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ABSTRACT

Traditional drug discovery is protracted and extremely expensive. While
Structure-based Drug Design (SBDD) has advanced AI-driven molecular gen-
eration, target-centric models struggle with diseases arising from the dysreg-
ulation of complex physiological systems. To bridge this gap, we introduce
Transcriptome-based Drug Design (TBDD): designing molecules from a cell’s
transcriptomic response to perturbations. We present scTrans-Gen, a diffusion
model that conditions generation on multi-resolution transcriptomic data (bulk
and single-cell). Central to our approach is a transcriptome-centric condition ex-
tractor that aligns perturbation signals across domains into a function-oriented
chemical space, avoiding the ill-posed reconstruction of microscopic structures
from macroscopic signals. To exploit single-cell data, we propose a Transcriptome
Pseudoimage mechanism for robust high-resolution conditioning. Across diverse
benchmarks, scTrans-Gen outperforms strong baselines on multiple metrics. We
further demonstrate novel inhibitor design for specified gene knockouts and an ef-
ficient generate-then-search screening workflow suitable for time-sensitive clini-
cal scenarios. Altogether, scTrans-Gen offers a practical route to function-oriented
drug discovery and personalized precision medicine. The code is available at:
https://anonymous.4open.science/r/scTrans-Gen.

1 INTRODUCTION

Drug discovery is a long journey marked by high cost and high failure rates (Sadybekov & Katritch,
2023). For decades, computational methods have sought to accelerate this process, spanning from
virtual screening to de novo drug design (Sadybekov & Katritch, 2023; Tang et al., 2024). Virtual
screening is inherently limited to retrieving molecules from existing libraries and cannot create
compounds with novel scaffolds. Generative approaches, especially Structure-based Drug Design
(SBDD), have therefore gained traction for their ability to create entirely new molecules by modeling
protein 3D structures (Bai et al., 2024) and following the lock-and-key principle to yield high-affinity
ligands (Saini et al., 2025; Huang et al., 2024). However, SBDD’s target-centric view struggles with
systemic diseases driven by dysregulated, multi-pathway networks, and its effectiveness hinges on
obtaining high-quality protein structures at scale (Munson et al., 2024).

We posit that a drug’s systemic cellular effects can be captured precisely by its post-perturbation
transcriptome (Bunne et al., 2024). Changes in Transcriptome expression reflect the global func-
tional response of cells treated as complex systems (Ji et al., 2021). Yet current work on transcrip-
tomics largely focuses on predicting cellular responses to a given drug rather than exploiting the
perturbation signal to reverse-engineer and design new molecules (Hsieh et al., 2023; Rampášek
et al., 2019; Wei et al., 2022). We therefore introduce the problem: Transcriptome-based Drug De-
sign (TBDD). Formally, we seek to learn a conditional generator p(M | z), where the functional
signal z is defined by a pair of pre- and post-perturbation transcriptomes (Tpre,Tpost). The gener-
ator samples a novel molecule M that drives the cellular state from Tpre to Tpost. In this way, the
desired cellular response directly steers the generative design of new drugs and informs the search
for functionally similar molecules (Figure1).
While recent efforts have been made to address this problem (Li & Yamanishi, 2024; Kaitoh & Ya-
manishi, 2021; Cheng et al., 2024), three core challenges remain: (1) Ill-posed inverse mapping.
Prior attempts try to reconstruct complete, precise molecular structures directly from macroscopic,
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Figure 1: A comparative analysis of TBDD against existing settings.

noisy transcriptomic signals, a classic ill-posed setting (Li & Yamanishi, 2024; Kaitoh & Yaman-
ishi, 2021; Cheng et al., 2024). Transcriptomes primarily encode functional effects, not full atomic
blueprints. (2) Cross-modality domain gap. Transcriptome-expression profiles (“biological lan-
guage”) and molecular graphs (“chemical language”) differ in information density, topology, and
inductive biases; learning a direct generative map across these heterogeneous spaces is difficult and
unstable (Xiao et al., 2024; Zhou et al., 2025). (3) Multi-resolution opportunities and pitfalls.
Single-cell RNA-seq offers unprecedented resolution for drug action and cellular heterogeneity,
but demands robustness to sparsity, technical noise, and batch effects while also supporting bulk
data (Hafemeister & Halbritter, 2023; Van de Sande et al., 2023).

Inspired by advances in diffusion models and multimodal alignment (Rombach et al., 2022; Rad-
ford et al., 2021), which show that semantic cues can steer generation across domains, we present
scTrans-Gen: a diffusion framework for transcriptome-guided de novo drug design using multi-
resolution transcriptomic data. Instead of direct structural mapping, we introduce a function-centric
condition extractor that projects cellular perturbations into a functional chemical space to guide a
graph diffusion model. Additionally, we propose a Transcriptome Pseudoimage mechanism to ef-
fectively harness single-cell data by reducing noise while preserving biological heterogeneity.

We establish a rigorous evaluation suite for this new setting, covering basic coverage and diversity
metrics, structural similarity measures, and estimation of perturbation effects. scTrans-Gen substan-
tially outperforms strong baselines. We also validate practical utility via a zero-shot gene-inhibitor
design scenario. Finally, recognizing that de novo generation may be too slow for urgent clinical
needs, we introduce a generate-then-search screening pipeline built atop our learned functional rep-
resentations, enabling triage for personalized, time-sensitive care. Our contributions are as follows:

• We propose and formalize, for the first time, de novo drug design conditioned on cellular perturba-
tion and build an efficient generate-then-search screening framework, opening a function-oriented
direction for drug discovery.

• We design scTrans-Gen, which couples function-centric conditioning with multi-domain align-
ment to construct a function-oriented intermediate space, effectively resolving cross-modal ill-
posedness and mitigating the brittleness of direct inverse mapping.

• We demonstrate the first conditional molecular generation at fine-grained single-cell transcrip-
tomic resolution, enabled by the Transcriptome Pseudoimage technique to combat sparsity and
noise, while remaining compatible with coarse-grained bulk resolution.

• By integrating multiple comprehensive evaluation metrics and designing various real application
scenarios, we demonstrate the advantages of scTrans-Gen in personalized medicine.

2 RELATED WORK

Machine-Learning–Based Molecular Design. Deep molecular design has evolved from SMILES
sequence models to graph-based approaches that preserve molecular topology (Wang et al., 2025;
Gómez-Bombarelli et al., 2018). Hierarchical generators such as Jin et al. (2020); You et al. (2024);
Weller & Rohs (2024) efficiently construct large molecules in a coarse-to-fine manner. Yet uncon-
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ditional generation is unfocused for drug-design goals. Transformer-based graph diffusion mod-
els (Liu et al., 2024; Peng et al., 2023; Hoogeboom et al., 2022; Peng et al., 2023; Schneuing et al.,
2024) enable multi-conditional generation via mechanisms like AdaLN to inject external signals.
Structure-based drug design (SBDD) remains a classical conditional paradigm that uses 3D pocket
structures to guide ligand generation and optimize (Alakhdar et al., 2024; Guan et al., 2024), but its
single-target perspective limits performance on multi-pathway diseases and relies on high-quality
protein structures (Isert et al., 2023; Wang et al., 2018; Fahim, 2025; Ziv et al., 2025).

Cellular-Perturbation Transcriptomics. Transcriptomics offers a comprehensive snapshot of cel-
lular function. Large perturbational resources, such as Subramanian et al. (2017); Gao et al. (2019);
Zhang et al. (2025), provide massive gene-expression profiles under chemical or genetic pertur-
bations. Building upon them, predictive models (Qi et al., 2024; Hetzel et al., 2022; Lotfollahi
et al., 2019; Roohani et al., 2024) integrate chemistry and baseline state to forecast single-cell or
bulk responses, while frameworks like Adduri et al. (2025) target heterogeneity and batch effects.
Although useful for simulating responses, such models are predictive rather than generative. Emerg-
ing transcriptome-guided generation methods (Li & Yamanishi, 2024; Kaitoh & Yamanishi, 2021;
Cheng et al., 2024) either depend on explicit statistics that risk losing information or focus on bulk
data that averages heterogeneity, and they still face the ill-posedness of mapping macroscopic sig-
nals to complete structures. These issues underline the need for function-centric conditioning and
architectural decomposition, which we pursue in scTrans-Gen.

3 PROBLEM FORMULATION
We formalize the problem in terms of three spaces. The chemical space (M) comprises molecules,
where each molecule M ∈ M is represented as an attributed graph G = (V, E). The transcriptome
space (T ) is defined as a d-dimensional vector space, with each state represented by T ∈ Rd.
A cellular perturbation signature is defined as a pair (Tpre,Tpost) ∈ T × T , characterizing the
transition between transcriptomic states before and after perturbation. The central objective is to
learn the conditional distribution p(M | Tpre,Tpost), which quantifies the probability that molecule
M induces the transition from Tpre to Tpost.

Task 1 (Transcriptome-based Drug Design): A de novo drug design model conditioned on cellu-
lar perturbation should be formalized by sampling novel molecules to satisfy a desired biological
condition: Mnew∼p(M | Tpre,Tpost).

Task 2 (Transcriptome-based Drug Screening): An efficient generate–then–search screening frame-
work needs to be built by systematically evaluating likelihoods to rank existing drug molecules:
Mk = argmax

Mk⊂Ml,|Mk|=k

∑
M∈Mk

p (M | Tpre,Tpost), whereMl is the large-scale molecule library.

