about the relative spatial relationships between different elements.
Functional Reasoning and Spatial Planning test a deeper understanding of how objects can be used
and how an agent can navigate or manipulate the environment to achieve a goal.
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Figure 7: Overall subsampling analysis. The plots show that as the sample size increases towards
the full dataset size, the mean accuracy (top-left) stabilizes and the sampling variance (top-right)
decreases, demonstrating the reliability of using a large subsample.

D SUBSAMPLING ROBUSTNESS ANALYSIS

To ensure AgentVQA is both manageable and statistically reliable, we conducted a robustness analysis
to determine the optimal number of instances to subsample from each source dataset. Our goal was
to find the smallest sample size that provides a stable and accurate estimate of model performance
compared to the full dataset. We defined our stability criterion as achieving a 95% confidence interval
width of less than 1.0% absolute.

Methodology. Our analysis begins by first running a full evaluation on the entire dataset to obtain a
ground-truth response (correct or incorrect) for every question. Using this complete set of responses,
we efficiently simulate the subsampling process by drawing smaller subsets of varying sizes to
observe how the average accuracy changes. To dig deeper into the variance, we focus on subset
sizes of 300, 500, 700, 1000, and 1200. For each of these sizes, we draw 50 independent, stratified
random samples from our saved full-dataset results. Stratified sampling ensures that the proportional
representation of sub-task categories is maintained. For each of the 50 runs, we compute the mean
accuracy, sample standard deviation, and the standard error of the mean. Using a t-value for a 95%
confidence level with 49 degrees of freedom, we construct the confidence interval for the mean
accuracy at each sample size.

Results. The analysis, summarized in Figures 7, 8 and 9, demonstrate that as the sample size
increases, the mean accuracy quickly converges to the full dataset’s performance, and the variance
across runs decreases significantly. Our results show that a sample size of 1000 is the smallest size that
consistently meets our stability criterion, yielding a confidence interval width of 0.75%. We observe
that the 1000-sample size provides a strong balance of efficiency and statistical confidence. This
empirical validation justifies our decision to standardize the benchmark’s datasets to 1000 instances
each, ensuring that the performance metrics are reliable indicators of a model’s true capabilities.
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Figure 8: Detailed robustness analysis for the MONDAY dataset. This view illustrates how the
95% confidence interval (top-left, green shade) narrows significantly as the sample size increases,
providing a stable estimate of the mean accuracy.
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is particularly illustrative, showing a consistent trend of decreasing sampling variance (standard
deviation) for all datasets as the sample size approaches 1000.
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E ANSWER EXTRACTION LOGIC

To ensure consistent and automated evaluation, we employ a multi-strategy answer extraction logic.
Although the prompt instructs models to output only a single letter corresponding to their final choice,
outputs can vary. Our programmatic parser is designed to robustly handle these variations.

Extraction strategy. The extraction process follows a prioritized sequence of rules. First, our
parser attempts a direct match, checking if the model’s entire stripped output is exactly a single, valid
option letter (e.g., ‘A’). If this primary strategy fails, it deploys a fallback routine that applies a series
of regular expression patterns. These patterns are designed to find common answer declarations such
as “Answer: A,” or “Option A.” We note that these regular expressions are occasionally adapted to
accommodate the unique, consistent output formats of specific models. If no unambiguous answer
can be identified after applying all strategies, the question is skipped and marked unevaluated to
maintain the integrity of the evaluation. The complete prompt is available in Appendix H.
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Figure 10: Distribution of the most common error modes across the five agentic domains in
AgentVQA. The analysis is based on a semi-automated categorization of incorrect predictions from
Gemini 2.5 Pro (top) and Qwen-2.5VL (7B) (bottom). In both charts, each colored segment represents
a primary domain, and each slice within a segment corresponds to a specific error mode, with its size
reflecting its prevalence (%).

F ERROR MODES

To qualitatively understand model failures, we conduct an in-depth error mode analysis on two
representative models: a closed-source model (Gemini 2.5 Pro) and an open-source model (Qwen?2.5-
VL (7B)). The process involves a three-stage methodology to develop a taxonomy, annotate failures,
and verify the results. The resulting distribution of errors is visualized in Figure 10.

