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Abstract

Multilingual pretraining has been a successful
solution to the challenges posed by the lack
of resources for languages. These models can
transfer knowledge to target languages with
minimal or no examples. Recent research sug-
gests that monolingual models also have a sim-
ilar capability, but the mechanisms behind this
transfer remain unclear. Some studies have ex-
plored factors like language contamination and
syntactic similarity. An emerging line of re-
search suggests that the representations learned
by language models contain two components:
a language-specific and a language-agnostic
component. The latter is responsible for trans-
ferring a more universal knowledge. However,
there is a lack of comprehensive exploration of
these properties across diverse target languages.
To investigate this hypothesis, we conducted an
experiment inspired by the work on the Scaling
Laws of Transfer. We measured the amount of
data transferred from a source language to a tar-
get language and found that models initialized
from diverse languages perform similarly to a
target language in a cross-lingual setting. This
was surprising because the amount of data trans-
ferred to 10 diverse target languages, such as
Spanish, Korean, and Finnish, was quite similar.
We also found evidence that this transfer is not
related to language contamination nor language
syntactical proximity, which strengthens our
hypothesis that the model relies on language-
agnostic knowledge. Our experiments have
opened up new possibilities for measuring how
much data represents the language-agnostic rep-
resentations learned during pretraining.

1 Introduction

The emergence of self-supervised pretraining mod-
els such as BERT has revealed a notable phe-
nomenon of cross-lingual transfer even when these
models are trained on multilingual corpora de-
void of paired translation examples. For example,
LLAMA (Touvron et al., 2023), which was trained

self-supervisedly on an English-centric corpus, ex-
hibits surprising multilingual capabilities (Yuan
et al., 2023; Ye et al., 2023). The underlying mech-
anisms driving this behavior remain unclear, with
hypotheses ranging from the presence of shared
“anchor” tokens (Pires et al., 2019) to language con-
tamination (Blevins and Zettlemoyer, 2022), yet no
scientific consensus has been reached.

Research in this area often involves the use of
pre-existing language models (LMs), which are
subsequently finetuned on supervised datasets in
different languages (de Souza et al., 2021; Yuan
et al., 2023). However, when evaluating multiple
languages, conventional methodologies encounter
two significant challenges: firstly, the dependence
on supervised finetuning datasets, which often vary
in size and quality, complicating cross-lingual com-
parisons; secondly, the use of subword tokenizers,
which do not represent all languages equally.

In this work, we avoid these problems by
working with byte-level tokenizer and by using
auto-regressive language models trained in self-
supervised from scratch in one language and then
finetuned on another. To measure the effect of
transfer learning, we employ the concept of data
transfer (Hernandez et al., 2021), which allows us
to quantify how much each different source lan-
guage contributes to the perplexity of the target
language.

Our findings reveal a surprising trend: even
when comparing linguistically distant languages,
the data transfer metrics are of a comparable mag-
nitude. This research contributes additional evi-
dence supporting the language-agnostic hypothe-
sis, which suggests that the internal representations
developed by a model are less influenced by the
linguistic surface form and more by the cultural
and semantic content of the training data.



2 Related Work

Prior work attributed the success of multilingual
models in cross-lingual transfer to “anchor” to-
kens (Pires et al., 2019). However, subsequent
research demonstrated that models could perform
well even without these tokens (Artetxe et al.,
2020), highlighting the significance of shared pa-
rameters during training (Conneau et al., 2020).
Competitive results were achieved by monolingual
models with minimal or no adaptation (Artetxe
et al., 2020; de Souza et al., 2021).

Investigations by Blevins and Zettlemoyer
(2022) linked these findings to language contami-
nation, where pretraining datasets contained target
language data. Additional factors contributing to
cross-lingual transfer success include dataset statis-
tics, language attributes (Lin et al., 2019), language
structure (Lin et al., 2019; Papadimitriou and Ju-
rafsky, 2020; Chiang and yi Lee, 2020; Ri and
Tsuruoka, 2022), and token overlap between train-
ing and target languages (Beukman and Fokam,
2023). The role of language script (Fujinuma et al.,
2022) and model tokenizer (Rust et al., 2021) was
also noted, prompting the use of a byte tokenizer
to address these issues (Xue et al., 2022; Abonizio
et al., 2022).

