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Abstract. Tables are a ubiquitous source of structured information.
However, their use in automated pipelines is severely affected by con-
flicts in naming and issues like missing entries or spelling mistakes. The
Semantic Web has proven itself a valuable tool in dealing with such is-
sues, allowing the fusion of data from heterogeneous sources. Its usage
requires the annotation of table elements like cells and columns with
entities from existing knowledge graphs. Automating this semantic an-
notation, especially for noisy tabular data, remains a challenge, though.
JenTab is a modular system to map table contents onto large knowledge
graphs like Wikidata. It starts by creating an initial pool of candidates
for possible annotations. Over multiple iterations context information is
then used to eliminate candidates until, eventually, a single annotation is
identified as the best match. Based on the SemTab2020 dataset, this pa-
per presents various experiments to evaluate the performance of JenTab.
This includes a detailed analysis of individual components and of the
impact different approaches. Further, we evaluate JenTab against other
systems and demonstrate its effectiveness in table annotation tasks.
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1 Introduction

Although a considerable amount of data is published in tabular form, oftentimes, the
information contained is hardly accessible to automated processes. Causes range from
issues like misspellings and partial omissions to the ambiguity introduced by using
different naming schemes, languages, or abbreviations. The Semantic Web promises to
overcome the ambiguities but requires annotation with semantic entities and relations.
The process of annotating a tabular dataset to a given Knowledge Graph (KG) is
called Semantic Table Annotation (STA). The objective is to map individual table
elements to their counterparts from the KG as illustrated in Figure 1 (naming according
to [11]): Cell Entity Annotation (CEA) matches cells to individuals, whereas Column
Type Annotation (CTA) does the same for columns and classes. Furthermore, Column
Property Annotation (CPA) captures the relationship between pairs of columns.

JenTab is a toolkit to annotate large corpora of tables. It follows a general pattern
of Create, Filter and Select (CFS): First, for each annotation, initial candidates are
generated using appropriate lookup techniques (Create). Subsequently, the available
context is used in multiple iterations to narrow down these sets of candidates as much
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Egypt Cairo1,010,408

Germany Berlin357,386

wd:Q79		("Egypt")
wd:Q183	("Germany")

(a) Cell annotation.

Egypt Cairo1,010,408

Germany Berlin357,386

wd:Q6256	("country")

(b) Column annotation.

Egypt Cairo1,010,408

Germany Berlin357,386

wdt:P36	("capital")

(c) Property annotation.

Fig. 1: Illustration of Semantic Table Annotation (STA) tasks6.

as possible (Filter). Finally, if multiple candidates remain, a solution is chosen among
them (Select). We provide several modules for each of these steps. Different combi-
nations allow to fine-tune the annotation process by considering both the modules’
performance characteristics and their impact on the generated solutions. The contri-
butions of our paper are as follows. All experiments are based on the large corpus
provided by Semantic Web Challenge on Tabular Data to Knowledge Graph Match-
ing (SemTab2020) [8,10,11]5 (∼ 130, 000 tables) matching the content to Wikidata [21].

– We demonstrate the effectiveness of JenTab relying only on publicly available
lookup services.

– We provide a detailed evaluation of the impact individual modules have on the
candidate generation.

– We perform three experiments exploring different CTA-strategies that vary the
mode of determining cells’ types and hence the column annotation.

– We compare JenTab’s performance to other top contenders of the SemTab2020.

The remainder of this paper is structured as follows. Section 2 gives an overview
of the related work. Section 3 describes our pipeline. Section 4 explains the dataset,
encountered challenges, and the metrics used in our evaluation. Section 5 discusses our
experiments and results. Section 6 concludes the paper and shows future directions.

2 Related Work

We start by briefly reviewing benchmark datasets and motivate the selection of the
SemTab2020 dataset for our evaluation. We then summarize existing approaches to
match tabular data to KGs. While both semi-automatic and full-automatic approaches
have been proposed, we will focus our attention on later ones. This is in line with the
assumptions in this paper and the conditions posed by the SemTab challenges.

