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Abstract

Large Vision-Language Models (LVLMs) have001
made remarkable strides in multimodal tasks002
such as visual question answering, visual003
grounding, and complex reasoning. However,004
they remain limited by static training data, sus-005
ceptibility to hallucinations, and inability to006
verify claims against up-to-date, external ev-007
idence, compromising their performance in008
dynamic real-world applications. Retrieval-009
Augmented Generation (RAG) offers a prac-010
tical solution to mitigate these challenges by011
allowing the LVLMs to access large-scale012
knowledge databases via retrieval mechanisms,013
thereby grounding model outputs in factual,014
contextually relevant information. Here in015
this paper, we conduct the first systematic016
dissection of the multimodal RAG pipeline017
for LVLMs, explicitly investigating (1) the re-018
trieval phase: on the modality configurations019
and retrieval strategies, (2) the re-ranking stage:020
on strategies to mitigate positional biases and021
improve the relevance of retrieved evidence,022
and (3) the generation phase: we further in-023
vestigate how to best integrate retrieved candi-024
dates into the final generation process. Finally,025
we extend to explore a unified agentic frame-026
work that integrates re-ranking and generation027
through self-reflection, enabling LVLMs to se-028
lect relevant evidence and suppress irrelevant029
context dynamically. Our full-stack exploration030
of RAG for LVLMs yields substantial insights,031
resulting in an average performance boost of032
5% without any fine-tuning.033

1 Introduction034

Recent advancements in Large Vision-Language035
Models (LVLMs) have significantly enhanced their036
capabilities in processing and generating multi-037
modal content, substantially benefiting real-world038
applications such as visual question answering039
(VQA) (Zhang et al., 2024a; Sinha et al., 2024;040
Bai et al., 2023; Chen et al., 2024c), visual ground-041
ing (Wang et al., 2025; Xu et al., 2024; Yang et al.,042
2023), complex task planning (Yang et al., 2024;043
Zhaxizhuoma et al., 2024; Li et al., 2023), and044
physical reasoning (Chen et al., 2024a; Zhou et al.,045

2025; Chow et al., 2025; Gao et al., 2024). De- 046
spite these remarkable strides, however, LVLMs 047
inherently suffer from several fundamental limita- 048
tions, primarily stemming from their reliance on 049
static, frozen training data (Abootorabi et al., 2025; 050
Mei et al., 2025), insufficient semantic ground- 051
ing capabilities (Liao et al., 2024; Wan et al., 052
2024), and inadequate alignment across modali- 053
ties (Alonso et al., 2025; Zhu et al., 2024). Specif- 054
ically, these limitations lead to practical chal- 055
lenges, such as prone to producing factual halluci- 056
nations—outputs that appear plausible but are fac- 057
tually incorrect (Favero et al., 2024; Rawte et al., 058
2025; Sahoo et al., 2024; Bai et al., 2024), strug- 059
gling with outdated knowledge for time-sensitive 060
question answering (Siyue et al., 2024; Wu et al., 061
2024; Uddin et al., 2024), and lacking robust verifi- 062
cation mechanisms to validate claims using exter- 063
nal evidence (Prabhu et al., 2024; Sahu et al., 2024; 064
Cekinel et al., 2025). 065

Retrieval-Augmented Generation (RAG) offers 066
a promising and practical solution to mitigate these 067
limitations by equipping LVLMs to access, re- 068
trieve, and integrate external, up-to-date knowledge 069
sources(Lewis et al., 2020; Gao et al., 2023; Chen 070
et al., 2024b). Specifically, RAG incorporates re- 071
trieval mechanisms to fetch contextually relevant 072
information from large-scale knowledge bases, sig- 073
nificantly reducing the likelihood of factual hal- 074
lucinations and enhancing the accuracy of gener- 075
ated outputs. Recently, multi-modal extensions of 076
RAG (referred to as mRAG) have emerged, inte- 077
grating textual, visual, and other modalities into the 078
retrieval-generation pipeline, substantially expand- 079
ing the versatility of LVLMs across many domains. 080
For instance, multimodal RAG has successfully 081
enabled evidence-based medical diagnostics (Xia 082
et al., 2024a,b), decision-making in autonomous 083
driving (Yuan et al., 2024), and industry applica- 084
tions (Riedler and Langer, 2024). 085

Prior Work. Despite this rapid progress, ex- 086
isting research in multimodal RAG remains frag- 087
mented and lacks a comprehensive exploration of 088
its full design space. Firstly, there exists limited 089
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Figure 1: The multi-modal RAG (mRAG) pipeline utilized in our journey to exploit the design space of each
component thereof: ❶ Retrieval (§3), ❷ Re-ranking (§4), and ❸ Generation (§5).

empirical validation of how multi-modal alignment090
strategies impact retrieval effectiveness in mRAG091
workflows. While some studies propose fusion092
techniques combining visual and textual embed-093
dings (Wei et al., 2024; Lu et al., 2024), they do not094
analyze how these methods perform across differ-095
ent combinations of modalities. Second, re-ranking096
approaches in existing mRAG frameworks predom-097
inantly rely on straightforward relevance scoring098
mechanisms, assigning absolute scores based on099
query-candidate similarity (Mortaheb et al., 2025).100
Alternative ranking strategies, such as pairwise and101
listwise methods (Gangi Reddy et al., 2024; Qin102
et al., 2023; Ren et al., 2025; Zhuang et al., 2024),103
have remained underexplored in multimodal con-104
texts. Lastly, current mRAG frameworks typically105
isolate the retrieval, re-ranking, and generation106
phases, resulting in suboptimal coordination be-107
tween evidence selection and answer generation.108