Recent research proposed a two-component
model representation hypothesis—Ilanguage agnos-
tic and language specific (de Souza et al., 2021;
Zeng et al., 2023; Wu et al., 2022). While promis-
ing, no study has measured how much of the
language-agnostic component is used in settings
with multiple source and target languages. Addi-
tionally, existing research still applies the source
language vocabulary to the target language, po-
tentially compromising input representations and
affecting results.

To address these gaps, we draw on Hernandez
et al. (2021) and employ a byte vocabulary in our
experiments to overcome current literature limita-
tions.

3 Methodology

Inspired by Hernandez et al. (2021), our method-
ology involves both training a model from scratch
and finetuning a pretrained model in a source
language, employing datasets in a target lan-
guage that span different orders of magnitude. To
measure the transfer of knowledge from the pre-
trained model to the downstream task, we calcu-
late the number of additional tokens required for

the scratch-trained model to achieve comparable
performance. We explain it in more depth in Sec-
tion 3.3.

These experiments aim to quantify the trans-
ferability of pretraining data across distributions,
specifically, between different languages. The fol-
lowing subsections highlight specific details of our
methodology.

3.1 Evaluation Metric

We have chosen perplexity as our performance met-
ric for all experiments. Since perplexity is based
on the model’s loss (e/°%%), this choice facilitates
future experiments by allowing the formulation of
equations predicting the models’ behavior in terms
of transfer learning, as in Hernandez et al. (2021).

3.2 Tokenization Impact

In cross-lingual setups, the choice of tokenization
method holds considerable significance (Rust et al.,
2021). While subword tokenizers are commonly
employed in cross-lingual experiments, using a to-
kenizer trained in a source language on a distant
target language may result in an increased number
of tokens. This can lead to the utilization of un-
dertrained embeddings in some instances, introduc-
ing challenges for effective sentence representation.
Furthermore, dealing with different scripts intro-
duces the issue of numerous “unknown” tokens,
exacerbating the difficulty of obtaining suitable in-
put representations for the model.

To address these challenges, we opt for a byte
vocabulary based on the approach proposed by
Xue et al. (2022), which allows us to standardize
representations across all languages, ensuring that
each model encounters the same quantity of UTF-8
bytes. By doing so, we mitigate the use of unknown
tokens and undertrained embeddings, thereby min-
imizing the impact of tokenization issues on the
performance of our experiments.

3.3 Data Transfer Estimation

Building on Hernandez et al. (2021), we estimate
the amount of data transferred from pretraining,
measured in bytes. The Data Transfer coefficient
(or D) is the amount of data in the target lan-
guage that a model trained from scratch should see
to achieve the same performance as a model that
was initialized in a source language. The intuition
behind this method is that this number of additional
tokens a scratch-initialized model needs when com-
pared to a pretrained one indicates how much of the
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Figure 1: Example illustrating how the coeficients Dy, D and D are calculated. Each series represents a different
initialization. Dy is the number of additional tokens in the target language that a from-scratch model would have
needed to achieve the same perplexity of a model finetuned from English. D is the size of the dataset used for

finetuning and D g accounts for all data, both D and Dr.

language modeling pretraining the latter is using
on the downstream task. Figure 1 illustrates this
measurement in an example.

In contrast to the original work, we utilize linear
interpolation based on experiment data points. We
perform experiments with finetune datasets that
span four orders of magnitude. These data points,
both from scratch and pretrained models, are used
to perform linear interpolations to estimate Dg,
which is the effective amount of data, accounting
for the finetune dataset size (D). By subtracting
the latter, we get D, which accounts only for the
usage of the model’s pretraining:

Dr = Dg — Dp

Since we use a byte vocabulary, the amount of
data transferred is measured in bytes.

3.4 Language Contamination

A potential reason for a pretrained model excelling
in a cross-lingual task is the presence of a sub-
stantial amount of data in the target language in
its pertaining dataset, referred to as language con-
tamination. To measure this impact, following the
exploration by Blevins and Zettlemoyer (2022), we
analyze the rates of target language fragments in
the source language dataset and vice versa. Cor-
relating these rates with the model’s data transfer
indicator enables us to assess the contamination’s
impact.

