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ABSTRACT

The clinical efficacy of Computed Tomography (CT) is well-established, yet con-
cerns regarding its radiation exposure persist. To mitigate this risk, a reduction in
X-ray photon count or projection views is typically pursued, albeit at the expense of
image quality. In this study, we introduce an innovative diffusion posterior sampling
approach for CT image reconstruction at reduced radiation doses. This method
initiates with a predictive step, leveraging data enhancement on the posterior ap-
proximation derived from a pre-trained diffusion model and the measurement data.
Subsequently, a forward sampling phase ensues, which maps the output to a noisy
timestep, followed by a diffusion estimation process. Additionally, we propose
an acceleration strategy that employs superior initialization to significantly curtail
the sampling steps required. Our experimental findings indicate that this method
not only enhances the quality of reconstructed images by an average of 3.5 db but
also accelerates the process to over ten times faster than existing diffusion-based
techniques. These outcomes underscore the method’s potential in clinical settings.

1 INTRODUCTION

Computed tomography (CT) imaging technology has undergone significant advancements in the past
decades, leading to substantial improvements in diagnostic performance. The CT reconstruction
problem can be written as the following ill-posed inverse problem:

y = Ax+ n (1)

where y,x denote the measured projection and the unknown CT image to be reconstructed; A is
the forward projection operator and n is the measurement noise which is often modelled by i.i.d.
random variables. However, the increasing use of medical CT has raised concerns about potential
radiation risks, including genetic damage and cancer. Consequently, there is a pressing need to reduce
radiation doses. The two primary strategies for dose reduction are lowering the X-ray tube current and
decreasing the number of scanning views (Slovis, 2002). Nonetheless, these approaches inevitably
introduce noise and artifacts in the reconstructed images, which can significantly degrade image
quality and complicate accurate clinical diagnosis.

In existing literature, sinogram filtering methods, such as structural adaptive filtering (Balda et al.,
2012), bilateral filtering (Manduca et al., 2009), and penalized weighted least-squares (Wang et al.,
2006), have been proposed to enhance LDCT image quality by applying filters to sinogram data.
However, due to low signal-to-noise ratios, these methods often fail to produce high-quality images.
Iterative reconstruction methods address this by optimizing an objective function that incorporates
prior knowledge from both the sinogram and image domains. Regularization techniques, such as
total variation (TV) regularization (Sidky & Pan, 2008), wavelet-based sparsity priors (Jia et al.,
2011), nonlocal total variation (Jia et al., 2010), and low-rank patch priors (Cai et al., 2014), are
commonly used in these approaches. These sparse regularization models can be efficiently solved
using first-order methods like ADMM (Boyd et al., 2011) or the Split Bregman method (Goldstein &
Osher, 2009), enhancing CT image quality by leveraging statistical properties and prior knowledge.

In recent years, deep learning (DL) methods have attracted significant attention due to their impressive
capabilities in reconstructing LDCT images. DL-based image postprocessing techniques utilize deep
neural networks (DNNs) as denoisers to eliminate artifacts in images reconstructed by conventional
filtered back projection (FBP) methods. Typical networks include FBPConvNet (Jin et al., 2017),
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REDCNN(Chen et al., 2017), EDCNN (Liang et al., 2020) and so on. As the artifacts in the
reconstructed images often cannot be modeled as independent random noise, the performance
gain brought by postprocessing method is limited. The optimization unrolling scheme (Adler &
Öktem, 2018; Ding et al., 2020; Chen et al., 2018) and plug-and-play methods (Ye et al., 2018) are
indicated more effective approaches. Unlike traditional post-processing denoising networks, these
methodologies derive their foundation from iterative reconstruction processes. By unrolling iterative
algorithms or incorporating pre-trained denoising sub-networks, these methods facilitate the design
of advanced deep reconstruction networks. However, these methods heavily depend on paired low
and normal dose images for supervised learning, which is both challenging and costly in clinical
settings. Acquiring such paired data increases workload, expenses, and raises concerns about patient
safety and privacy. Additionally, these approaches often produce over-smoothed or hallucinated
images, which can obscure critical details or introduce errors, potentially leading to misdiagnoses by
radiologists.

