2401.16731v1 [cs.CL] 30 Jan 2024

arxXiv

Towards Generating Informative Textual Description for Neurons in Language
Models

Shrayani Mondal'**, Rishabh Garodia'*", Arbaaz Qureshi'*7, Taesung Lee’*, Youngja Park?,

ICollege of Information and Computer Sciences, UMass Amherst
2Bloomberg
3IBM Research
{smondal, rgarodia, squreshi} @umass.edu, elca4u@gmail.com, young_park @us.ibm.com

Abstract

Recent developments in transformer-based language models
have allowed them to capture a wide variety of world knowl-
edge that can be adapted to downstream tasks with limited
resources. However, what pieces of information are under-
stood in these models is unclear, and neuron-level contribu-
tions in identifying them are largely unknown. Conventional
approaches in neuron explainability either depend on a finite
set of pre-defined descriptors or require manual annotations
for training a secondary model that can then explain the neu-
rons of the primary model. In this paper, we take BERT as an
example and we try to remove these constraints and propose
a novel and scalable framework that ties textual descriptions
to neurons. We leverage the potential of generative language
models to discover human-interpretable descriptors present
in a dataset and use an unsupervised approach to explain neu-
rons with these descriptors. Through various qualitative and
quantitative analyses, we demonstrate the effectiveness of this
framework in generating useful data-specific descriptors with
little human involvement in identifying the neurons that en-
code these descriptors. In particular, our experiment shows
that the proposed approach achieves 75% precision@2, and
50% recall@2.

1 Introduction

Recent breakthroughs in transformer-based language mod-
els have shown their capability of understanding and en-
coding diverse types of information, and even performing
emergent abilities as well as fine-tuning with a small amount
of data for various tasks (Vaswani et al.|2017; Brown et al.
2020; [Zoph et al|2022). However, the low-level semantics
of their most fundamental computational blocks still remain
largely unknown. This black-box nature of neural networks
has led to a fast-growing and expansive area of research try-
ing to understand how and what a model learns internally.
Providing a neuron level understanding through a descrip-
tor, such as “general positive sentiment”, “the subject is
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customer service” or “contains abusive language”, allows
for understanding the inner working of a neural network on
how it reaches a prediction, identifying biased or offensive
neurons, applying artificial neurosurgery, and conforming to
regulations (Schick, Udupa, and Schtze||2021). Increasing
concerns on language models demands an explanation of
model predictions (Bowman|[2023} Ma et al.|[2023). Many
efforts are made to explain the model at a non-neural level.
For example, visualizing the relations and saliency of the
input and output is one way to discover the input-output cor-
relation as demonstrated by [Karpathy, Johnson, and Fei-Fei
(2015)) and |Simonyan, Vedaldi, and Zisserman|(2013). How-
ever, it does not show how various inputs are interpreted by
neurons. Some other approaches prompt the model itself to
add explanations alongside the outputs. A prominent exam-
ple is a recent work by |[Narang et al.[|(2020) that makes the
T5 model (Raffel et al.[2019) produce reasonings along with
predictions for various downstream NLP tasks. This method
can suffer from spurious explanations and could potentially
make up a reasonable-sounding explanation instead of pro-
viding a truly accurate description of its causal decision-
making process. In contrast, directly looking into what neu-
rons get activated for a given input and what these neuron
activations indicate can provide a deeper understanding of
the internal logic.

Existing approaches tackled this problem of explaining
neurons under a vision model setting to automatically la-
bel neurons with natural language descriptions. [Hernandez
et al.| (2022) and Bau et al.|(2017) identify neurons that ac-
tivate on specific image patches and proceed to label these
neurons with descriptors. However, the existing approaches
are not easily applicable to the text domain for several rea-
sons. First, due to a large variety of possible descriptors, it
is not feasible to manually list an exhaustive set of candi-
date descriptors to identify among neurons. Second, reading
and manually annotating text to tag them with a large set of
descriptors can be more labor-intensive compared to iden-
tifying objects in an image. Third, the number of neurons
in such language models can be very large, with the recent
benchmarks reaching up to an order of billion parameters,
making the process of manually annotating them resource
intensive.



We propose to provide neuron-level explainability for lan-
guage models using an unsupervised approach with min-
imal human interventions. In particular, we take advan-
tage of open-source generative language models to gener-
ate meaningful descriptors and use classical NLP techniques
such as clustering to obtain the candidate descriptors. We
then automatically assign them to neurons of a widely used
transformer-based model, which helps us to understand their
behavior and contribution to various downstream tasks.