Code Language Family Script
ar Arabic Afro-Asiatic Arabic
en English Indo-European Latin
es Spanish  Indo-European Latin
zh Chinese Sino-Tibetan Hanzi

fi Finnish Uralic Latin

de German  Indo-European Latin

ko Korean Koreanic Hangul

id Indonesian  Austronesian Latin

ja Japanese Japonic Kanji, Hiragana, Katakana
ru Russian  Indo-European Cyrillic

Table 1: Characteristics of selected target languages.

4 Experiments

This section presents the languages, datasets,
model architecture, and training details for our ex-
periments.

4.1 Languages

Source Languages Selection. We chose three
diverse languages—English, Russian, and Chi-
nese—for the source language during the pretrain-
ing phase. This selection ensures a broad linguistic
spectrum while adhering to pretraining budget con-
straints.

Target Languages Selection. Ten target languages,
spanning various language families and different
scripts, were chosen to establish a diverse cross-
lingual setting. Details, including language codes,
are provided in Table 1.



4.2 Datasets

For training and finetuning, language subsets from
the mC4 dataset (Xue et al., 2021) for the selected
languages were utilized.! Datasets were truncated
to control token exposure. Pretraining datasets
comprised approximately 6 billion tokens, while
finetuning datasets ranged from 6 million to 6 bil-
lion tokens.

4.3 Model Architecture

Our model follows a decoder-only architecture, em-
ploying a byte vocabulary with an embedding di-
mension of 640. The model consists of 10 layers,
each featuring 10 attention heads with dimensions
of 64. The intermediate dimension of Multi-Layer
Perceptron (MLP) has a dimension of 2560, result-
ing in a total of approximately 65 million param-
eters. The non-linearity function used throughout
the model is GELU (Hendrycks and Gimpel, 2023).

4.4 Training details

Models were trained using the AdamW optimizer
with an initial learning rate of 2e-4, which decayed
to 2e-5 through cosine decay following Hoffmann
et al. (2022). Finetuning employed a constant learn-
ing rate of 2e-5 over 10 epochs, except for the 6
billion dataset size where we limited it to 3 epochs.
This adjustment was based on preliminary exper-
iments indicating that the model tends to overfit
beyond this epoch count in larger datasets. The
best model was selected based on the lowest per-
plexity achieved on the development set. Warmup
steps varied with finetuning dataset sizes (ranging
from O for smaller datasets to 3000 for larger ones),
aligning with findings that smaller datasets com-
pleted finetuning before warmup completion (Her-
nandez et al., 2021). We utilized the T5X frame-
work (Roberts et al., 2022) for our experiments.
We used a total of 300 hours of a TPU v2-8 (seven
hours of pretraining per model, and fifteen hours
for the largest finetune).

5 Results

In this section, we present experiment outcomes,
concentrating on assessing the model’s perfor-
mance and cross-lingual transfer capabilities. Re-
sults are consolidated in Table 2, exclusively report-
ing instances where source and target languages
differ.

ISee https://huggingface.co/datasets/mc4 for
more details

Throughout this section, we emphasize find-
ings from models finetuned on the 6 million token
dataset unless specified otherwise. This represents
an extreme scenario, testing models with minimal
target language resources. Analyzing these results
is crucial for investigating the hypothesis that mod-
els universally leverage knowledge in a language-
agnostic manner.

5.1 Performance with different initializations

In this subsection, we highlight the results specific
to three target languages—Spanish, Arabic, and
Japanese—through the examination of perplexity
values, as depicted in Figure 2.

A noteworthy observation is the convergence of
results between models initialized from scratch and
pretrained models, occurring approximately around
10 tokens of the target language. This intersection
implies that a model pretrained on a foreign lan-
guage remains beneficial, especially in scenarios
with limited labeled data, a common characteristic
of many low-resource languages. This finding un-
derscores the practicality of leveraging pretrained
models for effective cross-lingual transfer.

Our results collectively imply that the choice
of the source language for pretraining plays a mi-
nor role in determining cross-lingual model per-
formance. This phenomenon aligns with our hy-
pothesis that, during pretraining, the models ac-
quire highly generalized representations, facilitat-
ing transferability across multiple languages.