Direct end-to-end learning of p(M | Tpre,Tpost) is ill-posed. We introduce an intermediate function-
oriented chemical space Z and factorize: z = Eϕ(Tpre,Tpost), Mnew ∼ pθ(M | z), where Eϕ

is a perturbation extractor (with a Transcriptome Pseudoimage module for single-cell data), and a
conditional graph diffusion generator approximates p(M | Tpre,Tpost) by pθ(M | Eϕ(Tpre,Tpost)),
focusing learning on the linkage between biological and chemical function.

4 MULTI-RESOLUTION TRANSCRIPTOME-GUIDED DIFFUSION MODEL

4.1 MODEL ARCHITECTURE

Our proposed scTrans-Gen method constructs a graph diffusion model conditioned on cellular per-
turbation signals from gene expression profiles for controllable molecular generation. The model
is primarily composed of two parts: a cellular perturbation signal feature extractor and a condition-
ally controlled molecular generation diffusion model. The gene perturbation information feature
extractor fuses pre- and post-perturbation information and aligns it with the drug feature space. The
molecular graph diffusion model controls the generation of drug molecules through conditional in-
jection methods. The scTrans-Gen is the first to incorporate multi-resolution cellular perturbation
data. Furthermore, the generated molecules can directly serve various downstream tasks, such as
predicting drug mechanisms of action and high-throughput drug screening (Figure 2).
4.2 PERTURBATION FEATURE-GUIDED MOLECULAR GRAPH DIFFUSION MODEL

We used a conditional molecular generation diffusion model guided by the learned drug-domain
perturbation representations. The core architecture is based on the Diffusion Transformer (Peebles
& Xie, 2022), where the conditional features are injected to guide the denoising process.
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Figure 2: Overall architecture of scTrans-Gen. The model consists of a Feature Extraction Module
that processes transcriptome expression data to produce a conditional embedding, and Mol Graph
Transformer Blocks that use the embedding to guide the diffusion for generating a target molecule.
*Note: Trans. stands for Transcriptome.

Molecular Graph Diffusion Model. The model uses a Markov chain-driven forward process
to progressively add noise to the molecular graph’s discrete features (atom and bond types):
q
(
Xt

G | X
t−1
G

)
= Cat

(
Xt

G; p̃ = Xt−1
G Qt

G

)
, where X is the matrix representing the graph G and Q

is the graph transition matrix. A neural network-parameterized reverse process can reconstruct the
graph from noise by iteratively removing it. The reverse process learns to predict the original graph
pθ

(
G̃0 | Gt

)
=

∏
t∈T pθ

(
Gt−1 | Gt

)
. pθ

(
G̃0 | Gt

)
is combined with q

(
Gt−1 | Gt, G0

)
to pre-

dict the graph reverse distribution pθ
(
Gt−1 | Gt

)
= q

(
Gt−1 | G̃,Gt

)
pθ

(
G̃ | Gt

)
. The training

objective is to minimize the negative log-likelihood:

L = Eq(G0)Eq(Gt|G0)

[
−Ex∈G0 log pθ

(
x | Gt

)]
. (1)

Gene Perturbation Conditioned Molecular Generation. The drug-domain structural informa-
tion from the feature extractor is injected into the Mol Graph Transformer blocks of the DiT via
an AdaLN-like method, guided by a multidimensional cluster embedder. We use Classifier-Free
Guidance (CFG) (Ho & Salimans, 2022) to implement conditional generation:

p̂θ
(
Gt−1 | Gt,C

)
= log pθ

(
Gt−1 | Gt

)
+ s

(
log pθ

(
Gt−1 | Gt,C

)
− log pθ

(
Gt−1 | Gt

))
, (2)

where s represents the scale of guidance and C represents the condition. During training, we use
dynamic feature dropping and noise injection:

C =

{
Eθ(z

t) + ϵ with probability 1− p

edrop + ϵ with probability p
, ϵ ∼ N (0, I). (3)

With probability p, a sample’s embedding is replaced by a learnable dropout vector edrop; otherwise,
it is processed by embedder Eθ. Isotropic noise ϵ is then added.

4.3 CELLULAR PERTURBATION SIGNAL FEATURE EXTRACTION

To effectively extract drug-domain control conditions from the gene transcriptome space, we de-
signed a multi-domain alignment architecture to train the perturbation information feature extractor.
This multi-domain alignment-guided architecture includes three parts: the perturbation signal fea-
ture extractor, a drug molecule graph VAE representation module, and a drug molecule fingerprint
representation module. The feature extractor is the core module, aiming to extract cellular perturba-
tion signals and map them to the drug molecular domain (Figure 3).

As illustrated in Figure 3, our cellular perturbation signal feature extraction module includes a Tran-
scriptome Pseudoimage Block, a Transcriptome Interaction Block, and a multi-domain feature align-
ment module. Compared to existing methods, scTrans-Gen can perform feature fusion and extrac-
tion on both bulk and single-cell data. For single-cell transcriptome data, we specifically designed
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Figure 3: Detailed architecture of the Feature Extraction Module and its multi-domain alignment
losses. It showcases the Transcriptome Pseudoimage Block for single-cell data and the Transcrip-
tome Interaction Block, which feed into an alignment process with both a Mol Graph VAE and
Morgan Fingerprints. *Note: Trans. stands for Transcriptome.

the Transcriptome Pseudoimage Block, which transforms single-cell data into a pseudoimage struc-
ture for processing, enhancing the utilization of single-cell data. The paired gene data undergoes
information exchange in the Transcriptome Interaction Block to extract the gene perturbation sig-
nal. The functional perturbation features are then sequentially aligned with molecular graph encoded
features and molecular fingerprints to be used in the subsequent generation control task.

Transcriptome Pseudoimage Block. Current molecular generation tasks lack methods for extract-
ing and integrating single-cell transcriptome data. Compared to bulk-level, single-cell data is highly
sparse with significant technical noise, leading the model to capture noise rather than true biological
signals. To handle the unique sparsity and noise of this data modality while preserving its high res-
olution, we designed the Transcriptome Pseudoimage Module. We use a pre-trained Transcriptome
LLM Encoder SCimilarity (Heimberg et al., 2025) to obtain a dense embedding for each cell (from
D > 60, 000 to d = 128). Then, we construct a pseudoimage by sampling N cells from cycle-
specific clusters according to their proportions and averaging within clusters. This pseudoimage is
encoded using a pretrained VAE to derive a dense feature representation. This aggregation preserves
cell-type-specific signals while smoothing out noise, allowing for robust feature extraction.

Transcriptome Interaction Module. To facilitate interaction between the original and post-
perturbation gene transcription information, we designed the Transcriptome Interaction Module.
This module supports interaction for both bulk cell data and single-cell data preprocessed by the
Transcriptome Pseudoimage Block. The module contains three Transcriptome Interaction blocks,
each using attention mechanisms for feature interaction. Each block has separate yet interactive units
for pre- and post-perturbation data. Each unit contains a cross-attention block and a self-attention
block, with residual connections outside the attention modules. During inference, the paired gene
transcription data are input into their corresponding units and fused in the Cross Attention module,
where the data from the current unit serves as the Query, and the data from the other unit serves
as the Key and Value. The subsequent self-attention module reinforces the perturbation feature in-
formation. At the module’s output, a fusion unit combines the features from both units to form the
functional perturbation representation.

4.4 MOLECULAR MULTI-DOMAIN INFORMATION ALIGNMENT ARCHITECTURE

In molecular representation, fingerprints capture structural details and enable precise control,
while graph encoders represent molecules as graphs. However, molecular fingerprints are high-
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dimensional and sparse, making them unsuitable for single-stage alignment. Graph encoders, on the
other hand, offer limited control in diffusion-based generation tasks, hindering precise manipula-
tion. We designed a multi-domain spatial alignment method with a two-stage training process and
customized loss functions to handle the high dimensionality and sparsity of the feature spaces.

Molecular Graph Encoder-Decoder Architecture. We use a hierarchical graph generation archi-
tecture based on a Variational Autoencoder (VAE) to provide an alignment paradigm for conditional
molecule generation. The model represents molecules through a hierarchical graph with three in-
terrelated levels: the motif, attachment and atom layers. The hierarchical encoder proceeds in a
fine-to-coarse direction for information aggregation: {hV}

R−→ {hAi}
G−→ {hSi}

H−→ zG , where
R,G,H are non-linear transformations and {hv}, {hAi}, {hSi} are atom, attachment, and motif
layers respectively. The hierarchical decoder adopts a coarse-to-fine generation paradigm.

Molecular Fingerprints. As a core representation tool in chemoinformatics, molecular finger-
prints map the complex topological structure and chemical information of a molecule to a fixed-
dimensional numerical vector space. In this study, we chose a vectorization scheme based on Mor-
gan fingerprints to systematically capture local structural environments.

Stage 1: Molecular Graph Space Alignment and Reconstruction Constraint. This stage aligns
the transcriptome functional features with the latent space of a pre-trained molecular graph VAE.
The overall loss function for this stage is:
Lvae = −Ez∼Q[logP (M|zenc)] + λKLDKL[Q(zenc|M)||P (zenc)]︸ ︷︷ ︸

Lvae-ELBO

+ ∥E(zenc)− E(zf )∥2 + ∥V (zenc)− V (zf )∥2︸ ︷︷ ︸
Lvae-align

(4)

where Lvae-ELBO is the standard VAE evidence lower bound loss, and Lvae-align aligns the mean and
variance of the transcriptome-derived features with the VAE’s latent space.

