Mind the Generation Process: Fine-Grained Confidence Estimation During
LLM Generation

Anonymous ACL submission

Abstract

Accurate confidence estimation of large lan-
guage models (LLMs) is crucial to improve the
reliability of their generation. However, exist-
ing methods are limited by their corse-grained
confidence estimation and a narrow perspec-
tive, falling to provide continuous confidence
estimation throughout the generation process.
In this paper, we introduce FineCE, a novel
fine-grained confidence estimation method that
provides the accurate confidence scores dur-
ing generation. Specifically, we develop a
pipeline based on Monte Carlo Sampling to
construct training data that captures the intrin-
sic responses of LLMs. In addition, we propose
a Backward Confidence Integration (BCI) strat-
egy, which incorporates confidence scores from
subsequent text sequences to provide a more
holistic confidence estimation for the current
output. We further provide three strategies to
identify optimal estimation positions for effi-
ciency optimization. Extensive experiments
demonstrate that FineCE consistently outper-
forms existing baselines in various tasks and
exhibits strong calibration capability. Our code
and all baselines are available in the GitHub
https://anonymous.4open.science/r/FineCE/.

1 Introduction

Self-awareness, as a core metacognitive ability,
plays a crucial role in both human cognition and the
the advancement of large-scale Al systems (Dewey,
1986; Kuhl and Beckmann, 2012). For humans, it
enables reflective thinking and error monitoring.
Similarly, for large language models (LLMs), it
supports output evaluation, uncertainty recognition,
and self-correction, which is critical for handling
complex reasoning tasks (Tong et al., 2024; Xie
et al., 2025). Confidence estimation has emerged
as a promising approach, enabling models to assess
the reliability of their own generations (Zhou et al.,
2023; Xiong et al., 2023; Branwen, 2020).
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Figure 1: The difference between our proposed FineCE and
existing confidence estimation methods. (a): LLMs either
generate an answer when the query is within their knowledge
scope or refuse to answer if it falls beyond their capabilities.
(b): The model assigns a single confidence score after the
entire answer is generated. (c): Our proposed method, FineCE,
provides the fine-grained confidence scores for any given text
sequence throughout the generation process.

However, existing confidence estimation meth-
ods for LLMs remain limited by their coarse-
grained scoring and narrow perspective, failing
to provide reliable and actionable confidence es-
timation. Broadly, these works categorized into
question-oriented and outcome-oriented paradigms.
Question-oriented methods aim to constrain LLMs
to answer only questions within their domain of
knowledge, allowing the model to give up respond-
ing when uncertain(Zhang et al., 2023). When
faced with ambiguous or challenging questions,
LLMs often choose to reject them directly (Kada-
vath et al., 2022), rather than attempting to infer
potential answer from available context. While
this conservative method helps prevent the model
from generating incorrect answers, it also signif-
icantly limits the utility of LLMs in open-ended
tasks. Qutcome-oriented methods require LLMs
to evaluate the quality of their generated answers
after completing the generation process (Zhang
et al., 2024a; Zhao et al., 2024; Kuhn et al., 2023a;
Abbasi-Yadkori et al., 2024). However, relying
solely on a single confidence score at the end of
generation is insufficient to capture the model’s
certainty throughout the entire reasoning trajectory.
A high final confidence score does not indicate
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that the intermediate steps are completely accurate
(Jiao et al., 2024). Figure 1 highlights the key dif-
ferences between these two confidence estimation
paradigms.

Therefore, it is essential to develop fine-grained
confidence estimation methods, which provide ac-
curate confidence scores for the intermediate steps
during generation. This enables early prediction
of whether the model is likely to produce a cor-
rect final answer, without having to wait for the
full response to be completed. In addition, inter-
mediate confidence scores serve as supervisory
signals for LLMs with deep thinking capabilities
, such as O1! and R1 (Guo et al., 2025). These
signals inform the model’s decision-making during
generation, determining whether to proceed with
the current trajectory or to revise earlier outputs.
Furthermore, questions that consistently lead to
low confidence scores expose underlying weak-
nesses in the model, offering actionable insights
for targeted improvements.

Implementing fine-grained confidence estima-
tion in LLMs is non-trivial and presents three ma-
jor challenges. (Task Learning:) In the absence of
explicit confidence annotations, how can we teach
LLMs to express fine-grained confidence? LLMs
are not inherently equipped with such capability.
Dedicated and task-specific supervised training is
necessary. However, constructing supervisory data
for this task poses a significant challenge. A key
difficulty lies in the fact that distilling confidence
scores from other advanced models is often im-
practical, as the uncertainty captured by these mod-
els does not necessarily reflect that of the learner
model itself. (Effectiveness:) How to provide accu-
rate and unbiased confidence estimate for the cur-
rent text? During generation, LL.Ms predict each
token sequentially without access to future content.
Relying solely on confidence scores derived from
the current partial output is easily introduce bias
and miscalibration. (Efficiency:) Where are the
optimal positions for confidence estimation? Esti-
mating confidence after every generated token is
often unnecessary and computationally inefficient.
Instead, it is crucial to identify key positions dur-
ing generation where confidence estimation has the
greatest impact and provides the most value.

In this paper, we introduce FineCE, a fine-
grained confidence estimation method for LLMs
via supervised learning. Specifically, we design a
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complete pipeline based on Monte Carlo Sampling
to construct training data. Additionally, During
inference, we introduce a Backward Confidence
Integration (BCI) strategy, which refines the con-
fidence estimation of current outputs by leverag-
ing uncertainty information from future generated
tokens. To further balance the trade-off between
confidence estimation performance and computa-
tional efficiency, we propose three strategies for
identifying optimal positions within the generation
process to perform confidence estimation.

