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Abstract

Accurate confidence estimation of large lan-001
guage models (LLMs) is crucial to improve the002
reliability of their generation. However, exist-003
ing methods are limited by their corse-grained004
confidence estimation and a narrow perspec-005
tive, falling to provide continuous confidence006
estimation throughout the generation process.007
In this paper, we introduce FineCE, a novel008
fine-grained confidence estimation method that009
provides the accurate confidence scores dur-010
ing generation. Specifically, we develop a011
pipeline based on Monte Carlo Sampling to012
construct training data that captures the intrin-013
sic responses of LLMs. In addition, we propose014
a Backward Confidence Integration (BCI) strat-015
egy, which incorporates confidence scores from016
subsequent text sequences to provide a more017
holistic confidence estimation for the current018
output. We further provide three strategies to019
identify optimal estimation positions for effi-020
ciency optimization. Extensive experiments021
demonstrate that FineCE consistently outper-022
forms existing baselines in various tasks and023
exhibits strong calibration capability. Our code024
and all baselines are available in the GitHub025
https://anonymous.4open.science/r/FineCE/.026

1 Introduction027

Self-awareness, as a core metacognitive ability,028

plays a crucial role in both human cognition and the029

the advancement of large-scale AI systems (Dewey,030

1986; Kuhl and Beckmann, 2012). For humans, it031

enables reflective thinking and error monitoring.032

Similarly, for large language models (LLMs), it033

supports output evaluation, uncertainty recognition,034

and self-correction, which is critical for handling035

complex reasoning tasks (Tong et al., 2024; Xie036

et al., 2025). Confidence estimation has emerged037

as a promising approach, enabling models to assess038

the reliability of their own generations (Zhou et al.,039

2023; Xiong et al., 2023; Branwen, 2020).040

Where can a talking bee be found?
 A. great outdoors        B. story book         C. flower shop             D. herb 
garden

Talking bees are …in 
storybooks or fantasy 
novels, …(Conf: 0.8)
However, if we want to 
find a…(Conf: 0.3) flower 
shop or an herb 
garden…locations. So, the
answer is B. (Conf: 1) 

if we want to find a 
talking… or an herb 
garden. This is…to 
have talking animals 
than other locations.
So, the answer is C. 
(Conf: 0) 

I don’t know

A talking bee is 
a fictional concept, 
and… story book 
rather than…a herb 
garden. So, the
answer is B.

(a) reject / give answer (b) answer with conf (c) fine-grained confidence

Figure 1: The difference between our proposed FineCE and
existing confidence estimation methods. (a): LLMs either
generate an answer when the query is within their knowledge
scope or refuse to answer if it falls beyond their capabilities.
(b): The model assigns a single confidence score after the
entire answer is generated. (c): Our proposed method, FineCE,
provides the fine-grained confidence scores for any given text
sequence throughout the generation process.

However, existing confidence estimation meth- 041

ods for LLMs remain limited by their coarse- 042

grained scoring and narrow perspective, failing 043

to provide reliable and actionable confidence es- 044

timation. Broadly, these works categorized into 045

question-oriented and outcome-oriented paradigms. 046

Question-oriented methods aim to constrain LLMs 047

to answer only questions within their domain of 048

knowledge, allowing the model to give up respond- 049

ing when uncertain(Zhang et al., 2023). When 050

faced with ambiguous or challenging questions, 051

LLMs often choose to reject them directly (Kada- 052

vath et al., 2022), rather than attempting to infer 053

potential answer from available context. While 054

this conservative method helps prevent the model 055

from generating incorrect answers, it also signif- 056

icantly limits the utility of LLMs in open-ended 057

tasks. Outcome-oriented methods require LLMs 058

to evaluate the quality of their generated answers 059

after completing the generation process (Zhang 060

et al., 2024a; Zhao et al., 2024; Kuhn et al., 2023a; 061

Abbasi-Yadkori et al., 2024). However, relying 062

solely on a single confidence score at the end of 063

generation is insufficient to capture the model’s 064

certainty throughout the entire reasoning trajectory. 065

A high final confidence score does not indicate 066
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that the intermediate steps are completely accurate067

(Jiao et al., 2024). Figure 1 highlights the key dif-068

ferences between these two confidence estimation069

paradigms.070

Therefore, it is essential to develop fine-grained071

confidence estimation methods, which provide ac-072

curate confidence scores for the intermediate steps073

during generation. This enables early prediction074

of whether the model is likely to produce a cor-075

rect final answer, without having to wait for the076

full response to be completed. In addition, inter-077

mediate confidence scores serve as supervisory078

signals for LLMs with deep thinking capabilities079

, such as O11 and R1 (Guo et al., 2025). These080

signals inform the model’s decision-making during081

generation, determining whether to proceed with082

the current trajectory or to revise earlier outputs.083

Furthermore, questions that consistently lead to084

low confidence scores expose underlying weak-085

nesses in the model, offering actionable insights086

for targeted improvements.087

Implementing fine-grained confidence estima-088

tion in LLMs is non-trivial and presents three ma-089

jor challenges. (Task Learning:) In the absence of090

explicit confidence annotations, how can we teach091

LLMs to express fine-grained confidence? LLMs092

are not inherently equipped with such capability.093

Dedicated and task-specific supervised training is094

necessary. However, constructing supervisory data095

for this task poses a significant challenge. A key096

difficulty lies in the fact that distilling confidence097

scores from other advanced models is often im-098

practical, as the uncertainty captured by these mod-099

els does not necessarily reflect that of the learner100

model itself. (Effectiveness:) How to provide accu-101

rate and unbiased confidence estimate for the cur-102

rent text? During generation, LLMs predict each103

token sequentially without access to future content.104

Relying solely on confidence scores derived from105

the current partial output is easily introduce bias106

and miscalibration. (Efficiency:) Where are the107

optimal positions for confidence estimation? Esti-108

mating confidence after every generated token is109

often unnecessary and computationally inefficient.110

Instead, it is crucial to identify key positions dur-111

ing generation where confidence estimation has the112

greatest impact and provides the most value.113

In this paper, we introduce FineCE, a fine-114

grained confidence estimation method for LLMs115

via supervised learning. Specifically, we design a116
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complete pipeline based on Monte Carlo Sampling 117