Stage 2: Molecular Fingerprint Space Alignment. In this stage, the aligned features are mapped
to the Morgan Fingerprint space. We use a joint loss mechanism that fuses sparse-aware regression
with label-guided contrastive learning:
Lmorgan =

1

Npos

∑
(i,j)∈P

wij(Aij −Bij)
2 + α · 1

Nneg

∑
(i,j)∈Z

A2
ij︸ ︷︷ ︸

Lreg

+LInfoNCE + λ
1

b · d

b∑
i=1

d∑
j=1

(Aij · 1(Bij = 0))
2

︸ ︷︷ ︸
Lcontrast

. (5)

Lreg is the sparse-aware regression loss, where A and B are predicted vector and target fingerprint; P
andZ are sets of non-zero and zero positions in B; Npos = |P| and Nneg = |Z|; wij = log(1+Bij)
is a logarithmic weight. α = 0.4 is used in training. LInfoNCE is the standard contrastive loss. Another
part of Lcontrast is a regularization term to penalize non-zero predictions for zero-valued positions in
the target fingerprint, where 1(·) denotes the indicator function, b is the batch size, and d is the
dimension. See the appendix for more details. More pseudocode details are in the Appendix A.4.

4.5 DRUG SCREENER

Recognizing that the resource-intensive nature of de novo synthesis and safety testing restricts rapid
clinical deployment, we propose a generate-then-screen workflow. By exploiting the efficiency of
computational generation to circumvent synthesis bottlenecks, this approach identifies candidates
from existing drug libraries, enabling immediate utility in urgent therapeutic settings. It uses the
generated molecules as query molecules to screen large compound libraries for structurally similar
analogs with established clinical data. The core of the screener is a pre-built molecular fingerprint
library F . We perform a Top-K nearest neighbor search:

Fk = argmax
Fk⊂F,|Fk|=k

∑
fl∈Fk

T(fq, fl) = argmax
Fk⊂F,|Fk|=k

∑
fl∈Fk

fq · fl
∥fq∥2 + ∥fl∥2 − fq · fl

(6)

which uses the Tanimoto similarity coefficient to quantify similarity between the query fingerprint fq
and the fingerprint fl fromF . It holds broad prospects for designing novel drugs, drug repositioning,
and advancing personalized precision medicine.

5 EXPERIMENTS

In the experimental section, we follow the same perspective as our evaluation metrics, assessing
the model’s performance from three angles: macroscopic evaluation of the relationship between the
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Figure 4: Generalization performance of scTrans-Gen. We assess the model’s performance across
three data splits representing different generalization challenges. (a) In-Distribution: performance
on a random hold-out of cell-drug pairs. (b) OOD (Unseen Cells): generalization to held-out cell
lines. (c) OOD (Unseen Drugs): generalization to held-out drugs. *Note: The ’Unique’ metric is
not applicable to the TRIOMPHE method due to its specific methodology.

generated and target molecular sets and the chemical and medicinal properties of the generated set
itself, and microscopic evaluation of the effectiveness and accuracy of scTrans-Gen conditional con-
trol generation. To demonstrate the model’s generalization ability and the functional effects of the
generated drugs, we designed the following three innovative evaluation experiments: zero-shot pre-
diction of gene inhibitors, characterization of the functional effects of generated drugs, and accuracy
assessment of the drug screener. To ensure reproducibility, we provide the necessary hyperparameter
settings in Appendix C.1.

5.1 EXPERIMENTAL SETUP

Datasets. Bulk Cell Data: We used the L1000 Level 3 dataset (Subramanian et al., 2017; Gao et al.,
2019), which profiles the expression of 978 landmark genes across nearly 20,000 drugs and various
cell lines. For training, we split the data 85:10:5 (train:test:val) using three strategies: random, mask
drug, and mask cell. Single-Cell Data: We also utilized the Tahoe-100M dataset (Zhang et al., 2025),
the largest single-cell perturbation dataset available. It contains results from over 300 drugs applied
to 50 cancer cell lines, including their untreated states. Gene Inhibitor Dataset: For evaluation, we
built a gene inhibitor dataset from the ExCape database (Sun et al., 2017). This set contains 1,200
to 23,000 known inhibitors for each of 10 selected human genes, enabling comparison with gene
knockout expression profiles. To guarantee experimental fairness, we include a detailed description
of the training data in Appendix C.2.

Evaluation Metrics. We used three types of metrics to assess the model’s generative capabilities:
Macroscopic Metrics: To reflect the properties of the entire generated set of drug molecules: (1)
Heavy Atom Type Coverage (Coverage); (2) Internal Diversity among generated samples (Diver-
sity); (3) Fragment-based similarity to a reference set (Similarity); (4) Fréchet ChemNet Distance
to a reference set (Distance); (5) Synthesizability of the target molecule (SA); (6) Uniqueness of
structures in a single generated batch (Unique); (7) Quantitative Estimate of Drug-likeness (QED);
(8) Validity of generated molecules (Validity). Microscopic Metrics: To assess the reliability of
drug prediction based on gene perturbation: (1) Fraggle-based molecular scaffold similarity (Frag-
gle Sim.); (2) Morgan fingerprint-based atomic environment similarity (Morgan Sim.); (3) MACCS
key-based binary fingerprint similarity (MACCS Sim.) (Grant & Sit, 2021; Wang et al., 2022).
Experimental Design Metrics: Innovatively designed to reflect the functional effects of generated
drugs: (1) A metric to evaluate the difference in cellular gene expression effects between the gener-
ated drug and the ground-truth drug (PRnet MSE). (2) On zero-shot data of gene inhibitor effects, a
metric to evaluate the similarity between the generated molecules and known gene inhibitors (Gene
Inhibitor Sim.) (Méndez-Lucio et al., 2020).

Baselines. For the bulk data experiments, we selected several strong and widely recognized base-
line models from recent, similar tasks for comparison: GexMolGen (Cheng et al., 2024), which
links gene expression differences to molecular structure design; TRIOMPHE (Kaitoh & Yamanishi,
2021), which combines target protein transcriptome perturbation data with Bayesian optimization;
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Table 1: Microscopic evaluation of generation similarity. We measure structural similarity (Fraggle,
Morgan, MACCS) and functional similarity (PRnet MSE). For PRnet MSE, lower is better. *Note:
Exhibiting suboptimal performance on single-cell data, PRNet and similar perturbation prediction
methods are not amenable to evaluation in a single-cell modality.

Data Type Split Method Fraggle Sim. ↑ Morgan Sim. ↑ MACCS Sim. ↑ PRnet MSE ↓

Bulk

In-Distribution

GexMolGen 0.3278 0.1098 0.3771 4.6504
Gx2Mol 0.3818 0.1556 0.4359 2.5987
TRIOMPHE 0.2352 0.0790 0.3301 7.4599
scTrans-Gen 0.8892 0.8228 0.9031 0.2328

Out-of-Distribution
(Unseen Cells)

GexMolGen 0.3635 0.1195 0.4033 4.2724
Gx2Mol 0.3277 0.1060 0.3814 3.7071
TRIOMPHE 0.2200 0.0730 0.2956 8.6310
scTrans-Gen 0.9449 0.9125 0.9411 0.2932

Out-of-Distribution
(Unseen Drugs)

GexMolGen 0.2921 0.1001 0.3508 5.0482
Gx2Mol 0.3738 0.1381 0.4579 2.7208
TRIOMPHE 0.2362 0.0802 0.3382 7.4666
scTrans-Gen 0.8592 0.7722 0.8622 0.4866

Single-cell In-Distribution scTrans-Gen 0.7310 0.6114 0.7590 -

and Gx2Mol (Li et al., 2024), which uses a VAE-LSTM fusion architecture. For single-cell data,
there is currently a lack of effective molecular generation methods in the same task domain, so we
focus on discussing the performance of our proposed method.

Evaluation Setting. To rigorously evaluate generalization capabilities beyond training data recon-
struction, we established two complementary out-of-distribution (OOD) protocols: Unseen Drugs
and Unseen Cell Lines. The former enforces zero molecular overlap between training and testing,
compelling the model to infer chemical structures solely from functional perturbation signatures;
this validates that the model learns generalized structure-function mappings, while preserving crit-
ical pharmacophores for functional equivalence. Simultaneously, the Unseen Cell Lines utilizes
disjoint cell lines to challenge the model with novel transcriptomic backgrounds, demonstrating its
capacity to disentangle intrinsic drug mechanisms from cellular heterogeneity and generalize phar-
macological insights to previously unseen biological contexts.

5.2 PRELIMINARY EVALUATION OF DRUG MOLECULAR GENERATION

This experiment compares scTrans-Gen and baseline methods from a macro perspective (Figure
4). Our method outperforms existing benchmarks across multiple key metrics. It achieves com-
prehensive heavy atom coverage, high diversity, strong structural similarity, and the lowest Fréchet
distance, indicating superior consistency. The approach also generates significantly more unique
molecules with minimal duplication. It demonstrates robust adaptability across various training
strategie, random, cell-masked, and drug-masked (Yang et al., 2024). While not the highest in
every SA or QED scenario, our method maintains a balanced and strong performance, avoiding
the extreme limitations of baselines such as TRIOMPHE’s poor drug-likeness (SA: 0.4869, QED:
0.3071) or Gx2Mol’s low uniqueness (0.1000). Moreover, our model is the first successfully applied
to single-cell resolution data, achieving high performance despite inherent noise and sparsity. We
also extended our evaluation to include toxicity properties in Appendix B.6, confirming the model’s
advantageous performance in controlling toxicity, which is essential for pharmaceutical viability.