Experiments demonstrate that FineCE signifi-
cantly outperforms existing confidence estimation
methods across multiple metrics. Notably, FineCE
is able to predict the likelihood of a correct final
answer as early as one-third into the generation,
providing reliable early-stage signals. We further
validate the effectiveness of FineCE on a down-
stream task by applying a confidence-based filter-
ing strategy, where accepts only responses above
a predefined confidence threshold. This strategy
yields a substantial 39.5% improvement in answer
accuracy on the GSMB8K dataset.

In summary, our contributions are four-fold:

* We introduce FineCE, a fine-grained confidence
estimation method.

* We establish a complete pipeline for constructing
high-quality confidence estimation data.

* We propose BCI, a novel backward confidence
integration strategy that enhances current confi-
dence estimation by leveraging future text.

* We develop three basic strategies to identify op-
timal estimation positions within the generation
process.

2 Related Work

Verifier and Calibration Model. Although the cal-
ibration model and the verifier take similar inputs
and produce comparable outputs, they are funda-
mentally distinct in function. The verifier is de-
signed to assess the quality of a given response
in a model-independent manner, assigning consis-
tent evaluation scores regardless of which language
model produced the answer (McAleese et al., 2024;
Ke et al., 2023; Huang et al., 2024). In contrast,
the calibration model estimates the probability that
a specific output is correct, given the behavior of
the generating model. This confidence score is in-
herently model-dependent, as different language
models may generate varying responses to the same
input, each with different likelihoods of being cor-
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rect (Atil et al., 2024; Song et al., 2024; Renze,
2024). To sum up, the verifier facilitates a stan-
dardized evaluation of generation quality across
different models; the calibration model captures
model-specific epistemic uncertainty during the
generation process, reflecting each model’s unique
knowledge confidence.

Confidence Expression in LLMs. Recent stud-
ies have explored how LL.Ms express confidence,
mainly through internal signals or explicit verbal-
ization. Leverage internal representations or log-
its to estimate uncertainty(Su et al., 2024; Chen
et al., 2024b; Azaria and Mitchell, 2023). For
example, (Chen et al., 2024a) analyzes eigenval-
ues from internal vectors to detect errors, while
(Robinson et al., 2023) uses token-level logits to
measure the uncertainty. Others introduce compo-
nents like a “Value Head” to probe self-assessed
confidence (Kadavath et al., 2022), but these meth-
ods are limited to structured tasks. Another line
of work prompts LLMs to verbalize their confi-
dence directly(Zhou et al., 2023; Xiong et al., 2023;
Zhang et al., 2024b). Techniques include few-shot
prompting (Branwen, 2020), supervised training
with external labels (Tian et al., 2023a), and explicit
guidance for confidence output (Lin et al., 2022).
However, models often exhibit overconfidence and
struggle with complex instructions (Xiong et al.,
2023).

3 Task Formalization

The confidence estimation task aims to improve
model calibration by aligning predicted probabil-
ities with the likelihood of correct outputs. Here,
confidence is defined as the probability that the
model’s answer is correct.

Formally, LLMs generally generate responses
in an auto-regressive manner, predicting the next
token sequentially based on the previously gener-
ated context. Given an input z and an LLM M,
the model generate a sequence of output tokens
y = t1,ta,--- , 1, where each token ¢; is sampled
from the distribution P; = P(- | x,t<;; M), with
te; = t1,--- ,t;—1 and n denoting the total num-
ber of generated tokens. Let Y denote the ground-
truth output. Given any intermediate generation
sequence s, we define the confidence score as:

Confs = p(y =Y|s, M) (1)

The confidence score C'onfs of a sequence s,
which can be a partial or complete answer, rep-
resents the probability that model M generates the

correct output Y, conditioned on s. Depending on
the form of s, we categorize the confidence estima-
tion task into the following three variants:

¢ Question-oriented confidence estimation. In
this setting, s contains only the input question,
thatis, s = z.

* Process-oriented confidence estimation. s con-
sists of the input question and a partially gener-
ated answer, i.e., s = (x,t<;), where t-; is a
prefix of the full output sequence y.

¢ OQutcome-oriented confidence estimation. In
this case, s includes both the input and the com-
plete generated response, that is, s = (x,y).

This formulation unifies existing confidence esti-
mation settings under a common probabilistic view.
It also extends the task to cover all stages of the
generation process.

4 FineCE: Fine-grained Confidence
Estimation

4.1 Data Construction

Preliminary. Traditional classification models
struggle to reflect predictive uncertainty, as soft-
max probabilities are often misinterpreted as con-
fidence scores. A high softmax output does not
necessarily indicate that the model is certain about
its prediction (Gal and Ghahramani, 2016). There-
fore, to obtain the LLM’s inherent real responses
probability based on the text s, we introduce Monte
Carlo Sampling(Li et al., 2024) and employ the gen-
erative LLM M to repeatedly sample k answers
{Al A2 ... AF} at high temperature to approx-
imate the probability of generating the correct an-
swer. According to the Law of Large Numbers, as k
approaches infinity, the sample mean will converge
to the true probability of the model generating the
correct answer.