Benchmarks. In the past, various benchmarks have been proposed and used for STA
tasks. Manually annotated corpora like T2Dv27 or the ones used in [3,15] offer only a
minimal number of tables. On the other hand, larger corpora are often automatically
created using web tables as a source. The resulting Ground Truth (GT) data is thus
rather noisy as seen, e.g., in [9]. The tables in the SemTab2020 datasets [8, 10] are
artificially created from Wikidata [21]. This inverts older approaches of benchmarks
creation and provides a large corpus of tables with high-quality GT data. Further, it
allows adjusting the difficulty of tasks by varying the noise introduced to the tables.
5 http://www.cs.ox.ac.uk/isg/challenges/sem-tab/
6 We use the prefixes wd: and wdt: for http://www.wikidata.org/entity/ and

http://www.wikidata.org/prop/direct/ respectively.
7 http://webdatacommons.org/webtables/goldstandardV2.html

http://www.cs.ox.ac.uk/isg/challenges/sem-tab/
http://www.wikidata.org/entity/
http://www.wikidata.org/prop/direct/
http://webdatacommons.org/webtables/goldstandardV2.html
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Approaches. ColNet [5] tackles only the CTA task. It uses a Convolutional Neural
Networks (CNN) trained by classes contained within a KG. The predicted annotations
are combined with the results of a traditional KG. The final annotation is selected using
a score that selects the lookup solutions with high confidence and otherwise resorts to
the CNN predictions. Results have shown that the lookup service outperforms the
CNN prediction for a larger knowledge gap. The approach has then been extended by
considering other cells in the same row in a property feature vector Property to Vector
(P2Vec) as an additional signal to the neural network which yields better results [6].
Efthymiou et.al [9] have a slightly different task description. They tackle row to KG
entity matching. Their approach combines a lookup model, FactBase, with a word
embedding model trained using the KG. Two variations are proposed, each succeeding
in different benchmarks. Each variant uses one model as the primary source and only
resorts to the other when the first does not return any result.

All these approaches rely on lookup services for their success. However, each of them
addresses only a single task from STA. Moreover, they can not cope with the frequent
changes of KGs since they rely on snapshots of the KG to train their respective models.

SemTab2019. In the year 2019, the SemTab challenge initiated to bring together the
community of automatic systems for STA tasks. A four-round-dataset was released with
DBpedia [2] as a target KG. Among the participants, the following systems emerged.
MTab [16], the challenge winner in 2019, relies on a joint probability distribution
that is updated after more information is known. Input signals include the results of
various lookup services and conditional probabilities based on the row and column
context. The authors mention the computational cost from the multitude of signals as
a significant drawback. CSV2KG [19], achieving second place, uses an iterative process
with the following steps: (i) get an entity matching using lookup services; (ii) infer the
column types and relations; (iii) refine cell mappings with the inferred column types
and relations; (iv) refine subject cells using the remaining cells of the row; and (v)
re-calculate the column type with all the corrected annotations. Tabularisi [20], third
place in 2019, also uses lookup services. Based on the returned candidates, an adapted
TF-IDF score is 8 is calculated for each candidate. A combination of this score, the
Levenshtein distance between cell value and candidate label, and a distance measure
between cell value and the URL tokens is used to determine the final annotation.
DAGOBAH [4] assumes that entities in the same column are close in the embedding
space. Candidates are first retrieved using a lookup based on regular expressions and
the Levenshtein distance. Afterwards, a clustering of their vector representations using
the embedding is performed to disambiguate among them. The cluster with the highest
row-coverage is selected and final ambiguity are resolved via a confidence score based
on the row context of the candidates.

A key success factor to those systems is the use of Wikidata and Wikipedia as
additional data sources. In this paper, we focus on exploiting only the target KG data
sources. Therefore, we try to maximize the benefit from a given cell value and minimize
our reliance on different data sources, which leads to a more straightforward system.

SemTab2020. The second edition of the challenge in 2020 changed the target KG
to Wikidata. MTab4Wikidata [17] builds an extensive index that includes all historic
revisions. Cell annotation candidates are generated using this index and a one-edit-
distance algorithm. Disambiguation is done via pairwise lookups for all pairs of entities
within the same row. bbw [18] relies on two core ideas. First, SearX 9 as a meta-

8 Term Frequency-Inverse Document Frequency.
9 https://github.com/searx/searx

https://github.com/searx/searx
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lookup enabling it to search over more than 80 engines. Second, contextual matching
using two features, for example, entity and property labels. The former collects results
and ranks them, while the latter picks the best matches using edit-distance. SSL [13]
generates a Wikidata subgraph over a table. It leverages SPARQL queries for all tasks
and does not implement any fuzzy search for entities. However, it applies a crawling
process through Google to suggest better words and thus, overcomes the problem of
spelling mistakes. LinkingPark [7] has a three-module pipeline. For entity generation, it
uses the Wikidata lookup API while employing an off-the-shelf spell checker. Further,
its Property Linker module uses a fuzzy matching technique for numeric values with a
certain margin. JenTab uses a similar methodology to LinkingPark for tackling spelling
mistakes but with the aid of word vectors10. Moreover, JenTab uses the same concept
of fuzzy matching for entities and properties generation.