5.2 Data Transfer estimation for target
languages

In our exploration of data transfer, we adopt a
methodology inspired by Hernandez et al. (2021),
estimating the data transferred from pretraining us-
ing Linear Interpolation” with our experiment data
points. Notably, we express the data transfer in
bytes, aligning with our reliance on a byte-level to-
kenizer. To visually guide our findings, we present
a scatter plot in Figure 3, offering a representa-
tion of the data transfer across target languages and
source language variations.

One intriguing outcome surfaces: the amount of
data transfer remains remarkably consistent across
all target languages, spanning at most one order of
magnitude. The values are concentrated within the
range of 50 to 100 megabytes. Figure 4 illustrates

2We use the Numpy package for estimating the Data Trans-
fer. For more details, see https://numpy.org/doc/stable/
reference/generated/numpy.interp.html
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Source Lang. Metric ar de en es fi id ja ko ru zh
Scratch init.  Perplexity — 6.44 14.82 16.28 1254 1271 1200 1247 11.69 627 1534
Enelish Perplexity 2.82 3.67 - 3.16 3.57 2.61 3.92 3.58 2.44 4.43
& Dr 101.02 95.25 - 121.14 76.57 102.62 47.50 48.74 75.64 29.21
Russian Perplexity ~ 2.83 3.98 3.66 3.47 3.80 2.84 3.89 3.8 - 4.52
Dy 99.00 47.87 174.63 67.88 5096 51.32 47.81 48.69 - 26.18

Chinese Perplexity — 2.88 4.26 3.89 3.75 3.98 2.98 346 348 272 -

) Dr 90.63 31.76  66.96 50.27  49.65 5021 69.48 49.88 4847 -

Table 2: Results for Perplexity and Data Transfer (in MB) for all target and source languages. All metrics are
reported after finetuning the models in 6 million tokens of the target language.
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Figure 2: Results measured in Perplexity per token for three target languages. Each series represents a different
initialization: train from scratch, finetune from an English, Chinese, or Russian model.
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Figure 3: Dispersion chart for Data Transfer (D7) across target languages. Each series corresponds to a distinct

source language. The first dashed line (top-to-bottom) indicates the average of the best results (higher transfer),
while the second one represents the average of the worst results (lower transfer).
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Figure 4: Boxplot with Data Transfer results for the 6
million tokens datasets in all target languages. Each
series represents data from a different source language.
D is expressed in megabytes.

the distribution of data transfer values for source
languages, revealing a consistent and low variabil-
ity pattern. Notably, both Chinese (zh) and Russian
(ru) display strikingly similar distributions, empha-
sizing the uniformity of data transfer characteris-
tics observed across different linguistic contexts,
with subtle variations more pronounced in English
data. Examination of the first quartile further un-
derscores the remarkable resemblance among all
languages.

This notable uniformity supports our language-
agnostic hypothesis, implying that the knowledge
acquired during pretraining and subsequently trans-
ferred to a downstream task exhibits striking simi-
larity across diverse target languages.

An interesting observation emerges from the
clustering of four target languages (Finnish, In-
donesian, Japanese, and Korean), where two dis-
tinct initializations yield nearly identical data trans-
fer amounts. This suggests that the "language-
agnostic" component acquired during pretraining
is consistent in these cases. A similar trend is ob-
served for German, Spanish, and Russian, though
with more noticeable variation between the two
data points for each language.

Moreover, specific languages highlight distinct
scenarios in data transfer. Arabic (ar) and Chinese
(zh) represent edge scenarios, with all source lan-
guages performing optimally in Arabic and exhibit-
ing low transfer for Chinese. We attribute the per-
plexities observed for a model trained from scratch
in both languages (with 6 million tokens) to poten-
tial variations in the evaluation dataset examples,
containing information or concepts that are either
easily or challenging to transfer.

English (en) emerges as a standout performer
in transferring knowledge to most of our selected
target languages. One plausible explanation is the

ubiquitous presence of English in corpora from
other languages. We explore this hypothesis fur-
ther in Section 5.3. Another consideration is that
the English slice of mC4 used in pretraining may
contain a wealth of knowledge transferrable to the
evaluation sets of any target language, independent
of the language itself.