Overall Pipeline. In our work, the input text se-
quence s includes three distinct types: Question,
Question with Partial Answer and Question with
Answer. The confidence score C'on f; is calculated
as the accuracy ratio of k generated answers com-
pared to a reference or golden answer Y, which is
defined as follows:

1AL = 7)

Confs = A ; 2

where A% is the ith sampling answer generated
based on sequence s, and ¥ is the ground-truth
answer. The indicator function I returns 1 when
the answer matches and 0 otherwise.
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Figure 2: The construction process of the training dataset. It illustrates the confidence scoring procedures for Question and
Question with Partial Answer using Monte Carlo sampling. For Question with Answer, the confidence score is determined based
on the correctness of the answer. The complete data construction procedure is detailed in Algorithm A.1.

Confidence score for Question. For each input
question x, we first generate k diverse complete an-
swers {AL A2 ... AF} from the model M using
a high-temperature sampling strategy. Here, A’
represents the ith response conditioned on input x.
The confidence score for z is calculated according
to Equation 2.

Confidence score for Question with Partial An-
swer. To construct training data for confidence es-
timation on partial answers, we apply a truncation
procedure to each complete answer A%, yielding a
sequence of partial answer fragments. Each frag-
ment is then concatenated with the original ques-
tion z and fed into the model to generate multiple
completions. These completions are subsequently
used to estimate the confidence score associated
with the partial answer.

We leverage an intrinsic property of LLMs to
reduce the computational overhead associated with
constructing training datasets. Specifically, when
processing inputs with identical prefixes, their in-
ternal contextual representations tend to converge,
resulting in highly similar conditional probability
distributions for subsequent generations (Porretta
et al., 2025).

Based on this observation, we propose a pro-
gressive data construction pipeline. Starting with
an initial set of k partially completed answer frag-
ments obtained via truncation, we first perform se-
mantic clustering to group these fragments into m
clusters, where 1 < m < k. Each cluster contains
semantically similar fragments. We then select a
centroid fragment from each cluster to serve as its
representative. Each selected representative is then
concatenated with the original question to generate
k new complete answer trajectories through Monte

Carlo sampling, which is facilitates the estimation
of a confidence score for each representative. From
the sampled trajectories, we identify a semantically
representative answer and apply another truncation
operation to obtain a new partial answer.

This process is iteratively repeated, with each
iteration yielding new set of partial answers along
with the confidence estimates. The total number of
truncation is limited to a maximum of 7.

Confidence score for Question with Answer.
Upon completion of the process described above,
we obtain a diverse set of partial answers, each as-
sociated with a corresponding confidence estimate.
Simultaneously, each Monte Carlo sampling step
yields a complete answer to the input question x.
If a sampled answer matches the ground truth, it
is assigned a confidence score of 1.0; otherwise, it
receives a score of 0.0.

The overall training data construction pipeline is
illustrated in Figure 2 and detailed in Algorithm
A.1. The formats of three data types shown in
Figure 4.

Complexity Analysis. The primary cost in con-
structing the training dataset arises from the num-
ber of forward passes required during Monte Carlo
sampling. Without any optimization, generating
three types of confidence estimates for each prob-
lem instance leads to an exponential growth in over-
all generation cost. This process can be viewed as
maintaining a full k-ary tree of depth 7 + 1, re-
sulting in a total of ZZT:JEI k' model inferences. To
reduce complexity, clustering based on semantic
similarity can be performed among sibling nodes
at each hierarchical level. The generation cost is
reduced to k ZZ;O m®. Here, instead of first clus-



tering the k generated candidates and then selecting
the centroid of each cluster, we perform truncation
by directly selecting a semantically representative
candidate from the k£ answers at each step, from the
2nd to the 7 -th. This strategy significantly reduces
the total generation cost to k(1 +m7T). As a result,
in our work, the overall complexity of constructing
the training data is reduced from exponential to
linear with respect to 7.

4.2 Training Technique

To enhance the confidence estimation capability of
LLMs, we explore two distinct training techniques,
including the Additional Value Head and Instruc-
tion Fine-Tuning (IFT) (Ouyang et al., 2022). The
additional value head skill reformulates confidence
estimation as a multi-classification task, enabling
token-level confidence predictions across the gen-
erated sequence. In contrast, IFT leverages the
model’s natural language generation capabilities
to produce confidence estimates in a more inter-
pretable format and human-readable format. In the
Figure 7, we provide a comprehensive comparison
of these two technique in our proposed task. In this
work, FineCE adopts the IFT training paradigm.

4.3 Identify the Calibration Position

FineCE introduces fine-grained confidence estima-
tion for LLMs. Calibrating confidence after each
token generation is impractical due to computa-
tional costs. To reduce the computational over-
head of token-wise confidence calibration, FineCE
introduces three strategies to selectively perform
confidence estimation during generation.

Paragraph-End Calibration conducts estima-
tion at natural linguistic boundaries, such as para-
graph ends. It maintains semantic coherence with
minimal disruption to the generation flow.

Periodic Calibration performs estimation at
fixed token intervals (e.g., every 50 tokens). This
regular, interval-based strategy offers a determinis-
tic mechanism for confidence monitoring, ensuring
consistent quality assessment across the entire gen-
erated sequence.

Entropy-based Calibration triggers estimation
when the model’s output entropy exceeds a prede-
fined threshold. While entropy reflects uncertainty,
it alone is not sufficient for accurate confidence
prediction. The calibration is more meaningful and
reliable when entropy values are higher.

4.4 Backward Confidence Integration (BCI)

Current confidence estimation methods primarily
rely on local features, ignoring the broader reason-
ing context. In multi-step reasoning, the reliability
of each step is influenced by surrounding steps,
making local estimates insufficient to capture true
confidence.