To our knowledge, none of the these systems provided a detailed study on various
solutions for STA tasks, backward compatibility across rounds, or a time analysis.

3 Approach

Our system’s modules can be classified into one of the following three phases, which
together form a Create, Filter and Select (CFS) pattern. During the Create-phase, can-
didates are retrieved for each requested annotation. In the Filter-phase, the surrounding
context is used to reduce the number of candidates. Eventually, in the Select-phase, the
final annotations are chosen among the remaining candidates. The individual modules
for the same task differ in their treatment of the textual input and the context used.
This causes not only differences in the accuracy of their results but also affects their
performance characteristics. In the following, we explain the necessary preprocessing
steps and describe the developed modules for each phase.

3.1 Preprocessing

Before the actual pipeline, each table is subjected to a preprocessing phase consisting of
three steps: The first step aims at normalizing the cells’ content. First, we attempt to fix
any encoding issues using ftfy11. Further, we remove special characters like parentheses
or slashes. Finally, we use regular expressions to detect missing spaces like in “1stGlobal
Opinion Leader’s Summit”. In addition to the initial values, the normalized ones are
stored as a cell’s “clean value”. In the second step, we use regular expressions to
determine the datatype of each column. While our system distinguishes more datatypes,
we aggregate to those having direct equivalents in KGs, i.e. OBJECT, QUANTITY, DATE,
and STRING. Cells in OBJECT-columns correspond to entities of the KG, while the others
represent literals. In the final step, we apply type-based cleaning. In general, it attempts
to extract the relevant parts of a cell value for QUANTITY and DATE columns. For example,
it splits the numeric value from a possibly existing unit in QUANTITY cells. Similarly,
redundant values like “10/12/2020 (10 Dec 2020)” are reduced to “10/12/2020”.

3.2 Annotation modules

Tabular data offers different dimensions of context that can be used to either generate
annotation candidates (Create-phase) or remove highly improbable ones (Filter-Phase).

10 https://www.kaggle.com/cpmpml/spell-checker-using-word2vec
11 https://github.com/LuminosoInsight/python-ftfy

https://www.kaggle.com/cpmpml/spell-checker-using-word2vec
https://github.com/LuminosoInsight/python-ftfy
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(a) Cell (b) Column (c) Row (d) Row-Column

Fig. 2: Possible contexts for resolving and disambiguating annotations.

Figure 2 illustrates those visually. The Cell Context is the most basic one, outlined in
Figure 2a. Here, nothing but an individual cell’s content is available. We can then
define a Column context as shown in Figure 2b. It is based on the premise that all cells
within a column represent the same characteristic of the corresponding tuples. For
the annotation process, this can be exploited insofar that all cells of a column share
the same class from the KG. Annotations for cells in OBJECT-columns have further a
common class as required by the CTA task. Similarly, the assumption that each row
refers to one tuple leads to the Row Context of Figure 2c. Annotation candidates for
the subject cell, i.e., a cell holding the identifier for the respective tuple/row, have
to be connected to their counterparts in all other cells within the same row. Finally,
all contexts can be subsumed in the Row-Column Context as given by Figure 2d. It
combines the last two assumptions representing the most exhaustive context. In the
following, we summarize our modules. For a detailed description kindly refer to [1].

Creating Candidates All subsequent tasks are based on suitable CEA-candidates for
individual cells. The textual representation of such a cell can deviate from its canonical
name and other labels given by the KG in many different ways. We devised various
modules to cope with the encountered issues using the aforementioned contexts.

– CEA Label Lookup (Cell Context) employs six strategies to to cope with spelling
mistakes, use of abbreviations and other lexicographical challenges.

– CEA by column (Column Context) populates the candidate pool for a cell with
all available instances of that shared class.

– CEA by subject (Row Context) populates mappings for cells in the same row
given the subject cell’s annotation, i.e. the cell serving as an identifier for that row.