Our Work. To this end, we present a system-109
atic study that elucidates the comprehensive design110
space of mRAG for LVLMs, methodically dissect-111
ing each critical phase of the mRAG pipeline. We112
start with a baseline design as shown in Fig. 1,113
and perform detailed investigations into: ❶ the re-114
trieval phase, analyzing multiple modality config-115
urations and retrieval strategies; ❷ the re-ranking116
phase, evaluating different approaches aimed at mit-117
igating positional biases and enhancing evidence118
relevant; and ❸ the generation phase, exploring119
optimal methods for integrating retrieved candi-120
dates into the final model outputs. Through this121
structured exploration, we identify crucial insights122
and best practices across each phase, ultimately123

converging on an optimized mRAG pipeline that 124
involves the following recipe: 125

Recipe: integration of (1) EVA-CLIP
as retriever, (2) listwise LVLM-based re-
ranking, and (3) only providing most rel-
evant document for generation yields a
+2.32%/+0.65% response accuracy increase
on benchmark datasets including E-VQA
and InfoSeek.

126

Finally, building on our best mRAG pipeline, 127
we present an initial exploration into a unified 128
Agentic mRAG framework by incorporating a self- 129
reflection mechanism. We systematically compare 130
multiple strategies, utilizing powerful LVLM-based 131
re-rankers to enhance candidate ordering. Addition- 132
ally, we examine how retrieval quality impacts an- 133
swer accuracy, specifically highlighting how irrel- 134
evant candidates degrade performance even when 135
correct information is present. Motivated by these 136
insights, we propose a unified agentic framework 137
that integrates re-ranking and generation via itera- 138
tive self-reflection. This unified approach enables 139
LVLMs to dynamically assess candidate relevance, 140
selectively leveraging beneficial context while sup- 141
pressing irrelevant information. 142

2 Preliminaries 143

Before exploring best practices for mRAG, we pro- 144
vide an overview of the general dataset setup and 145
the evaluation metrics. 146
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2.1 Dataset Constructions147

Original Dataset. Following prior studies148
(Caffagni et al., 2024; Yan and Xie, 2024), we149
adopt VQA as the task of our study. We chose150
two knowledge-based VQA datasets.151

• Encyclopedic-VQA (E-VQA) (Mensink et al.,152
2023) comprises 221k unique visual question-153
answer pairs. These images are sourced from154
iNaturalist 2021 (Van Horn et al., 2021) and155
Google Landmarks Dataset V2 (Weyand et al.,156
2020). The visual questions emphasize fine-157
grained category distinctions and instance-level158
recognition, requiring alignment between visual159
content and structured knowledge. A knowledge160
base of 2M Wikipedia articles is provided.161

• InfoSeek (Chen et al., 2023) is designed to evalu-162
ate models on knowledge-intensive, information-163
seeking questions that cannot be answered using164
only visual content or common sense. It con-165
tains 1.3M curated image-question-answers cor-166
responding to 100K Wikipedia articles.167

Table 1: Statistics of the distilled dataset.

InfoSeek E-VQA
Original Distilled Original Distilled

#articles 100K 50K 2M 50K
#images 371K 184K 6.6M 171K

Distilled Dataset. The scale of knowledge bases168
in E-VQA and InfoSeek introduces significant com-169
putational demands when employing LVLMs as170
retrievers, particularly for vector search operations,171
requiring full knowledge base encoding before re-172
trieval phase. As a result, we distill a 50k-article173
subset through sampling. This process ensures that174
all evaluation queries remain answerable within the175
reduced knowledge base. Additionally, we sam-176
ple articles in a manner that preserves the original177
category distribution. The statistics of the distilled178
datasets are presented in Table 1. For evaluation,179
in line with previous research (Yan and Xie, 2024),180
we use 4,750 test cases for E-VQA, and 5,000 cases181
for InfoSeek. More details are in Appendix A.1.182

2.2 Evaluation Metrics183

Retrieval. We assess retrieval performance us-184
ing Recall@K and Mean Reciprocal Rank (MRR).185
Recall@K measures the percentage of the cor-186
rect article found in the top-K retrieved candidates187
across the evaluation queries. MRR calculates the188
reciprocal of the rank at which the first correct arti-189
cle is retrieved. It provides a clear measure of how190
quickly a relevant article is found to ensure LVLMs191
receive critical contextual information early after192
the re-ranking phase.193
Visual Question Answering. We evaluate VQA194

performance through complementary metrics ad- 195
dressing both lexical and semantic accuracy. 196
ROUGE-L is used to compare the model response 197
with reference answers. However, this metric may 198
not fully capture answers that are phrased dif- 199
ferently but convey the same meaning. To cap- 200
ture semantic correctness, we employ InternVL3 201
(Chen et al., 2024c; Zhu et al., 2025) and GPT-4.1 202
(Achiam et al., 2023) as automated judges to assess 203
if LVLM’s answer is semantically correct, provid- 204
ing a more comprehensive evaluation of VQA per- 205
formance. All evaluations are performed using a 206
temperature setting of 0. 207