Taxonomy development and annotation First, we prompt the models to output a reasoning chain
alongside their final answer for every question. We then manually review a diverse, stratified subset
of incorrect predictions to identify and define a comprehensive taxonomy of common failure patterns
for each of the five agentic domains. With this taxonomy established, we use Gemini 2.5 Pro for large-
scale annotation. For each failure, we provide the model with the visual input, all multiple-choice
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options, the ground-truth answer, the model’s incorrect chosen option, the model’s full reasoning
chain, and any other relevant metadata. We then prompt it to assign the single most fitting error mode
from our predefined taxonomy. The prompt used for assigning error modes using Gemini is available
in Appendix J.

Verification To ensure the quality of the automated annotations, we perform a final verification step.
We manually review a randomly selected subset of the error mode assignments across all domains and
for both models. This process confirms that the classifications made by Gemini 2.5 Pro are accurate
and consistent with our established definitions, ensuring the reliability of our qualitative analysis.

F.1 ERROR MODE DEFINITIONS

Web agents. Grounding Error occurs when the model understands the goal but fails to correctly
locate or ground the corresponding UI element, often confusing it with a visually similar or nearby
one. Logic Breakdown describes a failure to correctly process a sequence of steps, leading to a
logically inconsistent action based on the current state. Goal Misunderstanding is a fundamental
error where the model misinterprets or ignores a key part of the user’s instruction. Action Mismatch
happens when the model’s reasoning correctly identifies the right action, but its final output selects a
different, incorrect option. Missing Inference occurs when the model fails to deduce an implicit but
necessary action, such as scrolling to reveal an element. Visual Hallucination is when the model’s
reasoning relies on a Ul element or piece of information that is not present in the visual input.

Egocentric video. Spatial Confusion is a failure to build an accurate 3D mental map from video,
resulting in an incorrect understanding of object layout or orientation from a given viewpoint. Motion
Misperception occurs when the model fails to correctly interpret a process, motion, or physical
interaction as it unfolds over time. Task Misinterpretation arises when visual perception is correct,
but the model misunderstands the nuance or goal of the prompt. Temporal Confusion is a sequencing
error where the model correctly perceives individual events but gets their chronological order wrong.
Incomplete Analysis happens when the model perceives all necessary visual facts but fails to execute
the required logical steps to reach the correct conclusion. Perception Gaps are fundamental failures
in seeing, where the model incorrectly reports a basic, static fact like an object’s presence or count.

Robotics. Spatial Confusion occurs when the model fails to correctly interpret the spatial relation-
ships, location, or orientation of objects in 3D space from a 2D image. Action-Time Disconnect is a
failure to understand the dynamics of a scene, such as predicting the outcome of an action or correctly
sequencing a task. Object Misrecognition happens when the model misidentifies an object or fails
to ground it based on all of its required attributes like color or size. Instruction Miscomprehension
occurs when the model perceives the scene correctly but fundamentally misunderstands the user’s
goal. COT Reasoning Gaps describe failures to handle specific quantitative values or fine-grained
distinctions within the reasoning process. Output Mapping Error is when the model’s reasoning is
correct, but it outputs the wrong corresponding letter for its final answer.

Games. Reasoning Breakdown is a general failure where the model’s internal logic collapses
under the task’s complexity or becomes confused about the objective, leading to a flawed conclusion.
Context Hallucination occurs when the model’s reasoning becomes detached from the game state,
inventing information that does not exist. Visual Miscomprehension is a foundational failure to
correctly perceive the game’s visual and spatial information, such as object locations or relationships.
Rule Misunderstanding is a logical error where the model does not correctly apply the game’s explicit
rules or objectives. State Tracking Drift is a failure to mentally simulate and track how the game state
changes over time.

