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Abstract

Multilingual pretraining has been a successful001
solution to the challenges posed by the lack002
of resources for languages. These models can003
transfer knowledge to target languages with004
minimal or no examples. Recent research sug-005
gests that monolingual models also have a sim-006
ilar capability, but the mechanisms behind this007
transfer remain unclear. Some studies have ex-008
plored factors like language contamination and009
syntactic similarity. An emerging line of re-010
search suggests that the representations learned011
by language models contain two components:012
a language-specific and a language-agnostic013
component. The latter is responsible for trans-014
ferring a more universal knowledge. However,015
there is a lack of comprehensive exploration of016
these properties across diverse target languages.017
To investigate this hypothesis, we conducted an018
experiment inspired by the work on the Scaling019
Laws of Transfer. We measured the amount of020
data transferred from a source language to a tar-021
get language and found that models initialized022
from diverse languages perform similarly to a023
target language in a cross-lingual setting. This024
was surprising because the amount of data trans-025
ferred to 10 diverse target languages, such as026
Spanish, Korean, and Finnish, was quite similar.027
We also found evidence that this transfer is not028
related to language contamination nor language029
syntactical proximity, which strengthens our030
hypothesis that the model relies on language-031
agnostic knowledge. Our experiments have032
opened up new possibilities for measuring how033
much data represents the language-agnostic rep-034
resentations learned during pretraining.035

1 Introduction036

The emergence of self-supervised pretraining mod-037

els such as BERT has revealed a notable phe-038

nomenon of cross-lingual transfer even when these039

models are trained on multilingual corpora de-040

void of paired translation examples. For example,041

LLAMA (Touvron et al., 2023), which was trained042

self-supervisedly on an English-centric corpus, ex- 043

hibits surprising multilingual capabilities (Yuan 044

et al., 2023; Ye et al., 2023). The underlying mech- 045

anisms driving this behavior remain unclear, with 046

hypotheses ranging from the presence of shared 047

“anchor” tokens (Pires et al., 2019) to language con- 048

tamination (Blevins and Zettlemoyer, 2022), yet no 049

scientific consensus has been reached. 050

Research in this area often involves the use of 051

pre-existing language models (LMs), which are 052

subsequently finetuned on supervised datasets in 053

different languages (de Souza et al., 2021; Yuan 054

et al., 2023). However, when evaluating multiple 055

languages, conventional methodologies encounter 056

two significant challenges: firstly, the dependence 057

on supervised finetuning datasets, which often vary 058

in size and quality, complicating cross-lingual com- 059

parisons; secondly, the use of subword tokenizers, 060

which do not represent all languages equally. 061

In this work, we avoid these problems by 062

working with byte-level tokenizer and by using 063

auto-regressive language models trained in self- 064

supervised from scratch in one language and then 065

finetuned on another. To measure the effect of 066

transfer learning, we employ the concept of data 067

transfer (Hernandez et al., 2021), which allows us 068

to quantify how much each different source lan- 069

guage contributes to the perplexity of the target 070

language. 071

Our findings reveal a surprising trend: even 072

when comparing linguistically distant languages, 073

the data transfer metrics are of a comparable mag- 074

nitude. This research contributes additional evi- 075

dence supporting the language-agnostic hypothe- 076

sis, which suggests that the internal representations 077

developed by a model are less influenced by the 078

linguistic surface form and more by the cultural 079

and semantic content of the training data. 080
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2 Related Work081