3 Retrieval Configurations and Strategies 208

The retrieval phase in mRAG requires careful con- 209
sideration of input modalities and their alignment 210
with candidates in the knowledge base because the 211
complexity of processing heterogeneous data types, 212
such as images and text, exhibits distinct seman- 213
tic structures and embedding space distributions. 214
This section systematically examines how different 215
modality pairings between user queries and candi- 216
dates in the knowledge base impact retrieval per- 217
formance in mRAG. Unlike traditional approaches 218
that rely on fine-tuned models adapted to specific 219
knowledge bases, our investigation focuses on zero- 220
shot retrieval capabilities using frozen pre-trained 221
models. Furthermore, we evaluate multi-modal 222
configurations where queries and candidates in the 223
knowledge base may independently combine text, 224
image, or hybrid modalities, testing models’ inher- 225
ent abilities to establish semantic alignment across 226
modalities without parameter updates. Once the 227
query and candidates’ embeddings are generated, 228
we employ the FAISS library (Douze et al., 2024) 229
with dot product similarity for retrieving top-K 230
candidates and their corresponding wiki articles. 231

3.1 Modality Configurations 232

Retrieval effectiveness depends on how informa- 233
tion is encoded in queries and candidates in the 234
knowledge base. In this study, we investigate five 235
modality configurations to systematically evaluate 236
multimodal retrieval. The image-only (I) config- 237
uration relies solely on images and is applicable 238
to both query and candidate sides. The image + 239
question (IQ) setting, which combines image with 240
the user’s question to enable joint vision-language 241
reasoning, is used solely on the query side, as ques- 242
tions are inherently tied to the query image and not 243
present in the knowledge base. The image + text 244
(IT ) configuration fuses images with associated 245
textual information, such as article passages, and 246
is only applied to knowledge base candidates. The 247
image + caption (IC) setup augments images with 248
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Table 2: Results on foundational stage. Following (Wei et al., 2024; Lin et al., 2024), we report Recall@5 for both
datasets. The I ↔ IT modality configuration achieves peak Recall@5 scores (underlined) for both datasets using
EVA-CLIPSF , outperforming all other strategies including MLLM-based methods.

Dataset Task (Query ↔ KB) Retrieval Strategy
CLIPSF EVA-CLIPSF BGE-CLIPSF BLIPFF BGE-MLLM GME

InfoSeek

I ↔ I 67.5 77.84 49.92 57.2 39 56.52
I ↔ IT 73.6 81.58 41.02 64.22 11.36 62.32
IQ ↔ I 67.5 77.8 13.36 42.1 18.78 74.94
IQ ↔ IT 27.2 76.94 0.7 33.92 10.72 81.48

E-VQA

I ↔ I 62.8 75.9 46.46 54.3 33.8 53.6
I ↔ IT 72.29 80.69 35.28 59.81 13.37 50.84
IQ ↔ I 63.3 76.75 11.34 40.44 15.11 61.93
IQ ↔ IT 31.2 77.2 6.8 38.32 21.35 77.03

Table 3: Results on expansion stage using EVA-CLIP.
Underlined scores are the best Recall@5 based on raw
data, shown in Table 2.

Dataset Task (Query ↔ KB) Recall@K
K=1 K=5 K=10

InfoSeek

I ↔ I 57.7 77.84 82.08
I ↔ IT 63.42 81.58 85.22
I ↔ IC 56.32 77.3 81.39
I ↔ C 31.1 52.16 58.9
IC ↔ I 56.12 76.63 81.21
IC ↔ IC 53.02 74.1 79.23
IC ↔ C 23.9 42.23 49.74
IC ↔ IT 64.44 82.43 85.32
C ↔ I 21.69 38.97 46.3
C ↔ IC 21.75 38.91 46.56
C ↔ C 17.77 32.27 39.01
C ↔ IT 26.71 42.4 48.78

E-VQA

I ↔ I 54.5 75.9 81
I ↔ IT 61.85 80.69 85.51
I ↔ IC 54.32 75.12 80.63
I ↔ C 23.77 41.18 48.88
IC ↔ I 53.26 75.71 80.36
IC ↔ IC 49.26 70.99 78.04
IC ↔ C 20.42 34.82 42.59
IC ↔ IT 62.61 80.8 86.47
C ↔ I 17.81 30.86 38.46
C ↔ IC 18.84 34.8 41.62
C ↔ C 12.61 25.89 33.05
C ↔ IT 19.2 33.81 42

generated captions from a caption model, providing249
explicit semantic cues to complement the image;250
this configuration is applicable to both queries and251
candidates. Finally, the caption-only (C) configu-252
ration uses generated captions alone, and can also253
be applied to either side. We do not consider a254
question-only configuration, as questions are al-255
ways grounded in the corresponding query image.256

3.2 Retrieval Strategies257

Score Fusion. This approach involves combin-258
ing scores derived from different modalities. For259
instance, CLIPSF in (Wei et al., 2024) employs260
a dual encoder where visual and textual modal-261
ities are processed independently through sepa-262
rate unimodal encoders, producing two distinct263
embedding vectors of the same dimensionality.264