Recently, the score-based diffusion model (Ho et al., 2020; Song et al., 2021c) has garnered significant
attention due to its innovative approach to generative modeling, which effectively reconstructs data
by progressively denoising purely gaussian noise. The properties of the diffusion model, such as
its robustness to mode collapse and its capacity for generating high-fidelity outputs, indicate its
potential in the field of image generation. Diffusion models have also shown remarkable progress in
solving inverse problems, including super-resolution (Saharia et al., 2022), image inpainting (Song
et al., 2021c), Magnetic Resonance Image (MRI) reconstruction (Song et al., 2021b), and CT
reconstruction (Song et al., 2021b; Chung et al., 2022). Many of these works preserve the original
training process but modify the inference procedure to enable sampling from a conditional distribution.
This kind of approach utilizes the pre-trained score function as a generative prior for the data
distribution, thus avoiding the need for paired data. Such flexibility allows for application across
various tasks while maintaining superior reconstruction quality. However, achieving high-quality
reconstruction generally requires a large number of diffusion posterior sampling steps, typically
1000 or 2000 steps as noted in (Chung et al., 2022; Song et al., 2021b). This requirement leads to
significant computational costs due to repeated forward-backward operator evaluations and inference
steps, which limits the efficiency in solving inverse problems. In imaging inverse problems, it is
crucial to reduce noise and artifacts in the final image while preserving sharpness. The inherent
randomness of diffusion models can introduce unpredictable elements into the reconstructed image if
insufficient projection constraints are applied.

To enhance both the efficiency and quality of CT image reconstruction using diffusion model, we
introduce an Efficient Diffusion Posterior Sampling (EffiDPSRecon) scheme. This method integrates
diffusion sampling as generative priors within the iterative reconstruction process. Unlike previous
algorithms that rely on a single-step gradient descent, resulting in an inaccurate approximation of
the posterior log-likelihood, our method utilizes the conjugate gradient algorithm, initialized with
denoised data, to improve data fidelity and accelerate convergence. Additionally, we introduce a
forward resampling step, mapping the denoised data back into the noisy data space before evaluating
a diffusion step. To further enhance efficiency, we initialize the process by incorporating prior
information from Filtered Backprojection (FBP) images, which reduces the required number of
sampling steps. Experiments on dose-reduced CT reconstruction, including both low-dose noisy CT
(LDCT) and undersampled (Sparse-view CT) data, demonstrate that our approach reduces the number
of diffusion steps from 1000 to just 50, while maintaining high image fidelity, with an average PSNR
improvement of 3.5 dB. These results highlight the effectiveness of the proposed EffiDPSRecon
method for clinical applications.

The remainder of this paper follows this structure: Section 2 provides a concise overview of prior
literature relevant to the subject. Section 3 outlines the specifics of the proposed methodology.
Section 4 showcases the experimental evaluation and comparison to other methods. Ultimately, our
conclusions are presented in Section 5.

2 BACKGROUND

Diffusion models The Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020), com-
monly referred to as one of the most classic diffusion models, comprises both forward and reverse
processes. The forward process defines a transformation path from a clear image x0 to completely
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random gaussian noise which is governed by the following Markov chain with N + 1 states:

q (x1:N | x0) =

N∏
t=1

q (xt | xt−1) (2)

Here, q(xt|xt−1) is a Gaussian distribution defined by:

q (xt | xt−1) = N
(
xt |

√
1− βtxt−1, βtI

)
, (3)

where βt ∈ [0, 1] is an increasing schedule which controls the noise level. Using the properties of the
Gaussian distribution, one can directly sample xt with given x0 as follows:

q (xt | x0) = N
(
xt |
√
ᾱtx0, (1− ᾱt) I

)
, (4)

for αt = 1− βt and ᾱt =
∏t

i=1 αi. As t gradually increases, xN finally becomes noise following
standard Gaussian distribution. The training loss of DDPM is designed for noise prediction in the
reverse sampling process:

L = Ex0
Eϵ∼N (0,I),t

∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2
2
. (5)

Starting from random gaussian noise xT , the reverse sampling of DDPM can be written as:

xt−1 =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
+ σtz. (6)

Song et al. (2021c) further proposed a unified framework which transforms the DDPM from discrete-
time formulation to continuous-time counterpart through stochastic differential equation (SDE). The
corresponding SDE for the forward process of DDPM can be formulated as:

dx = −1

2
β(t)xdt+

√
β(t)dw, (7)

where β(t) represents the noise schedule of the forward process, corresponding to the continuous
form of βt, and w is the standard Wiener process. Then the reverse SDE for sampling is:

dx =

[
−β(t)

2
x− β(t)∇x log pt (x)

]
dt+

√
β(t)dw (8)

where w is the Wiener process for the reverse SDE and the term∇x log pt(x) is the score function,
which is approximated by a neural network sθ(xt, t) in practice. The connection between score
function sθ and noise prediction ϵθ in DDPM can be formulated approximately as sθ(xt, t) ≈

−ϵθ(xt, t)√
1− ᾱt

.

Diffusion Denoising Implicit Model (DDIM) In order to sample with diffusion models more
efficiently, Song et al. proposed DDIM (Song et al., 2021a), where the diffusion process can be
extended from Markovian to non-Markovian and (6) can be rewritten as:

xt−1 =
√
ᾱt−1x̂0 (xt) +

√
1− ᾱt−1 − σ2

ηt
· ϵθ (xt, t) + σηt

ϵt, (9)

where ϵt is standard Gaussian noise and x̂0 (xt) denotes the predicted x0 from xt with Tweedie’s
formula:

x̂0 (xt) := E [x0 | xt] =
1√
ᾱt

(xt + (1− ᾱt)∇xt
log pt (xt)) ≈

xt −
√
1− ᾱtϵθ (xt, t)√

ᾱt
, (10)

and the magnitude σηt
of noise ϵt controls how stochastic the diffusion process is. σηt

= 0 yields
fully deterministic sampling while σηt

=
√
(1− ᾱt−1)/(1− ᾱt)

√
1− ᾱt/ᾱt−1 yields the original

sampling pattern of DDPM.
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Solving linear inverse problems with diffusion models. Given measurements y ∈ Rm and a for-
ward measurement operator A, diffusion models effectively address inverse problems by substituting
the score function in Equation (8) with the conditional score function∇xt

log p(xt | y). By applying
Bayes’ rule, this conditional score can be expressed as:

∇xt
log pt(xt | y) = ∇xt

log pt(xt) +∇xt
log pt(y | xt). (11)

This decomposition supports the formulation of a reverse SDE as follows:

dx =

[
−β(t)

2
x− β(t) (∇xt log pt(xt) +∇xt log pt(y | xt))

]
dt+

√
β(t)dw. (12)

With a pre-trained score diffusion model sθ (xt, t) ≈ ∇xt
log p (xt), posterior sampling is achieved

by merely modifying the sampling process. However, challenges arise primarily due to the lack
of an analytical expression for the likelihood term ∇xt log p(y | xt). To address this, researchers
have explored two primary strategies: the first involves applying alternating projections onto the
measurement subspace to avoid direct use of the likelihood such as Manifold Constraint Gradient
(MCG) (Chung et al., 2022), and the second entails approximating the likelihood under reasonable
assumptions (Chung et al., 2023). For example, Chung et al. (2023) developed a technique known as
diffusion posterior sampling (DPS) with the following update steps:

x′
t−1 =

√
ᾱt−1x̂0 (xt) +

√
1− ᾱt−1 − σ2

ηt
· ϵθ (xt, t) + σηt

ϵt,

xt−1 = x′
t−1 − ζ∇xt∥y −A(x̂0(xt))∥22,

(13)

where ζ ∈ R is a tunable step-size parameter. Despite these advancements, it is crucial to note that
these methods sometimes struggle to perform effective posterior sampling and may exhibit slow
convergence rates, which limits their practical application in real-world scenarios.