5.3 EVALUATION OF TRANSCRIPTOME-GUIDED DRUG MOLECULAR GENERATION
This experiment compares scTrans-Gen and baseline methods from the perspective of conditional
control effectiveness. To comprehensively evaluate the effectiveness of scTrans-Gen conditional
generation, we conducted quantitative experiments from two dimensions: structural accuracy and
functional similarity. The experiment first quantitatively assesses the model’s ability to generate the
target drug structure. As shown in Table 1, our method has a significant advantage, with Fraggle,
Morgan, and MACCS similarities reaching near-perfect values under all of the splits. In contrast, the
baseline models performed poorly. Structural similarity does not guarantee functional equivalence.
To assess this, we developed a method using PRnet to predict drug-induced expression states and
measure their similarity via MSE. A lower MSE indicates that the generated drug’s effect is closer
to the target drug. Our method’s MSE was far lower than all baselines, proving the high functional
fidelity of the generated molecules. We attribute this substantial leap in performance to our method’s
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ability to adeptly address the challenges outlined in the Introduction, whereas competing methods
largely fail to resolve the issues of ill-posed inverse mapping and cross-modality domain gap.

5.4 GENE INHIBITOR PREDICTION Table 2: Zero-shot Gene inhibitor similarity.

Target
Gene

Gex-
MolGen

TRIOM-
PHE

Gx2Mol scTrans-
Gen

AKT1 0.7284 0.5401 0.7431 0.8037
AKT2 0.7119 0.5151 0.7063 0.7545
AURKB 0.7440 0.5529 0.7194 0.7604
CTSK 0.7487 0.5352 0.6986 0.7512
EGFR 0.7467 0.5405 0.7378 0.7822
HDAC1 0.7196 0.5188 0.6971 0.7717
MTOR 0.7940 0.5274 0.7448 0.8076
PIK3CA 0.7638 0.5243 0.7257 0.8088
SMAD3 0.8448 0.5902 0.8428 0.8811
TP53 0.8093 0.5877 0.7932 0.8160

To assess scTrans-Gen’s utility in drug devel-
opment and its capacity to capture functional
biological mechanisms, we established a rigor-
ous zero-shot benchmark targeting 10 canoni-
cal genes (e.g., AKT1, EGFR, TP53) backed by
extensive inhibitor libraries to ensure statistical
stability. to ensure a fair and unbiased com-
parison, we enforced a strict zero-shot proto-
col: all models were trained exclusively on stan-
dard drug-perturbation transcriptomes and were
never exposed to gene knockout (KO) data. In
this protocol, models trained exclusively on drug-
perturbation data were tasked with generating molecules conditioned on unseen gene knockout (KO)
transcriptomic signatures, positing that a functionally aware model should generate structures sim-
ilar to known inhibitors that mimic these phenotypic effects. Performance was quantified by the
arithmetic mean of maximum structural similarity scores (using Fraggle, Morgan, and MACCS fin-
gerprints) between generated candidates and ground-truth inhibitor sets.

As detailed in Table 2, scTrans-Gen significantly outperformed all baseline methods, consistently
achieving the highest similarity scores across all 10 targets. This superior zero-shot performance val-
idates that the model effectively bridges the modality gap, organizing transcriptomic perturbations
according to underlying Mechanisms of Action (MoA). By successfully translating gene function
signals into specific inhibitor structures, scTrans-Gen demonstrates a robust ability to extract and
transfer biologically meaningful functional information for de novo drug design.

5.5 DRUG SCREENER

Table 3: Performance of the drug screener.

Top-K MACCS
Sim.↑

Hit Rate↑ PRnet
MSE↓

5 0.9714 0.6467 0.1668
10 0.9554 0.8563 0.1353
15 0.9421 0.8922 0.1228
20 0.9269 0.9116 0.1093

To assess translational utility, we employed a
generate-then-search workflow, utilizing a gener-
ated molecule as structural probes to query large-
scale drug databases. Table 3 details screening
performance across retrieval thresholds k based
on three metrics: average Structural Similarity
between the generated molecules and the top-k
retrieved candidates (MACCS), the probability of
the ground-truth drug appearing within the re-
trieved candidates (Hit Rate), and the functional divergence in predicted gene expression effects
between the retrieved candidates and the ground truth (PRnet MSE). Expanding k reveals a char-
acteristic trade-off: while structural similarity naturally attenuates due to the inclusion of distant
neighbors, retrieval efficacy improves significantly, evidenced by higher Hit Rates and enhanced
functional alignment (lower PRnet MSE). Notably, at a threshold of k = 15, the model achieves
a Hit Rate approaching 90%, demonstrating a robust capability to identify target drugs based on
functional transcriptomic inputs. This demonstrates scTrans-Gen’s capacity to distill vast chemi-
cal libraries into a clinically manageable panel (e.g., 10–20 compounds) with high structural and
functional fidelity, offering a pragmatic solution for time-critical therapeutic applications.

5.6 BIOCHEMICAL INTERPRETABILITY ANALYSIS

To systematically evaluate the interpretability of scTrans-Gen, we analyzed the model’s learned
representations from two complementary dimensions: the biological relevance of the functional
latent space and the chemical structural fidelity of the generated molecules.

Biological Interpretability Analysis. Since scTrans-Gen relies on phenotypic changes (TBDD)
without explicit affinity metrics, we employed stratified UMAP to verify mechanistic principles.
First, projecting distinct inhibitors within fixed cellular backgrounds (Figure 7, top) revealed discrete
clustering by inhibitor type. This topological separation implies the model encodes mechanism-
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Table 4: Ablation study of the feature extractor. *Note: w/o Extractor is trained with L1000 level 5.

Dataset Method Validity↑ Coverage↑ Diversity↑ Distance↓ SA↓ QED↑ Morgan Sim↑

L1000

w/o Extractor 0.8775 90.91% 0.7504 8.4982 0.8355 0.5426 0.1824
w/o Alignment 0.3000 63.64% 0.7662 82.7183 0.7651 0.4556 0.0886
w/o Interaction 0.2400 36.36% 0.6982 51.0830 0.6933 0.4400 0.2527
scTrans-Gen 0.9350 100.00% 0.8906 6.7856 0.6386 0.5665 0.8228

Tahoe
w/o VAE 0.9650 81.82% 0.8693 43.0227 0.6043 0.4588 0.2674

w/o Fingerprint 0.9400 81.82% 0.8600 29.6223 0.6357 0.3048 0.3219
scTrans-Gen 0.9800 90.91% 0.8771 27.6223 0.5994 0.4946 0.6114

Figure 5: Effect of classifier-free guidance (CFG) scaler on three metrics.

specific signatures, mapping perturbations to Mechanisms of Action (MoA) rather than fitting noise.
Second, visualizing identical inhibitors across diverse cell lines (Figure 7, bottom) exhibited strat-
ification by cellular identity, confirming the model dynamically adapts functional representations
to biological contexts rather than overfitting. Collectively, these results demonstrate that the la-
tent space effectively disentangles functional drug impacts from cellular backgrounds, supporting
function-oriented drug discovery.

Chemical Structural Interpretability Analysis. For the chemical structural analysis, we exam-
ined the generative diversity and structural logic of the output molecules through stochastic multi-
sampling. We visualized multiple molecules generated from the same transcriptomic condition (as
shown in Figure 6 and Table 9). The results indicate that while the generated molecules maintain
high similarity scores (Fraggle/Morgan/MACCS) to the reference drugs, they exhibit significant di-
versity in their SMILES representations. Generated molecules are not identical to training targets
but share critical functional groups (pharmacophores) and local chemical environments. This con-
firms the model has learned the underlying mechanism of how specific chemical substructures drive
transcriptomic changes.

5.7 ABLATION STUDIES

Feature Extractor: We conducted ablation studies to validate the contribution of key modules in
our feature extractor on both bulk and single-cell data (Table 7). The results confirm that each
component is crucial. On bulk data, removing the domain alignment module led to a catastrophic
performance drop. On single-cell data, the dual-domain alignment mechanism proved essential for
balancing structural similarity and drug-likeness.
Impact of CFG Guidance Strength: We explored the effect of different classifier-free guidance
strengths, revealing a trade-off between molecule quality and conditional adherence. As shown
in Figure 5, performance peaks around a guidance strength of 3, establishing it as the optimal
point (Karras et al., 2024).

Transcriptome Pseudoimage Block: An ablation experiment for Pseudoimage Block is shown in
Appendix A.1 (Table 5), demonstrating the effectiveness of this module.

6 CONCLUSION

We introduce a function-driven strategy for textitde novo drug design using cellular perturbation
responses. Our model, scTrans-Gen, employs function-centric conditioning and graph diffusion
to resolve cross-modal ambiguity. It introduces a “pseudoimage” representation for conditional
molecular generation at single-cell resolution, capturing cellular heterogeneity. Evaluations and a
screening workflow confirm its strong performance and practical value. This approach provides a
general, function-aware foundation for targeted drug discovery and personalized medicine.
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8 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work, we have made our anonymously source code available at
https://anonymous.4open.science/r/scTrans-Gen. Our experiments utilized ex-
clusively open-access data, including the L1000 dataset (bulk RNA-seq) (Subramanian et al., 2017;
Gao et al., 2019), Tahoe-100M (single-cell data) (Zhang et al., 2025), and ExCape (gene inhibitor
information) (Sun et al., 2017). All hyperparameters used for training are explicitly documented
in the configuration files within the code repository. For detailed implementation and reproduction
steps, please refer to the provided code and README documentation.
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cellular responses to novel drug perturbations at a single-cell resolution. Advances in Neural
Information Processing Systems, 35:26711–26722, 2022.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
sion for molecule generation in 3d. In International conference on machine learning, pp. 8867–
8887. PMLR, 2022.