The fusion mechanism operates by computing a 265
weighted linear combination of these unimodal em- 266
beddings to produce a unified representation vec- 267
tor. Formally, given a visual encoder ϕvis and a 268
text encoder ϕtxt, the fusion score S is shown as 269
S = ϕvis(I) + ϕtxt(τ), where τ ∈ {C, T,Q} de- 270
pending on the configuration of the modality. 271
Feature Fusion. Unlike score fusion, which com- 272
bines modality-specific similarities post-hoc, fea- 273
ture fusion integrates multimodal features during 274
the encoding phase. This fusion approach gener- 275
ates a single feature representation for multi-modal 276
queries or candidates by applying mixed-modality 277
layers. However, this approach typically requires 278
fine-tuning the fusion layers on the target knowl- 279
edge base, while our work prioritizes evaluating 280
frozen models’ inherent ability to bridge modality 281
gaps using their pretrained representations. There- 282
fore, we utilize a pretrained BLIPFF model from 283
(Wei et al., 2024). BLIPFF is trained on diverse 284
datasets and is capable of retrieving heterogeneous 285
outputs in both text and image modalities. 286
LVLM-based Retriever. Modern LVLMs in- 287
tegrate visual encoders (typically vision trans- 288
formers) with pretrained language models, en- 289
abling them to natively process image-text to- 290
ken sequences. This ability makes them partic- 291
ularly suited for zero-shot retrieval scenarios where 292
frozen pretrained parameters must bridge modal- 293
ity gaps and map diverse modalities into a unified 294
token space. Our evaluation focuses on benchmark- 295
ing these retrieval models’ (Lin et al., 2024; Jiang 296
et al., 2024; Zhou et al., 2024; Zhang et al., 2024b) 297
zero-shot retrieval performance across modality 298
configurations, testing their ability to align queries 299
and candidates without task-specific fine-tuning. 300

In this study, we evaluated the retrieval per- 301
formance of six distinct approaches across three 302
types above, including three score fusion meth- 303
ods: CLIPSF (Wei et al., 2024), EVA-CLIPSF 304
(Sun et al., 2023, 2024), and BGE-CLIPSF (Zhou 305
et al., 2024) (For score fusion, image and text em- 306
beddings are assigned equal weight), one feature 307
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fusion BLIPFF (Wei et al., 2024), and two LVLM-308
based retrievers, BGE-MLLM (Zhou et al., 2024)309
and GME (Zhang et al., 2024b).310

3.3 Results311

Our evaluation follows a two-stage design to iso-312
late and quantify the impact of different modality313
combinations on retrieval performance. The foun-314
dational stage establishes baseline performance315
by evaluating three core configurations: I , IT , and316
IQ, all without caption augmentation. This stage317
identifies which retrieval strategies perform the best318
on raw inputs. The expansion stage then intro-319
duces caption-augmented configurations: IC and320
C, to test whether automatically generated captions321
enhance retrieval robustness. This sequential ex-322
periment ensures any observed improvements that323
is directly attributed to image caption rather than324
variance in the foundational stage. In this work,325
Qwen2-VL-2B-Instruct (Bai et al., 2023; Wang326
et al., 2024) is employed to generate image cap-327
tions. The prompt is shown in Appendix B.1.328

From Table 2, the I ↔ IT configuration demon-329
strates superior performance across both datasets330
when paired with EVA-CLIPSF (Sun et al., 2023,331
2024). This suggests EVA-CLIP’s pretrained332
vision-language alignment excels at bridging pure333
image queries with image + text candidates in the334
knowledge base, and thus motivates our selection335
of EVA-CLIP as the default retriever in this study.336

In the expansion stage from Table 3, we observe337
that augmenting image queries with generated cap-338
tion (IC) yields modest improvements over raw339
image queries (I). This shows that image captions340
provide complementary semantic signals that en-341
hance the query. However, applying captions to342
both query and candidates, IC ↔ IC, degrades343
performance drastically even compared to I ↔ I .344
With the low retrieval accuracy of C ↔ C, this is345
likely due to caption discrepancies between query346
and candidates that amplify visual differences.347

Takeaway: It is clear that a large-scale
CLIP model (in this study, EVA-CLIP) is
a robust zero-shot retriever. Furthermore,
augmenting image on the query side with
generated captions improves Recall@1 ac-
curacy by 1% over image-only.

348

4 Re-ranking349

While relevant candidates may appear in the top-K350
retrieval results, modern LVLMs still exhibit a posi-351
tional attention bias, called the "lost-in-the-middle"352
effect (Liu et al., 2024). This effect persists even353
when correct articles are retrieved but present in the354

middle, as LVLMs disproportionately focus on can- 355
didates in the beginning during answer generation. 356
To mitigate this issue, re-ranking aims at pushing 357
the most relevant candidate to the beginning, align- 358
ing with LVLMs’ inherent attention patterns. This 359
step is critical because LVLMs’ performance on 360
knowledge-intensive tasks degrades sharply when 361
key information appears later in the input sequence. 362