3 METHODS

In this section, we introduce our proposed method, namely Efficient Diffusion Posterior Sampling
(EffiDPSRecon), which aim to improve the sampling speed and reconstruction quality of existing
diffusion-based posterior sampling methods for inverse problems. The key idea of EffiDPSRecon
is to incorporate measurement information at multiple stages of the diffusion sampling process to
enhance data consistency and accelerate the sampling process with a FBP sampled initialization.
In the following, we first present our method in steps and then draw connections and difference to
existing DPS based methods.

3.1 EFFICIENT DIFFUSION POSTERIOR SAMPLING RECONSTRUCTION

Based on a pre-trained diffusion model on CT images, we aim to develop an efficient sampling
method from observed projection measurements y. The overall reconstruction procedure is illustrated
in Fig. 1. In the following, we explain the procedure from xt to xt−1 in detail.

Posterior Mean Estimation Considering the DDPM-based forward process pt(xt | x0) =
N (xt;

√
ᾱt x0, (1− ᾱt) I), the posterior mean conditioned on xt and y is given by:

x̂0(xt,y) := E[x0 | xt,y] =
1√
ᾱt

(xt + (1− ᾱt)∇xt
log pt(xt | y)) , (14)

which follows from the properties of Gaussian distributions and the application of Tweedie’s formula.

Using the Bayes’ rule from Equation (11), and substituting the pre-trained score approximation

∇xt
log pt(xt) ≈ −

ϵθ(xt, t)√
1− ᾱt

, we obtain:

E[x0 | xt,y] =
1√
ᾱt

(
xt + (1− ᾱt)∇xt

log pt(y | xt)−
√
1− ᾱt ϵθ(xt, t)

)
. (15)

Assuming Gaussian measurement noise, where y ∼ N
(
Ax0, σ

2 I
)
, the gradient∇xt log pt(y | xt)

can be approximated by:

∇xt
log pt(y | xt) ≈ −

1

σ2
∇xt
∥y −Ax̂0(xt)∥22 , (16)

4
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Figure 1: Overall diagram of EffiDPSRecon. The steps within the red box correspond to a detailed
breakdown of one iteration from xt to xt−1 in the overall procedure. The left section illustrates the
transition between different time steps, starting from xN ′ to x0.

where x̂0(xt) is defined from Tweedie’s formula (10). Substituting this approximation back into the
expression for the posterior mean estimate, we have:

x̂0(xt,y) ≈ x̂0(xt)− ρt∇xt ∥y −Ax̂0(xt)∥22 , (17)

where ρt is a step size parameter.

Data Enhancement Projection To further enhance data consistency, we project the updated
posterior mean x̂0(xt,y) onto the data manifold defined by the normal equation:

M0 = {x | ATAx = ATy} (18)

i.e.
x̂0(y) := PM0

[x̂0(xt, y)], (19)

where PM0 denotes the projection ontoM0. This projection enhances data consistency by ensuring
that the estimated x̂0(y) satisfies the measurement constraints. For this purpose, we adopted
Krylov subspace methods by employing a k-step Conjugate Gradient (CG) algorithm to efficiently
approximate this projection, starting from x̂0(xt,y):

x̂0(y)← CG(ATA,ATy, x̂0(xt,y), k) (20)

Forward Sampling In the previous step, we considered the data enhanced posterior mean x̂0(y)
estimation, we now propose to sample to the time t using the forward process of DDPM as shown in
(4):

xt(y) :=
√
ᾱtx̂0(y) +

√
1− ᾱtz (21)

where z ∼ N (0, I). This step effectively samples xt(y) from pt(xt | x̂0(y)), aligning with the
forward process of DDPM and ensuring that the sample corresponds to the appropriate noise level at
timestep t.