Prior work attributed the success of multilingual082

models in cross-lingual transfer to “anchor” to-083

kens (Pires et al., 2019). However, subsequent084

research demonstrated that models could perform085

well even without these tokens (Artetxe et al.,086

2020), highlighting the significance of shared pa-087

rameters during training (Conneau et al., 2020).088

Competitive results were achieved by monolingual089

models with minimal or no adaptation (Artetxe090

et al., 2020; de Souza et al., 2021).091

Investigations by Blevins and Zettlemoyer092

(2022) linked these findings to language contami-093

nation, where pretraining datasets contained target094

language data. Additional factors contributing to095

cross-lingual transfer success include dataset statis-096

tics, language attributes (Lin et al., 2019), language097

structure (Lin et al., 2019; Papadimitriou and Ju-098

rafsky, 2020; Chiang and yi Lee, 2020; Ri and099

Tsuruoka, 2022), and token overlap between train-100

ing and target languages (Beukman and Fokam,101

2023). The role of language script (Fujinuma et al.,102

2022) and model tokenizer (Rust et al., 2021) was103

also noted, prompting the use of a byte tokenizer104

to address these issues (Xue et al., 2022; Abonizio105

et al., 2022).106

Recent research proposed a two-component107

model representation hypothesis—language agnos-108

tic and language specific (de Souza et al., 2021;109

Zeng et al., 2023; Wu et al., 2022). While promis-110

ing, no study has measured how much of the111

language-agnostic component is used in settings112

with multiple source and target languages. Addi-113

tionally, existing research still applies the source114

language vocabulary to the target language, po-115

tentially compromising input representations and116

affecting results.117

To address these gaps, we draw on Hernandez118

et al. (2021) and employ a byte vocabulary in our119

experiments to overcome current literature limita-120

tions.121

3 Methodology122

Inspired by Hernandez et al. (2021), our method-123

ology involves both training a model from scratch124

and finetuning a pretrained model in a source125

language, employing datasets in a target lan-126

guage that span different orders of magnitude. To127

measure the transfer of knowledge from the pre-128

trained model to the downstream task, we calcu-129

late the number of additional tokens required for130

the scratch-trained model to achieve comparable 131

performance. We explain it in more depth in Sec- 132

tion 3.3. 133

These experiments aim to quantify the trans- 134

ferability of pretraining data across distributions, 135

specifically, between different languages. The fol- 136

lowing subsections highlight specific details of our 137

methodology. 138

3.1 Evaluation Metric 139

We have chosen perplexity as our performance met- 140

ric for all experiments. Since perplexity is based 141

on the model’s loss (eloss), this choice facilitates 142

future experiments by allowing the formulation of 143

equations predicting the models’ behavior in terms 144

of transfer learning, as in Hernandez et al. (2021). 145

3.2 Tokenization Impact 146

In cross-lingual setups, the choice of tokenization 147

method holds considerable significance (Rust et al., 148

2021). While subword tokenizers are commonly 149

employed in cross-lingual experiments, using a to- 150

kenizer trained in a source language on a distant 151

target language may result in an increased number 152

of tokens. This can lead to the utilization of un- 153

dertrained embeddings in some instances, introduc- 154

ing challenges for effective sentence representation. 155

Furthermore, dealing with different scripts intro- 156

duces the issue of numerous “unknown” tokens, 157

exacerbating the difficulty of obtaining suitable in- 158

put representations for the model. 159

To address these challenges, we opt for a byte 160

vocabulary based on the approach proposed by 161

Xue et al. (2022), which allows us to standardize 162

representations across all languages, ensuring that 163

each model encounters the same quantity of UTF-8 164

bytes. By doing so, we mitigate the use of unknown 165

tokens and undertrained embeddings, thereby min- 166

imizing the impact of tokenization issues on the 167

performance of our experiments. 168

3.3 Data Transfer Estimation 169

Building on Hernandez et al. (2021), we estimate 170

the amount of data transferred from pretraining, 171

measured in bytes. The Data Transfer coefficient 172

(or DT ) is the amount of data in the target lan- 173

guage that a model trained from scratch should see 174

to achieve the same performance as a model that 175

was initialized in a source language. The intuition 176

behind this method is that this number of additional 177

tokens a scratch-initialized model needs when com- 178

pared to a pretrained one indicates how much of the 179
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Figure 1: Example illustrating how the coeficients DT , DF and DE are calculated. Each series represents a different
initialization. DT is the number of additional tokens in the target language that a from-scratch model would have
needed to achieve the same perplexity of a model finetuned from English. DF is the size of the dataset used for
finetuning and DE accounts for all data, both DF and DT .