4.1 Experimental Setup 363

Following prior work (Liu et al., 2025), we evaluate 364
three re-ranking approaches. Pointwise Ranking 365
computes absolute relevance scores for individual 366
query-candidate pairs and sorts the scores. Pair- 367
wise Ranking compares candidate pairs through 368
relative preference judgments, asking models to 369
select the more relevant option for each query. List- 370
wise Ranking operates on full candidate lists, re- 371
quiring models to holistically assess and reorder all 372
retrieved items simultaneously. 373

In this section, the query modality is fixed to 374
image + question (IQ) and the candidate modality 375
is image + text (IT ). We utilize MM-Embed (Lin 376
et al., 2024), Q-Former from EchoSight (Yan and 377
Xie, 2024), and Qwen2-VL-7B-Instruct (Bai et al., 378
2023; Wang et al., 2024) as the re-ranker, and take 379
the top-5 retrieval candidates from Section 3 to 380
measure Recall@1 and MRR improvements after 381
re-ranking. Note that the re-ranker from EchoSight 382
is specifically fine-tuned on InfoSeek and E-VQA, 383
while MM-Embed and Qwen2-VL-7B-Instruct are 384
zero-shot re-rankers. This controlled setup iso- 385
lates the effectiveness of re-ranking from initial 386
retrieval quality. For pointwise ranking, we com- 387
pute absolute relevance scores by extracting the 388
last-layer embeddings of both queries and candi- 389
dates from MM-Embed and EchoSight, and then 390
calculating the dot product similarity score. For 391
pairwise and listwise ranking, we prompt Qwen2- 392
VL-7B-Instruct to re-rank. The prompt template is 393
shown in Appendix B.2. 394

4.2 Results 395

Table 4 presents a comparison of re-ranking strate- 396
gies, focusing on their performance on Recall@1 397
and MRR for both the InfoSeek and E-VQA 398
datasets. The baseline (w/o re-ranking) establishes 399
a starting point, with Recall@1 of 64.44 and 62.61 400
and MRR of 0.71 and 0.694 for InfoSeek and E- 401
VQA, respectively. 402

For InfoSeek, the zero-shot MM-Embed re- 403
ranker and pairwise ranking degrade performance 404
substantially compared to the baseline. In con- 405
trast, EchoSight’s fine-tuned re-ranker achieves 406
near-baseline Recall@1 and improves MRR by 407
0.011 becasue of the fine-tuning on both knowledge 408
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Table 4: Re-ranking results across different strategies
and datasets. The baseline, w/o Re-rank, is the original
retrieval result with IC ↔ IT from Section 3.

Dataset Strategy Metric
Recall@1 ↑ MRR ↑

InfoSeek

w/o Re-rank 64.44+0 0.71+0

MM-Embed 33.18−31.26 0.47−0.24

EchoSight 64.40−0.04 0.72+0.01

Pairwise 51.84−12.6 0.63−0.08

Listwise 65.88+1.44 0.73+0.02

E-VQA

w/o Re-rank 62.61+0 0.69+0

MM-Embed 43.85−18.76 0.56−0.13

EchoSight 69.81+7.2 0.74+0.05

Pairwise 56.34−6.27 0.67−0.02

Listwise 66.42+3.81 0.72+0.03

bases. Surprisingly, listwise ranking with QwenVL409
surpasses EchoSight’s performance, demonstrating410
that LVLMs are inherently a good re-ranker.411

Similarly, for E-VQA, EchoSight’s fine-tuned412
re-ranker outperforms listwise ranking but requires413
training on both knowledge bases, while listwise414
offers competitive zero-shot performance without415
fine-tuning. Our experimental findings are consis-416
tent with previous work (Ma et al., 2023), indicat-417
ing that while LVLMs are not effective for initial418
retrieval, they are good when used for re-ranking419
retrieved candidates in a zero-shot manner.420

Takeaway: Listwise ranking with LVLMs
is an effective zero-shot re-ranking strategy,
may even surpass the performance of fine-
tuned re-rankers and yielding an average of
2.6% improvement in Recall@1 accuracy
over two datasets.

421

5 Generation422

The generation phase synthesizes retrieved knowl-423
edge into accurate, contextually grounded answers,424
where retrieval quality may directly impact answer425
correctness. This section evaluates the generation426
capabilities and explores how retrieval influences427
the quality of the generated responses. We evaluate428
four conditions. Generation without retrieval an-429
swers the question solely without any knowledge430
provided, serving as the lower bound. Generation431
with initial retrieval synthesizes responses using432
top-K retrieved documents before re-ranking. Gen-433
eration after re-ranking uses optimized candidate434
ordering to enhance answer accuracy by aligning435
with VLMs’ positional attention biases. Gener-436
ation with gold document takes the document437
containing the answer to the query as a reference438
to measure the upper bound accuracy.439

5.1 Experimental Setup 440

We evaluate two state-of-the-art LVLMs: Qwen2- 441
VL-7B-Instruct (Wang et al., 2024) and LLaVA- 442
OneVision (Li et al., 2024) to assess how retrieval 443
information improves answer quality. Both mod- 444
els operate in zero-shot mode, leveraging their 445
pretrained multimodal understanding without task- 446
specific fine-tuning. To assess answer quality, we 447
compute ROUGE-L (Lin, 2004) score against refer- 448
ence answers. However, this traditional metric may 449
not sufficiently capture semantic meanings. As a 450
result, we also employ InternVL3-14B (Chen et al., 451
2024c; Zhu et al., 2025) and GPT-4.1 (Yu et al., 452
2023; Duan et al., 2024; Achiam et al., 2023) as au- 453
tomated judges. The judge receives the generated 454
answer and the reference answer, then checks if 455
the generated answer is correct (answer aligns with 456
reference answer) or incorrect (factually wrong or 457
irrelevant). The prompt template for the judge is 458
shown in Appendix B.3. 459