Our experiments take BERT as an example and we eval-
uate our approach with BERT (Devlin et al.[2018) using the
Amazon review datase Our framework automatically ex-
tracts 23 candidate descriptors from the review dataset that
highlight important aspects that a consumer might be in-
terested in while buying a product. Our evaluation involv-
ing human annotation and LLMs shows that our approach
achieves 75% precision@2, and 50% recall@2. on the task
of correctly tagging neurons with appropriate descriptors.
Also, the approach shows high consistency of 95% Jaccard
similarity when tested for two disjoint datasets from the
same distribution, showing the descriptors are not spurious.

2 Related Work

The explainability of neural networks has been studied from
many different angles, as described in [Sajjad, Durrani, and
Dalvi|(2021). Some approaches are input-based, connecting
the input and the model prediction directly, often consider-
ing the model as a black box. Smilkov et al.| (2017)) pro-
posed an input-based approach by computing the correlation
of input features to predictions and then visualizing them.
Dalvi et al.| (2018) and [Torroba Hennigen, Williams, and
Cotterell| (2020) developed input-based approaches that pro-
vide human-readable descriptions which can further explain
how the raw input features are understood by the model.
This can be useful, especially when the input features are
not immediately interpretable. Dalvi et al.| (2022) leverages
human-in-the-loop to assign such a descriptor. These input-
based approaches often describe the model as a black box
component and do not focus on its internal workings.

Another direction of approaching this problem focuses
on explaining neurons instead, and they try to understand a
neural network based on neuron activations. |[Kdr, Chrupaa,
and Alishahil (2016) qualitatively analyze various linguis-
tic properties encoded in the hidden dimensions (neurons)
of RNN models. By extracting 5-gram concepts for every
neuron and analyzing them, they were able to identify inter-
esting phenomena like neurons predictive of a grammatical
function or individual neurons that become highly sensitive
towards contexts with syntactic patterns.

In another attempt to understand the representations of
CNN s trained on language tasks,Na et al.| (2019)) selected &
most, activating sentences for every neuron and discovered
the underlying concepts by parsing them using parse trees.
They generated synthetic sentences that highlighted a con-
cept, often with the risk of these synthetic sentences being
ungrammatical and/or with repetition.

"https://s3.amazonaws.com/amazon-reviews-pds/readme.html

Mu and Andreas| (2021) show how neurons are not just
simple feature detectors, but rather operationalize complex
decision rules composed of multiple concepts. The authors
build off of the works by Bau et al.|(2017) but instead show
how one neuron’s behavior should be explained as the com-
position of concepts. They start out by pre-defining a con-
cept inventory and producing explanations that best explain
the neurons’ behavior over these concepts. This is done by
considering Intersection over Union score as a measure. The
authors go a step further and create combinatorial composi-
tions of explanations (C; OR Co AND Cj3).

Hernandez et al.|(2022) proposed a global, neuron-based
approach to computer vision models. They demonstrate that
some neurons in computer vision models are highly capable
of identifying semantic and structural features of the input
by linking neurons with textual descriptors. They start out
by representing each neuron with what the paper calls “ex-
emplar sets.” These are collections of input image patches
that maximally activate a neuron. They generate natural
language descriptions of individual neurons describing the
common characteristics of these image patches by optimiz-
ing Pointwise Mutual Information (PMI) of the candidate
descriptor text and the exemplar sets. To model PMI, they
use a variation of an image captioning model, and a two-
layer LSTM language model, both trained on their manually
annotated MILANNOTATIONS dataset.

These existing approaches either focus on correlation,
lacking natural language descriptors, or require heavy hu-
man intervention of manually providing descriptions of neu-
rons or input sentences. Our framework attempts to over-
come these shortcomings to make the framework automatic,
unsupervised, and widely applicable.

Our approach is inspired by (Hernandez et al.|2022) and
(Mu and Andreas|[2021)) where we attempt to overcome the
shortcomings by substituting supervised components with
unsupervised approaches, replacing data-specific techniques
with more general and global ones and provide a list of de-
scriptors for each neuron of the form (C; AND Co AND Cs)
instead of restricting one neuron to a single descriptor.

3 Approach

Our framework tries to describe the neurons in a text-based
deep learning model M with natural language descriptors.
We take an approach using a set D of sentences with their
descriptors, feeding the model M with D, and analyzing
the neuron activations to apply the descriptors from the sen-
tences to the neurons (Section[3.3] summarized in Figure2)).
However, this process requires a dataset with descriptors
which has been manually created in the existing works. We
leverage one or more generative language models to find
candidate descriptors that can be used for the model M us-
ing the dataset D (Section 3.1} summarized in Figure[I}), and
assign such descriptors to sentences in D (Section[3.2).