to construct training data. Additionally, During 118

inference, we introduce a Backward Confidence 119

Integration (BCI) strategy, which refines the con- 120

fidence estimation of current outputs by leverag- 121

ing uncertainty information from future generated 122

tokens. To further balance the trade-off between 123

confidence estimation performance and computa- 124

tional efficiency, we propose three strategies for 125

identifying optimal positions within the generation 126

process to perform confidence estimation. 127

Experiments demonstrate that FineCE signifi- 128

cantly outperforms existing confidence estimation 129

methods across multiple metrics. Notably, FineCE 130

is able to predict the likelihood of a correct final 131

answer as early as one-third into the generation, 132

providing reliable early-stage signals. We further 133

validate the effectiveness of FineCE on a down- 134

stream task by applying a confidence-based filter- 135

ing strategy, where accepts only responses above 136

a predefined confidence threshold. This strategy 137

yields a substantial 39.5% improvement in answer 138

accuracy on the GSM8K dataset. 139

In summary, our contributions are four-fold: 140

• We introduce FineCE, a fine-grained confidence 141

estimation method. 142

• We establish a complete pipeline for constructing 143

high-quality confidence estimation data. 144

• We propose BCI, a novel backward confidence 145

integration strategy that enhances current confi- 146

dence estimation by leveraging future text. 147

• We develop three basic strategies to identify op- 148

timal estimation positions within the generation 149

process. 150

2 Related Work 151

Verifier and Calibration Model. Although the cal- 152

ibration model and the verifier take similar inputs 153

and produce comparable outputs, they are funda- 154

mentally distinct in function. The verifier is de- 155

signed to assess the quality of a given response 156

in a model-independent manner, assigning consis- 157

tent evaluation scores regardless of which language 158

model produced the answer (McAleese et al., 2024; 159

Ke et al., 2023; Huang et al., 2024). In contrast, 160

the calibration model estimates the probability that 161

a specific output is correct, given the behavior of 162

the generating model. This confidence score is in- 163

herently model-dependent, as different language 164

models may generate varying responses to the same 165

input, each with different likelihoods of being cor- 166
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rect (Atil et al., 2024; Song et al., 2024; Renze,167

2024). To sum up, the verifier facilitates a stan-168

dardized evaluation of generation quality across169

different models; the calibration model captures170

model-specific epistemic uncertainty during the171

generation process, reflecting each model’s unique172

knowledge confidence.173

Confidence Expression in LLMs. Recent stud-174

ies have explored how LLMs express confidence,175

mainly through internal signals or explicit verbal-176

ization. Leverage internal representations or log-177

its to estimate uncertainty(Su et al., 2024; Chen178

et al., 2024b; Azaria and Mitchell, 2023). For179

example, (Chen et al., 2024a) analyzes eigenval-180

ues from internal vectors to detect errors, while181

(Robinson et al., 2023) uses token-level logits to182

measure the uncertainty. Others introduce compo-183

nents like a “Value Head” to probe self-assessed184

confidence (Kadavath et al., 2022), but these meth-185

ods are limited to structured tasks. Another line186

of work prompts LLMs to verbalize their confi-187

dence directly(Zhou et al., 2023; Xiong et al., 2023;188

Zhang et al., 2024b). Techniques include few-shot189

prompting (Branwen, 2020), supervised training190

with external labels (Tian et al., 2023a), and explicit191

guidance for confidence output (Lin et al., 2022).192

However, models often exhibit overconfidence and193

struggle with complex instructions (Xiong et al.,194

2023).195

3 Task Formalization196

The confidence estimation task aims to improve197

model calibration by aligning predicted probabil-198

ities with the likelihood of correct outputs. Here,199

confidence is defined as the probability that the200

model’s answer is correct.201

Formally, LLMs generally generate responses202

in an auto-regressive manner, predicting the next203

token sequentially based on the previously gener-204

ated context. Given an input x and an LLM M ,205

the model generate a sequence of output tokens206

y = t1, t2, · · · , tn, where each token ti is sampled207

from the distribution Pi = P(· | x, t<i;M), with208

t<i = t1, · · · , ti−1 and n denoting the total num-209

ber of generated tokens. Let Ȳ denote the ground-210

truth output. Given any intermediate generation211

sequence s, we define the confidence score as:212

Confs = p(y = Ȳ |s,M) (1)213

The confidence score Confs of a sequence s,214

which can be a partial or complete answer, rep-215

resents the probability that model M generates the216

correct output Ȳ , conditioned on s. Depending on 217

the form of s, we categorize the confidence estima- 218

tion task into the following three variants: 219

• Question-oriented confidence estimation. In 220

this setting, s contains only the input question, 221

that is, s = x. 222

• Process-oriented confidence estimation. s con- 223

sists of the input question and a partially gener- 224

ated answer, i.e., s = (x, t<i), where t<i is a 225

prefix of the full output sequence y. 226

• Outcome-oriented confidence estimation. In 227

this case, s includes both the input and the com- 228

plete generated response, that is, s = (x, y). 229

This formulation unifies existing confidence esti- 230

mation settings under a common probabilistic view. 231

It also extends the task to cover all stages of the 232

generation process. 233

4 FineCE: Fine-grained Confidence 234

Estimation 235

4.1 Data Construction 236

Preliminary. Traditional classification models 237

struggle to reflect predictive uncertainty, as soft- 238

max probabilities are often misinterpreted as con- 239

fidence scores. A high softmax output does not 240

necessarily indicate that the model is certain about 241

its prediction (Gal and Ghahramani, 2016). There- 242

fore, to obtain the LLM’s inherent real responses 243

probability based on the text s, we introduce Monte 244

Carlo Sampling(Li et al., 2024) and employ the gen- 245

erative LLM M to repeatedly sample k answers 246

{A1
s, A

2
s, · · · , Ak

s} at high temperature to approx- 247

imate the probability of generating the correct an- 248

swer. According to the Law of Large Numbers, as k 249

approaches infinity, the sample mean will converge 250

to the true probability of the model generating the 251

correct answer. 252

Overall Pipeline. In our work, the input text se- 253

quence s includes three distinct types: Question, 254

Question with Partial Answer and Question with 255

Answer. The confidence score Confs is calculated 256

as the accuracy ratio of k generated answers com- 257

pared to a reference or golden answer Ȳ , which is 258

defined as follows: 259

Confs =

∑k
i=1I(A

i
s = ȳs)

k
, (2) 260

where Ai
s is the ith sampling answer generated 261

based on sequence s, and ȳs is the ground-truth 262

answer. The indicator function I returns 1 when 263

the answer matches and 0 otherwise. 264
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Figure 2: The construction process of the training dataset. It illustrates the confidence scoring procedures for Question and
Question with Partial Answer using Monte Carlo sampling. For Question with Answer, the confidence score is determined based
on the correctness of the answer. The complete data construction procedure is detailed in Algorithm A.1.