– CEA by row (Row Context) finds candidates for subject cells given the object
annotations in the same row.

With candidates available for individual cells, another set of modules can be used
to derive candidates for the CTA and CPA tasks.

– CTA collects the parent classes from all CEA-candidates for a particular column
and uses them as CTA-candidates for that column.

– CPA retrieves all properties for CEA-candidates of subject cells and compares
those to the values of the row. While object-properties are matched against the
candidate lists, literal-properties use a mix of exact and fuzzy matching.

• DATE-values are matched based on the date part omitting any additional time
information. Different datetime-formats are supported.
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• STRING-values are split into sets of tokens. Pairs with an overlap of at least
50% are considered a match.

• QUANTITY-values are compared using a 10% tolerance, as given in Equation 1.

Match =

{
true, if |1− value1

value2
| < 0.1

false, otherwise
(1)

Filtering Candidates The previous modules generate lists of candidates for each task.
Next, filter-modules remove unlikely candidates based of different contexts.

– CTA support (Column Context) removes CTA-candidates that to not apply to
at least a minimum number of cells in that column.

– CEA unmatched properties (Row Context) removes CEA-candidates that are
not part of any candidate for a CPA-matching.

– CEA by property support (Row Context) first counts CPA-matches for subject-
cells’ CEA-candidates. All but the ones scoring highest are then removed.

– CEA by string distance (Cell Context) excludes all CEA-candidates whose label
is not within a certain range wrt. their Levenshtein distance [14] to the cell value.

Selecting a Final Annotation At some point, a final annotation from the list of
candidates has to be selected. If only a single candidate is remaining, this candidate is
chosen as a solution. In all other cases, the following modules will be applied.

– CEA by string similarity selects the CEA-candidate whose label is the closest
to the original cell value using the Levenshtein distance.

– CEA by column operates on cells with no CEA-candidates left12. It looks for
other cells in the same column that are reasonably close wrt. to their Levenshtein
distance and adopts their solution if available.

– CTA by LCS considers the whole class hierarchy of current CTA-candidates and
picks the Least Common Subsumer (LCS) as a solution.

– CTA by Direct Parents applies a majority voting on CTA-candidates and their
direct parents in the class hierarchy.

– CTA by Majority applies a majority voting on the remaining CTA-candidates.
– CTA by Popularity breaks any remaining ties by selecting the most popular

CTA-candidate, i.e., the one with the most instances in the KG.
– CPA by Majority applies a majority voting on the remaining CPA-candidates.

3.3 Architecture

Figure 3 shows JenTab’s overall architecture. We opted for a distributed approach
that allows us to split the workload across several nodes. The left-hand side depicts
the two types of nodes: A central Manager node orchestrates a family of associated
Runner nodes. Runners contact the Manager to request new work items, i.e., raw
tables. After a work item is finished, its results are sent back to the Manager, and the
next one is requested. The result of processing a single table consists of three parts:

12 Under certain circumstances, the applied filter modules might have removed all
CEA-candidates before.
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Runner

Runner

Runner

Clean Cells

Type 
Prediction

Approach

Autocorrect

Lookup
(Wikidata) cache

Generic 
Strategy cache

Endpoint
(Wikidata) cache

Manager
errors

audit

results

Fig. 3: JenTab system architecture.

results correspond to annotations of tasks, audit data that allows assessing the impact
of individual modules, and possibly a list of any errors thrown during the processing.

The Manager’s dashboard contains information about the following, the current
state of the overall system, i.e., processed versus not yet tables, besides, data about
connected Runners and errors are thrown (if any). It also gives an estimate of the
remaining time needed. Finally, once the processing has finished, all gathered anno-
tations can also be accessed from this central point. The Runner coordinates a single
table’s processing at a time through a series of calls to different services. Tables are first
passed through the preprocessing services of Clean Cells and Type Prediction. After-
wards, the core pipeline is executed via the Approach service. Approach depends on the
following four services. Lookup and Endpoint are proxies to the respective KG lookup
and SPARQL endpoint services respectively. Moreover, the computationally expensive
Generic Strategy, in the CEA lookup, see Subsection 3.2, is wrapped in a separate
service. These three services include caching for their results. The final dependency is
given by the Autocorrect service, which tries to fix the spellings mistakes in cells.