Reverse Sampling with DDIM Finally, we perform one step of DDIM reverse sampling to obtain
xt−1 from xt(y):

xt−1 :=
√
ᾱt−1x̂0(xt(y)) +

√
1− ᾱt−1 · ϵθ (xt(y), t) (22)

where

x̂0(xt(y)) :=
xt(y)−

√
1− ᾱtϵθ (xt(y), t)√

ᾱt
(23)

which ensures that all components in the reverse sampling process remain consistent with the
measurement y.

5
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Accelerated Sampling with Improved Initialization We observe that the estimate x̂0 may deviate
significantly from the ground truth when t is large (i.e., at early timesteps in reverse process). Data
consistency is more beneficial during the later stages of the sampling process when t approaches
zero. Therefore, we propose to start the reverse diffusion from a much smaller timestep N ′ < N with
an appropriate initialization, which significantly reducing the number of reverse diffusion steps in
practice.

Specifically, we initialize xN ′ by sampling from the forward process of DDPM conditioned on an
initial estimate, such as the FBP result xFBP:

xN ′ ∼ N (
√
ᾱN ′xFBP,

√
1− ᾱN ′I) (24)

Intuitively, this approach provides a better starting point that incorporates measurement informa-
tion, which allows to reduce the required number of diffusion sampling steps without sacrificing
reconstruction performance.

Overall, our EffiDPSRecon algorithm consists of two main components: (1) a forward diffusion
sampling up to timestep N ′ using the FBP result xN ′ as a better initialization, and (2) a reverse
conditional diffusion down to t = 0 with the data enhancement techniques on posterior mean
estimation mentioned earlier. The proposed EffiDPSRecon algorithm is summarized in Algorithm 1.

Algorithm 1 EffiDPSRecon

Require: Number of steps N ′,y
1: xN ′ ∼ N (

√
ᾱN ′xFBP,

√
1− ᾱN ′I)

2: for t = N ′ to 0 do
3: ε̂t = εθ(xt, t)
4: x̂0 ← 1√

ᾱt

(
xt −

√
1− ᾱtε̂t

)
▷ Tweedie’s formula

5: x̂0(xt,y)← x̂0 − ρt∇xt ∥y −Ax̂0∥22 ▷ Posterior mean
6: x̂0(y)← CG(ATA,ATy, x̂0(xt,y), k)
7: z ∼ N (0, I)
8: xt(y)←

√
ᾱtx̂0(y) +

√
1− ᾱtz ▷ Forward sampling

9: x̂0(xt(y))← xt(y)−
√
1−ᾱtϵθ(xt(y),t)√

ᾱt

10: xt−1 ←
√
ᾱt−1x̂0(xt(y)) +

√
1− ᾱt−1 · ϵθ (xt(y), t) ▷ DDIM sampling

11: end for
12: return x0

3.2 CONNECTION TO DPS AND MCG

By choosing ρt =
ζ√
ᾱt−1

and setting σηt
= 0 in Equation (13), the reverse sampling iteration of DPS

can be rewritten as:

xt−1 =
√
ᾱt−1 x̂0 (xt,y) +

√
1− ᾱt−1 εθ (xt, t) . (25)

This equation shows that DPS performs reverse sampling by adding noise from the score function
approximation to the measurement-consistent posterior mean x̂0(xt,y).The MCG method enhances
this approach by applying a projection onto the measurement subspace through a one-step gradient
update after the DPS update, aiming to boost data consistency.

The workflow of one-time iteration of our EffiDPSRecon method compared with DPS and MCG
is shown in Figure 2. The concept of our method relies on a data enhancement on a ”predicted”
posterior mean and use the reverse DDIM as a ”corrector” after re-sampling to appropriate noise
levels through the forward process. Intuitively, the estimation of our algorithm aligns better with both
forward and backward process as well as the inverse problems. The process is further improved by
initializing from a better estimate (e.g., the FBP result) instead of starting from a zero-mean Gaussian,
providing a starting point closer to the true data manifold, which potentially beneficial for solving
inverse problems.