To further revise either excessively high or low
confidence level and mitigate output confidence
bias, we introduce the Backward Confidence
Integration strategy. This strategy incorporates
the future context into the current confidence
estimation, enabling a more globally informed and
stable estimation. Formally, for a generated text
sequence, Confs,; denotes the initial confidence
estimation at the jth calibration position in a
generated sequence. The adjusted confidence score
Con f;h is computed recursively for positions
h € (j,j + d), which is defined as:

aConfs, + (1 —a)= >, Conf;i+ ,

Conf;j: h<j+d '
Confs,,h=75+d

3)
Here, a € [0, 1] is the revision coefficient balanc-
ing the original local confidence and the influence
of future context. A smaller « places placing more
weight on future text. The parameters w defines the
number of sampled generation paths (integration
width), and d specifies how many future positions
are considered (integration depth). Con f s denotes
the adjusted confidence at the hAth calibration posi-
tion in the bth sample. By recursively incorporating
backward signals from future steps, it provides a
more globally accurate estimation of confidence
for each calibration position.

S Experiments

5.1 Experiment Setting

Dataset and Metrics. We evaluate the
performance of confidence estimation across
six datasets including GSM8K(Cobbe et al.,
2021), TriviaQA(Joshi et al., 2017), Common-
senseQA(CSQA; (Talmor et al., 2018)), AIME24?,
MMLU (Hendrycks et al., 2021), and NQ-Open
(Kwiatkowski et al., 2019).

We adopt several widely used metrics including
Expected Calibration Error (ECE), Receiver Oper-
ating Characteristic Curve (AUROC) and Accuracy
(ACO).

Zhttps://huggingface.co/datasets/math-ai/aime24



Table 1: Confidence estimation results throughout the generation process. z is total number of paragraphs in an
answer. p(1) and p(z — 1) represent the confidence estimates for the first and the penultimate paragraphs of the

generated answer, respectively.

P Metri Llama2-13B Llama3.1-8B Qwen2.5-7B

0s etrics VS LECO FineCE MS LECO FineCE LECO FineCE
v 1 AUROC 55.6 60.5 73.8 60.8 62.2 66.2 64.7 64.4 66.8
£ ») "UECE| 235 192 93 274 211 157 236 2011 141
% 1 AUROC 57.3 59.5 77.7 62.3 64.7 69.4 63.8 65.3 65.3
¢ p-1) "UECE| 28 213 84 207 237 173 252 204 144
AVG AUROC 57.1 61.1 78.1 62.4 68.2 72.7 67.2 64.1 76.4

ECE 21.1 19.6 6.7 28.3 19.2 12.3 19.2 20.1 10.7

« 1 AUROC 54.6 57.1 66.2 61.0 63.1 66.3 63.9 62.0 68.1
P TECE|L 248 238 183 294 224 166 276 192 173

8 ) 1 AUROC 53.2 56.0 69.3 57.2 62.9 67.5 62.0 63.9 68.2
p=—1) "TECE| 295 257 162 330 263 179 244 208 171
AVG AUROC 58.6 59.6 71.3 59.3 65.0 71.1 65.5 65.3 73.2

ECE 23.1 21.4 11.7 293 23.1 13.3 25.0 17.6 14.7

<« 1 AUROC 56.1 534 70.8 63.4 60.7 69.2 61.9 62.1 67.4
o P TECEL 222 268 145 279 214 187 264 227 193
-E 1 AUROC 56.4 58.3 74.2 62.0 63.4 67.7 59.4 64.4 71.1
£ pe—D "TECEl 256 273 150 263 209 203 302 234 175
AVC AUROC 57.2 58.1 76.1 63.7 62.6 73.3 63.2 64.0 73.9

ECE 22.8 25.5 11.3 25.1 19.3 14.2 253 20.2 134

- 1 AUROC 21.4 56.3 68.4 16.2 63.4 69.8 25.3 64.1 74.1
S P) "TECE| 574 314 193 603 312 215 643 337 224
E 1 AUROC 25.4 59.4 71.3 253 66.3 68.4 11.6 65.2 76.2
=2 p-1) "UECE| 643 343 224 572 294 235 768 302 213
AVC AUROC 22.7 56.3 76.0 19.5 64.1 71.3 30.3 64.0 79.2

ECE 59.2 33.8 16.5 554 30.8 204 72.3 29.6 18.3

= 1 AUROC 57.4 61.3 74.3 53.1 59.2 70.3 54.1 60.3 70.2
= P "TECE| 276 262 201 303 278 202 329 303 224
é 1 AUROC 59.3 62.5 71.8 56.4 61.3 73.1 52.6 57.4 71.3
p=—1) "TECE| 292 281 189 336 293 173 334 287 193
AVC AUROC 58.9 60.5 74.6 57.2 63.4 74.6 58.4 61.2 74.2

ECE 28.3 273 15.3 28.9 26.9 14.1 31.1 28.4 15.7

= 1 AUROC 59.4 62.1 72.3 55.8 61.0 72.3 55.3 62.8 72.0
2 p() "TECEL 301 260 178 349 287 237 351 204 175
o. 1 AUROC 60.4 57.3 70.9 57.3 59.4 67.5 58.1 61.3 70.3
g Pe-D TUECEL 296 270 203 292 263 181 304 305 205
AVG AUROC 60.7 59.1 75.5 57.9 62.3 74.7 58.8 64.2 76.9

ECE 27.4 25.7 14.2 32.3 26.1 18.2 32.8 28.6 16.4

Models and Baselines. We employ three widely-
used open-source models, including Llama2-
13B(Touvron et al., 2023), Llama3.1-8B(Dubey
et al., 2024) and Qwen2.5-7B(Yang et al., 2024).
The baselines we used in this paper include the
following three types: 1) Question-oriented:
P(K)(Kadavath et al., 2022); 2) Outcome-
oriented: First-Prob((Santurkar et al., 2023)),
SuC(Lin et al., 2022), Verbalized Porb (Verb (Tian
et al., 2023b)) Semantic Uncertainty (SE, (Kuhn
et al., 2023b)); 3) Step-wise estimation: Multi-
Step (MS; (Xiong et al., 2023)), LECO(Yao et al.,
2024).

