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ABSTRACT

Multi-Task Reinforcement Learning (MTRL) tackles the long-standing problem
of endowing agents with skills that generalize across a variety of problems. To
this end, sharing representations plays a fundamental role in capturing both unique
and common characteristics of the tasks. Tasks may exhibit similarities in terms
of skills, objects, or physical properties while leveraging their representations
eases the achievement of a universal policy. Nevertheless, the pursuit of learn-
ing a shared set of diverse representations is still an open challenge. In this paper,
we introduce a novel approach for representation learning in MTRL that encapsu-
lates common structures among the tasks using orthogonal representations to pro-
mote diversity. Our method, named Mixture Of Orthogonal Experts (MOORE),
leverages a Gram-Schmidt process to shape a shared subspace of representations
generated by a mixture of experts. When task-specific information is provided,
MOORE generates relevant representations from this shared subspace. We assess
the effectiveness of our approach on two MTRL benchmarks, namely MiniGrid
and MetaWorld, showing that MOORE surpasses related baselines and establishes
a new state-of-the-art result on MetaWorld.1

1 INTRODUCTION

Reinforcement Learning (RL) has shown outstanding achievements in a wide array of decision-
making problems, including Atari games (Mnih et al., 2013; Hessel et al., 2018a), board games (Sil-
ver et al., 2016; 2017), high-dimensional continuous control (Schulman et al., 2015; 2017; Haarnoja
et al., 2018), and robot manipulation (Yu et al., 2019). Despite the success of RL, generalizing the
learned policy to a broader set of related tasks remains an open challenge. Multi-Task Reinforce-
ment Learning (MTRL) is introduced to scale up the RL framework, holding the promise of enabling
learning a universal policy capable of addressing multiple tasks concurrently. To this end, sharing
knowledge is vital in MTRL (Teh et al., 2017; D’Eramo et al., 2020; Sodhani et al., 2021; Sun et al.,
2022). However, deciding upon the kind of knowledge to share and the set of tasks to share that
knowledge is crucial for designing an efficient MTRL algorithm. Human beings exhibit remarkable
adaptability across a multitude of tasks by mastering some essential skills as well as having the
intuition of physical laws. Similarly, MTRL can benefit from sharing representations that capture
unique and diverse properties across multiple tasks, easing the learning of an effective policy.
Recently, sharing compositional knowledge (Devin et al., 2017; Calandriello et al., 2014; Sodhani
et al., 2021; Sun et al., 2022) has shown potential as an effective form of knowledge transfer in
MTRL. For example, Devin et al. (2017) investigate knowledge transfer challenges between distinct
robots and tasks by sharing a modular policy structure. This approach leverages task-specific and
robot-specific modules, enabling effective transfer of knowledge. Nevertheless, this approach re-
quires manual intervention to determine the allocation of responsibilities for each module, given
some prior knowledge. In contrast, we aim for an end-to-end approach that implicitly learns
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and shares the prominent components of the tasks for acquiring a universal policy. Furthermore,
CARE (Sodhani et al., 2021) adopt a different strategy by focusing on learning representations of
different skills and objects encountered by the tasks by utilizing context information. However, there
is no inherent guarantee of achieving diversity among the learned representations. In this work, our
goal is to ensure the diversity of the learned representations to maximize the representation capacity
and avoid collapsing to similar representations.
Consequently, we propose a novel approach for representation learning in MTRL to share a set
of representations that capture unique and common properties shared by all the tasks. To ensure
the richness and diversity of these shared representations, our approach solves a constrained opti-
mization problem that orthogonalizes the representations generated by a mixture of experts via the
application of the Gram-Schmidt process, thus favoring dissimilarity between the representations.
Hence, we name our approach, Mixture Of ORthogonal Experts (MOORE). Notably, the orthogo-
nal representations act as bases that span a subspace of representations leveraged by all tasks where
task-relevant properties can be interpolated. More formally, we show that these orthogonal represen-
tations are a set of orthogonal vectors belonging to a particular Riemannian manifold where the inner
product is defined, known as Stiefel manifold (James, 1977). Interestingly, the Stiefel manifold has
recently drawn substantial attention within the field of machine learning (Ozay & Okatani, 2016;
Huang et al., 2018a; Li et al., 2019; Chaudhry et al., 2020). For example, several works focus on
enhancing the generalization and stability of neural networks by solving an optimization problem to
learn parameters in the Stiefel manifold. Another line of work aims to reduce the redundancy of the
learned features by forcing the weights to inhabit the Stiefel manifold. Additionally, Chaudhry et al.
(2020) propose a continual learning method that forces each task to learn in a different subspace,
thus reducing task interference through orthogonalizing the weights.
In this paper, our objective is to ensure diversity among the shared representations across tasks by
imposing a constraint that forces these representations to exist within the Stiefel manifold. Thus,
we aim to leverage the extracted representations, in combination with deep RL algorithms, to en-
hance the generalization capabilities of MTRL policies. In the following, we provide a rigorous
mathematical formulation of the MTRL problem, inspired by Sodhani et al. (2021), where latent
representations belong to the Stiefel manifold. Then, we devise our MOORE approach for ob-
taining orthogonal task representations through the application of a Gram-Schmidt process on the
latent features extracted from a mixture of experts. We empirically validate MOORE on two widely
used and challenging MTRL problems, namely MiniGrid (Chevalier-Boisvert et al., 2023) and Meta-
World (Yu et al., 2019), comparing to recent baselines for MTRL. Remarkably, MOORE establishes
a new state-of-the-art performance on the MetaWorld MT10 and MT50 collections of tasks.
To recap, the contribution of this work is twofold: (i) We propose a mathematical formulation,
named Stiefel Contextual Markov Decision Process (SC-MDP), that defines the MTRL problem
where the state is encoded in the Stiefel manifold through a mapping function. (ii) We devise a
novel representation learning method for Multi-Task Reinforcement Learning that leverages a mod-
ular structure of the shared representations to capture common components across multiple tasks.
Our approach, named MOORE, learns a mixture of orthogonal experts by encouraging diversity
through the orthogonality of their corresponding representations. Our approach outperforms related
baselines and achieves state-of-the-art results on the MetaWorld benchmark.