Computational Cost Analysis In diffusion-based CT reconstruction, computational costs mainly
arise from two factors: (1) the number of function evaluations (NFE) of the neural network ϵθ, and

6
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xt

x̂0(xt, y)

xt−1
E[x0 |xt, y]

ᾱt−1 x̂0(xt, y)
+ 1 − ᾱt−1εθ(xt, t)

(a) DPS

xt

x̂0(xt, y)

xt−1

E[x0 |xt, y]
ᾱt−1 x̂0(xt, y)

+ 1 − ᾱt−1εθ(xt, t)

Manifold

Projection

x̃t−1

(b) MCG

Figure 2: Diagrams of one iteration in DPS (a), MCG (b), compared to EffiDPSRecon Fig. 1.

(2) the number of Radon transform operations involving A or its adjoint AT . For each iteration,
DPS and MCG require one NFE each, while our method requires two occurred in the first posterior
mean step and the last DDIM step. Regarding A and AT operations, DPS requires two per iteration,
MCG requires four, and our method requires 2k + 2, where k is the number of CG iterations in the
projection step, which is typically set from 2 to 5.

Although our method incurs a higher per-iteration cost due to the CG computations, it achieves
effective posterior sampling in significantly fewer iterations than DPS and MCG (1000 vs 50) with
data enhancement strategy. This reduction in total iterations offsets the increased per-iteration cost,
resulting in overall computational efficiency.

4 EXPERIMENTS

4.1 DATASETS

The simulated data from human abdomen images provided by Mayo Clinic for the AAPM Low
Dose CT Grand Challenge (Moen et al., 2021) are used for evaluation. The dataset contains 2588
NDCT images of thickness 3mm from ten patients resized to 256 × 256 resolution. For training,
1923 images from eight patients were used, while the imaging performance was tested on 50 images
randomly selected from the remaining two patients. The simulated geometry for projection data
includes a flat-panel detector with the source-to-center distance of 535 mm, and the source-to-detector
distance of 1024 mm, pixel size of 0.5 mm and 768 detector bins for each projection. The LDCT
projections are simulated with both Poisson noise and electronic noise on the corresponding normal
dose projection data as follows:

ȳi ∼ Poisson{Ii exp(−[Ax]i)}+ Normal(0, σ2
e), (26)

where x denotes the attenuation map with xj being the linear attenuation coefficient in the j−th
pixel for j = 1, . . . , n and n is the total number of pixels. The matrix A is the m× n system matrix
with entries aij , and [Ax]i =

∑n
j=1 aijxj denotes the line integral of the attenuation map x along

the i−th X-ray with i = 1, . . . ,m. Ii is the intensity of incident X-ray incorporating X-ray source
illumination and the detector efficiency. σ2

e denotes the electronic noise variance. To reconstruct the
attenuation map x, we take the logarithm transform on the noisy measurements ȳ to generate the
noisy sinogram y.

We conducted an evaluation of our EffiDPSRecon algorithm under two dose reduction scenarios: (1)
Fully-sampled LDCT reconstruction: This scenario involved varying radiation dose levels, specifically
Ii = 104, 5 × 104, 105, as outlined in (26); (2) Sparse-view CT reconstruction: In this case, the
number of projection views was varied, with configurations set at 32, 64, and 96 views respectively.

In the execution of DDPM framework in our EffiDPSRecon algorithm, we employed a linear
sequence for the variance schedule, with the starting and ending values of β1 = 10−4 and βT = 0.02
respectively. The training is performed using PyTorch interface on a NVIDIA A100 SXM4 80GB
GPU. An Adam optimizer is used with the momentum parameter β = 0.99, mini-batch size set to be
8 and, the learning rate set to be 10−4. For reconstruction, we choose N ′ = 50 for all the tasks.