language modeling pretraining the latter is using180

on the downstream task. Figure 1 illustrates this181

measurement in an example.182

In contrast to the original work, we utilize linear183

interpolation based on experiment data points. We184

perform experiments with finetune datasets that185

span four orders of magnitude. These data points,186

both from scratch and pretrained models, are used187

to perform linear interpolations to estimate DE ,188

which is the effective amount of data, accounting189

for the finetune dataset size (DF ). By subtracting190

the latter, we get DT , which accounts only for the191

usage of the model’s pretraining:192

DT = DE −DF193

Since we use a byte vocabulary, the amount of194

data transferred is measured in bytes.195

3.4 Language Contamination196

A potential reason for a pretrained model excelling197

in a cross-lingual task is the presence of a sub-198

stantial amount of data in the target language in199

its pertaining dataset, referred to as language con-200

tamination. To measure this impact, following the201

exploration by Blevins and Zettlemoyer (2022), we202

analyze the rates of target language fragments in203

the source language dataset and vice versa. Cor-204

relating these rates with the model’s data transfer205

indicator enables us to assess the contamination’s206

impact.207

Code Language Family Script

ar Arabic Afro-Asiatic Arabic
en English Indo-European Latin
es Spanish Indo-European Latin
zh Chinese Sino-Tibetan Hanzi
fi Finnish Uralic Latin
de German Indo-European Latin
ko Korean Koreanic Hangul
id Indonesian Austronesian Latin
ja Japanese Japonic Kanji, Hiragana, Katakana
ru Russian Indo-European Cyrillic

Table 1: Characteristics of selected target languages.

4 Experiments 208

This section presents the languages, datasets, 209

model architecture, and training details for our ex- 210

periments. 211

4.1 Languages 212

Source Languages Selection. We chose three 213

diverse languages—English, Russian, and Chi- 214

nese—for the source language during the pretrain- 215

ing phase. This selection ensures a broad linguistic 216

spectrum while adhering to pretraining budget con- 217

straints. 218

Target Languages Selection. Ten target languages, 219

spanning various language families and different 220

scripts, were chosen to establish a diverse cross- 221

lingual setting. Details, including language codes, 222

are provided in Table 1. 223
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4.2 Datasets224