Confidence score for Question. For each input265

question x, we first generate k diverse complete an-266

swers {A1
x, A

2
x, · · · , Ak

x} from the model M using267

a high-temperature sampling strategy. Here, Ai
x268

represents the ith response conditioned on input x.269

The confidence score for x is calculated according270

to Equation 2.271

Confidence score for Question with Partial An-272

swer. To construct training data for confidence es-273

timation on partial answers, we apply a truncation274

procedure to each complete answer Ai
x, yielding a275

sequence of partial answer fragments. Each frag-276

ment is then concatenated with the original ques-277

tion x and fed into the model to generate multiple278

completions. These completions are subsequently279

used to estimate the confidence score associated280

with the partial answer.281

We leverage an intrinsic property of LLMs to282

reduce the computational overhead associated with283

constructing training datasets. Specifically, when284

processing inputs with identical prefixes, their in-285

ternal contextual representations tend to converge,286

resulting in highly similar conditional probability287

distributions for subsequent generations (Porretta288

et al., 2025).289

Based on this observation, we propose a pro-290

gressive data construction pipeline. Starting with291

an initial set of k partially completed answer frag-292

ments obtained via truncation, we first perform se-293

mantic clustering to group these fragments into m294

clusters, where 1 ≤ m ≤ k. Each cluster contains295

semantically similar fragments. We then select a296

centroid fragment from each cluster to serve as its297

representative. Each selected representative is then298

concatenated with the original question to generate299

k new complete answer trajectories through Monte300

Carlo sampling, which is facilitates the estimation 301

of a confidence score for each representative. From 302

the sampled trajectories, we identify a semantically 303

representative answer and apply another truncation 304

operation to obtain a new partial answer. 305

This process is iteratively repeated, with each 306

iteration yielding new set of partial answers along 307

with the confidence estimates. The total number of 308

truncation is limited to a maximum of T . 309

Confidence score for Question with Answer. 310

Upon completion of the process described above, 311

we obtain a diverse set of partial answers, each as- 312

sociated with a corresponding confidence estimate. 313

Simultaneously, each Monte Carlo sampling step 314

yields a complete answer to the input question x. 315

If a sampled answer matches the ground truth, it 316

is assigned a confidence score of 1.0; otherwise, it 317

receives a score of 0.0. 318

The overall training data construction pipeline is 319

illustrated in Figure 2 and detailed in Algorithm 320

A.1. The formats of three data types shown in 321

Figure 4. 322

323

Complexity Analysis. The primary cost in con- 324

structing the training dataset arises from the num- 325

ber of forward passes required during Monte Carlo 326

sampling. Without any optimization, generating 327

three types of confidence estimates for each prob- 328

lem instance leads to an exponential growth in over- 329

all generation cost. This process can be viewed as 330

maintaining a full k-ary tree of depth T + 1, re- 331

sulting in a total of
∑T +1

i=1 ki model inferences. To 332

reduce complexity, clustering based on semantic 333

similarity can be performed among sibling nodes 334

at each hierarchical level. The generation cost is 335

reduced to k
∑T

i=0m
i. Here, instead of first clus- 336
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tering the k generated candidates and then selecting337