Further details about datasets, baselines, imple-
mentations (including all prompts used in this pa-
per, important parameters, and platforms) can be
found in Appendix A.2. In addition, we present
an in-depth discussion on FineCE’s generalization

ability, its dependence on training data, the impact
of training strategies, and its performance on highly
open-ended questions. The further discussions are
provided in Appendix A.3.

5.2 Main Results and Analysis
RQ1: How does FineCE perform compared
with baselines? In this experiment, to ensure fair-
ness, we fix the parameters w and b in FineCE to 0,
aligning the inference-time computational cost of
FineCE with that of other baseline methods. The
overall results are shown in Table 1 and Table 2.
The results clearly demonstrate that FineCE consis-
tently enables base models to produce accurate
confidence estimates for any given text sequence
across six datasets, outperforming existing meth-
ods.

From Table 1, it is evident that FineCE provides
accurate confidence estimates throughout the en-



Table 2: Confidence estimation results across baselines on Question-oriented and Outcome-oriented tasks.

Models  Baselines GSMSK CSQA TriviaQA AIME24 MMLU NQ-Open
ECEl AUROCt ECE| AUROCt ECE| AUROCt ECE| AUROCt ECE| AUROCT ECE| AUROCt
P(IK) 17.6 72.8 19.4 68.7 20.4 67.7 33.1 67.9 18.3 72.1 224 68.2
2 FineCE 135 76.4 16.0 68.4 15.5 69.8 18.5 73.1 143 76.2 20.9 73.1
? First-Prob 262 66.2 235 66.8 249 65.1 40.3 65 214 68.4 29.4 66.5
g SuC 28.4 62.0 327 59.1 29.7 60.4 427 62.2 247 66.3 273 61.4
= Verb 20.4 729 28.0 68.4 30.1 69.1 734 6.1 312 62.7 34.0 65.2

SE 17.6 73.5 21.3 66.7 19.4
FineCE 12.7 77.1 14.2 72.8 14.6

P(IK) 17.4 68.3 16.3 68.4 21.6 67.9 27.9 66.3 16.1 69.8 20.8 72.3

m FineCE 11.4 72.3 14.7 70.6 15.2 69.2 21.2 76.2 15.6 73.1 17.4 76.2
E First-Prob  25.4 66.4 26.6 65.2 259 62.3 35.8 574 30.3 68.0 24.5 68.5
5 SuC 29.0 57.4 28.2 63.1 327 58.5 38.4 60.4 27.0 62.4 24.1 63.1
5 Verb 15.3 722 12.4 70.3 22.0 68.4 78.7 11.3 29.4 63.3 33.6 62.4
SE 18.6 72.1 19.3 69.4 22.5 68.4 25.1 73.5 224 68.3 23.8 71.8

FineCE 10.2 75.3 13.1 70.8 154 72.5 17.7 81.3 16.3 75.7 15.3 77.8

P(IK) 14.5 64.8 29.9 59.5 18.7 65.0 31.4 72.1 17.3 67.6 18.3 70.7

m FineCE 8.9 67.3 16.2 69.3 15.5 68.4 24.8 78.4 15.0 72.6 139 74.3
i First-Prob ~ 23.3 59.7 22.3 60.1 27.6 57.1 42.0 61.2 19.4 64.3 22.1 65.1
§ SuC 28.8 57.3 27.2 56.7 23.5 58.2 37.3 57.3 22.1 65.2 24.6 66.4
C:ic Verb 29.3 56.2 21.7 58.3 27.1 53.7 82.3 14.9 32.6 61.1 29.8 62.4
SE 18.4 68.6 16.3 65.4 19.5 63.1 32.7 65.1 20.3 69.4 24.1 70.2

FineCE 5.1 77.8 11.5 70.5 12.0 76.9 16.2 75.3 14.8 75.4 14.2 74.6

tire generation process. Specifically, our method
achieves AUROC values above 70% in most cases,
indicating robust performance in accurately iden-
tifying confidence levels. In contrast, the AUROC
values for the two baselines hover around 60%,
which is nearly equivalent to random guessing.
This notable difference indicates that FineCE pro-
vides more accurate and reliable confidence esti-
mates during the generation process compared to
other methods.

From Table 2, our method consistently outper-
forms all baselines in both ECE and AUROC, and
shows excellent calibration capability. Specifi-
cally, on the GSM8K dataset under the outcome-
oriented confidence estimation setting, Llama2-
13B achieves a significantly lower ECE of 5.1%,
indicating strong calibration performance. Addi-
tionally, it obtains an AUROC of 78.9%, reflecting
its ability to effectively distinguish between correct
and incorrect predictions.

In addition, we also report the accuracy perfor-
mance of various baselines in the Appendix (Ta-
ble 4). FineCE enhances confidence calibration
through fine-tuning without sacrificing answer ac-
curacy. This is achieved by incorporating a re-
playing strategy during fine-tuning and mixing in
general instruction-following datasets.