2 PRELIMINARIES

A Markov Decision Process (MDP) (Bellman, 1957; Puterman, 1995) is a tuple M =<
S,A,P, r, ρ, γ >, where S is the state space, A is the action space, P : S ×A → S is the transition
distribution where P(s

′ |s, a) is the probability of reaching s
′

when being in state s and performing
action a, r : S × A → R is the reward function, ρ is the initial state distribution, and γ ∈ (0, 1] is
the discount factor. A policy π maps each state s to a probability distribution over the action space
A. The goal of RL is to learn a policy that maximizes the expected cumulative discounted return
J(π) = Eπ[

∑∞
t=0 γ

tr(st, at)]. We parameterize the policy πθ(at|st) and optimize the parameters θ
to maximize J(πθ) = J(θ).

2.1 MULTI-TASK REINFORCEMENT LEARNING

In MTRL, the agent interacts with different tasks τ ∈ T , where each task τ is a different MDP
Mτ =< Sτ ,Aτ ,Pτ , rτ , ρτ , γτ >. The goal of MTRL is to learn a single policy π that maximizes
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the expected accumulated discounted return averaged across all tasks J(θ) =
∑

τ Jτ (θ). Tasks can
differ in one or more components of the MDP. A class of problems in MTRL assumes only a change
in the reward function rτ . This can be exemplified by a navigation task where the agent learns to
reach multiple goal positions or a robotic manipulation task where the object’s position changes.
In this class, the goal position is usually augmented to the state representation. Besides the reward
function, a bigger set of problems deals with changes in other components. In this category, tasks
access a subset of the state space Sτ , while the true state space S is unknown. For example, learning
a universal policy that performs multiple manipulation tasks interacting with different objects (Yu
et al., 2019). Task information should be provided either in the form of task ID (e.g., one-hot vector)
or metadata, e.g., task description (Sodhani et al., 2021).
Following Sodhani et al. (2021), we define the MTRL problem as a Block Contextual Markov Deci-
sion Process (BC-MDP). It is defined by 5-tuple < C,S,A, γ,M′

> where C is the context space,
S is the true state space, A is the action space, while M′

is a mapping function that provides the
task-specific MDP components given the context c ∈ C, M′

(c) = {rc,Pc,Sc, ρc}. As of now, we
refer to the task τ and its components by the context parameter denoted as c.

3 RELATED WORKS

Sharing knowledge among tasks is a key benefit of MTRL over single-task learning, as broadly ana-
lyzed by several works that propose disparate ways to leverage the relations between tasks (D’Eramo
et al., 2020; Sodhani et al., 2021; Sun et al., 2022; Calandriello et al., 2014; Devin et al., 2017; Yang
et al., 2020). Among many, D’Eramo et al. (2020) establish a theoretical benefit of MTRL over
single-task learning as the number of tasks increases, and Teh et al. (2017) learn individual policies
while sharing a prior among tasks. However, naive sharing may exhibit negative transfer since not
all knowledge should be shared by all tasks. An interesting line of work investigates the task in-
terference issue in MTRL from the gradient perspective. For example, Yu et al. (2020) propose a
gradient projection method where each task’s gradient is projected to an orthogonal direction of the
others. Nevertheless, these approaches are sensitive to the high variance of the gradients. Another
approach, known as PopArt (Hessel et al., 2018b), examines task interference focusing on the insta-
bility caused by different reward magnitudes, addressing this issue by a normalizing technique on
the output of the value function.

Recently, sharing knowledge in a modular form has been advocated for reducing task interference.
Yang et al. (2020) share a base model among tasks while having a routing network that generates
task-specific models. Moreover, Devin et al. (2017) divide the responsibilities of the policy by
sharing two policies, allocating one to different robots and the other to different tasks. Additionally,
Sun et al. (2022) propose a parameter composition technique where a subspace of policy is shared
by a group of related tasks. Moreover, CARE Sodhani et al. (2021) highlight the importance of using
metadata for learning a mixture of state encoders shared among tasks, based on the claim that the
learned encoders produce diverse and interpretable representations through an attention mechanism.
Despite the potential of this work, the method is highly dependent on the context information as
shown in this recent work (Cheng et al., 2023). However, we argue that all of these approaches lack
the guarantee of learning diverse representations.

In this work, we promote diversity across a mixture of experts by enforcing orthogonality among
their representations. The mixture-of-experts has been well-studied in the RL literature (Akrour
et al., 2021; Ren et al., 2021). Moreover, some works dedicate attention to maximizing the diversity
of the learned skills in RL (Eysenbach et al., 2018). Previous works leverage orthogonality for dis-
parate purposes (Mackey et al., 2018). For example, Bansal et al. (2018) promote orthogonality on
the weights by a regularized loss to stabilize training in deep convolutional neural networks. Simi-
larly, Huang et al. (2018a) employ orthogonality among the weights for stabilizing the distribution
of activation in neural networks. In the context of MTRL, Paredes et al. (2012) enforce the represen-
tation obtained from a set of similar tasks to be orthogonal to the one obtained from selected tasks
known to be unrelated. Recently, Chaudhry et al. (2020) alleviate catastrophic forgetting in con-
tinual learning by organizing task representations in orthogonal subspaces. Finally, Mashhadi et al.
(2021) favor diversity in an ensemble of learners via a Gram-Schmidt process. As opposed to it,
our primary focus lies in the acquisition of a set of orthogonal representations that span a subspace
shared by a group of tasks where task-relevant representations can be interpolated.

3



Published as a conference paper at ICLR 2024

Figure 1: MOORE illustrative diagram. A state s is encoded as a set of representations using a
mixture of experts. The Gram-Schmidt process orthogonalizes the representations to encourage
diversity. Then, the output head processes the representations Vs by interpolating the task-specific
representations vc using the task-specific weights wc, from which we compute the output using the
output function fθ. In our approach, we employ this architecture for both the actor and the critic.

4 SHARING ORTHOGONAL REPRESENTATIONS

We aim to obtain a set of rich and diverse representations that can be leveraged to find a universal
policy that accomplishes multiple tasks. To this end, we propose to enforce the orthogonality of the
representations extracted by a mixture of experts.
In the following, we first provide a mathematical formulation from which we derive our approach. In
particular, we highlight the connection between our method and the Stiefel manifold theory (Huang
et al., 2018b; Chaudhry et al., 2020; Li et al., 2020), together with the description of the role played
by the Gram-Schmidt process. Then, we proceed to devise our novel method for Multi-Task Rein-
forcement Learning on orthogonal representation obtained from a mixture of experts.