the centroid of each cluster, we perform truncation338

by directly selecting a semantically representative339

candidate from the k answers at each step, from the340

2nd to the T -th. This strategy significantly reduces341

the total generation cost to k(1+mT ). As a result,342

in our work, the overall complexity of constructing343

the training data is reduced from exponential to344

linear with respect to T .345

4.2 Training Technique346

To enhance the confidence estimation capability of347

LLMs, we explore two distinct training techniques,348

including the Additional Value Head and Instruc-349

tion Fine-Tuning (IFT) (Ouyang et al., 2022). The350

additional value head skill reformulates confidence351

estimation as a multi-classification task, enabling352

token-level confidence predictions across the gen-353

erated sequence. In contrast, IFT leverages the354

model’s natural language generation capabilities355

to produce confidence estimates in a more inter-356

pretable format and human-readable format. In the357

Figure 7, we provide a comprehensive comparison358

of these two technique in our proposed task. In this359

work, FineCE adopts the IFT training paradigm.360

4.3 Identify the Calibration Position361

FineCE introduces fine-grained confidence estima-362

tion for LLMs. Calibrating confidence after each363

token generation is impractical due to computa-364

tional costs. To reduce the computational over-365

head of token-wise confidence calibration, FineCE366

introduces three strategies to selectively perform367

confidence estimation during generation.368

Paragraph-End Calibration conducts estima-369

tion at natural linguistic boundaries, such as para-370

graph ends. It maintains semantic coherence with371

minimal disruption to the generation flow.372

Periodic Calibration performs estimation at373

fixed token intervals (e.g., every 50 tokens). This374

regular, interval-based strategy offers a determinis-375

tic mechanism for confidence monitoring, ensuring376

consistent quality assessment across the entire gen-377

erated sequence.378

Entropy-based Calibration triggers estimation379

when the model’s output entropy exceeds a prede-380

fined threshold. While entropy reflects uncertainty,381

it alone is not sufficient for accurate confidence382

prediction. The calibration is more meaningful and383

reliable when entropy values are higher.384

4.4 Backward Confidence Integration (BCI) 385

Current confidence estimation methods primarily 386

rely on local features, ignoring the broader reason- 387

ing context. In multi-step reasoning, the reliability 388

of each step is influenced by surrounding steps, 389

making local estimates insufficient to capture true 390

confidence. 391

To further revise either excessively high or low 392

confidence level and mitigate output confidence 393

bias, we introduce the Backward Confidence 394

Integration strategy. This strategy incorporates 395

the future context into the current confidence 396

estimation, enabling a more globally informed and 397

stable estimation. Formally, for a generated text 398

sequence, Confsj denotes the initial confidence 399

estimation at the jth calibration position in a 400

generated sequence. The adjusted confidence score 401

Conf
′
sh

is computed recursively for positions 402

h ∈ (j, j + d), which is defined as: 403

404

Conf ′
sj =


αConfsj + (1− α) 1

w

∑w
b=1 Conf ′

sb
h+1

,

h < j + d

Confsh , h = j + d

(3) 405

Here, α ∈ [0, 1] is the revision coefficient balanc- 406

ing the original local confidence and the influence 407

of future context. A smaller α places placing more 408

weight on future text. The parameters w defines the 409

number of sampled generation paths (integration 410

width), and d specifies how many future positions 411

are considered (integration depth). Confsbh
denotes 412

the adjusted confidence at the hth calibration posi- 413

tion in the bth sample. By recursively incorporating 414

backward signals from future steps, it provides a 415

more globally accurate estimation of confidence 416

for each calibration position. 417

5 Experiments 418

5.1 Experiment Setting 419

Dataset and Metrics. We evaluate the 420

performance of confidence estimation across 421

six datasets including GSM8K(Cobbe et al., 422

2021), TriviaQA(Joshi et al., 2017), Common- 423

senseQA(CSQA; (Talmor et al., 2018)), AIME242, 424

MMLU (Hendrycks et al., 2021), and NQ-Open 425

(Kwiatkowski et al., 2019). 426

We adopt several widely used metrics including 427

Expected Calibration Error (ECE), Receiver Oper- 428

ating Characteristic Curve (AUROC) and Accuracy 429

(ACC). 430

2https://huggingface.co/datasets/math-ai/aime24
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Table 1: Confidence estimation results throughout the generation process. z is total number of paragraphs in an
answer. p(1) and p(z − 1) represent the confidence estimates for the first and the penultimate paragraphs of the
generated answer, respectively.

Pos Metrics Llama2-13B Llama3.1-8B Qwen2.5-7B
MS LECO FineCE MS LECO FineCE MS LECO FineCE

G
SM

8K p(1)
AUROC↑ 55.6 60.5 73.8 60.8 62.2 66.2 64.7 64.4 66.8

ECE↓ 23.5 19.2 9.3 27.4 21.1 15.7 23.6 21.1 14.1

p(z − 1)
AUROC↑ 57.3 59.5 77.7 62.3 64.7 69.4 63.8 65.3 65.3

ECE↓ 22.8 21.3 8.4 29.7 23.7 17.3 25.2 20.4 14.4

AV G
AUROC↑ 57.1 61.1 78.1 62.4 68.2 72.7 67.2 64.1 76.4

ECE↓ 21.1 19.6 6.7 28.3 19.2 12.3 19.2 20.1 10.7

C
SQ

A p(1)
AUROC↑ 54.6 57.1 66.2 61.0 63.1 66.3 63.9 62.0 68.1

ECE↓ 24.8 23.8 18.3 29.4 22.4 16.6 27.6 19.2 17.3

p(z − 1)
AUROC↑ 53.2 56.0 69.3 57.2 62.9 67.5 62.0 63.9 68.2

ECE↓ 26.9 25.7 16.2 33.0 26.3 17.9 24.4 20.8 17.1

AV G
AUROC↑ 58.6 59.6 71.3 59.3 65.0 71.1 65.5 65.3 73.2

ECE↓ 23.1 21.4 11.7 29.3 23.1 13.3 25.0 17.6 14.7

Tr
iv

ia
Q

A p(1)
AUROC↑ 56.1 53.4 70.8 63.4 60.7 69.2 61.9 62.1 67.4

ECE↓ 22.2 26.8 14.5 27.9 21.4 18.7 26.4 22.7 19.3

p(z − 1)
AUROC↑ 56.4 58.3 74.2 62.0 63.4 67.7 59.4 64.4 71.1

ECE↓ 25.6 27.3 15.0 26.3 20.9 20.3 30.2 23.4 17.5

AV G
AUROC↑ 57.2 58.1 76.1 63.7 62.6 73.3 63.2 64.0 73.9

ECE↓ 22.8 25.5 11.3 25.1 19.3 14.2 25.3 20.2 13.4

A
IM

E
24 p(1)

AUROC↑ 21.4 56.3 68.4 16.2 63.4 69.8 25.3 64.1 74.1
ECE↓ 57.4 37.4 19.3 60.3 31.2 21.5 64.3 33.7 22.4

p(z − 1)
AUROC↑ 25.4 59.4 71.3 25.3 66.3 68.4 11.6 65.2 76.2

ECE↓ 64.3 34.3 22.4 57.2 29.4 23.5 76.8 30.2 21.3

AV G
AUROC↑ 22.7 56.3 76.0 19.5 64.1 71.3 30.3 64.0 79.2

ECE↓ 59.2 33.8 16.5 55.4 30.8 20.4 72.3 29.6 18.3

M
M

L
U p(1)