5.2 Results 460

Figure 2 shows the response accuracy with Qwen2- 461
VL-7B-Instruct. The results demonstrate a criti- 462
cal divergence between retrieval accuracy and re- 463
sponse accuracy. While retrieval accuracy (Ret. 464
Acc.) monotonically increases with larger K, re- 465
sponse accuracy (Res. Acc.) does not improve 466
and even declines. For instance, in E-VQA after 467
re-ranking, Ret. Acc. at top-1 achieves 66.42% 468
and increases to 80.8% at top-5, with 14.38% im- 469
provement. However, ROUGE-L score drops from 470
0.416 to 0.392 and Res. Acc. decreases 0.17% and 471
2.11% with InternVL3 and GPT 4.1 evaluation, 472
correspondingly. 473

A similar trend is also observed at the bottom 474
of Figure 2. Our experiments suggest that LVLMs 475
indeed exhibit a strong positional bias, prioritiz- 476
ing information from the initial positions of the in- 477
put context, so adding more documents may make 478
LVLMs overlook key details or be confused by the 479
irrelevant documents. Thus, re-ranking is necessary 480
to push the most relevant to the beginning. 481

Takeaway: While re-ranking retrieved re-
sults boosts generation accuracy by at least
1%, adding more documents does not im-
prove generation accuracy, even if the cor-
rect answer is present among them. Thus,
providing only the most relevant document
as a reference is optimal.

482
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Figure 2: Generation performance of Qwen2-VL-7B-Instruct (top) and LLaVA-OneVision (bottom) across different
evaluation metrics on E-VQA and InfoSeek. The line plots correspond to the left y-axis, while the bar plots
correspond to the right y-axis. The green dashed line marks the performance of Generation with gold document
and the red dashed line marks the Generation without retrieval of achievable response accuracy. The left y-axis,
shown in blue, is the ROUGE-L score and Response Accuracy (Res. Acc.) for Generation with initial retrieval
and Generation after re-ranking. The right y-axis, in red, represents the Retrieval Accuracy (Ret. Acc.) as the
number of top-K retrieved documents varies.

6 Unifying Re-ranking and Generation483

Our experiments in Section 5 demonstrate that484
adding less-relevant documents may not benefit485
response accuracy, motivating our attempt to ex-486
plore the potential of unifying re-ranking and gen-487
eration into a single agentic framework. This ap-488
proach incorporates a self-reflection loop where the489
model evaluates both the query and retrieved docu-490
ments through multiple iterations, and decides the491

most relevant document. Unlike prior methods like 492
(Yu et al., 2024), which rely on instruction-tuned 493
and text-only LLMs, we explore the possibility 494
of LVLMs to dynamically assess query-document 495
relevance and prioritize critical evidence without 496
specific training. 497

6.1 Experimental Setup 498

Similar to Section 5, we employ Qwen2-VL-7B 499
(Wang et al., 2024) and LLaVA-OneVision (Li 500
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Figure 3: The self-reflection process of unifying re-ranking and generation in a single agentic framework.

Table 5: Response accuracy on the E-VQA dataset
when unifying re-ranking and generation, compared to
separate approaches, across two LVLMs.

Model Strategy Evaluation Method
ROUGE-L GPT InternVL

Qwen non-Unified 0.41 41.77 17.65
Unified 0.43 45.66 19.49

LLaVA non-Unified 0.35 35.44 14.25
Unified 0.37 40.69 16.57

et al., 2024) as the base LVLMs. At each itera-501
tion, the model assesses whether the current doc-502
ument contains evidence directly addressing the503
query. If a document is relevant, the model gen-504
erates a tentative answer and checks its validity505
against the document’s content via a self-reflection506
prompt. A valid response is returned, while an in-507
valid response prompts the model to consider the508
next document in the retrieved set. If none of the509
documents provide relevant information, the model510
returns “Model fails to answer the question” and511
ends the process. Figure 3 depicts the pipeline of512
the unification of re-ranking and generation. The513
prompts are shown in Appendix B.4. To evaluate514
the performance, we take the ROUGE-L score and515
response accuracy with top-1 document given after516
re-ranking from Section 5 as the baseline, named517
non-Unified, and also employ InternVL3 and GPT518
4.1 as automated judges to assess whether the re-519
sponse is semantically Correct or Incorrect.520

6.2 Results521

From Table 5 and 6, we observe that the uni-522
fied agent consistently outperforms decoupled523
re-ranking and generation pipelines across both524
datasets and LVLM architectures. This demon-525
strates that integrating self-reflection capabilities526
directly into the generation process enables LVLMs527
to validate response relevance against retrieved doc-528
uments and the query. By iteratively filtering irrele-529
vant evidence while prioritizing critical information530
through document-level attention, positional bias531
is avoided in the decoupled approach.532

Table 6: Response accuracy on the InfoSeek dataset.