4.1 ORTHOGONALITY IN CONTEXTUAL MARKOV DECISION PROCESSES

We study the optimization of a policy π, given a set of k-orthonormal representations in Rd for the
state s. We define the orthonormal representations of state s as a matrix Vs = [v1, ..., vk] ∈ Rd×k

where vi ∈ Rd,∀i ≤ k. It can be shown that the orthonormal representations Vs belong to a
topological space known as the Stiefel manifold, a smooth and differentiable manifold largely used
in machine learning (Huang et al., 2018b; Chaudhry et al., 2020; Li et al., 2020).

Definition 4.1 (Stiefel Manifold) Stiefel manifold Vk(Rd) is defined as the set of all orthonormal
k-vectors in the Euclidean space Rd, where k ≤ d, Vk(Rd) = {Vs ∈ Rd×k : VT

s Vs = Ik,∀s ∈ S}.

Under this lens, our goal can be interpreted as finding a set of orthogonal representations belonging
to the Stiefel manifold that capture the common characteristics in the true state space S. Thus, we
propose a novel MDP formulation for MTRL, which we call a Stiefel Contextual Markov Deci-
sion Process (SC-MDP), that is inspired by the BC-MDP introduced in Sodhani et al. (2021). An
SC-MDP includes a function that maps the state s to k-orthonormal representations Vs ∈ Vk(Rd).

Definition 4.2 (Stiefel Contextual Markov Decision Process) A Stiefel Contextual Markov Decision
Process (SC-MDP) is defined as a tuple < C,S,A, γ,M′

, φ > where C is the context space, S is
the true state space, A is the action space. M′

is a function that maps a context c ∈ C to MDP
parameters and observation space M′

(c) = {rc,Pc,Sc, ρc}, φ is a function that maps every state
s ∈ S to a k-orthonormal representations Vs ∈ Vk(Rd), Vs = φ(s).

We define our MTRL policy as π(a|s, c) = fθ(φ(s) · wc), where wc ∈ Rk is the task-specific
weight that combines the k-orthogonal representations into a task-relevant one and fθ : Rd →
R|A| is an output function with learnable parameters θ that generates actions from task-specific
representations. To leverage a diverse set of representations across tasks, the mapping function φ
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plays a fundamental role. Hence, we approximate φ by a mixture of experts hϕ = [hϕ1
, ..., hϕk

]
with learnable parameters ϕ = [ϕ1, ..., ϕk] that generate k-representations Us ∈ Rd×k for state s,
while ensuring that the generated representations are orthogonal to enforce diversity. Conveniently,
this objective finds a rigorous formulation as a constrained optimization problem where we impose
a hard constraint to enforce orthogonality:

max
Θ={ϕ,θ}

J(Θ)

s.t. hT
ϕ (s) hϕ(s) = Ik ∀s ∈ S,

(1)

where Ik ∈ Rk×k is the identity matrix. Instead of solving the constrained optimization problem
in Eq. 1, we ensure the diversity across experts through the application of the Gram-Schmidt (GS)
process to orthogonalize the k-representations Us.

Definition 4.3 (Gram-Schmidt Process) Gram-Schmidt process is a method for orthogonalizing a
set of linearly independent U = {u1, ..., uk : ui ∈ Rd, ∀i ≤ k}. It maps the vectors to a set of
k-orthonormal vectors V = {v1, ..., vk : vi ∈ Rd, ∀i ≤ k} defined as

vk = uk −
k−1∑
i=1

⟨vi, uk⟩
⟨vi, vi⟩

vi. (2)

where the representation of the i-th expert ui is projected in the orthogonal direction to the sub-
space spanned by the representations of all i − 1 experts. Therefore, we apply the GS process to
map the generated representations by the mixture of experts Us = hϕ(s) to a set of orthonormal
representations Vs = GS(Us), satisfying the hard constraint in Eq. 1.

4.2 MULTI-TASK REINFORCEMENT LEARNING WITH ORTHOGONAL REPRESENTATIONS

Following our policy π(a|s, c), each task can interpolate its relevant representation from the sub-
space spanned by the k-orthonormal representations Vs. We train a task encoder to produce the
task-specific weights wc ∈ Rk given task information (e.g. task ID). The orthonormal representa-
tions are combined using the task-specific weight to produce relevant representations vc ∈ Rd to the
task as vc = Vs ·wc. The interpolated representation vc captures the relevant components of the task
that can be utilized by the RL algorithm and fed to an output function fθ. The output function can
be learned for each task separately (multi-head) or shared by all tasks (single-head) to compute the
action components given the representations vc. Similarly, the same policy (actor) structure (Alg. 1)
can be used for the critic (Alg. 2). In conclusion, this approach results in a Mixture Of ORthogonal
Experts, thus, we call it MOORE, whose extracted representation is used to learn a universal policy
for MTRL. A visual demonstration of our approach is shown in Fig.1.
We adopt two different RL algorithms, namely Proximal Policy Optimization (PPO) and Soft Actor-
Critic (SAC), with the purpose of demonstrating that our approach is agnostic to the used RL algo-
rithms. PPO (Schulman et al., 2017) is a policy gradient algorithm that has the merit of obtaining
satisfactory performance in a wide range of problems while being easy to implement. It is a first-
order method that enhances the policy update given the current data by limiting the deviation of the
new policy from the current one. Moreover, we integrate our approach to SAC, a high-performing
off-policy RL algorithm that leverages entropy maximization to enhance exploration.

5 EXPERIMENTAL RESULTS

In this section, we evaluate MOORE against related baselines on two challenging MTRL bench-
marks, namely MiniGrid (Chevalier-Boisvert et al., 2023), a set of visual goal-oriented tasks, and
MetaWorld (Yu et al., 2019), a collection of robotic manipulation tasks. The objective is to assess the
adaptability of our approach in handling different types of state observations and tackling a variable
number of tasks. Moreover, the flexibility of MOORE is evinced by using it for on-policy (PPO for
MiniGrid) and off-policy RL (SAC for MetaWorld) algorithms. Additionally, we conduct ablation
studies that support the effectiveness of MOORE in various aspects. We assess the following points:
the benefit of using Gram-Schmidt to impose diversity across experts, the quality of the learned
representations, as well as the transfer capabilities, and the interpretability of the diverse experts.
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(a) Multi-Head Architecture
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(b) Single-Head Architecture

Figure 2: Average return on the three MTRL scenarios of MiniGrid. We utilize both multi-head and
single-head architectures for our approach MOORE as well as the related baselines. For MOORE,
MOE and PCGrad, the number of experts k is 2, 3, and 4 for MT3, MT5, and MT7, respectively.
The black dashed line represents the final single-task performance of PPO averaged across all tasks.
For the evaluation metric, we compute the accumulated return averaged across all tasks. We report
the mean and the 95% confidence interval across 30 different runs.