AUROC↑ 57.4 61.3 74.3 53.1 59.2 70.3 54.1 60.3 70.2
ECE↓ 27.6 26.2 20.1 30.3 27.8 20.2 32.9 30.3 22.4

p(z − 1)
AUROC↑ 59.3 62.5 71.8 56.4 61.3 73.1 52.6 57.4 71.3

ECE↓ 29.4 28.1 18.9 33.6 29.3 17.3 33.4 28.7 19.3

AV G
AUROC↑ 58.9 60.5 74.6 57.2 63.4 74.6 58.4 61.2 74.2

ECE↓ 28.3 27.3 15.3 28.9 26.9 14.1 31.1 28.4 15.7

N
A

-O
pe

n p(1)
AUROC↑ 59.4 62.1 72.3 55.8 61.0 72.3 55.3 62.8 72.0

ECE↓ 30.1 26.0 17.8 34.9 28.7 23.7 35.1 29.4 17.5

p(z − 1)
AUROC↑ 60.4 57.3 70.9 57.3 59.4 67.5 58.1 61.3 70.3

ECE↓ 29.6 27.0 20.3 29.2 26.3 18.1 30.4 30.5 20.5

AV G
AUROC↑ 60.7 59.1 75.5 57.9 62.3 74.7 58.8 64.2 76.9

ECE↓ 27.4 25.7 14.2 32.3 26.1 18.2 32.8 28.6 16.4

Models and Baselines. We employ three widely-431

used open-source models, including Llama2-432

13B(Touvron et al., 2023), Llama3.1-8B(Dubey433

et al., 2024) and Qwen2.5-7B(Yang et al., 2024).434

The baselines we used in this paper include the435

following three types: 1) Question-oriented:436

P(IK)(Kadavath et al., 2022); 2) Outcome-437

oriented: First-Prob((Santurkar et al., 2023)),438

SuC(Lin et al., 2022), Verbalized Porb (Verb (Tian439

et al., 2023b)) Semantic Uncertainty (SE, (Kuhn440

et al., 2023b)); 3) Step-wise estimation: Multi-441

Step (MS; (Xiong et al., 2023)), LECO(Yao et al.,442

2024).443

Further details about datasets, baselines, imple-444

mentations (including all prompts used in this pa-445

per, important parameters, and platforms) can be446

found in Appendix A.2. In addition, we present447

an in-depth discussion on FineCE’s generalization448

ability, its dependence on training data, the impact 449

of training strategies, and its performance on highly 450

open-ended questions. The further discussions are 451

provided in Appendix A.3. 452

5.2 Main Results and Analysis 453

RQ1: How does FineCE perform compared 454

with baselines? In this experiment, to ensure fair- 455

ness, we fix the parameters w and b in FineCE to 0, 456

aligning the inference-time computational cost of 457

FineCE with that of other baseline methods. The 458

overall results are shown in Table 1 and Table 2. 459

The results clearly demonstrate that FineCE consis- 460

tently enables base models to produce accurate 461

confidence estimates for any given text sequence 462

across six datasets, outperforming existing meth- 463

ods. 464

From Table 1, it is evident that FineCE provides 465

accurate confidence estimates throughout the en- 466
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Table 2: Confidence estimation results across baselines on Question-oriented and Outcome-oriented tasks.

Models Baselines
GSM8K CSQA TriviaQA AIME24 MMLU NQ-Open

ECE↓ AUROC↑ ECE↓ AUROC↑ ECE↓ AUROC↑ ECE↓ AUROC↑ ECE↓ AUROC↑ ECE↓ AUROC↑
L

la
m

a3
.1

-8
B

P(IK) 17.6 72.8 19.4 68.7 20.4 67.7 33.1 67.9 18.3 72.1 22.4 68.2
FineCE 13.5 76.4 16.0 68.4 15.5 69.8 18.5 73.1 14.3 76.2 20.9 73.1

First-Prob 26.2 66.2 23.5 66.8 24.9 65.1 40.3 65 21.4 68.4 29.4 66.5
SuC 28.4 62.0 32.7 59.1 29.7 60.4 42.7 62.2 24.7 66.3 27.3 61.4
Verb 20.4 72.9 28.0 68.4 30.1 69.1 73.4 6.1 31.2 62.7 34.0 65.2
SE 17.6 73.5 21.3 66.7 19.4 66.4 20.9 68.5 17.2 71.2 22.3 70.4

FineCE 12.7 77.1 14.2 72.8 14.6 70.5 20.7 70.4 12.1 74.1 17.1 75.1

Q
w

en
2.

5-
7B

P(IK) 17.4 68.3 16.3 68.4 21.6 67.9 27.9 66.3 16.1 69.8 20.8 72.3
FineCE 11.4 72.3 14.7 70.6 15.2 69.2 21.2 76.2 15.6 73.1 17.4 76.2

First-Prob 25.4 66.4 26.6 65.2 25.9 62.3 35.8 57.4 30.3 68.0 24.5 68.5
SuC 29.0 57.4 28.2 63.1 32.7 58.5 38.4 60.4 27.0 62.4 24.1 63.1
Verb 15.3 72.2 12.4 70.3 22.0 68.4 78.7 11.3 29.4 63.3 33.6 62.4
SE 18.6 72.1 19.3 69.4 22.5 68.4 25.1 73.5 22.4 68.3 23.8 71.8

FineCE 10.2 75.3 13.1 70.8 15.4 72.5 17.7 81.3 16.3 75.7 15.3 77.8

L
la

m
a2

-1
3B

P(IK) 14.5 64.8 29.9 59.5 18.7 65.0 31.4 72.1 17.3 67.6 18.3 70.7
FineCE 8.9 67.3 16.2 69.3 15.5 68.4 24.8 78.4 15.0 72.6 13.9 74.3

First-Prob 23.3 59.7 22.3 60.1 27.6 57.1 42.0 61.2 19.4 64.3 22.1 65.1
SuC 28.8 57.3 27.2 56.7 23.5 58.2 37.3 57.3 22.1 65.2 24.6 66.4
Verb 29.3 56.2 21.7 58.3 27.1 53.7 82.3 14.9 32.6 61.1 29.8 62.4
SE 18.4 68.6 16.3 65.4 19.5 63.1 32.7 65.1 20.3 69.4 24.1 70.2