5.3 Downstream Application

RQ2: How does FineCE perform on down-
stream application? First, we apply FineCE dur-

ing the early stage of response generation to esti-
mate answer correctness without waiting for the
full output. The results are shown in Table 3.
FineCE is able to generate reliable confidence
estimates after only approximately 30 % of the
response has been generated. These early esti-
mates are highly consistent with those obtained
after the complete response is generated, indicating
that FineCE can effectively assess answer quality
with partial information.

Further, we introduce a confidence-based filter-
ing mechanism. Specifically, we define a confi-
dence threshold ¢ and accept only those responses
whose confidence estimates exceed this threshold.
This allows the model to selectively retain answers
that are more likely to be correct, based on the
early-stage confidence scores produced by FineCE.
As shown in Figure 3 (Left), this filtering strategy
significantly improves answer accuracy compared
to using the base model outputs alone. Overall, the
confidence estimates generated by FineCE serve
as effective indicators for identifying correct re-
sponses, enabling consistent performance gains
across multiple datasets.

5.4 Ablation Analysis

RQ3: Where does FineCE perform the confi-
dence estimation? We conduct a comparative anal-
ysis of three calibration position strategies using the
Llama2-13B model. For the Entropy-based strat-
egy, we set the entropy threshold to /e-10, while
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Figure 3: (Left:) Comparison of accuracy between the original model predictions and those selectively accepted by FineCE
when the output confidence exceeds 0.8. The backbone used is Llama2-13B. (Right:) Effect of fusion depth (left) and fusion
width (right) in FineCE on confidence estimation performance, evaluated with Llama-7B and Llama-13B on the GSMS8K and

CSQA datasets.

Table 3: Performance comparison of three strategies for
identifying optimal calibration positions. Token Ratio
represents the proportion of tokens preceding the cali-
bration position relative to the total number of tokens
in the complete answer. The backbone model used is
Llama2-13B.

Dataset Strategy  FCE, ECFE,, Token Ratio
Paragraph 9.8 7.7 30.4%
GSM8K " Entropy 132 7.7 10.0%
Fixed-token 13.1 10.8 23.5%
Paragraph 26.8 13.0 22.0%
CSQA Entropy 27.1 18.8 7.0%
Fixed-token 242 20.7 34.7%
.. Paragraph 17.2 14.5 28.5%
TriviaQA " Entropy 18.5 15.4 13.4%
Fixed-token 20.0 18.0 34.1%

for the Periodic Calibration strategy, we fix the cal-
ibration interval to every 30 tokens. The results are
presented in Table 3.

We observe that all three strategies demon-
strate comparable performance in terms of ECE,
with Paragraph-end Calibration strategy yielding
slightly better results. We attribute this improve-
ment to the fact that calibrating at paragraph bound-
aries helps preserve the full semantic context,
which is essential for reliable confidence estima-
tion.

Based on these findings, we draw the following
insights. For general tasks, performing confidence
estimation at paragraph boundaries is both efficient
and effective, significantly reducing unnecessary
token consumption. In contrast, for more com-
plex tasks that require finer-grained assessment, the
Entropy-based strategy achieves more frequent and
accurate confidence estimation through dynamic
calibration guided by uncertainty.

RQ4: How effective is the BCI strategy?
To evaluate the effectiveness of the BCI strategy,
we conduct ablation experiments on the GSM8K

and CSQA datasets using both Llama2-7B? and
Llama2-13B models. We evaluate the ECE of p(1),
and the results are shown in Figure 3 (Right).

In this setup, the case where d = 0 and w = 0
corresponds to the FineCE baseline without the
BCI strategy. As the fusion depth d and fusion
width w increase, we observe a consistent improve-
ment in calibration performance. Notably, incor-
porating the BCI strategy leads to a substantial
reduction in ECE, indicating a more accurate align-
ment between predicted confidence and actual cor-
rectness. Furthermore, we find that the gains be-
come increasingly significant as the fusion depth
and width grow, though this is accompanied by
increased computational costs during inference.

6 Conclusion

In this paper, we propose FineCE, a fine-grained
confidence estimation method designed to provide
accurate confidence scores throughout the gener-
ation process. We first differentiate FineCE from
existing popular confidence estimation approaches,
emphasizing its unique advantages. We then detail
the training dataset construction procedure used in
FineCE, followed by the introduction of three basic
strategies to identify the optimal confidence estima-
tion positions. Additionally, during the inference
stage, we further present the BCI strategy, which
enhances confidence estimation by incorporating
the future text to provide a more comprehensive
estimation for the current output. Extensive experi-
ments demonstrate that FineCE consistently outper-
forms existing methods across various confidence
estimation tasks. We also validate its effectiveness
on several downstream applications.