Chiao-Yu Hsieh, Jian-Hung Wen, Shih-Ming Lin, Tzu-Yang Tseng, Jia-Hsin Huang, Hsuan-Cheng
Huang, and Hsueh-Fen Juan. scdrug: from single-cell rna-seq to drug response prediction. Com-
putational and Structural Biotechnology Journal, 21:150–157, 2023.

Zhilin Huang, Ling Yang, Zaixi Zhang, Xiangxin Zhou, Yu Bao, Xiawu Zheng, Yuwei Yang,
Yu Wang, and Wenming Yang. Binding-adaptive diffusion models for structure-based drug de-
sign. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 12671–
12679, 2024.

Clemens Isert, Kenneth Atz, and Gisbert Schneider. Structure-based drug design with geometric
deep learning. Current Opinion in Structural Biology, 79:102548, 2023.

Yuge Ji, Mohammad Lotfollahi, F Alexander Wolf, and Fabian J Theis. Machine learning for per-
turbational single-cell omics. Cell Systems, 12(6):522–537, 2021.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs
using structural motifs. In International conference on machine learning, pp. 4839–4848. PMLR,
2020.

Kazuma Kaitoh and Yoshihiro Yamanishi. Triomphe: transcriptome-based inference and generation
of molecules with desired phenotypes by machine learning. Journal of Chemical Information and
Modeling, 61(9):4303–4320, 2021.

Tero Karras, Miika Aittala, Tuomas Kynkäänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
Guiding a diffusion model with a bad version of itself. Advances in Neural Information Processing
Systems, 37:52996–53021, 2024.

Chen Li and Yoshihiro Yamanishi. De novo generation of hit-like molecules from gene expression
profiles via deep learning. arXiv preprint arXiv:2412.19422, 2024.

Chen Li, Yuki Matsukiyo, and Yoshihiro Yamanishi. Gx2mol: De novo generation of hit-like
molecules from gene expression profiles via deep learning. arXiv e-prints, pp. arXiv–2412, 2024.

Gang Liu, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Graph diffusion transformers for multi-
conditional molecular generation. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Mohammad Lotfollahi, F Alexander Wolf, and Fabian J Theis. scgen predicts single-cell perturba-
tion responses. Nature methods, 16(8):715–721, 2019.

Oscar Méndez-Lucio, Benoit Baillif, Djork-Arné Clevert, David Rouquié, and Joerg Wichard. De
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A METHODOLOGY DETAILS

A.1 TRANSCRIPTOME PSEUDOIMAGE BLOCK

Current molecular generation tasks lack methods for extracting and integrating single-cell transcrip-
tome data. Compared to bulk cell data, single-cell data is highly sparse with significant technical
noise, which can lead the model to capture noise rather than true biological signals during learning.
To handle the unique sparsity and noise of this data modality while preserving its high resolution,
we designed the Transcriptome Pseudoimage Module. We use a pre-trained Transcriptome LLM
Encoder to obtain a dense embedding for each cell. Then, for a given perturbation, we group cell
embeddings according to cell cycle proportions and randomly sample data to form a pseudoimage.
This aggregation preserves cell-type-specific signals while smoothing out noise, allowing for robust
feature extraction. Specifically:

1. Transcriptome LLM Encoder: We use a Transcriptome LLM Encoder to encode individual
cell transcriptome data, transforming each high-dimensional, sparse single-cell expression
profile (D > 60, 000) into a low-dimensional, dense cell embedding vector (d = 128). We
use the pre-trained representation model SCimilarity, a deep metric-learning framework
designed to learn a unified and interpretable representation for scRNA-seq data, enabling
efficient searching for transcriptionally similar cells in large-scale cell atlases. Specifically,
the model was trained on a large-scale human scRNA-seq/snRNA-seq dataset spanning
multiple tissues and diseases, containing approximately 7.9 million single-cell profiles from
56 studies, and was used to build a searchable reference atlas of 23.4 million cells from
412 studies. Its core objective is to create a foundational model of cell states, generating an
effective single-cell representation that can be used across applications without retraining.
By learning a low-dimensional embedding space (d = 128), it places transcriptionally
similar cell profiles close to each other while keeping dissimilar ones apart. This model
helps to centralize and extract drug functional information from single-cell perturbation
data.

2. Transcriptome Pseudoimage Encoder: After obtaining the d-dimensional embedding vector
for each cell, we randomly sample k cells (k = 15) from the feature vector subsets of
different cell cycles (G1, S, G2/M) within the same cell line. We compute the mean to
obtain more stable cell cycle cluster subsets. Then, according to the proportions of different
cycles in the cell line, we sample a fixed total of N elements from these cluster subsets to
form an N×d cell line representation, which we term a pseudoimage. We use a pre-trained
encoder to extract features from this pseudoimage, reducing the large, sparse single-cell
data into a more information-dense feature representation.

In summary, the Transcriptome Pseudoimage Module constructs an image-level representation for
each condition (i.e., a specific cell line + a specific drug perturbation) that represents the state of
the cell population under that condition. This approach ensures the model can handle the inherent
sparsity and noise of single-cell data while effectively leveraging the information provided by its
high resolution.

Transcriptome Pseudoimage Block Ablation Study. To validate the necessity of our architec-
tural design, we conducted comprehensive ablation studies on the Transcriptome Pseudoimage
mechanism and encoder strategy. Results demonstrate that constructing 2D pseudoimages via cell-
cycle–stratified sampling is crucial for preserving local biological heterogeneity while mitigating
single-cell sparsity, yielding significantly higher structural fidelity than random sampling. Further-
more, comparative analysis against MLP and scratch-trained CNN baselines (Table 5) confirms that
employing a pretrained and fine-tuned vision encoder provides the essential inductive bias to extract
information-dense features from these structured inputs; this strategy not only secures superior met-
ric performance but also ensures training stability and rapid convergence, effectively bridging the
modality gap between transcriptomic profiles and molecular structures.

A.2 MOLECULAR GRAPH ENCODER-DECODER ARCHITECTURE

We use a hierarchical graph generation architecture based on a Variational Autoencoder (VAE) to
provide an alignment paradigm for conditional molecule generation. The model utilizes structural
motifs as basic building blocks and represents molecules through a hierarchical graph with three
interrelated levels: the motif layer, the attachment layer, and the atom layer. This design allows
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Table 5: Ablation study of Transcriptome Pseudoimage Block. We compare different encoder archi-
tectures and pretraining strategies.

Method Coverage ↑ Diversity ↑ Similarity ↑ Distance ↓ SA ↓ Unique ↑ QED ↑ Fraggle Sim ↑ Morgan Sim ↑ MACCS Sim ↑
w/o pseudoimage 7 (63.64%) 0.75 0.74 26.89 0.61 0.34 0.59 0.23 0.07 0.23
MLP 7 (63.64%) 0.79 0.78 13.26 0.68 0.45 0.55 0.45 0.29 0.46
Conv 9 (81.82%) 0.84 0.90 8.15 0.64 0.88 0.57 0.74 0.69 0.75
w/o pretrain 10 (90.91%) 0.87 0.94 6.89 0.64 0.90 0.56 0.86 0.80 0.89
Ours (Pretrained + Finetuned) 11 (100.00%) 0.89 0.96 6.79 0.64 0.93 0.57 0.89 0.82 0.90

the model to integrate information at multiple resolutions, enabling efficient processing of large
molecules.

The hierarchical encoder uses a deep architecture based on multi-resolution graph representations,
designed to capture the hierarchical structure of molecular graphs. It constructs a three-level topo-
logical representation: the atom layer stores the atom and bond information of the original molecular
graph; the attachment layer abstracts the connection points between motifs, with each node repre-
senting a set of junction atoms between a motif and its neighbors; the motif layer describes the
higher-order topological connections of structural motifs, forming a tree-like coarse-grained struc-
ture. The encoding process proceeds in a fine-to-coarse direction for information aggregation. Let
F ,G,H be the non-linear transformation functions for the atom, attachment, and motif layers, re-
spectively. Let {hV}, {hAi

}, {hSi
} represent the corresponding layer features, and zG be the final

graph representation: {hV}
F−→ {hAi

} G−→ {hSi
} H−→ zG .

The hierarchical decoder adopts an autoregressive coarse-to-fine generation paradigm, efficiently
synthesizing molecular graphs through the stepwise assembly of structural motifs. Its core lies in a
three-level coupled decision mechanism: First, based on the current molecular state and the latent
vector zG , the decoder samples a new motif St from a predefined vocabulary VS via a motif selec-
tion module. This process uses an attention mechanism to align with the semantic information of
the encoder’s motif layer. Second, it performs attachment configuration prediction for the selected
motif, determining the set of junction atoms At from a motif-specific vocabulary VA(St), signifi-
cantly compressing the combinatorial search space. Finally, it connects the new motif to the current
molecular graph through atom-level connection resolution, predicting bond types (single, double, or
triple) to complete the local topological expansion.