FineCE 5.1 77.8 11.5 70.5 12.0 76.9 16.2 75.3 14.8 75.4 14.2 74.6

tire generation process. Specifically, our method467

achieves AUROC values above 70% in most cases,468

indicating robust performance in accurately iden-469

tifying confidence levels. In contrast, the AUROC470

values for the two baselines hover around 60%,471

which is nearly equivalent to random guessing.472

This notable difference indicates that FineCE pro-473

vides more accurate and reliable confidence esti-474

mates during the generation process compared to475

other methods.476

From Table 2, our method consistently outper-477

forms all baselines in both ECE and AUROC, and478

shows excellent calibration capability. Specifi-479

cally, on the GSM8K dataset under the outcome-480

oriented confidence estimation setting, Llama2-481

13B achieves a significantly lower ECE of 5.1%,482

indicating strong calibration performance. Addi-483

tionally, it obtains an AUROC of 78.9%, reflecting484

its ability to effectively distinguish between correct485

and incorrect predictions.486

In addition, we also report the accuracy perfor-487

mance of various baselines in the Appendix (Ta-488

ble 4). FineCE enhances confidence calibration489

through fine-tuning without sacrificing answer ac-490

curacy. This is achieved by incorporating a re-491

playing strategy during fine-tuning and mixing in492

general instruction-following datasets.493

5.3 Downstream Application494

RQ2: How does FineCE perform on down-495

stream application? First, we apply FineCE dur-496

ing the early stage of response generation to esti- 497

mate answer correctness without waiting for the 498

full output. The results are shown in Table 3. 499

FineCE is able to generate reliable confidence 500

estimates after only approximately 30% of the 501

response has been generated. These early esti- 502

mates are highly consistent with those obtained 503

after the complete response is generated, indicating 504

that FineCE can effectively assess answer quality 505

with partial information. 506

Further, we introduce a confidence-based filter- 507

ing mechanism. Specifically, we define a confi- 508

dence threshold δ and accept only those responses 509

whose confidence estimates exceed this threshold. 510

This allows the model to selectively retain answers 511

that are more likely to be correct, based on the 512

early-stage confidence scores produced by FineCE. 513

As shown in Figure 3 (Left), this filtering strategy 514

significantly improves answer accuracy compared 515

to using the base model outputs alone. Overall, the 516

confidence estimates generated by FineCE serve 517

as effective indicators for identifying correct re- 518

sponses, enabling consistent performance gains 519

across multiple datasets. 520

5.4 Ablation Analysis 521

RQ3: Where does FineCE perform the confi- 522

dence estimation? We conduct a comparative anal- 523

ysis of three calibration position strategies using the 524

Llama2-13B model. For the Entropy-based strat- 525

egy, we set the entropy threshold to 1e-10, while 526
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Figure 3: (Left:) Comparison of accuracy between the original model predictions and those selectively accepted by FineCE
when the output confidence exceeds 0.8. The backbone used is Llama2-13B. (Right:) Effect of fusion depth (left) and fusion
width (right) in FineCE on confidence estimation performance, evaluated with Llama-7B and Llama-13B on the GSM8K and
CSQA datasets.

Table 3: Performance comparison of three strategies for
identifying optimal calibration positions. Token Ratio
represents the proportion of tokens preceding the cali-
bration position relative to the total number of tokens
in the complete answer. The backbone model used is
Llama2-13B.

Dataset Strategy ECEp1 ECEavg Token Ratio

GSM8K
Paragraph 9.8 7.7 30.4%
Entropy 13.2 7.7 10.0%

Fixed-token 13.1 10.8 23.5%

CSQA
Paragraph 26.8 13.0 22.0%
Entropy 27.1 18.8 7.0%

Fixed-token 24.2 20.7 34.7%

TriviaQA
Paragraph 17.2 14.5 28.5%
Entropy 18.5 15.4 13.4%

Fixed-token 20.0 18.0 34.1%

for the Periodic Calibration strategy, we fix the cal-527

ibration interval to every 30 tokens. The results are528

presented in Table 3.529

We observe that all three strategies demon-530

strate comparable performance in terms of ECE,531

with Paragraph-end Calibration strategy yielding532

slightly better results. We attribute this improve-533

ment to the fact that calibrating at paragraph bound-534

aries helps preserve the full semantic context,535

which is essential for reliable confidence estima-536

tion.537

Based on these findings, we draw the following538

insights. For general tasks, performing confidence539

estimation at paragraph boundaries is both efficient540

and effective, significantly reducing unnecessary541

token consumption. In contrast, for more com-542

plex tasks that require finer-grained assessment, the543

Entropy-based strategy achieves more frequent and544

accurate confidence estimation through dynamic545

calibration guided by uncertainty.546

RQ4: How effective is the BCI strategy?547

To evaluate the effectiveness of the BCI strategy,548

we conduct ablation experiments on the GSM8K549

and CSQA datasets using both Llama2-7B3 and 550

Llama2-13B models. We evaluate the ECE of p(1), 551

and the results are shown in Figure 3 (Right). 552

In this setup, the case where d = 0 and w = 0 553

corresponds to the FineCE baseline without the 554

BCI strategy. As the fusion depth d and fusion 555

width w increase, we observe a consistent improve- 556

ment in calibration performance. Notably, incor- 557

porating the BCI strategy leads to a substantial 558

reduction in ECE, indicating a more accurate align- 559

ment between predicted confidence and actual cor- 560

rectness. Furthermore, we find that the gains be- 561

come increasingly significant as the fusion depth 562

and width grow, though this is accompanied by 563

increased computational costs during inference. 564

6 Conclusion 565

In this paper, we propose FineCE, a fine-grained 566

confidence estimation method designed to provide 567

accurate confidence scores throughout the gener- 568

ation process. We first differentiate FineCE from 569

existing popular confidence estimation approaches, 570

emphasizing its unique advantages. We then detail 571

the training dataset construction procedure used in 572

FineCE, followed by the introduction of three basic 573

strategies to identify the optimal confidence estima- 574

tion positions. Additionally, during the inference 575

stage, we further present the BCI strategy, which 576

enhances confidence estimation by incorporating 577

the future text to provide a more comprehensive 578

estimation for the current output. Extensive experi- 579

ments demonstrate that FineCE consistently outper- 580

forms existing methods across various confidence 581

estimation tasks. We also validate its effectiveness 582

on several downstream applications. 583

3https://huggingface.co/meta-llama/Llama-2-7b
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7 Limitations584