Model Strategy Evaluation Method
ROUGE-L GPT InternVL

Qwen non-Unified 0.41 37.6 29.7
Unified 0.42 39.5 31

LLaVA non-Unified 0.38 35.28 28.68
Unified 0.39 37.86 29.72

Takeaway: The unified agentic framework
outperforms decoupled pipelines, boosting
the response accuracy by 5%/2% for E-
VQA/InfoSeek through LVLM’s iterative
self-reflection.

533

7 Conclusion 534

In this paper, we systematically revisited the 535
mRAG pipeline, focusing on zero-shot settings for 536
LVLMs. Our study dissected the retrieval phase, 537
revealing that large-scale CLIP models are highly 538
effective as zero-shot retrievers, and that augment- 539
ing image queries with generated captions can pro- 540
vide modest gains. We further analyzed re-ranking 541
strategies and found that listwise re-ranking with 542
LVLMs offers strong zero-shot performance. Our 543
generation experiments demonstrated that candi- 544
date ordering has a direct impact on answer ac- 545
curacy, with re-ranking being essential to ensure 546
relevant evidence is prioritized. However, we ob- 547
served that adding less-relevant documents is not 548
beneficial. As a result, we introduced an unified 549
agentic framework that integrates re-ranking and 550
generation via self-reflection, enabling LVLMs to 551
dynamically filter irrelevant context and enhance 552
answer accuracy without task-specific fine-tuning. 553

Limitations 554

Although our systematic study provides several sug- 555
gestions on each phase in mRAG pipeline, several 556
limitations should be mentioned. First, our evalua- 557
tion is conducted in a zero-shot setting using frozen 558
pre-trained models, which may not fully capture 559

8



the performance upper bound achievable with task-560
specific fine-tuning and the model may provide hal-561
lucainated responses. Second, the reliance on dis-562
tilled datasets, while necessary for computational563
feasibility in this work, could introduce distribu-564
tional biases that do not entirely reflect real-world565
scenarios with larger and more diverse knowledge566
bases. Third, while LVLM-based judges provide567
scalable evaluation, they may not perfectly align568
with human judgment, especially for nuanced or569
open-ended questions. Future work focusing on570
improving multi-modal alignment and developing571
human-centered evaluation frameworks for mRAG572
remains to be explored.573
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A Dataset and Knowledge Base939

Construction940

In this section, we provide details on the dataset941
and knowledge base construction.942

A.1 Dataset943

The articles in both E-VQA and InfoSeek are in944
English, and are about encyclopedic knowledge945
derived from Wikipedia and Google Landmark946
datasets. In line with previous research (Yan and947
Xie, 2024), we use a total of 4,750 test cases for948
our evaluation. Our primary focus is on single-949
hop questions from the original E-VQA dataset950
(Mensink et al., 2023), ensuring that the model can951
directly identify the answer by referencing the re-952
trieved documents. For the InfoSeek dataset (Chen953
et al., 2023), since the original release does not954
include a test set, we sample 5,000 test cases from955
its validation set to facilitate a fair and consistent956
evaluation.957

A.2 Knowledge Base958

Given the test cases, we first select articles con-959
taining the target answers from the original dataset,960
then sample additional articles to construct a knowl-961
edge base of 50,000 entries. As shown in Table 7,962
we report the approximate construction time and963
retriever model size for our distilled dataset. For964
LVLM-based retrievers (BGE-MLLM and GME),965
we use two NVIDIA RTX A6000 GPUs in parallel966
with a batch size of 3. For other retrievers, we use a967
single NVIDIA RTX A6000 GPU with a batch size968
of 4. The result demonstrates that LVLM-based969
retrievers require significantly longer processing970
time to construct a 50,000-entry knowledge base,971
which directly motivates our decision to distill the972
dataset for efficient experimentation.973

B Prompt Templates974

B.1 Image captioning975

Figure 4 presents the prompt to caption the image976
on the query side. For the knowledge base side, as977
no question is provided, we caption the image with978
essential clues only. Figure 5 provides the prompt979
for captioning images in the knowledge base.980

B.2 Re-ranking981

This section lists the prompt templates used in the982
re-ranking phase. Figure 6 and 7 show the prompt983
for pairwise and listwise re-ranking, respectively.984
N is the number of documents to provide.985

B.3 Generation986

This section shows the prompts used during the987
generation phase. Figure 8 and 9 show the prompt988

Figure 4: Image captioning prompt on the query side.

Figure 5: Image captioning prompt on the knowledge
base side.

Figure 6: Pairwise re-ranking prompt.

for model generation and automated judge, respec- 989
tively. 990

B.4 Unifying re-ranking and generation 991

Figure 10 outlines the prompt for assessing doc- 992
ument relevance to the input query. If the model 993
decides the document is relevant and generates a 994
response, a self-reflection prompt, shown in Figure 995
11, evaluates the validity of the tentative response. 996
Valid response is kept, and an invalid one prompts 997
the model to shift to the following document. If no 998
document is found, the model outputs "Model fails 999
to answer the question", terminating the process. 1000
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Table 7: Details of constructing the knowledge base.