A.3 DRUG SCREENER

De novo drug design provides a powerful generative paradigm for discovering structurally novel
therapeutic molecules. However, translating abstract, computer-generated molecular structures into
clinically viable drug candidates is a major challenge in drug discovery. Given that New Chemical
Entities (NCEs) often require over a decade of development, with substantial financial investment
and multiple stages of attrition risk from laboratory synthesis to market approval, we propose an
innovative computational framework to bridge generative AI with the clinical translation pathway.
The core objective of this framework is to establish a functional link between de novo generated
molecules and reference compounds with established clinical data, thereby providing critical deci-
sion support for lead compound optimization.

The framework’s workflow begins with transcriptomic data from pre- and post-disease states, which
can be at the bulk or single-cell level. Pre-disease healthy state data can be sourced from a patient’s
own healthy tissue or from a standardized control group. Our conditional generative model learns
and encodes the gene expression changes caused by the disease, subsequently generating a set of de
novo molecular structures designed to reverse this cellular perturbation state.

These generated molecules, carrying specific therapeutic knowledge, are then used as query
molecules. We designed a cascaded filter for rapidly identifying structurally similar analogs of
these query molecules in a large compound library. The core of this filter is a pre-built molecu-
lar fingerprint database, where matches are found by performing a Top-K nearest neighbor search.
The computational engine relies on the Tanimoto similarity coefficient to quantify the similarity
between the query molecule’s fingerprint vector (fl) and a database molecule’s fingerprint vector
(fd). Through this process, we can efficiently screen for a set of known compounds that are most
structurally similar to the generated molecules, which are then considered potential drug candidates
for the specific patient or disease state.
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A.4 PSEUDOCODE FOR TRAINING LOSS

Training pseudocode of stage 1 and 2 are as following.

Algorithm 1 Pseudocode for Stage-1 Loss Lvae

1: Input: Graph matrix XG, feature extractor F , VAE encoder Q(z|XG), VAE decoder P (XG|z),
KL weight λKL

2: Output: Lvae
3: (µenc, σenc)← zenc ← Q(XG)
4: (µf , σf )← zf ← F (XG)
5: Lvae-ELBO ← −Ezenc∼Q[logP (XG|zenc)] + λKLDKL[Q(zenc|XG)||P (zenc)] ▷ Standard ELBO
6: Lvae-align ← ||µenc − µf ||2 + ||σ2

enc − σ2
f ||2

7: Lvae ← Lvae-ELBO + Lvae-align
8: return Lvae

Algorithm 2 Pseudocode for Stage-2 Loss Lmorgen

1: Input: Predict vector A, target fingerprint B, SMILES label list S, temperature τ = 0.1, sparse
weight λ = 0.15, α = 0.4

2: Output: Lmorgan
3: Lreg ← RegressionLoss(A,B, α)
4: Lcontrast ← ContrastLoss(A,B,S, τ, λ)
5: Lmorgan ← Lreg + Lcontrast
6: return Lmorgan
7: function CONTRASTLOSS(A, B, S, τ , λ)
8: Input: A ∈ Rb×2048, B ∈ Rb×2048 (non-negative integers), S (length b), τ , λ
9: Output: Lcontrast

10: A← Normalize(A)
11: B← Normalize(B)
12: Matrix← A ·B⊤/τ ▷ Similarity matrix ∈ Rb×b

13: L← [0, 1, . . . , b− 1] ▷ Labels for diagonal elements
14: Masksame ← Boolean(Si = Sj for all i, j) ▷ Mask for same string labels
15: Masksame[diagonal]← False ▷ Exclude diagonal
16: Matrix[Masksame]← −∞ ▷ Set non-diagonal same-label entries to large negative
17: LInfoNCE ← CrossEntropy(Matrix,L)
18: if λ > 0 then
19: Maskzero ← (B = 0) ▷ Mask for zero positions in B
20: Lsparse ← Mean((A ·Maskzero)

2)
21: Lcontrast ← LInfoNCE + λ · Lsparse
22: end if
23: return Lcontrast
24: end function
25: function REGRESSIONLOSS(A, B, α)
26: Input: A ∈ Rb×2048, B ∈ Rb×2048 (non-negative integers), α
27: Output: Lreg
28: W← ZerosLike(B) ▷ Initialize weight matrix
29: Maskpos ← (B > 0) ▷ Non-zero position mask
30: Maskneg ← (B = 0) ▷ Zero position mask
31: W[Maskpos]← log(1 +B[Maskpos]) ▷ Weights for non-zero positions
32: Lpos ← Sum(W · (A−B)2 ·Maskpos)/(Sum(Maskpos) + ϵ)
33: Lneg ← Sum(A2 ·Maskneg)/(Sum(Maskneg + ϵ)
34: Lreg ← Lpos + α · Lneg
35: return Lreg
36: end function
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Table 6: Generalization performance of scTrans-Gen. We assess the model’s performance across
three data splits representing different generalization challenges (all).

Data Type Split Method Coverage ↑ Diversity ↑ Similarity ↑ Distance ↓ SA ↓ Unique ↑ QED ↑

Bulk

In-Distribution

GexMolGen 6 (54.55%) 0.7646 0.8919 35.4027 0.7216 0.4300 0.5127
Gx2Mol 8 (72.73%) 0.8360 0.9405 17.8963 0.7151 0.1000 0.6041
TRIOMPHE 8 (72.73%) 0.8809 0.7270 48.0169 0.4869 - 0.3071
scTrans-Gen 11 (100.00%) 0.8906 0.9576 6.7856 0.6386 0.9296 0.5665

Out-of-Distribution
(Unseen Cells)

GexMolGen 6 (54.55%) 0.7622 0.8876 42.5445 0.7224 0.4100 0.5173
Gx2Mol 5 (45.45%) 0.7321 0.7123 65.9671 0.7065 0.1000 0.6203
TRIOMPHE 7 (63.64%) 0.8786 0.6637 56.0078 0.4941 - 0.3209
scTrans-Gen 10 (90.90%) 0.8864 0.8238 13.6113 0.6912 0.8590 0.5736

Out-of-Distribution
(Unseen Drugs)

GexMolGen 6 (54.55%) 0.7609 0.9013 40.0122 0.7205 0.4200 0.5098
Gx2Mol 5 (45.45%) 0.7280 0.7106 64.6032 0.7015 0.1000 0.6232
TRIOMPHE 7 (63.64%) 0.8829 0.7324 54.3125 0.4870 - 0.3589
scTrans-Gen 10 (90.90%) 0.9018 0.9576 9.5265 0.6497 0.8657 0.5725

Single-cell In-Distribution scTrans-Gen 10 (90.91%) 0.8771 0.8137 27.6223 0.6984 0.8547 0.4946

B MORE EXPERIMENTAL RESULTS AND DISCUSSIONS

B.1 QUALITY OF GENERATED MOLECULAR SETS (BASIC EVALUATION)

We used random conditions to guide molecule generation to create a set of molecules and discussed
the generative capabilities of our model versus the baselines. The main focus is on the relationship
between the generated and target molecular sets and the chemical and medicinal properties of the
generated set itself, without delving into the accuracy of conditional control. On bulk data, since the
L1000 dataset is constructed from the cross-interaction of n cell lines and m drugs, we compared
the model’s performance against baselines under different training splits: random, cell-masked, and
drug-masked. On the single-cell dataset, due to the lack of comparable methods, we present the
performance of our model on Tahoe-100M.

Highlight Metrics. We evaluated the performance of the generated molecules on several key met-
rics, comparing our new method (scTrans-Gen) with existing benchmarks (GexMolGen, Gx2Mol,
and TRIOMPHE). Under three training strategies (random, cell, and drug), our method demon-
strated significant advantages in overall molecular generation capabilities. Specifically, in terms of
Coverage, our method achieved 100% coverage (11 heavy atom types) under random training, far
surpassing other methods (54.55%–72.73%), reflecting its excellent ability to generate structurally
diverse molecules. Similarly, on Diversity and Similarity metrics, our method showed high perfor-
mance (Diversity up to 0.9018, Similarity up to 0.9576), while having the lowest Fréchet distance
(only 6.7856 in random training), indicating that the generated molecules are structurally closer to
the reference dataset. Furthermore, our method’s Uniqueness score was consistently leading (e.g.,
0.9296 in random training), significantly better than the comparison methods, highlighting its ro-
bustness and innovation in avoiding the generation of duplicate molecules.

Detailed Analysis. Although our method did not achieve the highest values in all scenarios for
Synthesizability (SA) and Quantitative Estimate of Drug-likeness (QED), this is mainly due to the
inherent flaws of the baseline methods. For instance, TRIOMPHE has a low SA score (0.4869 in ran-
dom training), but its QED score is extremely low (0.3071), indicating that its generated molecules
often lack drug-likeness and cannot form reasonable drug configurations. Similarly, Gx2Mol excels
in QED (e.g., 0.6041), but its Unique score is extremely low (0.1000), suggesting a high degree
of repetition in its generated molecules, making it unreliable for producing a diverse set of candi-
dates. In contrast, our method maintains a balanced and excellent performance on both SA (lowest at
0.6386) and QED (highest at 0.5736), avoiding these pitfalls and ensuring a comprehensive balance
between utility and diversity in the generated results.

Training Methods. Comparing the impact of different training methods, our model maintained a
high level of performance across all settings. In random training, our model achieved 100% coverage
and high diversity (0.8906), showing the best overall performance. In cell-masked training, coverage
was 90.90% and diversity was 0.8864, while similarity (0.8238) was slightly lower than the peak
values of other methods, which can be attributed to the instability of baselines like Gx2Mol (which
has overly high similarity at 0.9405 but a very low Uniqueness score). In drug-masked training,
our model’s diversity further improved to 0.9018 and similarity reached 0.9576, while maintaining
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a high Uniqueness of 0.8657. Overall, the stability and versatility of our method across random,
cell-oriented, and drug-oriented training significantly exceed those of the baseline methods.