3.1 Identifying Candidate Descriptors

Different models encode different pieces of information,
which also depend on the input data. Thus, the descriptors
depend on M and D and these contraints create a scope for
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Figure 2: Proposed process flow for generating descriptors for neurons in LLMs being used for any downstream task.

candidate descriptors. That is, if the model does not have any Identify at most k salient topics being discussed
neuron to recognize a certain pattern in the input, a descrip- in a sentence.

tor for the pattern is not useful. Also semantically similar
descriptors indicating the same pattern might dilute the re-
action of a neuron to multiple descriptors. Here, we explain
how we create a list of candidate descriptors for M that can
be obtained through D (Figure ).

Suppose we have a dataset D of sentences dy, . ..,d|p|.
For each d; € D, we ask an instruction fine-tuned LLM G,
such as FLAN-TS5 XXL, with a prompt p; in context of d;
to obtain the descriptors of d;. To further aid the genera-

Sentence:
< Sentence inserted here>

tion task and direct generation towards the desired format, Figure 3: A prompt template for identifying candidate de-
a 1-shot example e is provided along with p;. This 1-shot scriptors. It is made up of the .task (ye.llow), 1-shot example
example is randomly chosen from D and the same example (green) and an input sentence in question (blue).

is used for all d; € D. Figure[3|shows an example of p;. To
collect a diverse set of descriptors, we can use multiple such

LLMs and use the union of the responses. ply Fast Community Detection algorithnﬂ using Sentence-
BERT (Reimers and Gurevych|2019) to find descriptor clus-
Due to the very nature of generative tasks, different ters. We define a set C' of clusters containing semantically
descriptors indicating the same meaning can be gener-
ated across D. Thus, we cluster them to identify those https://www.sbert .net/docs/package_

with similar meanings. In our implementation, we ap- reference/util.html
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similar descriptors and use them to describe neurons later.
We can choose a representative descriptor for each of the
clusters for readability. This can be done manually or using
automated cluster representation approaches such as (Poost-
chi and Piccardi|2018]). For our experiments, we assign clus-
ter labels manually, as shown in the following examples.

* pigmentation: 5/5, pink color, hue, colored, blue” can be
represented by Color.

* sounds and looks great, audible, loud noise, sound ab-
sorption can be represented by Sound.

More examples are presented in Table[3]

3.2 Obtaining Descriptors for Sentences

Based on this concise set C' of candidate descriptors, we
have to label the corpus D that we feed to the model later.
This is a multi-class text classification problem, and we ex-
ploit generative LLMs. For every sentence d; € D and every
descriptor ¢ € C, we ask G with a prompt py to answer if
the descriptor c is applicable to d;. We format p, so that the
generated text is limited to the words “Yes” or “No”. An ex-
ample can be seen in Figure 4] This generates a |D| x |C|
binary matrix B (1 for “Yes” and O for “No”) representing
the descriptors applicable to the sentences.

Q: Does the Review: “Love it!! Super
comfortable and nice!! Got more than |
expected, super flexible great for training.
Definitely recommend it.” talk about "Flexibility”?
Answer in Yes/No A:

Figure 4: A prompt template for obtaining descriptors for
sentences. It is made up of the task (yellow), and an input
sentence d;(blue).

3.3 Explaining Neurons with Descriptors

In this step, we analyze how the target model M and its
neurons react to the input sentences to find the descriptors
for the neurons, as shown in Figure@ We feed each sentence
from our dataset D to M and keep track of the top sentences
that activate a neuron. As the output of one neuron for one
sentence is a vector, we extract one dimension of this vector
that allows us to rank the sentences. These top sentences are
called an exemplar set, that contains sentences highly acti-
vating the neuron. We assign the common descriptors found
in the exemplar set to the neuron, indicating that the neuron
has learned to detect this common pattern.

More specifically, we forward pass all sentences in D
through M and record the sentence level activations for each
neuron-sentence pair. Then, for each neuron n;, the top k-
percent sentences with the highest activations are taken as
an exemplar set &; for n;. Then, we assign a descriptor ¢ to
n; if it appears frequently among &;. That is, we compute
the descriptors C,, of neuron n; as follows.

Cpn, ={ceC¢ | flc)>1t}

where Cg, is the list of all occurrences of the de-
scriptors ¢ in the exemplar set &; f(c) is the

percentage frequency of cin C¢, and ¢ is a composi-
tion threshold. An inverse mapping can also be created to
get a list of neurons tagged to a certain descriptor.

4 Experimental Setup

In this section, we describe our experiments including pa-
rameters, models, and datasets used as well as some inter-
mediate results. We also compare different options available
at different stages of our method. We show our quantitative
and qualitative evaluation results in Section

4.1 Models and Parameters

For our experiments, we study the BERT-base-uncased
model without fine-tuning as model M to explairﬂ It con-
sists of £ = 12 encoder blocks each containing a multi-head
attention layer, followed by ADD & NORM operation layer,
followed by fully-connected layer followed by another ADD
& NORM operation layer (Devlin et al.[2018}; |[Vaswani et al.
2017). We work with the activation values extracted from the
fully-connected layer before the ADD & NORM operation
is applied. The output of a fully-connected layer in BERT-
base-uncased model is of the shape N x S, where N is the
number of neurons in that layer and S is the sequence length.
For every sentence, only the [CLS] token activations are ex-
tracted, therefore, S = 1. This implies that one forward pass
on one sentence generates £ X N, thatis, 12 x 768 = 9216
total activation values.