Spatial understanding. Viewpoint gaps occur when the model identifies objects but fails to
construct an accurate 3D map of their relationships, leading to errors in judging depth or distance.
Detection Hallucination is a fundamental perceptual failure where the model either misses a present
object or "sees" an object that is not there. Priority Confusion is a subtle reasoning error where the
model correctly identifies multiple true spatial facts but incorrectly prioritizes one that is irrelevant
to the question. Logic Collapse is a failure cascade where the model first fails to perceive an object
and then tries to compensate by inventing a logical path forward based on hallucinated information.
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Scope Misinterpretation happens when the model misunderstands the required granularity or intent
of the question, particularly for counting or classification tasks. Categorization Confusion occurs
when perception is visually correct, but the model applies the wrong semantic label or category to an

object.

Table 2: Comprehensive Evaluation of 15 VLMs on AgentVQA Across 5 Agentic Domains. &
represents Reasoning Model. ¥ represents closed-source models.

Web Agents Robotics Egocentric-Videos

Model Tap Typing Scroll Press Avg. TE POV ST OG Avg. SN MC OC

GPT 5 thinking-high & ¥ 55.3 74.4 47.6 37.1 552 539 385 639 52.1 512 63.5 68.8 76.0
Gemini 2.5 Pro (¥ 49.3 725 49.2 41.9 50.3 479 343 283 395 402 403 483 674

GPT 5 thinking-minimal ¥ 443 714 389 463 456 477 36.8 497 36.0 437 584 49.6 843

GPT 40 (¥ 40.9 65.0 20.6 38.3 40.5 42.6 327 446 193 354 30.8 53.8 50.0
GLM-4.1V-Thinking & 40.9 71.1 36.2 359 423 38.7 41.0 289 248 346 29.7 37.7 585
Kimi-VL-Thinking & 32.0 58.6 33.1 34.6 33.1 384 342 313 360 369 410 225 239
Phi-4 Multimodal 30.0 63.3 48.2 447 337 259 321 431 37.1 326 455 38.6 721
GLM-4.1V-Base 37.5 69.8 41.8 534 403 363 33.1 367 219 324 150 309 41.0
Kimi-VL-Instruct 32.8 40.5 24.3 19.1 343 381 302 260 354 374 416 38.1 529
Llama-4-Scout 422 65.4 372 25.5 42.1 299 189 50.8 30.6 347 40.8 354 533
Llama-4-Maverick 37.9 66.3 41.7 279 39.6 36.8 18.8 372 360 358 383 36.0 55.8
Qwen 2.5 VL (3B) 44.6 64.3 349 359 44.6 32,6 302 438 524 379 358 37.8 655
Qwen 2.5 VL (7B) 50.6 71.8 42.1 46.2 51.5 404 353 57.8 556 444 34.0 415 69.1
Qwen 2.5 VL (32B) 54.8 74.5 46.3 522 55.0 437 342 583 62.0 47.7 39.6 36.7 673
Qwen 2.5 VL (72B) 574 713 50.9 525 57.3 483 399 57.1 614 515 33.0 43.7 685

Games Spatial Understanding

Model WM RM GS AP GOD RD ED OO EC FR OSI OS SP SC Avg.
GPT 5 thinking-high & & 60.0 940 675 319 514 36.9 83.6 84.0 313 454 60.9 827 579 468 71.5
Gemini 2.5 Pro ¥ 334 505 275 345 345 375 313 609 251 458 547 653 375 314 | 59.5
GPT 5 thinking-minimal ¥ 424 845 31.1 305 315 40.0 418 714 333 58.0 554 704 268 48.0 | 66.5
GPT 40 (¥ 493 217 437 265 18.6 20.7 773 763 289 436 54.1 782 444 354 | 511
GLM-4.1V-Thinking & 39.1 303 255 257 263 29.0 57.1 794 298 50.0 55.0 70.7 368 244 | 622
Kimi-VL-Thinking & 257 249 269 237 315 26.5 307 758 224 326 435 342 275 313 50.8
Phi-4 Multimodal 259 58.6 225 27.1 246 25.6 468 679 334 47.0 465 530 372 159 | 58.0
GLM-4.1V-Base 266 353 204 18.0 272 199 285 699 303 422 541 621 350 514 | 550
Kimi-VL-A3B-Instruct 254 228 236 315 230 325 25.1 889 309 393 446 510 247 274 | 511
Llama-4-Scout 295 620 231 230 285 300 293 62.1 340 39.7 470 526 263 545 | 492
Llama-4-Maverick 29.1 785 19.8 19.0 155 31.0 352 571 312 569 47.6 493 57 457 523
Qwen 2.5 VL (3B) 240 280 27.7 235 290 26.0 16.8 64.0 202 37.0 427 474 21.1 128 452
Qwen 2.5 VL (7B) 304 287 302 242 177 30.7 266 722 316 413 542 514 206 393 553
Qwen 2.5 VL (32B) 333 497 332 247 207 26.2 272 78.6 372 514 527 647 316 410 | 60.1
Qwen 2.5 VL (72B) 40.8 73.1 348 321 236 31.6 478 76.1 351 59.6 527 609 263 43.0 | 61.0