3https://huggingface.co/meta-llama/Llama-2-7b



7 Limitations

Although FineCE demonstrates effectiveness in
providing accurate confidence scores across var-
ious confidence estimation task, it encounters chal-
lenges when applied to highly open-ended prob-
lems, similar to all existing confidence estimation
methods. For example, questions like “How to
stay healthy?" lack explicit and clear response
constraints such as perspective, scope or response
length. The inherent ambiguity and broad range of
potential solutions in such queries present signifi-
cant challenges for reliable confidence estimation.
We discuss this in detail in the appendix RQ8. In fu-
ture work, we will focus on exploring more robust
confidence estimation methods specifically tailored
to handle these highly open-ended questions.
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A Appendix
A.1 Algorithm

Algorithm 1 Confidence Estimation Dataset Con-
struction

Require: Generation model M, Question set Q
{z1,22, -+ ,zn}, Number of samples k, Number of
clusters m, Number of truncations 7~

Ensure: Confidence estimation dataset D = {(s, Confs)}.
Initialize D < 0

1: for each question x € Q do

2: Generate k answers {AL, A2, ... AF}

3: Compute confidence score Conf, based on Equation
2

4: Add (z, Conf,) to dataset D

5: Collect all partial answers {AL*,--- , A¥*} by trun-

cating k answers > the first

truncation

6: Cluster the partial answers into m clusters
{C1,C4,-- ,Cn} > cluster only once

7: fort =2to7 do

8: if £ = 2 then

9: Select representative centroids from each clus-

) cm}
> partial answers in the ¢ — 1th

ter, ¢y {Cl,CQ, s
!
else ¢+ ¢
truncation

11: end if

12: c <0 > new partial answers

13: for each partial answer ¢; € ¢; do

14: Concatenate s; < x @ c¢;. Generate k answers
based on s; > completion

15: Compute confidence score Confs, based on

Equation (2)

Add (s;, Conf,, ) to dataset D

Truncate the newly generated k answers > the
tth truncation ,

Find the semantic centroid ¢; among the k

truncated results. ¢ « ¢ U{c;} > append
19: end for
20: end for
21: for a complete answer A of question x do >

confidence score for a complete answer
if A is a correct answer then Add (z @ A, 1.0) to
dataset D
else
end if
end for
end for
return D

23: Add (z @ A, 0.0) to dataset D
25:
26:
27:

As discussed in Section 4.1, we provide the al-
gorithmic details of how FineCE employs Monte
Carlo sampling to generate three types of data, as
illustrated in Algorithm A.1. We also provide three
types of training data format in Figure 4.

A.2 Additional Experiments Details
A.2.1 Baselines.
‘We introduce each method in the baseline, and the

prompts used are shown in Figure 9.

P(IK). It trains a logistic regression with the ad-
ditional value “head" added to the model to output
the confidence estimated.
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First-Prob. It uses the logits of the first token
of LLM’s generated answer as the confidence esti-
mate.

SuC. It first clusters the sub-questions and uses
the same confidence estimate for the questions in
the same cluster.

Verb. It is a prompt-based method. It designs the
prompts to guide the model to output its confidence
score along with the generated answer.

LECO. It also proposes to leverage logits to es-
timate the confidence of the steps. In addition, it
further designs three logit-based scores that com-
prehensively assess confidence from both intra- and
inter-step perspectives.

Multi-Step. It also uses prompts to guide the
model to output the confidence of the process and
takes the average as the final result.

A.2.2 Important Parameters Settings.

During training data construction, each text is sam-
pled £ = 30 times. During the fine-tuning, our
implementation is based on LLaMA-Factory *. We
employ the AdamW optimizer with 5; = 0.9 and
B2 0.5. The initial learning rate is set to le-
4, with the warmup phase of 300 steps. All ex-
periments are conducted on the workstations of
NVIDIA A800 PCle with 80GB memory and the
environment of Ubuntu 20.04.6 LTS and torch
2.0.1.

Accuracy Performance. The accuracy results
are shown in Table 4.

A.3 Further Discussions

RQS5: How does FineCE perform with zero-
shot prompt on new task? To evaluate the gen-
eralizability of the FineCE method, we test the
confidence estimation performance of FineCE on
OpenBookQA dataset (Mihaylov et al., 2018) using
Llama2-13B, and the results are shown in Figure 5.
We find that FineCE exhibits outstanding per-
formance across both the ECE and AUROC confi-
dence metrics. Additionally, there is a robust pos-
itive correlation between the model’s confidence
estimates and the actual accuracy of the answers.
Specifically, we observe that higher confidence lev-
els correlated with higher accuracy. It indicates
that our method possesses noteworthy generaliza-
tion capabilities and is capable to offer reliable
confidence estimates when applied to new tasks.

*https://github.com/hiyouga/LLaMA-Factory



,
< Question, Conf >

What is the average distance traveled per day?
Output: Conf: 0.7

< Question + Partial Answer, Conf >

Output: Conf:0.9

< Question + Answer, Conf >

miles.
Output: Conf:1.0

-

Input: If a vehicle is driven 12 miles on Monday, 18 miles on Tuesday, and 21 miles on Wednesday.

Input: If a vehicle is driven 12 miles on Monday, 18 miles on Tuesday, and 21 miles on Wednesday.
What is the average distance traveled per day? The total number of miles driven is

Input: If a vehicle is driven 12 miles on Monday, 18 miles on Tuesday, and 21 miles on Wednesday.
What is the average distance traveled per day? The total number of miles driven is 12 + 18 + 21 =
<<12+18+21=51>>51 miles. The average distance traveled per day is 51 miles / 3 days = <<51/3=17>>17

Figure 4: The three types of training data format.

Table 4: Performance of different methods on various benchmarks.