The chosen architecture has several advantages. First, using caches for computa-
tionally expensive tasks or external dependencies increases the overall system perfor-
mance. Furthermore, it reduces the pressure on downstream systems, which is especially
important when public third-party services are used. Second, when the target KG is to
be substituted, all necessary changes like adjusting SPARQL queries are concentrated
within just two locations: the corresponding lookup and endpoint services. Third, the
distributed design allows scaling well with respect to the number of tables to be anno-
tated. Any increase in the number of tables can be mitigated by adding new Runners
to cope with the workload. Finally, the implementation allows reusable, and self en-
capsulated pieces of code. For example, Runner can deal with any other Approach
implementation, and Autocorrect can be used by any other Approach.

4 Evaluation Setup

We base the evaluation of our approach on the corpus provided by the Semantic Web
Challenge on Tabular Data to Knowledge Graph Matching (SemTab2020) [10]. In the
following, we will first outline the configuration of annotation modules listed in Sec-
tion 3, before describing the corpus in more detail. Further, we will explain the metrics
used which follow the evaluation strategy prescribed by the challenge.
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CEA Label Lookup

CTA

CPA

CEA by Row and Column

CEA by Subject

CTA-Support

CEA by Unmatched Properties

CEA by Property Support

CEA by String Similarity

CTA by LCS

CEA by Column

CEA by String Similarity

1 2
4

3

7

8

CEA by Column

CEA by String Similarity

CTA by Direct Parents

CTA by Popularity

9

CPA

CEA by Unmatched Properties 6

CEA by String Similarity

CEA by Row

CTA

CPA

CTA-Support

CEA by Unmatched Properties

CEA by String Distance

CPA by Majority

5CEA by Column

Fig. 4: JenTab: Arrangement of building blocks into a pipeline [1]. Create is
indicated in red with a plus icon, Filter is represented in green and a triangle
sign and Select is shown in yellow with a circle symbol.

4.1 Sequence of Modules

The order of modules used in the evaluation is outlined in Figure 4. The modules are
arranged into several groups. Some groups are only executed if the preceding group
had any effects on the current candidate pool. Similarly, the different approaches for
creating CEA-candidates skip cells that already have candidates at the time.

Group 1 represents the most direct approach. As its modules use only a few inter-
dependencies, queries are rather simple and can be executed quickly. Still, it accounts
for a substantial share of candidates and thus forms the basis for subsequent groups.

For cells that so far did not receive any CEA-candidates, Group 2 is a first attempt
to compensate by expanding the considered scope. Here, CEA by Row and Column pre-
cedes CEA by Row. Using more context information, i.e., the Column Context, returned
results are of higher quality compared to CEA by Row. It will fail, though, when the
current list of corresponding CTA-candidates do not yet contain the correct solution.
In such cases, CEA by Row can fill in the gaps. If any of the two modules resulted in
new CEA-candidates, the corresponding modules for CTA and CPA candidate creation
will be repeated in Group 3 .

Group 4 attempts to select annotations for the first time. A prior filter step again
uses the Row Context to retain only the CEA-candidates with the highest support
within their respective tuples. Afterwards, annotations are selected from the candidate
pool available at this point. It yields solutions for the majority of annotation-tasks but
may leave some gaps on occasion.

The next two groups represent our last efforts to generate new candidates using
stronger assumptions. Group 5 assumes that we were already able to determine the
correct CTA-annotation for the respective column and then uses all corresponding
instances as CEA-candidates. Similarly, Group 7 assumes that the CEA-annotation
subject cell is already determined and creates candidates from all connected entities.
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Table 1: SemTab2020 Dataset statistics.

Round R1 R2 R3 R4

Tables # 34,294 12,173 62,614 22,390
Avg. Rows # (± Std Dev.) 7± 4 7± 7 7± 5 109± 11, 120

Avg. Columns # (± Std Dev.) 5± 1 5± 1 4± 1 4± 1
Avg. Cells # (± Std Dev.) 36± 20 36± 18 23± 18 342± 33, 362

Target Cells # (CEA) 985,110 283,446 768,324 1,662,164
Target Columns # (CTA) 34,294 26,726 97,585 32,461

Target Columns Pairs # (CPA) 135,774 43,753 166,633 56,475

Egypt 1922February, 28 1,010,407.87 km2 (… ft2) Egypt Cairo

Germa?ny 3 October 1990 (03.10.1990) 357,400 km2 (… ft2) Germany TÃ¼bingen

UK ?? NA United Kingdom London

… … … … …

Country Inception (LITERAL) Area (LITERAL) Label (LITERAL) Capital (IRI)

Subject Column  Object Columns / Properties 

a

b
d

e f
g h iRaw 

Table

k

jc

Fig. 5: Synthetic table showcasing potential issues and challenges .