Table 3: Here we list canonical Vision-Language model agentic benchmarks, organized by domain
and their offline/online categorization. We bold datasets that are apart of AgentVQA and suffix
datasets that have been filtered or filtered and transformed with + or ++ suffixes, respectively.

Domain ‘ Mode  Datasets
Web A Offline  AitW T+ (Rawles et al., 2023), Mind2Web T (Deng et al., 2023), ScreenSpot T (Cheng et al., 2024a), Monday T+ (Jang et al., 2025),
eb Agents Screenspot-PruJrJr (Lietal., 2025)
Online  WebArena (Zhou et al., 2023), VisualWebArena (Koh et al., 2024), TheAgentCompany (Xu et al., 2024), AndroidWorld (Rawles et al., 2024),
VideoWebArena (Jang et al., 2024)
Egocentric Offline Percepticm-Test+ (Patraucean et al., 2023), VSI-Bench (Yang et al., 2025a), VidEgoThink (Cheng et al., 2024b), Ego-Exo4D (Grauman
Videos et al., 2024), OpenEQA (Majumdar et al., 2024)
Online  EgoThink (Cheng et al., 2024¢), EgoPlan-Bench (Chen et al., 2023)
. Offline  RoboRefitT+ (Lu et al., 2023), ERQA (Team et al., 2025), Robo2VLM T (Chen et al., 2025), HoloAssist (Wang et al., 2023),
Robotics X-Embodiment (Vuong et al., 2023)
Online  CALVIN (Mees et al., 2022), VIMA-Bench (Jiang et al., 2022), BEHAVIOR-1K (Li et al., 2023b), RoboCasa (Nasiriany et al., 2024),
EmbodiedBench (Yang et al., 2025b)
G Offline  Ataritt (Zhang et al., 2020), GameQA+ (Tong et al., 2025), MarioQA (Mun et al., 2017), BASALT (Milani et al., 2023)
ames
Online  Crafter (Hafner, 2021), MineDojo (Fan et al., 2022), VideoGameBench (Zhang et al., 2025), BALROG (Paglieri et al., 2024)
Spatial Offline Ethpatial-Bench+ (Du et al., 2024), SpaCE-10+ (Gong et al., 2025), Spatial-MM (Shiri et al.), OmniSpatial (Jia et al., 2025),
Under di 3DSRBench (Ma et al., 2024)
Online  HabitatChallenge (Savva et al., 2019), EXCALIBUR (Zhu et al., 2023)
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G ANALYSIS OF "THINKING LOOPS" AS A FAILURE MODE

During our analysis of different reasoning models, we identified some models like GLM-4.1V-

Thinking and Kimi-VL-Thinking getting stuck in a repetitive cycle of reasoning without making

any forward progress. For instance, when analyzing one model’s reasoning process, we observed it

getting stuck in the loop shown below:

<think> The person in the video is seen placing a small triangle on the table. The next shape
that the person places is a large circle. The person then places another triangle next to
the circle. The person then places another triangle next to the circle and the triangle.

The person then places another triangle next to the circle and the triangle. The person
then places another triangle next to the circle and the triangle. ...

H EVALUATION PROMPT

We use a standard, simple prompt structure that provides the model with the question, any relevant
context such as action history, and concludes by instructing it to output only the single letter corre-
sponding to its final choice. The sample prompt structure is mentioned below (Action History would
be removed in case of non-trajectory based questions):

e D

Evaluation Prompt Template

This is the standard template used for model evaluation. Placeholders like
{episode_goal} are replaced with the specific data for each question.