For training and finetuning, language subsets from225

the mC4 dataset (Xue et al., 2021) for the selected226

languages were utilized.1 Datasets were truncated227

to control token exposure. Pretraining datasets228

comprised approximately 6 billion tokens, while229

finetuning datasets ranged from 6 million to 6 bil-230

lion tokens.231

4.3 Model Architecture232

Our model follows a decoder-only architecture, em-233

ploying a byte vocabulary with an embedding di-234

mension of 640. The model consists of 10 layers,235

each featuring 10 attention heads with dimensions236

of 64. The intermediate dimension of Multi-Layer237

Perceptron (MLP) has a dimension of 2560, result-238

ing in a total of approximately 65 million param-239

eters. The non-linearity function used throughout240

the model is GELU (Hendrycks and Gimpel, 2023).241

4.4 Training details242

Models were trained using the AdamW optimizer243

with an initial learning rate of 2e-4, which decayed244

to 2e-5 through cosine decay following Hoffmann245

et al. (2022). Finetuning employed a constant learn-246

ing rate of 2e-5 over 10 epochs, except for the 6247

billion dataset size where we limited it to 3 epochs.248

This adjustment was based on preliminary exper-249

iments indicating that the model tends to overfit250

beyond this epoch count in larger datasets. The251

best model was selected based on the lowest per-252

plexity achieved on the development set. Warmup253

steps varied with finetuning dataset sizes (ranging254

from 0 for smaller datasets to 3000 for larger ones),255

aligning with findings that smaller datasets com-256

pleted finetuning before warmup completion (Her-257

nandez et al., 2021). We utilized the T5X frame-258

work (Roberts et al., 2022) for our experiments.259

We used a total of 300 hours of a TPU v2-8 (seven260

hours of pretraining per model, and fifteen hours261

for the largest finetune).262

5 Results263

In this section, we present experiment outcomes,264

concentrating on assessing the model’s perfor-265

mance and cross-lingual transfer capabilities. Re-266

sults are consolidated in Table 2, exclusively report-267

ing instances where source and target languages268

differ.269

1See https://huggingface.co/datasets/mc4 for
more details

Throughout this section, we emphasize find- 270

ings from models finetuned on the 6 million token 271

dataset unless specified otherwise. This represents 272

an extreme scenario, testing models with minimal 273

target language resources. Analyzing these results 274

is crucial for investigating the hypothesis that mod- 275

els universally leverage knowledge in a language- 276

agnostic manner. 277

5.1 Performance with different initializations 278

In this subsection, we highlight the results specific 279

to three target languages—Spanish, Arabic, and 280

Japanese—through the examination of perplexity 281

values, as depicted in Figure 2. 282

A noteworthy observation is the convergence of 283

results between models initialized from scratch and 284

pretrained models, occurring approximately around 285

109 tokens of the target language. This intersection 286

implies that a model pretrained on a foreign lan- 287

guage remains beneficial, especially in scenarios 288

with limited labeled data, a common characteristic 289

of many low-resource languages. This finding un- 290

derscores the practicality of leveraging pretrained 291

models for effective cross-lingual transfer. 292

Our results collectively imply that the choice 293

of the source language for pretraining plays a mi- 294

nor role in determining cross-lingual model per- 295

formance. This phenomenon aligns with our hy- 296

pothesis that, during pretraining, the models ac- 297

quire highly generalized representations, facilitat- 298

ing transferability across multiple languages. 299

5.2 Data Transfer estimation for target 300

languages 301

In our exploration of data transfer, we adopt a 302

methodology inspired by Hernandez et al. (2021), 303

estimating the data transferred from pretraining us- 304

ing Linear Interpolation2 with our experiment data 305

points. Notably, we express the data transfer in 306

bytes, aligning with our reliance on a byte-level to- 307

kenizer. To visually guide our findings, we present 308

a scatter plot in Figure 3, offering a representa- 309

tion of the data transfer across target languages and 310

source language variations. 311

One intriguing outcome surfaces: the amount of 312

data transfer remains remarkably consistent across 313

all target languages, spanning at most one order of 314

magnitude. The values are concentrated within the 315

range of 50 to 100 megabytes. Figure 4 illustrates 316

2We use the Numpy package for estimating the Data Trans-
fer. For more details, see https://numpy.org/doc/stable/
reference/generated/numpy.interp.html
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Source Lang. Metric ar de en es fi id ja ko ru zh

Scratch init. Perplexity 6.44 14.82 16.28 12.54 12.71 12.00 12.47 11.69 6.27 15.34

English Perplexity 2.82 3.67 - 3.16 3.57 2.61 3.92 3.58 2.44 4.43
DT 101.02 95.25 - 121.14 76.57 102.62 47.50 48.74 75.64 29.21

Russian Perplexity 2.83 3.98 3.66 3.47 3.80 2.84 3.89 3.58 - 4.52
DT 99.00 47.87 174.63 67.88 50.96 51.32 47.81 48.69 - 26.18

Chinese Perplexity 2.88 4.26 3.89 3.75 3.98 2.98 3.46 3.48 2.72 -
DT 90.63 31.76 66.96 50.27 49.65 50.21 69.48 49.88 48.47 -