Groups 6 , and 8 are used to validate those candidates and possibly select further
annotations to fill in the gaps.

Group 9 makes a last-ditch effort for cells that could not be annotated so far.
As no other module was able to find a proper solution, this group will reconsider all
CEA-candidates that were dropped at some point. Using this pool, it attempts to fill
the remaining gaps in annotations.

4.2 Dataset

We use the SemTab2020 dataset [10] as a benchmark for our approach. It contains over
130,000 tables automatically generated from Wikidata [21] that were further altered by
introducing artificial noise [11]. The corpus is split into four rounds. In the last round,
180 tables are added from Tough Tables (2T) dataset [8] increasing the difficulty here.
Table 1 summarizes the data characteristics of the four rounds.

Figure 5 illustrates the challenges present in the dataset. a missing or not descrip-
tive table metadata, like column headers. b spelling mistakes. c ambiguity in cell
values. For example, UK has (Ukrainian (Q8798), United Kingdom (Q145), University
of Kentucky (Q1360303) and more) as corresponding entities in Wikidata. d missing
spaces, causing tokenizers to perform poorly. e inconsistent format of date and time
values. f nested pieces of information in Quantity fields, interfere in the corresponding
CPA tasks. g redundant columns. h encoding issues. i seemingly random noise in

the data. Berlin would be expected in the context of the given example. j missing
values including nulls, empty strings or special characters like (?, -, –) to the same
effect. k tables of excessive length.
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Table 2: Generic Strategy: Unique labels and ratio of resolved labels per round.

Rounds Unique Labels Matched (%)

R1 252,329 99.0
R2 132,948 98.9
R3 361,313 99.0
R4 533,015 96.8

4.3 Metrics

Besides the datasets, SemTab2020 also provides a framework to evaluate tabular data to
knowledge graph matching systems [11]. Our evaluation follows the proposed methodol-
ogy, which is outlined in the following. At its core, it relies on the standard information
retrieval metrics of Precision (P ), Recall (R), and F1 Score (F1) as given in Equation 2.

P =
|correct annotations|
|annotated cells| , R =

|correct annotations|
|target cells| , F1 =

2× P ×R
P +R

(2)

However, these default metrics fall short for the CTA task. Here, there is not always
a clear-cut distinction between right and wrong. Some solutions might be acceptable but
do not represent the most precise class to annotate a column. Taking the last column
of Figure 5 as an example, the best annotation for the last column would likely be
capital (Q5119) (assuming “Tübingen” is noise here). Nevertheless, an annotation city
(Q515) is also correct, but just not as precise. To account for such correct but imprecise
solutions, an adapted metric called cscore is advised as shown in Equation 3 [12].
Here, d(α) is the shortest distance between the chosen annotation-entity α and the
most precise one, i.e., the one given in the GT. Consequently, Precision, Recall, and
F1 Score are adapted to the forms in Equation 4.

cscore(α) =


1, if α is in GT,

0.8d(α), if α is an ancestor of the GT,

0.7d(α), if α is a descendant of the GT,

0, otherwise

(3)

AP =

∑
cscore(α)

|annotated cells| , AR =

∑
cscore(α)

|target cells| , AF1 =
2×AP ×AR
AP +AR

(4)

5 Experiments and Results

In this section, we discuss our findings regarding the overall system. We start with
preprocessing assessment, “Type Prediction” step which is responsible for determining
a column’s datatype, see Subsection 3.1. Figure 6 shows the confusion matrix of this
step with 99% accuracy. We used the ground truth for CEA and CPA tasks to query
Wikidata for their types; such values represent the actual datatypes, the predicted
values are our system results.

Spelling mistakes are a crucial problem that we have tackled by using “Generic
Strategy”, see Subsection 3.2. The effectiveness of this is illustrated in Table 2: Almost
99% of unique labels were covered in the first three rounds. However, this is reduced
to ∼ 97% in the last round.
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Fig. 6: Confusion matrix for type prediction. A 4-label classification task.