Single-Cell Data. This study is the first to extend a molecular generation model to a single-cell
resolution dataset, Tahoe-100M, validating our method’s applicability in complex biological envi-
ronments and breaking the traditional model’s dependency on bulk cell data. As shown in the table,
our method maintains a significant advantage in the single-cell scenario: its Coverage (90.91%)
remains leading, approaching full coverage of heavy atom types. Its Diversity (0.8771) and Unique-
ness (0.8547) remain highly competitive, confirming the model’s ability to stably generate non-
redundant molecules from highly heterogeneous cellular data. Although the Distance (27.6223) to
the reference set is larger compared to the bulk dataset results, this is due to the inherent technical
limitations of single-cell data Tahoe-100M, as the first single-cell atlas used to validate molecu-
lar generation, has inherent gene expression sparsity and technical noise that significantly increase
modeling complexity.

B.2 ABLATION STUDIES FOR FEATURE EXTRACTOR

Table 7: Performance comparison on bulk (L1000) and single-cell (Tahoe-100M) datasets. ↑ indi-
cates the higher the better, and ↓ indicates the lower the better (all).

Data Type Method Validity↑ Coverage↑ Diversity↑ Similarity↑ Distance↓ SA↓ Unique↑ QED↑ Fraggle Sim↑ Morgan Sim↑ MACCS Sim↑

Bulk

w/o Extractor 0.8775 Cover 10 (90.91%) 0.7504 0.9539 8.4982 0.8355 0.9153 0.5426 0.3942 0.1824 0.4640
w/o Alignment 0.3000 Cover 7 (63.64%) 0.7662 0.6769 82.7183 0.7651 0.2857 0.4556 0.2991 0.0886 0.3826
w/o Interaction 0.2400 Cover 4 (36.36%) 0.6982 0.7533 51.0830 0.6933 0.6452 0.4400 0.4327 0.2527 0.5464

scTrans-Gen 0.9350 Cover 11 (100%) 0.8906 0.9576 6.7856 0.6386 0.9296 0.5665 0.8892 0.8228 0.9031

Single-cell
w/o VAE 0.9650 Cover 9 (81.82%) 0.8693 0.7331 43.0227 0.6043 0.8945 0.4588 0.4604 0.2674 0.5040

w/o Fingerprint 0.9400 Cover 9 (81.82%) 0.8600 0.8013 29.6223 0.6357 0.8704 0.3048 0.5819 0.3219 0.6693
scTrans-Gen 0.9800 Cover 10 (90.91%) 0.8771 0.8137 27.6223 0.5994 0.9082 0.4946 0.7310 0.6114 0.7590

The experimental results show that the full model (scTrans-Gen) significantly outperforms the con-
trol groups on key metrics. Compared to using raw L1000 Level 5 data directly(w/o Extractor), the
microscopic structural similarity metrics improved markedly. The domain alignment module plays
a decisive role in cross-domain feature mapping; its absence leads to a catastrophic drop in perfor-
mance, both in overall molecular set metrics and similarity metrics. The transcriptome interaction
module greatly improves the completeness of difference feature extraction through the interaction
of transcriptome pairs.

For the complex characteristics of single-cell data, the dual-domain alignment mechanism fusing
molecular fingerprints and VAE graph space is core to ensuring the model’s alignment capability.
Relying solely on molecular fingerprints led to a sharp decline in macroscopic similarity (0.8137 -
0.7331), while using only VAE alignment caused a catastrophic drop in drug-likeness (QED: 0.4946
- 0.3048, a 38.4% decrease), confirming the complementarity of chemical and topological repre-
sentations. In the single-cell scenario, the absence of molecular fingerprints severely weakened
structural similarity (MACCS Similarity plummeted by 44.3%), while the absence of VAE signifi-
cantly harmed biological plausibility (the QED value revealed a deterioration in the drug-likeness of
generated molecules). The dual-domain alignment mechanism, by strengthening chemical structure
features and molecular topology constraints, enables the model to maintain high structural fidelity
even with the interference of transcriptome noise.

B.3 IMPACT OF CFG GUIDANCE STRENGTH

We explored the effect of different CFG guidance strengths on the generation results. We found
that as the guidance strength increases, the performance metrics for molecular generation first rise
and then slightly decline. This reveals a trade-off between potency and drug-likeness, providing a
basis for selecting the optimal hyperparameter in practical applications. The experiment establishes
a strength of 3 as the global optimum. The CFG strength acts as a lever to control potency and
drug-likeness, low strength leads to insufficient potency, while high strength causes structural dis-
tortion. This finding provides a general theoretical framework for hyperparameter optimization in
drug generation tasks. Unlike the previous experiments, which were tested on the entire dataset, this
data was tested on a single batch (batchsize=200) to show the trend of the metrics.
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Table 8: Performance of training w/o cfg under different guidance scale. ↑ means higher is better, ↓
means lower is better.

Metric train w/o cfg 0 1 2 3 4 5 6 7 8 9
Validity↑ 0.1934 0.0550 0.7025 0.7250 0.7500 0.6950 0.6950 0.6800 0.6750 0.6750 0.6300
Coverage↑ Cover 7 Cover 6 Cover 8 Cover 8 Cover 10 Cover 9 Cover 9 Cover 9 Cover 8 Cover 8 Cover 7
Diversity↑ 0.7942 0.7222 0.7946 0.8007 0.8013 0.7984 0.8027 0.7998 0.8009 0.8011 0.8003
Similarity↑ 0.8691 0.7664 0.9598 0.9589 0.9581 0.9571 0.9573 0.9564 0.9573 0.9564 0.9574
Distance↓ 28.9203 45.4423 10.5358 9.3103 9.2467 10.4150 9.8974 10.2288 9.9570 10.0778 10.7401
Fraggle Sim↑ 0.3441 0.3289 0.8734 0.8708 0.8896 0.8785 0.8705 0.8843 0.8800 0.8654 0.8600
Morgan Sim↑ 0.2090 0.1281 0.8036 0.8076 0.8279 0.8187 0.8083 0.8239 0.8024 0.7906 0.8029
MACCS Sim↑ 0.3799 0.3866 0.8693 0.8661 0.8866 0.8787 0.8720 0.8860 0.8782 0.8674 0.8610
QED↑ 0.4952 0.4435 0.5435 0.5629 0.5673 0.5635 0.5650 0.5664 0.5671 0.5672 0.5632
SA↓ 0.6148 0.5468 0.6684 0.6708 0.6712 0.6670 0.6655 0.6626 0.6554 0.6542 0.6561
Unique↑ 0.9275 1.0000 0.9395 0.9300 0.9276 0.9281 0.9317 0.9338 0.9370 0.9370 0.9325

Mol Target               Gen. 1                   Gen. 2                    Gen. 3     

- / - / -                       1.000 / 0.7027 / 0.9211     0.9477 / 0.6026 / 0.9459        0.8839 / 0.5769 / 0.6341 

- / - / -                       0.9927 / 0.7429 / 0.9385     0.8874 / 0.5753 / 0.7576        0.9870 / 0.7183 / 0.8116 

- / - / -                       1.000 / 0.7887 / 0.9848     0.9966 / 0.6974 / 0.9565        0.8690 / 0.6154 / 0.9286 

- / - / -                       0.8894 / 0.6986 / 0.9032     0.9143 / 0.7500 / 0.8852        0.6787 / 0.5287 / 0.8571 

- / - / -                       0.9580 / 0.4691 / 0.7794     0.9999 / 0.7183 / 0.8267        0.7389 / 0.5195 / 0.8788 

Figure 6: Molecular structure diagrams generated through multiple sampling. *Note: The indicators
in the chart represent, from left to right: Fraggle/Morgan/MACCS scores.

B.4 MOLECULAR STRUCTURE VISUALIZATION

To further confirm that the high similarity is not a simple copy, we randomly sampled several real
drugs from the test set and compared them with multiple molecules generated by the model through
multiple samplings (Figure 6, Table 9). Although the Fraggle/Morgan/MACCS scores were high,
their SMILES strings were not identical. The differences mainly lay in the backbone modifications
and peripheral groups, rather than a simple copy of the training molecules. Meanwhile, the high
similarity between the model-generated molecules and the target molecules stemmed from their
similar functional group structures. Similar functional groups imply a high degree of functional
approximation, reflecting the effectiveness of the model in function extraction.
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Table 9: Molecular SMILE expressions and similarities generated from multiple sampling