5.1 MINIGRID

We consider different tasks in MiniGrid (Chevalier-Boisvert et al., 2023), a suite of 2D goal-oriented
environments that requires solving different mazes while interacting with objects like doors, keys,
or boxes of several colors, shapes, and roles. MiniGrid offers a visual representation of the state,
which we adopt for our multi-task setting. We consider the multi-task setting from Jin et al. (2023)
that includes three multi-task scenarios. The first scenario, MT3, involves the three tasks: LavaGap,
RedBlueDoors, and Memory; the second scenario, MT5, includes the five tasks: DoorKey, Lava-
Gap, Memory, SimpleCrossing, and MultiRoom. Finally, MT7 comprises the seven tasks: DoorKey,
DistShift, RedBlueDoors, LavaGap, Memory, SimpleCrossing, and MultiRoom. In Sec. A.1, we
provide descriptions and more details for the tasks.

We compare MOORE against four baselines. The first one is PPO, considered a reference for
comparing to single-task performance. The second baseline is Multi-Task PPO (MTPPO), an
adaptation of PPO (Schulman et al., 2017) for MTRL. Then, we consider MOE, which employs
a mixture of experts to generate representations without enforcing diversity across experts. Ad-
ditionally, we have PCGrad (Yu et al., 2020), which is an MTRL approach that tackles the task
interference issue by manipulating the gradients. We integrate PCGrad on top of the MOE base-
line for a fair comparison. As for the MTRL architecture, we utilize multi-head and single-head
architectures for all methods, showing their average return across all tasks in Fig. 2(a), and Fig. 2(b)
respectively. MOORE outperforms the aforementioned baselines in almost all the MTRL scenar-
ios. Notably, our method exhibits faster convergence than the baselines. It is interesting to observe
that MOORE outperforms the single-task performance with a significant margin in comparison to
the other baselines (Fig.2(a)), which is usually considered as an upper-bound of the MTRL perfor-
mance in previous works. This highlights the quality of the learned representations and the role of
MOORE representation learning process in MTRL.
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Figure 3: Evaluating MOORE against MOE on the transfer setting. The study is conducted on the
two transfer learning scenarios in MiniGrid, employing a multi-head architecture. The number of
experts k is 2 and 3 for MT3 → MT5 and MT5 → MT7, respectively. For the evaluation metric,
we compute the accumulated return averaged across all tasks. We report the mean and the 95%
confidence interval across 30 different runs.

5.1.1 ABLATION STUDIES
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Figure 4: Ablation study on the effect of changing
the number of experts. We compare the perfor-
mance of MOE and MOORE (ours) on MiniGrid
MT7 using a single-head architecture. We report
the mean of the evaluation metric across 30 seeds.
For the evaluation metric, we compute the accu-
mulated return averaged across all tasks.

Transfer Learning. We examine the advantage
of transferring the trained experts on a set of
base tasks to novel tasks in order to assess the
quality and generalization of these learned ex-
perts in comparison to the MOE baseline. We
refer to the transfer variant of our approach as
Transfer-MOORE while Transfer-MOE for
the baseline. Moreover, we include the perfor-
mance of MOORE and MOE as a MTRL refer-
ence for learning the novel tasks from scratch,
completely isolated from the base tasks. In
Fig. 3, we show the empirical results on two
transfer learning scenarios where we transfer a
set of experts learned on MT3 to MT5 (MT3
→ MT5) and on MT5 to MT7 (MT5 → MT7).
MT3 is a subset of MT5, while MT5 is a subset
of MT7. First, we train on the base tasks, and
then we transfer the learned experts (frozen) to
the novel tasks (the difference between the two sets). As illustrated in Fig. 3, Transfer-MOORE
outperforms Transfer-MOE in the two scenarios, showing the quality of the learned representations
in the context of transfer learning. Moreover, the study demonstrates the ability of our approach as
an effective MTRL algorithm that provides competitive results against the transfer variant (Transfer-
MOORE). In contrast, MOE struggles to beat the transfer variant as in the MT3 → MT5 scenario.
Consequently, this study advocates the diversification of the shared representations in transfer learn-
ing and MTRL. We highlight more details in B.2.
Number of Experts. Additionally, we focus on the impact of changing the number of experts on
the performance of our approach, as well as on MOE. In Fig. 4, we consider different numbers of
experts on the MT7 scenario. We observe the effect of utilizing more experts in MOORE algorithm
compared to MOE. The study shows that MOORE exhibits a noticeable advantage, on average,
for an increasing number of experts. On the contrary, a slower enhancement of the performance is
encountered by MOE. It is also worth noting that the performance of MOORE with k = 4 slightly
outperforms MOE with k = 10 while being comparable to MOE with k = 8 (MOE best setting).
This supports our claim about efficiently utilizing expert capacity through enforcing diversity.

5.2 METAWORLD

Finally, we evaluate our approach on another challenging MTRL setting with a large number of
manipulation tasks. We benchmark against MetaWorld (Yu et al., 2019), a widely adopted robotic
manipulation benchmark for Multi-Task and Meta Reinforcement Learning. We consider the MT10

7



Published as a conference paper at ICLR 2024

Total Env Steps 1M 2M 3M 5M 10M 15M 20M
SAC (Yu et al., 2019) 10.0±8.2 17.7±2.1 18.7±1.1 20.0±2.0 48.0±9.5 57.7±3.1 61.9±3.3

MTSAC (Yu et al., 2019) 34.9±12.9 49.3±9.0 57.1±9.8 60.2±9.6 61.6±6.7 65.6±10.4 62.9±8.0
SAC + FiLM (Perez et al., 2017) 32.7±6.5 46.9±9.4 52.9±6.4 57.2±4.2 59.7±4.6 61.7±5.4 58.3±4.3

PCGrad (Yu et al., 2020) 32.2±6.8 46.6±9.3 54.0±8.4 60.2±9.7 62.6±11.0 62.6±10.5 61.7±10.9
Soft-Module (Yang et al., 2020) 24.2±4.8 41.0±2.9 47.4±5.3 51.4±6.8 53.6±4.9 56.6±4.8 63.0±4.2

CARE (Sodhani et al., 2021) 26.0±9.1 52.6±9.3 63.8±7.9 66.5±8.3 69.8±5.1 72.2±7.1 76.0±6.9
PaCo (Sun et al., 2022) 30.5±9.5 49.8±8.2 65.7±4.5 64.7±4.2 71.0±5.5 81.0±5.9 85.4±4.5