Our modular approach enables us to exchange individual components or provide
backup solutions if the existing ones failed in specific situations. By this means, we
have established three different experiments to explore the effect of changing cells’
types retrieval. These three modes include: First, only direct parents through P31. We
have used a majority vote to select a column type. Second, 2 Hops, it includes “P31”
with one parent “P279”. Finally, Multi Hops, creates a more general tree of parents.

We have implemented five strategies for an initial CEA candidates creation, see
Subsection 3.2. Figure 7a shows how much each strategy is used. This underlines the
need for various strategies to capture a wide range of useful information inside each
cell. The shown distribution also reflects our chosen order of methods. For example,
“Generic Strategy” is our first priority, thus used most of the time. On the other hand,
“Autocorrect” is has the lowest priority and is used as a means of the last resort. CEA
selection phase involves two methods. Figure 7b demonstrates the use of each of them:
our dominant select approach is “String Similarity”, it is used by 38% more than the
“Column Similarity”. Finally, Figure 8a describes the distribution of CTA selection
methods during the “P31” setting. While, Figure 8b represents the used methods in “2
Hops” mode, where LCS is the dominant selection strategy. Let’s compare “Majority
Vote” with the LCS methods in the two settings. The former successfully finds more
solutions than the latter, which yields less reliance on backup strategies or tiebreakers.
The same exclusive execution concept in CEA selection is also applied in CTA selec-
tion methods. The dominant method, e.g., LCS in “2 Hops” mode, is invoked more
frequently due to its highest order. Other backup strategies try to solve the remaining
columns if other methods failed to find a solution for them.

Table 3 reports our results for the four rounds given the three execution modes.
In the first three rounds, we have reached a coverage with more than 98.8% for the
three tasks. In the fourth round, CEA task, the coverage is dramatically affected by the
selected mode. “P31” has achieved the highest coverage by 99.39%. However, “Multi
Hops” has achieved the lowest coverage by 81.83%. F1−Score in CEA, CTA and CPA
tasks is greater than 0.967, 0.945 and 0.963 receptively. We obtained these scores by
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Fig. 7: Audit statistics for CEA. y-axis is the log scale of the solved cells15.
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Fig. 8: Audit statistics for CTA selection. y-axis is the log scale of the solved cells.

running the publicly available evaluator code13 on our solution files14. Both “2 Hops”
and “Multi Hops” have better coverage but lower Recall. Unlike, “P31” which achieved
the best scores in most cases. We also compare our performance with the top systems
of SemTab2020 as shown in Table 4. JenTab’s results are competitive across all tasks.
They are severely impacted by the Tough Tables (2T) dataset [8], though.

Table 5 shows the overall system performance. It lists the time consumption for
all four rounds with the number of used runners for each mode setting of the CTA
task. Execution was time-scoped, i.e. an upper limit for the time per table was set.
This allowed the system to converge faster compared to the initial implementation [1]
with, e.g., Round 4 showing a more than 50% reduction in time. Intermediate results
are cached across rounds saving time and lowering the number of requests to external
services. The employed architecture allows to scale the number of runners based on
available resources and hence speed up the overall process.

The results show that for most tables “P31” mode is the most efficient fastest
approach. However, for the 2T dataset a more sophisticated approach is needed. Here,
the “2 Hops” appraoch yields better results. The “Multiple Hops” strategy can not
surpass any of the other strategies no matter the setting. In terms of both performance
and results it delivers inferior results and should thus not be used.

13 https://github.com/sem-tab-challenge/aicrowd-evaluator
14 https://github.com/fusion-jena/JenTab solution files
15 Values shown on a log-scale to account for large range of values.

https://github.com/sem-tab-challenge/aicrowd-evaluator
https://github.com/fusion-jena/JenTab_solution_files
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Table 3: Metrics on each round for different modes of CTA execution. F1-Score
(F1), Precision (Pr), Recall (R) and Coverage in percentage (Cov.%). AF1, APr
and AR are approximated versions. Best result per task and round in bold.