Target SMILES Generated SMILES Fraggle ↑ Morgan ↑ MACCS ↑

Cc1cccc(c1)S(=O)(=O)N[C@@H]
1CC[C@@H](CCNC(=O)c2cnccn
2)O[C@@H]1CO

Cc1cccc(S(=O)(=O)NC2CCC(CC
NC(=O)c3cnccn3)PC2CO)c1

1.000 0.7027 0.9211

O=C(NCCC1CCC(NS(=O)c2cccc(
CO)c2)C(CO)O1)c1cnccn1

0.9477 0.6026 0.9459

O=C(NC1CCC(CCNC(=O)c2cncc
n2)OC1CO)c1ccc2c(c1)OCO2

0.8839 0.5769 0.6341

CN(C)CC(=O)Nc1ccc2O[C@@H]
3[C@@H](C[C@@H](CC(=O)N4
CCCCC4)O[C@@H]3CO)c2c1

CN(C)CC(=O)Nc1ccc2c(c1)C1CC
(CC(=O)NC3CCCCC3)OC(CO)C
1O2

0.9927 0.7429 0.9385

O=C(CC1CC2c3cc(NC(=O)CC4C
C4)ccc3OC2C(CO)O1)NCC1CC1

0.8874 0.5753 0.7576

O=C(Nc1ccc2c(c1)C1CC(CC(=O)
N3CCCCC3)OC(CO)C1O2)NC1C
CCC1

0.9870 0.7183 0.8116

CO[C@@H]1CN(C)C(=O)c2ccc(
NC(=O)Nc3cc(F)ccc3F)cc2OC[C
@H](C)N(C)C[C@@H]1C

COC1CC(C)C(=O)c2ccc(NC(=O)
Nc3cc(F)ccc3F)cc2OCC(C)N(C)C
C1C

1.000 0.7887 0.9848

COC1CN(C)C(=O)c2ccc(NC(=O)
Nc3cccc(F)c3)cc2OCC(C)N(C(C)
=O)CC1C

0.9966 0.6974 0.9565

CCC(=O)N1CC(C)C(OC)CN(C)C
(=O)c2ccc(NC(=O)Nc3ccc(Cl)cc3
)cc2OCC1C

0.8690 0.6154 0.9286

COc1ccccc1CN(C)C[C@@H]2O
Cc3ccccc3-c4ccccc4C(=O)N(C[C
@@H]2C)[C@@H](C)CO

CC1CN(C(C)CO)C(=O)c2ccccc2-
c2ccccc2COC1CN(C)Cc1ccc2c(c1
)OCO2

0.8894 0.6986 0.9032

CC1CN(C(C)CO)C(=O)c2ccccc2-
c2ccccc2COC1CN(C)Cc1ccc(F)cc
1

0.9143 0.7500 0.8852

CC1CN(C(C)CO)C(=O)c2c(c3ccc
cc3n2C)-c2ccccc2COC1CN(C)Cc
1cccnc1

0.6787 0.5287 0.8571

COCCNC(=O)C[C@@H]1CC[C
@@H]2[C@H](COC[C@H](O)C
N2C(=O)c2cc(Cl)cc(Cl)c2)O1

COCCNC(=O)CC1CCC(NC(=O)c
2cc(Cl)cc(Cl)c2)C(COCC(C)O)O1

0.9580 0.4691 0.7794

COCCNC(=O)CC1CCC2C(COCC
(O)CN2[N+](=O)c2cc(Cl)cc(Cl)c2
)O1

0.9999 0.7183 0.8267

CCC(=O)N1CC(O)COCC2OC(CC
(=O)NCc3cc(F)cc(F)c3)CCC21

0.7389 0.5195 0.8788
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Figure 7: Latent space visualization using the human gene inhibitor dataset. UMAP projections re-
veal the model’s ability to disentangle biological mechanisms from cellular contexts. (Top) Distinct
clustering of different inhibitors within the same cell line demonstrates the encoding of mechanism-
specific functional signatures. (Bottom) Stratification of identical inhibitors across diverse cell lines
confirms the model’s sensitivity to cellular heterogeneity.

B.5 LATENT SPACE ANALYSIS AND VISUALIZATION OF BIOLOGICAL INTERPRETABILITY

Since scTrans-Gen operates within the framework of Transcriptome-based Drug Design (TBDD),
it lacks explicit indicators for target binding affinity. To rigorously investigate the biological in-
terpretability of the model and verify whether the learned latent representations capture authentic
mechanistic principles rather than mere statistical artifacts, we conducted a stratified visualization
analysis using Uniform Manifold Approximation and Projection (UMAP) on the human gene in-
hibitor dataset. Our visualization strategy was designed to probe the latent space from two comple-
mentary perspectives: functional specificity and biological context sensitivity.

First, to validate the model’s capability to encode mechanism-specific functional signatures, we iso-
lated the cellular background by projecting latent embeddings of distinct gene inhibitors within a
single cell line (U251MG, HT29, A549). As illustrated in the top row of Figure 7, the resulting
manifold reveals a striking structural organization where samples form discrete, tight clusters ac-
cording to the inhibitor type. This distinct separation implies that the model effectively extracts and
encodes the unique transcriptomic perturbations associated with specific therapeutic targets, effec-
tively mapping phenotypic changes to their underlying Mechanisms of Action (MoA).

Second, to demonstrate that the model maintains sensitivity to cellular heterogeneity and is not over-
fitting to a generic drug signature, we visualized the embeddings of identical inhibitors (MTOR,
CTSK, SMAD3) across diverse cell lines. The bottom row of Figure 7 exhibits clear stratification
driven by cellular identity, confirming that the model dynamically adapts its functional representa-
tions based on the biological context.

Collectively, these visualization results provide strong evidence for the model’s validity. The ability
to simultaneously achieve high intra-class compactness for inhibitors (demonstrating mechanistic
understanding) and inter-class separability for cell lines (demonstrating context awareness) proves
that the intermediate latent space operates as a biologically meaningful manifold. This indicates that
our framework successfully disentangles the specific functional impact of drug perturbations from
complex cellular background effects, establishing a robust foundation for function-oriented drug
discovery.
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B.6 EVALUATION OF TOXICITY PROPERTIES

To further assess the pharmacological viability and safety profile of the generated compounds, we
extended our evaluation to include toxicity-related properties using the ADMETlab predictor (Fu
et al., 2024). We compared molecules generated by scTrans-Gen against those from baseline meth-
ods (GexMolGen, Gx2Mol, TRIOMPHE) as well as the ground-truth drugs from the L1000 test set.
The evaluation covers a broad spectrum of toxicity risks, including mutagenicity (Ames), cardiotox-
icity (hERG), and organ-specific toxicities. The results, summarized in Table 10, demonstrate that
scTrans-Gen achieves a competitive safety profile. Although our model was not explicitly optimized
for these specific toxicity during training, the generated molecules exhibit toxicity scores that are
consistently within a reasonable range, often matching or outperforming both the baseline methods
and the ground-truth reference drugs (e.g., in Eye Irritation and Rat Oral Acute Toxicity).

Table 10: Comparison of predicted toxicity properties across generative models and the ground truth
(L1000). Arrows indicate whether lower (↓) or higher (↑) scores are desirable.

Metric GexMolGen Gx2Mol TRIOMPHE scTrans-Gen L1000 (GT)

Ames Mutagenicity ↓ 0.5003 0.4632 0.5965 0.4850 0.5527
hERG Blockers (10µM) ↓ 0.4361 0.4236 0.4003 0.3983 0.2973
Hematotoxicity ↓ 0.4435 0.3436 0.3993 0.3590 0.5149
Respiratory Toxicity ↓ 0.4755 0.5332 0.8141 0.4684 0.4715
Carcinogenicity ↓ 0.4523 0.4511 0.5439 0.4714 0.5345
DILI (Liver Injury) ↓ 0.6968 0.6923 0.6623 0.6506 0.6733
ROA (Rat Oral Acute Tox.) ↓ 0.3475 0.3331 0.6658 0.3214 0.3414
FDAMDD (Max Daily Dose) ↑ 0.4875 0.5498 0.6136 0.5918 0.5272
Eye Irritation ↓ 0.1983 0.2082 0.2682 0.0942 0.2238
Eye Corrosion ↓ 0.0311 0.0264 0.1485 0.0141 0.0124

C MORE EXPERIMENTAL DETAILS

C.1 MODEL TRAINING SETUP

We provide a comprehensive description of the model architecture complexity and the specific hy-
perparameter settings used during the training phases(Table 11, Table 12). For full reproducibility,
we refer readers to the specific configuration files available in our source code repository.

Table 11: Summary of Model Parameters.

Component Description Parameters
Diffusion Model Graph Diffusion Transformer ∼ 501.0 M
Feature Extractor Feature extraction and alignment modules ∼ 7.8 M
Graph VAE Encoder Encodes molecular graphs ∼ 2.4 M
Graph VAE Decoder Reconstructs molecular graphs ∼ 2.9 M

Table 12: Hyperparameter Settings for Training Phases.

Hyperparameter Alignment Phase Diffusion Phase
Hardware NVIDIA A100 (40GB) NVIDIA A100 (40GB)
Total Training Time ∼ 15 GPU hours ∼ 48 GPU hours
Training Steps 30k 40k
Batch Size 64 400
Learning Rate 1× 10−4 2× 10−4

Optimizer Adam Adam
Diffusion Steps (T ) – 500
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C.2 DATA INTEGRITY AND PREVENTION OF LEAKAGE.

To ensure the validity of our evaluation and the generalization capability of the model, we strictly
enforced data isolation protocols across all learnable modules. The Molecular Graph VAE and
the multi-domain feature extractor were trained exclusively on the designated training splits of the
TBDD dataset, with no exposure to molecules or transcriptomes from the validation or test sets. Re-
garding the use of SCimilarity, it serves solely as a generic, frozen dimensionality-reduction tool. It
was pre-trained on a broad human cell atlas for general cell-state embedding and was not fine-tuned
on our L1000, Tahoe-100M, or ExCAPE datasets. Thus, it contains no task-specific supervision
regarding drug-perturbation mappings. Similarly, the Morgan fingerprint alignment relies on deter-
ministic RDKit computations without learning. These rigorous measures ensure that the model’s
performance stems from learning authentic structure-function mappings rather than data leakage or
memorization.
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