Table 2: Results for Perplexity and Data Transfer (in MB) for all target and source languages. All metrics are
reported after finetuning the models in 6 million tokens of the target language.
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Figure 2: Results measured in Perplexity per token for three target languages. Each series represents a different
initialization: train from scratch, finetune from an English, Chinese, or Russian model.
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Figure 3: Dispersion chart for Data Transfer (DT ) across target languages. Each series corresponds to a distinct
source language. The first dashed line (top-to-bottom) indicates the average of the best results (higher transfer),
while the second one represents the average of the worst results (lower transfer).
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Figure 4: Boxplot with Data Transfer results for the 6
million tokens datasets in all target languages. Each
series represents data from a different source language.
DT is expressed in megabytes.

the distribution of data transfer values for source317

languages, revealing a consistent and low variabil-318

ity pattern. Notably, both Chinese (zh) and Russian319

(ru) display strikingly similar distributions, empha-320

sizing the uniformity of data transfer characteris-321

tics observed across different linguistic contexts,322

with subtle variations more pronounced in English323

data. Examination of the first quartile further un-324

derscores the remarkable resemblance among all325

languages.326

This notable uniformity supports our language-327

agnostic hypothesis, implying that the knowledge328

acquired during pretraining and subsequently trans-329

ferred to a downstream task exhibits striking simi-330

larity across diverse target languages.331

An interesting observation emerges from the332

clustering of four target languages (Finnish, In-333

donesian, Japanese, and Korean), where two dis-334

tinct initializations yield nearly identical data trans-335

fer amounts. This suggests that the "language-336

agnostic" component acquired during pretraining337

is consistent in these cases. A similar trend is ob-338

served for German, Spanish, and Russian, though339

with more noticeable variation between the two340

data points for each language.341

Moreover, specific languages highlight distinct342

scenarios in data transfer. Arabic (ar) and Chinese343

(zh) represent edge scenarios, with all source lan-344

guages performing optimally in Arabic and exhibit-345

ing low transfer for Chinese. We attribute the per-346

plexities observed for a model trained from scratch347

in both languages (with 6 million tokens) to poten-348

tial variations in the evaluation dataset examples,349

containing information or concepts that are either350

easily or challenging to transfer.351

English (en) emerges as a standout performer352

in transferring knowledge to most of our selected353

target languages. One plausible explanation is the354

ubiquitous presence of English in corpora from 355

other languages. We explore this hypothesis fur- 356

ther in Section 5.3. Another consideration is that 357

the English slice of mC4 used in pretraining may 358

contain a wealth of knowledge transferrable to the 359

evaluation sets of any target language, independent 360

of the language itself. 361

Additionally, we observe that Chinese (zh) tends 362

to transfer effectively to Japanese (ja) and Ko- 363

rean (ko), both of which are considered closer lan- 364

guages. 365

5.3 Language Contamination 366

We evaluate language contamination bidirection- 367

ally: measuring target language contamination in 368

the pretraining dataset and source language con- 369

tamination in the target dataset. Following the ap- 370

proach outlined by Blevins and Zettlemoyer (2022) 371

and employing fasttext (Bojanowski et al., 2017) 372

for language classification with a threshold of 0.6, 373

we compute Spearman correlations between lan- 374

guage ratios and data transfer coefficients. Table 3 375

summarizes the results. 376

Correlation ρ p-value
DT and contamination on source 0.191 0.0157
DT and contamination on target 0.265 0.0021

Table 3: Spearman Correlation (ρ) and p-value assessing
the correlation of DT with both the ratio of a target lan-
guage in the source dataset (contamination on source)
and with source language in the target dataset (contami-
nation on target).