MOORE (ours) 37.2±9.9 63.0±7.2 68.6±6.9 77.3±9.6 82.7±7.3 88.2±5.6 88.7±5.6

Table 1: Results on MetaWorld MT10 (Yu et al., 2019) with random goals (MT10-rand). The results
of the baselines are from Sun et al. (2022). MOORE uses k = 4 experts. For all methods, we report
the mean and standard deviation of the evaluation metric across 10 different runs. The evaluation
metric is the average success rate across all tasks. We highlight with bold text the best result.

and MT50 settings, where a single robot has to perform 10 and 50 tasks, respectively.
For the baselines, we compare our approach against the following algorithms. First, SAC (Haarnoja
et al., 2018) is the off-policy RL algorithm that is trained on each task separately, thus being a
reference for the single-task setting. Second, Multi-Task SAC (MTSAC) is the adaptation of
SAC to the MTRL setting, where we employ a single-head architecture with a one-hot vector
concatenated with the state. Then, SAC+FiLM is a task-conditional policy that employs the
FiLM module (Perez et al., 2017). Furthermore, PCGrad (Yu et al., 2020) is an MTRL approach
that tackles the task interference issue by manipulating the gradients. Soft-Module (Yang et al.,
2020) utilizes a routing network that proposes weights for soft combining of activations for each
task. CARE (Sodhani et al., 2021) is an attention-based approach that learns a mixture of experts
for encoding the state while utilizing context information. Finally, PaCo (Sun et al., 2022) is
the state-of-the-art method for MetaWorld that learns a compositional policy where task-specific
weights are utilized for interpolating task-specific policies. Our approach uses a similar framework
as in the MiniGrid experiment and employs a multi-head architecture.

Algorithms Success Rate (20M)
MTSAC (Yu et al., 2019) 49.3±1.5

SAC + FiLM (Perez et al., 2017) 36.5±12.0
CARE (Sodhani et al., 2021) 50.8±1.0

PaCo (Sun et al., 2022) 57.3±1.3
MOORE (ours) 72.9±3.3

Table 2: Results on MetaWorld MT50 (Yu et al.,
2019) with random goals (MT50-rand). The re-
sults of the baselines are from Sun et al. (2022).
MOORE uses k = 6 experts.

Following Sun et al. (2022), we benchmark
against variants of the MT10 and MT50 sce-
narios, MT10-rand and MT50-rand, where each
task is trained with random goal positions. The
goal position is concatenated with the state rep-
resentation. As a performance metric, we com-
pute the success rate averaged across all tasks.
We run our approach for 10 different runs and
report their mean and standard deviations of the
metric, similar in Sun et al. (2022). As stated
in Tab. 1, MOORE outperforms all the base-
lines regarding sample efficiency and asymp-
totic performance. Moreover, in Tab. 2, our approach shows significant final performance, indicating
the scalability of MOORE to a large number of tasks. It is important to mention that all baselines use
tricks to enhance the stability of the learning process. For instance, PaCo avoids task and gradient
explosion by proposing two empirical tricks, named loss maskout and w-reset, where pruning every
task loss that reaches above a certain threshold, besides resetting the task-specific weight for that
task. Also, as in Sun et al. (2022), the other baselines resort to more expensive tricks, such as termi-
nating and re-launching the training session when a loss explosion is encountered. On the contrary,
our approach does not need such tricks to improve the stability of the learning process, which can
indicate the stability of the chosen architecture and the importance of learning distinct experts.

5.2.1 ABLATION STUDIES

Diversity. Similarly, we want to evince the advantage of favoring diversity across experts. We
evaluate MOORE against MOE, a baseline that uses the same architecture of MOORE but without
the Gram-Schmidt process. We evaluate MOORE against MOE on the two MTRL scenarios of
MetaWorld, MT10-rand and MT50-rand. In Fig. 5(a), MOORE exhibits superior sample-efficiency
compared to MOE. Moreover, MOORE significantly outperforms the baseline also in MT50-rand
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Figure 5: (a) Success rate on MetaWorld MT10-rand comparing MOORE, against MOE, using 4
experts. (b) Success rate on MetaWorld MT50-rand comparing MOORE, against MOE, given 6
experts. We show the average success rate across all tasks and the 95% confidence interval across
10 and 5 different runs for MT10-rand and MT50-rand, respectively.

(Fig. 5(b)), evincing the scalability of our approach to large-scale MTRL problems. This study
illustrates the importance of enforcing diversity across experts in MTRL algorithms.
Interpretability. Additionally, we verify the interpretability of the learned representations. Fig. 6
shows an application of PCA on the learned task-specific weights wc that interpolate the represen-
tations of the experts. On the one hand, the pick-place task is close to the peg-insert-side since both
tasks require picking up an object. On the other hand, the weights of door-open and window-open
tasks are similar as they share the open skill. Therefore, enforcing diversity across experts dis-
tributes the responsibilities across them in capturing common components across tasks (e.g., objects
or skills). This confirms that the learned experts have some roles that can be interpretable.

6 CONCLUSION AND DISCUSSION
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Figure 6: Principle Component Analysis (PCA)
on the task-specific weights learned by MOORE
on MetaWorld MT10-rand for a run with 100%
success rate across all tasks.

We proposed a novel MTRL approach for di-
versifying a mixture of shared experts across
tasks. Mathematically, we formulate our ob-
jective as a constrained optimization problem
where a hard constraint is explicitly imposed
to ensure orthogonality between the represen-
tations. As a result, the orthogonal representa-
tions live on a smooth and differentiable man-
ifold called the Stiefel manifold. We formu-
late our MTRL as a novel contextual MDP
while mapping each state to the Stiefel mani-
fold using a mapping function, which we learn
through a mixture of experts while enforcing
orthogonality across their representations with
the Gram-Schmidt process, hence satisfying the
hard constraint. Our approach demonstrates su-
perior performance against related baselines on
two challenging MTRL baselines.
Taking advantage of all the experts during inference, our approach has the limitation of potentially
suffering from high time complexity compared to a sparse selection of few experts. This leads to a
trade-off between the representation capacity and time complexity, which could be investigated in
the future by a selection of a few orthogonal experts. In addition to our transfer learning study, we
are interested in investigating extensions of our approach into a continual learning setting.
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(a) DoorKey (b) DistShift (c) RedBlueDoors (d) LavaGap

(e) Memory (f) SimpleCrossing (g) MultiRoom

Figure 7: MiniGrid (Chevalier-Boisvert et al., 2023) Tasks, where the red triangle represents the
agent, and the green square refers to the goal.