Method GSMSK CSQA TriviaQA AIME24 MMLU NQ _Open AVG
Llama3.1-8B
Base 728 783 44 133 556 504 5747
P(K) 57.4 71.0 73.3 10.0 48.4 46.1 51.0
First-Prob 69.4 76.4 76.1 13.3 53.1 49.3 56.3
SuC 60.1 76.2 70.8 10.0 50.9 45.6 52.3
FineCE 61.7 77.4 73.9 13 54.8 48.2 549
Qwen2.5-7B
Base ¢ 836 _ 83 7194 133 602 429 = 6Ll
P(IK) 70.7 77.9 73.0 13.3 54.1 40.3 54.9
First-Prob 79.4 80.7 80.2 16.7 60.2 414 59.8
SuC 4.1 79.2 74.3 16.7 58.3 40.0 57.1
FineCE 73 81.1 71.3 20.0 60.6 43.6 59.3
Llama2-13B
Base - 310643 651 ¢ 33 439 415 4152
P(K) 30.4 69.9 66.2 0.0 384 35.2 40.02
First-Prob 30.4 62.5 63.1 33 39.3 39.2 39.63
SuC 31.0 60.1 62.8 0.0 40.3 37.1 38.55
FineCE 3.6 65.6 64.8 3 43.1 40.6 41.83

RQ6: How does FineCE perform when trained
using datasets from different model? Here, we
use the LLaMA2-13B and LLaMA2-7B as the
backbone models. We employ two distinct models
to construct the training datasets: the model itself
or an alternative model. The results are shown in
Figure 8.

Training with datasets generated from the al-
ternative model achieves confidence calibration
performance very close to the obtained using the
dataset constructed by the model itself, especially
on the GSM8K and CSQA datasets. We guess that
it may be related to the used models being from the
same family and exhibit significant similarities in
their knowledge capabilities. It suggests that larger
models could effectively instruct smaller models to
learn to express the confidence. In addition, lever-
aging smaller models to construct training datasets
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may be a cost-efficient alternative.

We also use two models from different fami-
lies to explore this phenomenon further, including
Qwen2-7B and LLaMAZ2-7B, which are from dif-
ferent model families. The results are show in Fig-
ure 6. We find that there are two different phenom-
ena on different datasets. On the GSM8K dataset,
compared with using the model itself to construct
training data, the confidence training data con-
structed with the help of other models performed
poorly, especially in the ECE value, where the dif-
ference was particularly significant. On the CSQA
dataset, the performance difference between the
two methods is small. This may be because there is
a large difference in the accuracy of Qwen2-7B and
LLaMAZ2-7B on the GSM8K dataset, which makes
it impossible to effectively migrate the confidence
training data constructed by these two models to
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Figure 5: The Zero-shot performance on OpenBookQA dataset. From left to right, the figures show the confidence estimation
performance of FineCE for the question, partial answer, and complete answer. The x-axis represents the confidence scores (%),
and the y-axis represents the ratio of quantities. The top area contains the detailed values of ECE and AUROC.
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Figure 6: On GSM8K(left) and CSQA(right) dataset, the performance confidence estimation for the two different families
models using datasets from different sources.The horizontal axis represents the base models.

each other.

We can conclude that if the performance of two
models on a task is close, the confidence training
data constructed using one of the models can be
effectively used in the training stage of the other
model.

RQ7: Which training skill is more suitable?
On the GSMSK training dataset, we employ two
distinct training techniques using the LLaMA?2-
13B model. One is to add a multi-classification
head at the end of the model to output the confi-
dence estimates through classification. The other
is the instruction fine-tuning method as we used in
the experiment. The outcome confidence estimates
results are shown in Figure 7.

It suggests that under the same data scale, the
multi-classification techniques exhibited poor
performance in confidence estimation task.

RQ8: How does our method perform on highly
open questions? We randomly select 300 single-
round English open question-answering data on
Sharegpt °, and use LLaMA2-7B to provide con-
fidence estimates. To calculate ECE, we compare
the model’s output confidence against the evalu-
ation scores of generated answers obtained from

5https://huggingface.co/datasets/OpenGVLab/
ShareGPT-40
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GPT-4. We find that for highly open questions, our
proposed method achieved a higher ECE value of
65.66. This is also in line with our expectations.
This is because we did not use GPT4’s evaluation
to assist in constructing training data, resulting in a
large difference between the confidence provided
by the model and the GPT4 scoring results.


https://huggingface.co/datasets/OpenGVLab/ShareGPT-4o
https://huggingface.co/datasets/OpenGVLab/ShareGPT-4o
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Figure 7: The performance comparison using different training technical. The backbone model is LLaMA2-13B.
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Figure 8: The performance confidence estimation for two base models using training datasets from different sources. The
horizontal axis represents the base models.

rPrompt for Verb )
Read the question, analyze step by step, provide your answer and your confidence in this answer. Use
the following format to answer:

"Explanation: [insert step-by-step analysis here]

Answer: [ONLY the option letter; not a complete sentence],

Confidence (0-100): [Your confidence level, please only include the numerical number in the range of 0-
100]%"

Please refer to the example | have given:

<example>

{few-shot}

</example>

Question:

{question}

Now, please answer this question and provide your confidence level. Let’s think it step by step.

Prompt for Multi-step

Read the question, break down the problem into K steps, think step by step, give your confidence in
each step, and then derive your final answer and your confidence in this answer.

Note: The confidence indicates how likely you think your answer is true.

Use the following formatto answer:

Step 1: [Your reasoning], Confidence: [ONLY the confidence value that this step is correct]%
Step K: [Your reasoning], Confidence: [ONLY the confidence value that this step is correct]%
Final Answer: [ONLY the {answertype}; nota complete sentence]

Overall Confidence (0-100): [Your confidence value]%

Please refer to the example | have given:

<example>

{few-shot}

</example>

Question:

{question}

Now, please answer this question and provide your confidence level. Let’s think it step by step.

Prompt for FineCE (ours)
Below is a question and some steps:
Question:
{question}
{steps}
kPIease give your confidence. )

Figure 9: The prompts used in the baselines.
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