Additionally, we observe that Chinese (zh) tends
to transfer effectively to Japanese (ja) and Ko-
rean (ko), both of which are considered closer lan-
guages.

5.3 Language Contamination

We evaluate language contamination bidirection-
ally: measuring target language contamination in
the pretraining dataset and source language con-
tamination in the target dataset. Following the ap-
proach outlined by Blevins and Zettlemoyer (2022)
and employing fasttext (Bojanowski et al., 2017)
for language classification with a threshold of 0.6,
we compute Spearman correlations between lan-
guage ratios and data transfer coefficients. Table 3
summarizes the results.

Correlation p p-value
D~ and contamination on source | 0.191 0.0157
D7 and contamination on target | 0.265 | 0.0021

Table 3: Spearman Correlation (p) and p-value assessing
the correlation of D with both the ratio of a target lan-
guage in the source dataset (contamination on source)
and with source language in the target dataset (contami-
nation on target).

In this analysis, we exclude the 6 billion to-
kens finetune dataset size to mitigate the impact
of the ossification effect, as observed in Hernandez
et al. (2021). The ossification effect results in a
performance drop for the pretrained model with
larger finetune datasets, worsening its perplexity
compared to a scratch-trained model. Given its
potential to introduce noise and adversely affect
the coefficient calculation, we exclude this data
point, considering it is only one per source-target
language pair. We also use the permutation test
to calculate the p-value because of the size of our
sample (< 500 observations).

The observed weak association between selected
coefficients and language contamination suggests
a negligible impact on cross-lingual performance.
This contradicts the findings of Blevins and Zettle-
moyer (2022), indicating a minor role for language
contamination in the source dataset.
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Figure 5: Results for Spanish, measured in Perplexity
per token. Each series represents data from a different
source language with Spanish as the finetuning (target)
language.

Additionally, we explore language contamina-
tion in target datasets, positing that the presence of
widespread languages, such as English, might in-
fluence the model’s token predictions by providing
contextual clues. The identified weak association
does not support the language contamination hy-
pothesis.

5.4 Language Distance and Data Transfer

Expanding our investigation, we explore the poten-
tial correlation between source and target language
distances and their influence on Data Transfer dur-
ing pretraining. Following the methodology out-
lined by Littell et al. (2017), we leverage syntactic
language distances computed in advance.

Our findings reveal a very weak correlation (p =
-0.220) between source-target language distances
and Data Transfer, with a p-value exceeding 0.9,
suggesting limited statistical significance and cau-
tion in drawing conclusions from the dataset.

To deepen our analysis, an additional controlled
experiment is conducted by pretraining a language
model in Portuguese and evaluating its perfor-
mance against the Spanish target language. Por-
tuguese is known to be similar to Spanish. Our
results, depicted in Figure 5, are compared with
various initializations, including more distant lan-
guages such as Chinese.

Notably, all initializations exhibit comparable
performance, indicating that language distance has
a minimal impact on the model’s overall effective-
ness.

Pair (Ll, LQ) L1 — LQ LQ — L1 A
en, ru 75.64 174.63 98.99
en, zh 29.21 66.96 37.75
ru, zh 26.18 48.47 22.29

Table 4: Analysis of the Commutative Property in terms
of Data Transfer D. We analyze pairs of languages
(L1, Lo), reporting the observed Dr from Lq to Ly and
vice-versa. Values are reported in megabytes.

5.5 Commutative property exploration

We examine the commutative property of data
transfer between English (en), Russian (ru), and
Chinese (zh) in our cross-lingual experiments (Ta-
ble 4). Notably, the data transfer amounts exhibit
non-commutative behavior, revealing variations in
knowledge transfer efficiency across bidirectional
language pairs.

In the English-to-Russian transfer (en, ru), data
transfer is more efficient when directed from Rus-
sian to English (174.63) compared to the reverse di-
rection (75.64), indicating an asymmetry in knowl-
edge transfer. Similarly, in the English-to-Chinese
transfer (en, zh), data transfer is more substantial
from English to Chinese (66.96) than in the reverse
direction (29.21).

The Russian to Chinese transfer (ru, zh) also
demonstrates a non-commutative pattern, with
higher data transfer from Russian to Chinese
(48.47) than in the reverse direction (26.18).