A ADDITIONAL DETAILS ON THE EXPERIMENTS

In this section, we elaborate on the implementation details of our approach, MOORE, for bench-
marking against MiniGrid (Chevalier-Boisvert et al., 2023) and MetaWorld (Yu et al., 2019). Be-
sides, we provide additional ablation studies that demonstrate various aspects of our approach. In
this work, we used Mushroom-RL (D’Eramo et al., 2021) as the RL library.

A.1 MINIGRID

A.1.1 ENVIRONMENT DETAILS

MiniGrid (Chevalier-Boisvert et al., 2023) is a collection of 2D goal-oriented environments where
the agent learns how to solve different mazes while interacting with various objects in terms of
shape, color, and role. The library of MiniGrid provides multiple choice for state representation.
For our MTRL setting, we adopt the visual representation of the state where a 3-dimensional input
of shape 7x7x3 is provided. As mentioned in Sec. 5.1, our MTRL setting consists of three scenarios
that include seven tasks in total that are distributed differently. A render example of each task is
demonstrated in Fig. 7. Additionally, the description of each task is provided in Tab. 3.

Task Description
DoorKey Use the key to open the door and then get to the goal.
DistShift Get to the green goal square.
RedBlueDoors Open the red door and then the blue door
LavaGap Avoid the lava and get to the green goal square.
Memory Go to the matching object at the end of the hallway
SimpleCrossing Find the opening and get to the green goal square
MultiRoom Traverse the rooms to get to the goal.

Table 3: MiniGrid (Chevalier-Boisvert et al., 2023) task descriptions.
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A.1.2 IMPLEMENTATION DETAILS

RL algorithm. We use PPO (Schulman et al., 2017), which is considered a state-of-the-art on-policy
RL algorithm on many benchmarks. Moreover, it has been used in the official paper of the MiniGrid
benchmark (Chevalier-Boisvert et al., 2023). We adapt PPO to the MTRL setting by computing the
loss functions of both the actor and critic averaged on transitions sampled from all tasks. We refer
to this adapted algorithm as MTPPO. In Tab. 4, we highlight the important hyperparameters needed
to reproduce the results on MiniGrid.

Hyperparameter Value
General Hyperparameters
Discount factor γ 0.99
Number of environments [3,5,7]
Steps per environment 1 step per 1 environment
Number of epochs 100
Steps per epoch 2000
Train frequency 2000
Number of episodes for evaluation 16
PPO Hyperparameters
Lambda coefficient in GAE formula 0.95
Entropy term coefficient 0.01
Clipping Epsilon 0.2
Number of epochs for Policy 8
Batch Size for Policy 256
Number of epochs for Critic 1
Batch Size for Critic 2000
Critic Loss Mean Squared Error
Optimizer Adam
Learning rate for Policy 0.001
Learning rate for Critic 0.001

Table 4: MiniGrid (Chevalier-Boisvert et al., 2023) hyperparameters.

Architecture. The network architecture consists of two main parts, a representation block, and an
output head. The representation block is agnostic to the context c. The role of the representation
block is to encode the state s. On the other hand, the output head includes an output function for
generating the network output. In general, we use a similar network architecture for the actor and
the critic.

For single-expert approaches (PPO and MTPPO), the representation block consists of a single Con-
volutional Neural Network (CNN) to encode the visual representation of the state to a latent space.
For multiple-experts approaches (MOORE, MOE, and PCGrad), k-CNNs are used to represent the
mixture of experts responsible for encoding the state as k-representations in the representation block.

For MTRL approaches, the output function can utilize a single-head fθ or a multi-head fθ =
[fθ1 , .., fθ|C| ] architecture. For the single-head architecture, we condition the network on the context
by concatenating the context c (one-hot vector) to the output of the representation block. On the
other hand, for the multi-head architecture, we select a task-specific output function fθc given the
context c.

For multiple-experts approaches, in addition to the output function, the output head includes a task-
encoder. Given a context c, the task-encoder generates a task-specific weight wc responsible for
combining the output of the representation block Vs to produce the task-specific representation vc.

In Tab. 5, we illustrate the hyperparameters of both the representation block and the output head.
It is worth noting that MOORE, MOE, and PCGrad linearly combine the generated representations
from different experts before applying the last activation function of the representation block vc =
Tanh(Vs · wc). Moreover, the whole architecture is trained end-to-end, including the task-encoder.
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Hyperparameter Value
Representation Block
Number of Experts (k) {MT3: k = 2, MT5: k = 3, MT7: k = 4}
Number of convolution layers 3
Channels per layer [16, 32, 64]
Kernel size [(2,2), (2,2), (2,2)]
Activation functions [ReLU, ReLU, Tanh]
Output Function
Number of linear layers 2 (x number of tasks |T |)
Number of output units [128, |A| for actor and 1 for critic]
Activation functions [Tanh, Linear]
Task Encoder
Number of linear layers 1
Number of output units Number of Experts (k)
Use bias False
Activation function Linear

Table 5: Actor and Critic Architecture for PPO

Algorithm 1 MOORE for Actor
Require: Mixture of experts hϕ, state s, context c,

task-specific weights wc, output function fθ .
1: Us = hϕ(s)
2: Vs = GS(Us) ▷ Apply Eq. 2
3: vc = Vs · wc

4: a ∼ fθ(vc)
5: Return: a

Algorithm 2 MOORE for Critic
Require: Mixture of experts hϕ, state-action (s, a), con-

text c, task-specific weights wc, output function fθ .
1: Us,a = hϕ(s, a)
2: Vs,a = GS(Us,a) ▷ Apply Eq. 2
3: vc = Vs,a · wc

4: q = fθ(vc)
5: Return: q

A.2 METAWORLD

A.2.1 ENVIRONMENT DETAILS

MetaWorld (Yu et al., 2019) is a suite of many robotic manipulation tasks. All tasks require dealing
with one or two objects. Moreover, they are similar in terms of the state space’s dimensionality, yet
the state components’ semantics differ. The state space consists of the following: the 3D position
of the end effector, a normalized measure of how much the gripper is open, the 3D position of the
first object, the quaternion of the first object (4D), as well as the 3D position and quaternion of
the second object (zeroed out, if not needed). Two consecutive data frames are stacked together,
in addition to the 3D goal position, forming a 39-dimensional state space. On the other hand, the
action space is the same, representing the 3D change of the end effector in addition to the normalized
torque applied by the gripper. We benchmark our approach against the MT10 and MT50 scenarios.
Following Sun et al. (2022), we randomize the goal or object positions across all tasks and refer to
them as MT10-rand and MT50-rand.