7
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4.2 METHODS FOR COMPARISON

The performance of the proposed methods is evaluated in comparison to FBP; ADMM-TV; FBPCon-
vNet (Jin et al., 2017) (a DL-based image postprocessing method) and two diffusion based models
MCG (Chung et al., 2022), DPS (Chung et al., 2023) (Conditional diffusion model). For the task
of LDCT, the regularization parameter λ is configured as 5× 10−4 for Ii = 105 and Ii = 5× 104,
and 10−3 for Ii = 104. For sparse-view reconstruction tasks, it is set to 10−4 for 64-view and
96-view, and 5 × 10−3 for 32-view. FBPConvNet employs a residual U-Net (Ronneberger et al.,
2015) architecture to denoise images reconstructed by the FBP method. The network is trained using
the Adam optimizer with a momentum parameter β = 0.99, a mini-batch size of 4, a learning rate
of 10−4, and for 200 epochs. For MCG and DPS, we use the same hyperparameter and pre-trained
checkpoints for diffusion model as our method. The step-size parameter in MCG and DPS is chosen
to be 0.1/∇xt ∥y −A(x̂0(xt))∥22. The number of diffusion steps is set to be 1000 in order to obtain
a high quality sampling results, as also adopted in the original paper of MCG (Chung et al., 2022)
and DPS (Chung et al., 2023).

4.3 RESULTS

Quantitative assessments with two metrics Peak Signal to Noise Ratio (PSNR) and Structural
Similarity (SSIM) of various reconstruction methodologies for LDCT and sparse-view CT datasets are
systematically detailed in Table 1. These tables present the mean values of PSNR and SSIM for images
reconstructed across varying dose levels and view counts, demonstrating that our method consistently
outperforms others across all conditions. Corresponding visualizations of the predicted reconstructed
images, generated using these distinct approaches for 32-views and Ii = 104 LDCT reconstruction
are illustrated in Figure 4. Visualizations for other cases are provided in the Appendix (Section A).
The display window is set to be [-160,240] HU for all windows with µair = −1000HU . These figures
also incorporate difference maps which highlight discrepancies between the reconstructed images
and the ground truth data. To provide a closer examination, zoomed-in versions of the images are
presented in Figure 5 corresponding to the green zoomed-in box in Figure 4 respectively.

It can be observed that FBP and ADMM-TV methods significantly distort images, severely degrading
fine structures and informative features. In contrast, the supervised FBPConvNet method substantially
improves the recovery of prominent structures and edges but tends to omit fine details and present
blurry boundaries due to missing data in sparse-view projections and noisy data in LDCT projections.
Diffusion-based methods like DPS, MCG, and our proposed EffiDPSRecon excel in generation
capabilities; however, DPS and MCG struggle to accurately reconstruct structures and fail to capture
fine details, as shown in Figure 5. Our EffiDPSRecon method overcomes these challenges, enhancing
image fidelity with increased sharpness and detail resolution. This demonstrates the robustness of
our algorithm in handling variations in LDCT and sparse-view CT imaging. Visual and quantitative
metrics clearly show that our method surpasses other competing CT reconstruction methods in
accuracy and image fidelity.

Table 2 displays the computation time required for CT reconstruction using different diffusion
methods. Notably, the DPS and MCG methods take at least 5 minutes per slice. However, our
algorithm only requires almost 10% computation time of the other two diffusion-based algorithms,
while achieving a much better reconstruction quality as shown in Table 1.

Task Sparse view CT Low dose CT
32-views 64-views 96-views Ii = 104 Ii = 5× 104 Ii = 105Methods PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

FBP 22.05/0.3307 26.93/0.5186 29.58/0.6501 28.48/0.5901 34.56/0.8495 36.52/0.9115
ADMM-TV 27.09/0.7997 31.09/0.8420 32.10/0.8495 30.69/0.8503 35.07/0.9253 36.80/0.9436
FBPConvnet 31.94/0.8301 34.82/0.8611 35.75/0.9051 37.55/0.9108 39.33/0.9236 40.26/0.9545
DPS (1000) 37.88/0.9222 41.67/0.9618 42.33/0.9648 33.93/0.8155 37.72/0.9050 38.53/0.9190
MCG (1000) 35.80/0.8777 40.56/0.9466 42.28/0.9620 34.57/0.8085 38.51/0.9150 40.51/0.9451