In this analysis, we exclude the 6 billion to- 377

kens finetune dataset size to mitigate the impact 378

of the ossification effect, as observed in Hernandez 379

et al. (2021). The ossification effect results in a 380

performance drop for the pretrained model with 381

larger finetune datasets, worsening its perplexity 382

compared to a scratch-trained model. Given its 383

potential to introduce noise and adversely affect 384

the coefficient calculation, we exclude this data 385

point, considering it is only one per source-target 386

language pair. We also use the permutation test 387

to calculate the p-value because of the size of our 388

sample (< 500 observations). 389

The observed weak association between selected 390

coefficients and language contamination suggests 391

a negligible impact on cross-lingual performance. 392

This contradicts the findings of Blevins and Zettle- 393

moyer (2022), indicating a minor role for language 394

contamination in the source dataset. 395
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Figure 5: Results for Spanish, measured in Perplexity
per token. Each series represents data from a different
source language with Spanish as the finetuning (target)
language.

Additionally, we explore language contamina-396

tion in target datasets, positing that the presence of397

widespread languages, such as English, might in-398

fluence the model’s token predictions by providing399

contextual clues. The identified weak association400

does not support the language contamination hy-401

pothesis.402

5.4 Language Distance and Data Transfer403

Expanding our investigation, we explore the poten-404

tial correlation between source and target language405

distances and their influence on Data Transfer dur-406

ing pretraining. Following the methodology out-407

lined by Littell et al. (2017), we leverage syntactic408

language distances computed in advance.409

Our findings reveal a very weak correlation (ρ =410

-0.220) between source-target language distances411

and Data Transfer, with a p-value exceeding 0.9,412

suggesting limited statistical significance and cau-413

tion in drawing conclusions from the dataset.414

To deepen our analysis, an additional controlled415

experiment is conducted by pretraining a language416

model in Portuguese and evaluating its perfor-417

mance against the Spanish target language. Por-418

tuguese is known to be similar to Spanish. Our419

results, depicted in Figure 5, are compared with420

various initializations, including more distant lan-421

guages such as Chinese.422

Notably, all initializations exhibit comparable423

performance, indicating that language distance has424

a minimal impact on the model’s overall effective-425

ness.426

Pair (L1, L2) L1 → L2 L2 → L1 ∆
en, ru 75.64 174.63 98.99
en, zh 29.21 66.96 37.75
ru, zh 26.18 48.47 22.29

Table 4: Analysis of the Commutative Property in terms
of Data Transfer DT . We analyze pairs of languages
(L1, L2), reporting the observed DT from L1 to L2 and
vice-versa. Values are reported in megabytes.