A.2.2 IMPLEMENTATION DETAILS

RL algorithm. In this benchmark, we use SAC (Haarnoja et al., 2018), a state-of-the-art off-policy
algorithm that enhances the exploration of the agent by maximizing the entropy. Similar to Yu et al.
(2019); Sun et al. (2022), we adapt SAC by computing the actor and the critic losses averaged on
transitions sampled from all tasks. We have a replay buffer for each task from which we sample
transitions equally. In addition, we disentangle the temperature parameter of SAC by learning sepa-
rate temperature parameters for each task. We refer to this adapted algorithm as MTSAC. In Tab. 6,
we list the hyperparameters required for reproducing our results on MetaWorld.

Architecture. Similar to MiniGrid, we use a network architecture that consists of a representation
block and an output head. We made a couple of changes for MetaWorld. For instance, the actor and
the critic slightly differ since the action is concatenated with the state for computing the Q values
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in the critic. As a result, the representation block is responsible for encoding the state-action space.
Another difference is that we use a Dense Neural Network (DNN) to represent the representation
block. Consequently, we use k-DNNs to represent the mixture of experts for MOORE and MOE.
Finally, we adopted a multi-head architecture for the output function where we use the context c to
select the corresponding task-specific output function fθc .

It is worth mentioning that the results of the baselines in Tab. 1 and Tab. 2 are borrowed from Sun
et al. (2022). The implementation details of the baselines can be found in Yu et al. (2019); Sun et al.
(2022). We demonstrate the MOORE algorithm for the actor and the critic in Alg. 1 and Alg. 2,
respectively. Similarly, MOE follows the same procedure but without the Gram-Schmidt process in
line 2.

Hyperparameter Value
General Hyperparameters
Horizon 150
Discount factor γ 0.99
Number of environments 10
Steps per environment 1 step per 1 environment
Number of epochs 20
Steps per epoch 100000
Train frequency 1
Number of episodes for evaluation 10
SAC Hyperparameters
Batch Size 128
Critic Loss Mean Squared Error
Disentangled temperature Alpha α True
Optimizer Adam
Learning rate for Policy 3× 10−4

Learning rate for Critic 3× 10−4

Learning rate for Alpha 1× 10−4

Policy minimum standard e−10

Policy maximum standard e2

Soft target interpolation 5× 10−3

Exploration steps 1500
Replay buffer steps 1× 106

Table 6: MetaWorld (Yu et al., 2019) Hyperparameters.

Hyperparameter Value
Representation Block
Number of Experts (k) {MT10: k = 4, MT50: k = 6}
Number of Linear layers 3
Number of output units [400, 400, 400]
Activation functions [ReLU, ReLU, Linear]
Output Block
Number of linear layers 1 (x number of tasks |T |)
Number of output units [|A| for actor and 1 for critic]
Activation functions Linear
Task Encoder
Number of linear layers 1
Number of output units Number of Experts (k)
Use bias False
Activation function Linear

Table 7: Actor and Critic Architecture for SAC
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Figure 8: Individual task average return on the MT3 scenario of MiniGrid. We utilize the multi-
head architecture for our approach MOORE as well as the related baselines. For MOORE, MOE,
and PCGrad, the number of experts k is 2. The black dashed line represents the final single-task
performance of PPO averaged across all tasks. For the evaluation metric, we compute the accumu-
lated return averaged across all tasks. We report the mean and the 95% confidence interval across
30 different runs.
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Figure 9: Individual task average return on the MT5 scenario of MiniGrid. We utilize the multi-
head architecture for our approach MOORE as well as the related baselines. For MOORE, MOE,
and PCGrad, the number of experts k is 3. The black dashed line represents the final single-task
performance of PPO averaged across all tasks. For the evaluation metric, we compute the accumu-
lated return averaged across all tasks. We report the mean and the 95% confidence interval across
30 different runs.

B ADDITIONAL EMPIRICAL RESULTS

B.1 MINIGRID

In Sec. 5.1, we present the performance averaged across all the tasks. Here, we want to show the
individual task performance of all three scenarios of MiniGrid.
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Figure 10: Individual task average return on the MT7 scenario of MiniGrid. We utilize the multi-
head architecture for our approach MOORE as well as the related baselines. For MOORE, MOE,
and PCGrad, the number of experts k is 4. The black dashed line represents the final single-task
performance of PPO averaged across all tasks. For the evaluation metric, we compute the accumu-
lated return averaged across all tasks. We report the mean and the 95% confidence interval across
30 different runs.

B.2 TRANSFER LEARNING WITH MOORE

Furthermore, we discuss the experimental details of the Transfer Learning ablation study in Fig. 3.
In this study, we assess the transfer capability of our approach in utilizing the diverse representations
learned on a set of base tasks for a set of novel but related tasks. We evaluate our approach, MOORE,
against the MOE baseline on MiniGrid. We refer to the transfer learning adaptation of our approach
as Transfer-MOORE and Transfer-MOE for the MOE baseline.

We conducted two experiments based on the sets of tasks defined on MiniGrid (MT3, MT5, and
MT7). In Fig. 3, we show the empirical results on two transfer learning scenarios where we transfer
a set of experts learned on MT3 to MT5 (MT3 → MT5) and on MT5 to MT7 (MT5 → MT7).
It is worth noting that MT3 is a subset of MT5, and MT5 is a subset of MT7. The base tasks are
the MT3 and MT5 for MT3 → MT5 and MT5 → MT7, respectively, while the novel tasks are the
difference between the corresponding sets. For instance, in the MT3→MT5 scenario, the base tasks
are LavaGap, RedBlueDoors, and Memory (common for MT3 and MT5), while having DoorKey,
and MultiRoom as novel tasks (only in MT5).