39.88/0.9635 45.45/0.9863 46.19/0.9883 40.39/0.9668 43.31/0.9807 44.24/0.9838EffiDPSRecon (50) 2.00↑/0.0413↑ 3.78↑/0.0245↑ 3.86↑/0.0235↑ 2.84↑/0.0560↑ 4.80↑/0.0554↑ 3.73↑/0.0293↑

Table 1: Quantitative evaluation of Sparse-view CT and LDCT reconstruction. Bold: best.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Computation cost / sMethods 32-views 64-views 96-views Ii = 104 Ii = 5× 104 Ii = 105

DPS (1000) 310.18 444.95 586.25 623.28 622.19 625.14
MCG(1000) 474.68 754.08 1042.13 1108.32 1110.28 1111.41

EffiDPSRecon (50) 45.26 71.48 85.21 58.09 59.81 58.56

Table 2: Computation cost for different diffusion methods. Bold: best.

Additionally, we implemented a consistent acceleration strategy across our method and the diffusion-
based DPS and MCG methods by setting an identical number of reverse sampling steps, N ′, as
defined in Equation 24. This strategy was evaluated in scenarios such as sparse-view reconstruction
with 32 angles and LDCT imaging, where Ii = 104, illustrated in Figures 3. Our objective was to
assess whether the acceleration strategy is equally effective for MCG and DPS as it is for our method.
The results indicate that while our method retains its performance robustly with reductions in N ′ to
10, 20, 50, and 100, the performance of both DPS and MCG significantly deteriorates.
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Figure 3: Impact of Sampling Steps (N ′) on 32-View (left) and LDCT with Ii = 104 (right)
Reconstruction Using Diffusion-Based Methods with the same FBP initialization.
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Figure 4: Reconstruction results and their associated absolute difference map for Sparse-view CT
and LDCT. The display window is [-160, 240] HU.
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Ground truth FBP ADMM-TVFBPConvnet MCG DPS Ours
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Figure 5: Zoomed-in results of Sparse-view CT and LDCT reconstruction in Figure 4

Methods CG Forward sampling 32-views Ii = 104

PSNR SSIM PSNR SSIM
S1 ! % 37.41 0.9465 37.45 0.9541
S2 % ! 33.37 0.8645 37.55 0.9576

Ours ! ! 39.88 0.9635 40.39 0.9668

Table 3: Ablation study for the effect of CG and forward sampling step with 32 views and Ii = 104

using EffiDPSRecon.

4.4 ABLATION STUDY

In the ablation study, we assess the impact of CG and the forward sampling step, specifically in
scenarios of sparse-view CT reconstruction with 32 angles and LDCT where Ii = 104. We establish
two baselines, S1 and S2, to compare models lacking either CG or the forward sampling step. Table 3
quantitatively contrasts performances, revealing that incorporating both CG and the forward sampling
step significantly enhances EffiDPSRecon. Notably, improvements in both PSNR and SSIM metrics
highlight the benefits of this integration.

5 CONCLUSION

In this paper, we proposed an efficient diffusion posterior sampling scheme for CT image recon-
struction (EffiDPSRecon). Experimental results demonstrate that our EffiDPSRecon method can
effectively produce high-quality reconstructions from both LDCT and Sparse-view CT. Future work
will aim to explore the theoretical property of the proposed method and explore its application in
other imaging inverse problems for a broader range of applications.

REFERENCES
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A ADDITIONAL EXPERIMENTS
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Figure 6: Reconstruction results and their associated absolute difference map for LDCT reconstruction.
The display window is [-160, 240] HU.
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Figure 7: Reconstruction results and their associated absolute difference map for Sparse-view CT
reconstruction. The display window is [-160, 240] HU.
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Figure 8: Zoomed-in results of LDCT reconstruction in Figure 6
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Figure 9: Zoomed-in results of Sparse-view CT reconstruction in Figure 7
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