5.5 Commutative property exploration 427

We examine the commutative property of data 428

transfer between English (en), Russian (ru), and 429

Chinese (zh) in our cross-lingual experiments (Ta- 430

ble 4). Notably, the data transfer amounts exhibit 431

non-commutative behavior, revealing variations in 432

knowledge transfer efficiency across bidirectional 433

language pairs. 434

In the English-to-Russian transfer (en, ru), data 435

transfer is more efficient when directed from Rus- 436

sian to English (174.63) compared to the reverse di- 437

rection (75.64), indicating an asymmetry in knowl- 438

edge transfer. Similarly, in the English-to-Chinese 439

transfer (en, zh), data transfer is more substantial 440

from English to Chinese (66.96) than in the reverse 441

direction (29.21). 442

The Russian to Chinese transfer (ru, zh) also 443

demonstrates a non-commutative pattern, with 444

higher data transfer from Russian to Chinese 445

(48.47) than in the reverse direction (26.18). 446

The variance in mC4 subsets for each language 447

introduces significant differences in both pretrain- 448

ing and evaluation datasets, potentially contribut- 449

ing to the absence of a commutative behavior. A 450

more in-depth analysis would necessitate repeating 451

experiments with equivalent datasets. 452

6 Discussion 453

Our study investigates the effectiveness of 454

language-agnostic representations acquired during 455

pretraining in cross-lingual scenarios. We hypoth- 456

esize that these representations enable models to 457

perform well on downstream tasks across diverse 458

languages. 459

Surprisingly, our findings indicate that the 460

amount of data transferred across 10 distinct target 461

languages, from a diverse set of script systems and 462

linguistic families, remains consistently close. This 463

supports our hypothesis, suggesting that models 464

rely on a universal form of knowledge. The ability 465

of models to achieve comparable performance, irre- 466

spective of linguistic dissimilarity between source 467

7



and target languages, is underscored by the uni-468

formity of language-agnostic representations, as469

depicted in Figures 3 and 4.470

Despite exposure to only a few tokens in the471

target language, our models consistently demon-472

strate similar perplexity performance, indicating473

high adaptability and generalization across a broad474

range of languages. This reinforces the notion that475

the language-agnostic component plays a crucial,476

uniform role across source languages.477

Notably, our results are not attributed to pre-478

training exposure to target languages, since there479

is a weak correlation of language contamination480

with the data transfer coefficient. Additionally, the481

observed performance is not solely dependent on482

language proximity, as suggested in other works.483

The novelty of our approach is employing a484

byte-level tokenizer and adapting Hernandez et al.485

(2021) for a cross-lingual scenario. The byte-486

level approach facilitates consistent model em-487

beddings across diverse scripts, enabling effective488

cross-lingual knowledge transfer without language-489

specific tokenization or preprocessing. This is sup-490

ported by the strong performance of ByT5 com-491

pared to mT5 in Xue et al. (2022).492

In conclusion, our study provides compelling ev-493

idence for the efficacy of language-agnostic repre-494

sentations in enabling cross-lingual transferability.495

The robustness of our models and the role of the496

byte-level tokenizer offer promising avenues for497

more efficient and generalizable natural language498

understanding across linguistic boundaries in com-499

putational linguistics and NLP.500

7 Limitations501

Our study has certain limitations that merit consid-502

eration. Firstly, our choice of initializing models503

with only three languages, while diverse, leaves504

room for improvement. The inclusion of additional505

languages in the pretraining phase would enhance506

the robustness of our analysis by minimizing noise.507

However, this expansion would necessitate a more508

substantial computational budget.509

Secondly, our reliance on small models, specifi-510

cally a 65 million parameter model, limits the scope511

of our findings as larger models may exhibit dif-512

ferent behavior. Additionally, the capacity of very513

large models for few-shot learning opens avenues514

for further exploration in the domain of transfer515

learning.516

Lastly, the heterogeneity of the mC4 dataset517

across languages introduces a potential source of 518

variability in the models’ exposure to different 519

knowledge. While the impact of this variation on 520

data transfer remains unclear, conducting experi- 521

ments with controlled datasets would offer valuable 522

insights. Moreover, employing a more comparable 523

test set could help mitigate noise, particularly in 524

analyses such as the commutative property assess- 525

ment. 526

8 Conclusion and Future Work 527

Our study delves into the transferability of 528

language-agnostic knowledge in cross-lingual sce- 529

narios, leveraging a byte-level tokenizer and an 530

adapted methodology inspired by Hernandez et al. 531

(2021). By measuring and gaining insights into 532

the models’ reliance on pretraining when executing 533

tasks in diverse languages, our approach offers an 534

understanding of the cross-lingual capabilities of 535

language models. The results provide evidence that 536

aligns with our hypothesis, emphasizing the signif- 537

icance of language-agnostic representations. This 538

not only contributes to the current understanding of 539

cross-lingual transferability but also serves as a cat- 540

alyst for further exploration into the properties of 541

language-agnostic knowledge transfer. For future 542

research directions, we envision key investigations 543

that can build upon the insights presented in this 544

paper: 545

1. Expand Experiment Range: Use more 546

source languages so we can draw stronger con- 547

clusions. 548

2. Controlled Datasets Usage: Employ con- 549

trolled datasets and comparable test sets to 550

address mC4 dataset heterogeneity, offering 551

clearer insights into varied knowledge expo- 552

sure impact on cross-lingual transferability 553

and mitigating noise. 554

3. Explore Larger Models: Investigate the use 555

of larger models in few-shot learning down- 556

stream tasks as complementary evaluations to 557

perplexity measurements. 558
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