Although FineCE demonstrates effectiveness in585

providing accurate confidence scores across var-586

ious confidence estimation task, it encounters chal-587

lenges when applied to highly open-ended prob-588

lems, similar to all existing confidence estimation589

methods. For example, questions like “How to590

stay healthy?" lack explicit and clear response591

constraints such as perspective, scope or response592

length. The inherent ambiguity and broad range of593

potential solutions in such queries present signifi-594

cant challenges for reliable confidence estimation.595

We discuss this in detail in the appendix RQ8. In fu-596

ture work, we will focus on exploring more robust597

confidence estimation methods specifically tailored598

to handle these highly open-ended questions.599
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A Appendix849

A.1 Algorithm850

Algorithm 1 Confidence Estimation Dataset Con-
struction
Require: Generation model M , Question set Q =
{x1, x2, · · · , xN}, Number of samples k, Number of
clusters m, Number of truncations T

Ensure: Confidence estimation dataset D = {⟨s,Confs⟩}.
Initialize D ← ∅

1: for each question x ∈ Q do
2: Generate k answers {A1

x, A
2
x, · · · , Ak

x}
3: Compute confidence score Confx based on Equation

(2)
4: Add ⟨x,Confx⟩ to dataset D
5: Collect all partial answers {A1∗

x , · · · , Ak∗
x } by trun-

cating k answers ▷ the first
truncation

6: Cluster the partial answers into m clusters
{C1, C2, · · · , Cm} ▷ cluster only once

7: for t = 2 to T do
8: if t = 2 then
9: Select representative centroids from each clus-

ter, ct ← {c1, c2, · · · , cm}
10: else ct ← c

′
▷ partial answers in the t− 1th

truncation
11: end if
12: c

′
← ∅ ▷ new partial answers

13: for each partial answer ci ∈ ct do
14: Concatenate si ← x⊕ci. Generate k answers

based on si ▷ completion
15: Compute confidence score Confsi based on

Equation (2)
16: Add ⟨si,Confsi⟩ to dataset D
17: Truncate the newly generated k answers ▷ the

tth truncation
18: Find the semantic centroid c

′
i among the k

truncated results. c
′
← c

′ ⋃
{c

′
i} ▷ append

19: end for
20: end for
21: for a complete answer A of question x do ▷

confidence score for a complete answer
22: if A is a correct answer then Add ⟨x⊕A, 1.0⟩ to

dataset D
23: else Add ⟨x⊕A, 0.0⟩ to dataset D
24: end if
25: end for
26: end for
27: return D

As discussed in Section 4.1, we provide the al-851

gorithmic details of how FineCE employs Monte852

Carlo sampling to generate three types of data, as853

illustrated in Algorithm A.1. We also provide three854

types of training data format in Figure 4.855

A.2 Additional Experiments Details856

A.2.1 Baselines.857

We introduce each method in the baseline, and the858

prompts used are shown in Figure 9.859

P(IK). It trains a logistic regression with the ad-860

ditional value “head" added to the model to output861

the confidence estimated.862

First-Prob. It uses the logits of the first token 863

of LLM’s generated answer as the confidence esti- 864

mate. 865

SuC. It first clusters the sub-questions and uses 866

the same confidence estimate for the questions in 867

the same cluster. 868

Verb. It is a prompt-based method. It designs the 869

prompts to guide the model to output its confidence 870

score along with the generated answer. 871

LECO. It also proposes to leverage logits to es- 872

timate the confidence of the steps. In addition, it 873

further designs three logit-based scores that com- 874

prehensively assess confidence from both intra- and 875

inter-step perspectives. 876

Multi-Step. It also uses prompts to guide the 877

model to output the confidence of the process and 878

takes the average as the final result. 879

A.2.2 Important Parameters Settings. 880

During training data construction, each text is sam- 881

pled k = 30 times. During the fine-tuning, our 882

implementation is based on LLaMA-Factory 4. We 883

employ the AdamW optimizer with β1 = 0.9 and 884

β2 = 0.5. The initial learning rate is set to 1e- 885

4, with the warmup phase of 300 steps. All ex- 886

periments are conducted on the workstations of 887

NVIDIA A800 PCIe with 80GB memory and the 888

environment of Ubuntu 20.04.6 LTS and torch 889

2.0.1. 890

Accuracy Performance. The accuracy results 891

are shown in Table 4. 892

A.3 Further Discussions 893

RQ5: How does FineCE perform with zero- 894

shot prompt on new task? To evaluate the gen- 895

eralizability of the FineCE method, we test the 896

confidence estimation performance of FineCE on 897

OpenBookQA dataset (Mihaylov et al., 2018) using 898

Llama2-13B, and the results are shown in Figure 5. 899

We find that FineCE exhibits outstanding per- 900

formance across both the ECE and AUROC confi- 901

dence metrics. Additionally, there is a robust pos- 902

itive correlation between the model’s confidence 903

estimates and the actual accuracy of the answers. 904

Specifically, we observe that higher confidence lev- 905

els correlated with higher accuracy. It indicates 906

that our method possesses noteworthy generaliza- 907

tion capabilities and is capable to offer reliable 908

confidence estimates when applied to new tasks. 909

4https://github.com/hiyouga/LLaMA-Factory
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< Question, Conf >
Input: If a vehicle is driven 12 miles on Monday, 18 miles on Tuesday, and 21 miles on Wednesday. 

What is the average distance traveled per day?
Output: Conf: 0.7

< Question + Partial Answer, Conf >
Input: If a vehicle is driven 12 miles on Monday, 18 miles on Tuesday, and 21 miles on Wednesday. 

What is the average distance traveled per day?  The total number of miles driven is
Output: Conf:0.9

< Question + Answer, Conf >
Input: If a vehicle is driven 12 miles on Monday, 18 miles on Tuesday, and 21 miles on Wednesday. 
What is the average distance traveled per day?  The total number of miles driven is 12 + 18 + 21 = 

<<12+18+21=51>>51 miles. The average distance traveled per day is 51 miles / 3 days = <<51/3=17>>17 
miles.
Output: Conf:1.0

Figure 4: The three types of training data format.

Table 4: Performance of different methods on various benchmarks.