The variance in mC4 subsets for each language
introduces significant differences in both pretrain-
ing and evaluation datasets, potentially contribut-
ing to the absence of a commutative behavior. A
more in-depth analysis would necessitate repeating
experiments with equivalent datasets.

6 Discussion

Our study investigates the effectiveness of
language-agnostic representations acquired during
pretraining in cross-lingual scenarios. We hypoth-
esize that these representations enable models to
perform well on downstream tasks across diverse
languages.

Surprisingly, our findings indicate that the
amount of data transferred across 10 distinct target
languages, from a diverse set of script systems and
linguistic families, remains consistently close. This
supports our hypothesis, suggesting that models
rely on a universal form of knowledge. The ability
of models to achieve comparable performance, irre-
spective of linguistic dissimilarity between source



and target languages, is underscored by the uni-
formity of language-agnostic representations, as
depicted in Figures 3 and 4.

Despite exposure to only a few tokens in the
target language, our models consistently demon-
strate similar perplexity performance, indicating
high adaptability and generalization across a broad
range of languages. This reinforces the notion that
the language-agnostic component plays a crucial,
uniform role across source languages.

Notably, our results are not attributed to pre-
training exposure to target languages, since there
is a weak correlation of language contamination
with the data transfer coefficient. Additionally, the
observed performance is not solely dependent on
language proximity, as suggested in other works.

The novelty of our approach is employing a
byte-level tokenizer and adapting Hernandez et al.
(2021) for a cross-lingual scenario. The byte-
level approach facilitates consistent model em-
beddings across diverse scripts, enabling effective
cross-lingual knowledge transfer without language-
specific tokenization or preprocessing. This is sup-
ported by the strong performance of ByT5 com-
pared to mT5 in Xue et al. (2022).

In conclusion, our study provides compelling ev-
idence for the efficacy of language-agnostic repre-
sentations in enabling cross-lingual transferability.
The robustness of our models and the role of the
byte-level tokenizer offer promising avenues for
more efficient and generalizable natural language
understanding across linguistic boundaries in com-
putational linguistics and NLP.

7 Limitations

Our study has certain limitations that merit consid-
eration. Firstly, our choice of initializing models
with only three languages, while diverse, leaves
room for improvement. The inclusion of additional
languages in the pretraining phase would enhance
the robustness of our analysis by minimizing noise.
However, this expansion would necessitate a more
substantial computational budget.

Secondly, our reliance on small models, specifi-
cally a 65 million parameter model, limits the scope
of our findings as larger models may exhibit dif-
ferent behavior. Additionally, the capacity of very
large models for few-shot learning opens avenues
for further exploration in the domain of transfer
learning.

Lastly, the heterogeneity of the mC4 dataset

across languages introduces a potential source of
variability in the models’ exposure to different
knowledge. While the impact of this variation on
data transfer remains unclear, conducting experi-
ments with controlled datasets would offer valuable
insights. Moreover, employing a more comparable
test set could help mitigate noise, particularly in
analyses such as the commutative property assess-
ment.

8 Conclusion and Future Work

Our study delves into the transferability of
language-agnostic knowledge in cross-lingual sce-
narios, leveraging a byte-level tokenizer and an
adapted methodology inspired by Hernandez et al.
(2021). By measuring and gaining insights into
the models’ reliance on pretraining when executing
tasks in diverse languages, our approach offers an
understanding of the cross-lingual capabilities of
language models. The results provide evidence that
aligns with our hypothesis, emphasizing the signif-
icance of language-agnostic representations. This
not only contributes to the current understanding of
cross-lingual transferability but also serves as a cat-
alyst for further exploration into the properties of
language-agnostic knowledge transfer. For future
research directions, we envision key investigations
that can build upon the insights presented in this

paper:

1. Expand Experiment Range: Use more
source languages so we can draw stronger con-
clusions.

2. Controlled Datasets Usage: Employ con-
trolled datasets and comparable test sets to
address mC4 dataset heterogeneity, offering
clearer insights into varied knowledge expo-
sure impact on cross-lingual transferability
and mitigating noise.

3. Explore Larger Models: Investigate the use
of larger models in few-shot learning down-
stream tasks as complementary evaluations to
perplexity measurements.
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