Goal: {episode_goal}

Action History:
{action_history if action_history.strip() else "No previous
actions"}

Question: {question}
Options:

{options_text}

Based on the provided screenshot, goal, action history, and question, select the single best
option from the list above.

IMPORTANT: Your response must be EXACTLY one character (A, B, C, or D) with no
other text, explanation, or formatting.

Answer:
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I HARD NEGATIVE GENERATION PROMPT

This is the primary prompt template used to generate hard negative distractors for datasets like AITW,;
we use a similar but tailored schema for other datasets requiring transformation.

Context:
* The UI screenshot has dimensions {width}x{height} pixels.

* The image provided has a green dot marking the location of the correct action if it is
a tap.
e The correct action is: {correct_action_string}
Goal: {goal}

Previous Actions (History):
{history if history else "This is the first step."}

Your Task:
Generate three distinct and plausible but incorrect distractor actions. These distractors
should be designed to confuse a tester. Use a mix of the following strategies:

1. Near-Miss: An action of the same type as the correct one but slightly off (e.g.,
tapping right next to the correct button).

2. Semantic-Confusion: An action on a different but visually or functionally similar
element (e.g., tapping 'Bluetooth Settings’ when *Wi-Fi Settings’ is correct).

Supported Action Formats (Use these formats EXACTLY):

e Tap: [x, y] (wherex and y are integer pixel coordinates)

* Swipe: DIRECTION (where DIRECTION is one of *Up’, ’Down’, ’Left’,
’Right”)

e Type: 'text to type’ (where ’text to type’ is a plausible but incorrect
string)

e Button: ACTION (where ACTION is one of 'Press Back’, *Press Home’, "Press
Enter’)

Important Rules:
* Do NOT generate the correct answer ({ correct_action_string}).

* Ensure all tap coordinates are within the image bounds (width: {width}, height:
{height}).

* For "Tap" distractors, analyze the image to choose locations that are genuinely
incorrect but tempting.

» Generate a diverse set of three distractors.
* You also need to ensure that for near miss in tap the point is actually a negative.
Respond ONLY with a valid JSON object in the following format:

{"distractors": ["ACTION_TYPE: value", "ACTION_TYPE: wvalue",
"ACTION_TYPE: value"]}
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J ERROR MODE ANNOTATION PROMPT

The following prompt is used to have Gemini 2.5 Pro assign a specific error mode to a model’s
incorrect prediction; the prompt provides full context about the question and the model’s failure,
along with a detailed taxonomy of all possible error modes and their definitions.

You are an expert Al agent evaluator specializing in embodied robotics and robotic reasoning
tasks. Your task is to analyze why a vision-language model failed on a specific question and
categorize the failure.

J.1 CONTEXT
QUESTION: {question}

QUESTION TYPE: {question_type}
NUMBER OF IMAGES: {num_images}

DATASET: {dataset_name}

J.2 VISUAL ANALYSIS
Some description about the expected image scene.

J.3 FAILURE DETAILS

MODEL’S PREDICTION: {model_prediction}
CORRECT ANSWER: {correct_answer}
MODEL’S REASONING: {reasoning (if available) }

TASK

Analyze the model’s failure in this embodied robotics reasoning task. Consider whether the
model correctly understood the spatial relationships, identified objects and their attributes,
predicted action outcomes, handled quantitative aspects, comprehended the instruction, and
mapped its reasoning to the correct output. Focus on identifying the root cause using the
specialized robotics error modes below.

ERROR MODES
{A detailed list of all error modes and their definitions is provided here.}

Respond with a JSON object containing the ’error_mode’ and a brief ’justification’ for your
choice. If you think that none of the error_modes apply then write NaN in error mode and
justify in justification and also propose some new error mode in the justification and explain
how this one aligns well with this sample as compared to others. It is not always necessary
that an error mode applies so you can output NaN along with the justification and closest
error mode from list and your idea of error mode for this.
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