CLIPSF EVA-CLIPSF BGE-CLIPSF BLIPFF BGE-MLLM GME
Model Size 0.4B 7B 0.4B 2.7B 7.57B 8.2B

Time - E-VQA (GPU hours) 2 10.1 2 4.4 39.9 40.1
Time - InfoSeek (GPU hours) 2.1 10.4 2.1 4.7 41.4 41.7

Figure 7: Listwise re-ranking prompt.

C Experimental Costs1001

The cost for the response evaluation using GPT 4.11002
cost approximately $20 in total.1003

D Licenses1004

The datasets we used, InfoSeek and E-VQA, are1005
licensed under Apache License 2.0 and CC BY1006
4.0, respectively. The retrieval models, CLIP,1007
EVA-CLIP, BGE-CLIP, BLIP, BGE-MLLM, and1008
GME, are under MIT License, MIT License, MIT1009
License, MIT License, MIT License, Apache li-1010
cense 2.0, correspondingly. The re-ranker mod-1011
els, MM-Embed (Lin et al., 2024) and Qwen2-1012
VL-7B-Instruct, are licensed under CC-BY-NC-1013
4.0 and Apache License 2.0. Q-former from1014

Figure 8: Generation prompt.

Figure 9: Judge prompt used for the InternVL3 and GPT
4.1.

EchoSight (Yan and Xie, 2024) was released with- 1015
out an accompanying license. The response gener- 1016
ation models, Qwen2-VL-7B-Instruct and LLaVA- 1017
OneVision, are both licensed under Apache License 1018
2.0. The InternVL3-14B model is released under 1019
MIT License. 1020

Our use of the released datasets and models are 1021
all consistent with their intended use. 1022
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Table 8: ROUGE-L score and response accuracy with Qwen2-VL-7B-Instruct as the generation model in Figure 2.

Dataset Evaluation Methods

E-VQA

ROUGE-L GPT 4.1 InternVL3
top-k given w/o re-rank w/ re-rank top-k given w/o re-rank w/ re-rank top-k given w/o re-rank w/ re-rank

1 0.3651 0.4063 1 39.01 41.77 1 15.49 17.65
2 0.3786 0.4083 2 40.11 41.68 2 16.4 18.12
3 0.3787 0.3949 3 40 40.76 3 16.55 17.97
4 0.3762 0.3922 4 39.34 39.71 4 16.63 17.91
5 0.3778 0.3919 5 39.43 39.66 5 16.21 17.48

lower bound 0.1245 lower bound 11.05 lower bound 6.23
upper bound 0.5111 upper bound 53.73 upper bound 22.82

unified 0.4305 unified 45.66 unified 19.49

InfoSeek

ROUGE-L GPT 4.1 InternVL3
top-k given w/o re-rank w/ re-rank top-k given w/o re-rank w/ re-rank top-k given w/o re-rank w/ re-rank

1 0.3905 0.4067 1 36.92 37.6 1 28.38 29.7
2 0.4003 0.4131 2 37.48 38.2 2 29.06 29.91
3 0.3965 0.4101 3 37.14 37.46 3 29.28 30.4
4 0.3978 0.4001 4 37.68 37.78 4 29.12 30.18
5 0.3963 0.408 5 37.78 38.02 5 29.18 30.36

lower bound 0.1975 lower bound 16.96 lower bound 16.2
upper bound 0.4659 upper bound 44.84 upper bound 33.84

unified 0.4151 unified 39.5 unified 30.96

Table 9: ROUGE-L score and response accuracy with LLaVA-OneVision as the generation model in Figure 2.

Dataset Evaluation Methods

E-VQA

ROUGE-L GPT 4.1 InternVL3
top-k given w/o re-rank w/ re-rank top-k given w/o re-rank w/ re-rank top-k given w/o re-rank w/ re-rank

1 0.325 0.352 1 33.56 35.44 1 13.6 14.25
2 0.33 0.35 2 33.52 35.59 2 13.87 14.29
3 0.328 0.343 3 33.62 34.98 3 13.7 14.08
4 0.328 0.342 4 33.53 34.92 4 13.95 14.19
5 0.321 0.339 5 33.87 34.6 5 13.68 14.04

lower bound 0.115 lower bound 10.38 lower bound 6.19
upper bound 0.409 upper bound 41.54 upper bound 17.79

unified 0.372 unified 40.69 unified 16.57

InfoSeek

ROUGE-L GPT 4.1 InternVL3
top-k given w/o re-rank w/ re-rank top-k given w/o re-rank w/ re-rank top-k given w/o re-rank w/ re-rank

1 0.361 0.376 1 34.66 35.28 1 27.4 28.68
2 0.362 0.372 2 35.02 36.11 2 27.9 28.76
3 0.352 0.367 3 34.77 35.66 3 26.9 28.18
4 0.352 0.364 4 33.14 34.5 4 26.76 28.1
5 0.349 0.36 5 33.38 34.12 5 26.72 27.8

lower bound 0.143 lower bound 12.12 lower bound 11.18
upper bound 0.427 upper bound 40.4 upper bound 32.24

unified 0.385 unified 37.86 unified 29.72
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Figure 10: The evaluation prompt to assess the relation
between query and provided document before the re-
sponse generation.

Figure 11: The self-reflection prompt to verify the
model response answers to the query and is derived
from the provided document.
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