For Transfer-MOORE, we train on the base tasks; then, we use the learned mixture of experts in
a frozen state to learn the novel ones. On the contrary, MOORE is only trained on novel tasks
from scratch. This also holds for MOE and Transfer-MOE. In this study, we employ a multi-head
architecture for the actor and critic. Hence, each task has a decoupled output head from other tasks,
easing the transfer learning experiment. However, they all share the representation stage (mixture
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Figure 11: Individual task average return on the MT3 scenario of MiniGrid. We utilize the single-
head architecture for our approach MOORE as well as the related baselines. For MOORE, MOE,
and PCGrad, the number of experts k is 2. The black dashed line represents the final single-task
performance of PPO averaged across all tasks. For the evaluation metric, we compute the accumu-
lated return averaged across all tasks. We report the mean and the 95% confidence interval across
30 different runs.
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Figure 12: Individual task average return on the MT5 scenario of MiniGrid. We utilize the single-
head architecture for our approach MOORE as well as the related baselines. For MOORE, MOE,
and PCGrad, the number of experts k is 3. The black dashed line represents the final single-task
performance of PPO averaged across all tasks. For the evaluation metric, we compute the accumu-
lated return averaged across all tasks. We report the mean and the 95% confidence interval across
30 different runs.

of experts). We add randomly initialized output heads to learn the novel tasks while keeping the
mixture of experts frozen. For MT3 → MT5, the number of experts k is 2. On the other hand, for
MT5 → MT7, we use 3 experts.

B.3 COSINE SIMILARITY

We investigate the ability of MOORE to diversify the shared representations, compared to relaxing
the hard constraint in Eq. 1. Therefore, we replace the hard constraint with a regularization term
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Figure 13: Individual task average return on the MT7 scenario of MiniGrid. We utilize the single-
head architecture for our approach MOORE as well as the related baselines. For MOORE, MOE,
and PCGrad, the number of experts k is 4. The black dashed line represents the final single-task
performance of PPO averaged across all tasks. We show the accumulated return averaged across all
tasks. We report the mean and the 95% confidence interval across 30 different runs.

equivalent to a cosine similarity loss computed over the set of representations:

lreg = Es∈S [hϕ(s)
T hϕ(s)− Ik]. (3)

The regularization loss is optimized jointly with the primary objective, where we weigh the contri-
bution of this regularization loss by 1. We benchmark MOORE against the Cosine-Similarity on
the three scenarios of MiniGrid. As shown in Fig. 14, MOORE outperforms the baseline across
all settings, highlighting the advantage of using Gram-Schmidt in diversifying the experts over
regularization-based techniques. In addition, our approach is hyperparameter-free, contrary to the
regularization-based techniques that require delicate hyperparameter tuning to not interfere with the
main loss function, which is usually the case.

B.4 INFLUENCE OF THE SINGLE-HEAD ARCHITECTURE ON MOORE

In this section, we discuss the reason behind the degradation in the performance of MOORE when
employing a single-head architecture, especially on MT7 (Fig. 2(b)). We argue that the reason is
the task interference caused by the single-head architecture since all tasks share the same output
function fθ. MOORE is highly affected by the later output stage, causing a drop in the performance
relative to the experiments done with the multi-head architecture. It is worth noting that as the
number of tasks increases, the possibility of having task interference increases. This is why the
issue is prominent in the MT7 scenario.
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Figure 14: Evaluating the diversity capabilities of our approach, MOORE, against using Cosine-
Similarity. The study is conducted on the three MTRL scenarios of MiniGrid employing a single-
head architecture. The number of experts k is 2, 3, and 4 for MT3, MT5, and MT7, respectively.
For the evaluation metric, we compute the accumulated return averaged across all tasks. We report
the mean and the 95% confidence interval across 30 different runs.
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Figure 15: Ablation study on the effect of combining MOORE with PCGrad to reduce the task
interference issue in the output stage. All methods employ a single-head architecture except for
MOORE (Multi-Head). The study is conducted on the MT7 scenario on MiniGrid. The number of
experts k is 4. For the evaluation metric, we compute the accumulated return averaged across all
tasks. We report the mean and the 95% confidence interval across 30 different runs.

We have two reasons to support our claim:

• When using a multi-head architecture, MOORE outperforms all the baselines on all of the 3
MiniGrid scenarios. Employing the multi-head architecture decouples the output functions
for all tasks, completely removing the task interference in the output stage.

• In Fig. 15, we conduct an ablation study highlighting the effect of combining PCGrad (ex-
plicit MTRL method to tackle task interference) and our approach. Since MOORE is or-
thogonal to PCGrad, we can integrate them easily. This study shows that MOORE+PCGrad
outperforms MOORE, PCGrad, MOE, and MTPPO. However, MOORE with multi-head
architecture still outperforms MOORE+PCGrad, showing that PCGrad can only partially
reduce the interference in the output stage, while MOORE with multi-head architecture
removes the interference completely.

C COMPUTATION AND MEMORY REQUIREMENTS

The difference between MOORE and MOE is in the Gram-Schmidt stage, where we orthogonalize
the k representations. The time complexity of the Gram-Schmidt process is T = O(k2 × d) (Golub
& Van Loan, 2013; Mashhadi et al., 2021), where d is the representation dimension and k is the
number of experts. Our approach MOORE and the baseline MOE belong to the family of soft
mixtures of experts since they compute all k representations from all the experts during inference.
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Figure 16: Ablation study on the effect of the initial expert selected for the Gram-Schmidt process.
In this study, we employ a multi-head architecture. The number of experts k is 3. u1, u2, and
u3 are the representations of the three experts before applying the Gram-Schmidt process. For the
evaluation metric, we compute the accumulated return averaged across all tasks. We report the mean
and the 95% confidence interval across 30 different runs.

On the other hand, one can only select top-k experts based on some weights computed using a gating
network as in the direction of sparse mixtures of experts. The trade-off between the representation
capacity and time complexity is well-known. As a future work, we can investigate the adaptation
of MOORE to pick only a few orthogonal experts, hence lowering the time complexity. MOORE is
similar to the MOE baseline regarding the memory required for storing all the experts. It is worth
noting that we use fewer experts than PaCo (Sun et al., 2022) in MetaWorld, hence lower memory
requirements.

D THE GRAM-SCHMIDT PROCESS AND THE INITIAL EXPERT

In MOORE, we consider the first expert’s representation as the initial vector for the Gram-Schmidt
process. In a normal setting, we can expect the process to yield a different set of orthonormal vectors
depending on the initial selected vector. It does not matter in our case since the representations are
actually generated from a mixture of experts which are being learned. We conduct an ablation study
on the MT5 scenario of MiniGrid, where we utilize 3 experts. We provide variations of MOORE
based on the initial vector selected for the Gram-Schmidt process. For instance, MOORE-u1 selects
the representation of the first expert u1 as the initial vector of the Gram-Schmidt process (adopted).
On the other hand, MOORE-u2 and MOORE-u3 choose the representation of the second u2 and
third u3 expert, respectively, as the initial vector for the Gram-Schmidt process. As expected, Fig. 16
shows that the performance is almost identical for different selected initial vectors.
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