CEA CTA CPA

Mode Rounds F1 Pr R Cov.% AF1 APr AR Cov.% F1 Pr R Cov.%

P31 R1 0.968 0.969 0.968 99.87 0.962 0.969 0.955 99.87 0.962 0.969 0.955 99.87
R2 0.975 0.975 0.975 99.98 0.965 0.967 0.962 99.51 0.984 0.988 0.979 99.04
R3 0.965 0.967 0.964 99.75 0.955 0.959 0.951 99.20 0.981 0.987 0.976 98.81
R4 0.974 0.974 0.973 99.39 0.945 0.941 0.950 99.31 0.992 0.994 0.989 99.51

2 Hops R1 0.967 0.967 0.967 99.98 0.841 0.841 0.841 99.93 0.963 0.970 0.956 98.57
R2 0.970 0.970 0.970 99.97 0.908 0.909 0.906 99.73 0.982 0.987 0.977 99.06
R3 0.967 0.968 0.966 99.75 0.916 0.918 0.913 99.54 0.983 0.988 0.978 98.98
R4 0.973 0.974 0.973 93.04 0.930 0.924 0.937 99.79 0.993 0.994 0.992 99.78

Multi Hops R1 0.967 0.967 0.967 99.98 0.824 0.824 0.824 99.91 0.963 0.969 0.956 98.60
R2 0.966 0.968 0.965 99.70 0.927 0.929 0.925 99.57 0.982 0.988 0.976 98.79
R3 0.961 0.964 0.958 99.42 0.929 0.933 0.925 99.19 0.980 0.987 0.973 98.54
R4 0.947 0.949 0.945 81.83 0.863 0.892 0.836 92.23 0.956 0.994 0.920 92.63

Table 4: State of the art comparison. F1-Score (F1), Precision (Pr). Best result
per task in bold. Results for other systems from [12].

Automatically Generated Dataset Tough Tables

CEA CTA CPA CEA CTA

System F1 Pr F1 Pr F1 Pr F1 Pr F1 Pr

JenTab (P31) 0.974 0.974 0.945 0.941 0.992 0.994 0.485 0.488 0.524 0.554
JenTab (2 Hops) 0.973 0.974 0.930 0.924 0.993 0.994 0.476 0.526 0.646 0.666

JenTab (Multiple Hops) 0.947 0.949 0.863 0.892 0.956 0.994 0.287 0.402 0.180 0.237

MTab4Wikidata 0.993 0.993 0.981 0.982 0.997 0.997 0.907 0.907 0.728 0.730
bbw 0.978 0.984 0.980 0.980 0.995 0.996 0.863 0.927 0.516 0.789

LinkingPark 0.985 0.985 0.953 0.953 0.985 0.986 0.810 0.811 0.686 0.687
DAGOBAH 0.984 0.985 0.972 0.972 0.995 0.995 0.412 0.749 0.718 0.747

SSL 0.833 0.833 0.946 0.946 0.924 0.924 0.198 0.198 0.624 0.669

Table 5: Execution time in days and the number of the used runners/clients for
each setup mode.

R1 R2 R3 R4

Mode Days Runners Days Runners Days Runners Days Runners

P31 0.5 4 2.5 4 1.5 6 2 4
2 Hops 1 4 1.2 4 2 4 1.1 8

Multi Hops 1 4 1.5 4 2.5 6 3.5 6
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A reoccurring source of issues was the dynamic nature of Wikidata. Users enter new
data, delete existing claims, or adjust the information contained. On several occasions,
we investigated missing mappings of our approach only to find that the respective en-
tity in Wikidata had changed. The challenge and ground truth were created at one
point in time, so using the live system will leave some mappings unrecoverable. More-
over, we are limited by the fair-use policies of the Wikidata Endpoint service. Another
limitation affects the “CEA by Column” module. Some classes like human (Q5) have
a large number of instances. Here, queries to retrieve those instances oftentimes fail
with timeouts, which limits the module to reasonably specific classes.

6 Conclusions and Future Work

In this paper, we presented an extensive evaluation of our toolkit for Semantic Table
Annotation, “JenTab”. Based purely on the publicly available endpoints of Wikidata,
its modular architecture allows to exploit various strategies and easily adjust the pro-
cessing pipeline. “JenTab” is publicly available16. We presented a detailed analyses
on the effectiveness of JenTab’s strategies using the benchmark dataset provided by
SemTab2020. Finally, we compared JenTab to other top contenders from that challenge
and demonstrate the competitiveness of our system.

We see multiple different areas for further improvement. First, certain components
currently require substantial resources, either due to the number of computations nec-
essary like the Generic Lookup or the lacking performance of the SPARQL endpoint.
While we can address the latter by rewriting queries or re-designing the approach, the
former offers plenty of opportunities to accelerate the system.
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2020: Semantic Web Challenge on Tabular Data to Knowledge Graph Matching
Data Sets (Nov 2020). https://doi.org/10.5281/zenodo.4282879
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