Method GSM8K CSQA TriviaQA AIME24 MMLU NQ_Open AVG
Llama3.1-8B

Base 72.8 78.3 74.4 13.3 55.6 50.4 57.47
P(IK) 57.4 71.0 73.3 10.0 48.4 46.1 51.0
First-Prob 69.4 76.4 76.1 13.3 53.1 49.3 56.3
SuC 60.1 76.2 70.8 10.0 50.9 45.6 52.3
FineCE 61.7 77.4 73.9 13.3 54.8 48.2 54.9

Qwen2.5-7B
Base 83.6 87.3 79.4 13.3 60.2 42.9 61.1
P(IK) 70.7 77.9 73.0 13.3 54.1 40.3 54.9
First-Prob 79.4 80.7 80.2 16.7 60.2 41.4 59.8
SuC 74.1 79.2 74.3 16.7 58.3 40.0 57.1
FineCE 73.4 81.1 77.3 20.0 60.6 43.6 59.3

Llama2-13B
Base 31.0 64.3 65.1 3.3 43.9 41.5 41.52
P(IK) 30.4 69.9 66.2 0.0 38.4 35.2 40.02
First-Prob 30.4 62.5 63.1 3.3 39.3 39.2 39.63
SuC 31.0 60.1 62.8 0.0 40.3 37.1 38.55
FineCE 33.6 65.6 64.8 3.3 43.1 40.6 41.83

RQ6: How does FineCE perform when trained910

using datasets from different model? Here, we911

use the LLaMA2-13B and LLaMA2-7B as the912

backbone models. We employ two distinct models913

to construct the training datasets: the model itself914

or an alternative model. The results are shown in915

Figure 8.916

Training with datasets generated from the al-917

ternative model achieves confidence calibration918

performance very close to the obtained using the919

dataset constructed by the model itself, especially920

on the GSM8K and CSQA datasets. We guess that921

it may be related to the used models being from the922

same family and exhibit significant similarities in923

their knowledge capabilities. It suggests that larger924

models could effectively instruct smaller models to925

learn to express the confidence. In addition, lever-926

aging smaller models to construct training datasets927

may be a cost-efficient alternative. 928

We also use two models from different fami- 929

lies to explore this phenomenon further, including 930

Qwen2-7B and LLaMA2-7B, which are from dif- 931

ferent model families. The results are show in Fig- 932

ure 6. We find that there are two different phenom- 933

ena on different datasets. On the GSM8K dataset, 934

compared with using the model itself to construct 935

training data, the confidence training data con- 936

structed with the help of other models performed 937

poorly, especially in the ECE value, where the dif- 938

ference was particularly significant. On the CSQA 939

dataset, the performance difference between the 940

two methods is small. This may be because there is 941

a large difference in the accuracy of Qwen2-7B and 942

LLaMA2-7B on the GSM8K dataset, which makes 943

it impossible to effectively migrate the confidence 944

training data constructed by these two models to 945
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Figure 5: The Zero-shot performance on OpenBookQA dataset. From left to right, the figures show the confidence estimation
performance of FineCE for the question, partial answer, and complete answer. The x-axis represents the confidence scores (%),
and the y-axis represents the ratio of quantities. The top area contains the detailed values of ECE and AUROC.
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Figure 6: On GSM8K(left) and CSQA(right) dataset, the performance confidence estimation for the two different families
models using datasets from different sources.The horizontal axis represents the base models.

each other.946

We can conclude that if the performance of two947

models on a task is close, the confidence training948

data constructed using one of the models can be949

effectively used in the training stage of the other950

model.951

RQ7: Which training skill is more suitable?952

On the GSM8K training dataset, we employ two953

distinct training techniques using the LLaMA2-954

13B model. One is to add a multi-classification955

head at the end of the model to output the confi-956

dence estimates through classification. The other957

is the instruction fine-tuning method as we used in958

the experiment. The outcome confidence estimates959

results are shown in Figure 7.960

It suggests that under the same data scale, the961

multi-classification techniques exhibited poor962

performance in confidence estimation task.963

RQ8: How does our method perform on highly964

open questions? We randomly select 300 single-965

round English open question-answering data on966

Sharegpt 5, and use LLaMA2-7B to provide con-967

fidence estimates. To calculate ECE, we compare968

the model’s output confidence against the evalu-969

ation scores of generated answers obtained from970

5https://huggingface.co/datasets/OpenGVLab/
ShareGPT-4o

GPT-4. We find that for highly open questions, our 971

proposed method achieved a higher ECE value of 972

65.66. This is also in line with our expectations. 973

This is because we did not use GPT4’s evaluation 974

to assist in constructing training data, resulting in a 975

large difference between the confidence provided 976

by the model and the GPT4 scoring results. 977
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Figure 7: The performance comparison using different training technical. The backbone model is LLaMA2-13B.
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Prompt for Verb
Read the question, analyze step by step, provide your answer and your confidence in this answer. Use 
the following format to answer:
"Explanation: [insert step-by-step analysis here]
Answer: [ONLY the option letter; not a complete sentence],
Confidence (0-100): [Your confidence level, please only include the numerical number in the range of 0-
100]%"
Please refer to the example I have given:
<example>
{few-shot}
</example>
Question:
{question}
Now, please answer this question and provide your confidence level. Let’s think it step by step.

Prompt for Multi-step
Read the question, break down the problem into K steps, think step by step, give your confidence in 
each step, and then derive your final answer and your confidence in this answer.​​
​Note:​​ The confidence indicates how likely you think your answer is true.
​Use the following format to answer:​​
Step 1: [Your reasoning], Confidence: [ONLY the confidence value that this step is correct]%
Step K: [Your reasoning], Confidence: [ONLY the confidence value that this step is correct]%
Final Answer: [ONLY the {answertype}; not a complete sentence]
Overall Confidence (0-100): [Your confidence value]%
​Please refer to the example I have given:​​
<example>
{few-shot}
</example>
​Question:​​
{question}
Now, please answer this question and provide your confidence level. Let’s think it step by step.

Prompt for FineCE (ours)
Below is a question and some steps:​​
Question:
{question}
{steps}
Please give your confidence.

Figure 9: The prompts used in the baselines.
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