For the instruction fine-tuned large language model G,
we experimented with 2 generative models — FlanT5 XXL
(Chung et al.|2022)) and the 4th iteration English supervised-
fine-tuning (SFT) model of the Open-Assistant project based
on a Pythia 12B (Andreas Kpf, et. al|2023)) (henceforth re-
ferred to as Pythia model). We choose these models because
they are available in open-source and have good-quality of
output, so we can apply on a large amount of sentences
in D. We use a union of descriptors from both of these
models to obtain a diverse set of descriptors (refer Table [
for examples). We find, on one hand, the descriptors from
FlanT5 XXL are more accurate than the Pythia model, but
on the other hand, the Pythia model generated descriptors of
a wider variety and contained some fine-grained descriptors
that were missed by the FlanT5 XXL model.

Finally, we have parameters &k and ¢. To get the exemplar
sets &; for each neuron n;, we sort the sentences in decreas-
ing order of their activation values and select the top &k = 1
percent from them as described in Section[3.3] We limit k=1
throughout the paper giving us an exemplar set of 435 re-
views. With 10 to 15 token per review, it is assumed that we
will be well within the permissible input token window of
G. We vary the composition threshold ¢ in order to evaluate
its impact in Section[5.3]

4.2 Dataset

Our experiment leverages the Amazon Product reviews
dataset (N1, Li, and McAuley|2019) to focus on a set of de-
scriptors related to products sold on the e-commerce web-
site. That is, in Section@ we explained that in order to label

*https://huggingface.co/bert-base-uncased
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Figure 5: Precision and Recall. The shade shows standard deviation. Top Left: Precision vs Composition Threshold, Top Right:
Recall vs Composition Threshold, Bottom Left: Average Precision@XK vs K, Bottom Right: Average Recall@K vs K.

neurons with the descriptor that they activate on, we need to
have a dataset of sentences and their corresponding sentence
descriptors. We use this dataset due to its more focused na-
ture, and apparent and comprehensible features discussed in
the corpus, which makes the human annotation task easier.

This dataset consists of Amazon reviews from 18 prod-
uct categories like electronics, furniture and cosmetics. It
has more than 130 million customer reviews spanning over
a period of 2 decades (1995 - 2015). We randomly select
a maximum of 5,000 reviews from each of the 18 product
category from the 5-core subseﬂ of this dataset to create a
corpus of 111,611 reviews. A 2-step filtering is applied to
this to remove reviews that have less than 10 or more than
200 words and retain reviews that are in English only. This
brings us to a final corpus of 86,948 reviews. From now on,
we refer to this subset as “AMZN” dataset.

We split this dataset into two subsets of equal sizes —
calibration set and validation set. We do this to be more con-

*https://nijianmo.github.io/amazon/index html

fident of the neuron descriptors that we obtain. That is, if we
obtain the same neuron descriptor consistently from both the
calibration set and the validation set, it is likely that the neu-
ron encodes the descriptor described by that descriptor. 1
percent of each of these two sets gives us an exemplar set of
size 435 reviews, and it is large enough to select a descrip-
tor based on its frequency. This provides a 50-50 split of
reviews and maintains equal distribution for each descriptor
which can be seen in Figure 9]

4.3 Sentence Annotation with Descriptors

We process the AMZN dataset through the steps described
in Section [3.1] and Section We get an initial set of de-
scriptors for each of the review sentences using two prompt-
based LLMs: Flan-T5 XXL and Pythia model that was fine-
tuned on human demonstrations of assistant conversations
collected through human feedback (Table [T). We perform
the clustering as described in Section [3.1]to obtain descriptor
clusters and their representative descriptors such as shown in
Table 2| In our case, we obtain a list of 26 representative de-



Table 1: Examples of descriptor generation using OpenAssistant SFT Pythia model and FlanT5 XXL model

Reviews

Descriptors generated from OpenAssistant and
FlanTS XXL model

full force. These were recommended by my Podiatrist.

Relieved my Plantar Fascitis for 3 Days. Then the unbearable pain returned in

"bad’, ’pain’,’relief’, ’plantar fasciitis’, 'unbearable
pain’, ’podiatrist’, ’relief’, ‘recommended by podia-
trist’

No Complaints

I purchasaed a new dryer and did not want to reuse the cord from my old unit.
This unit installed in a pretty straight forward manor. Quality was as expected. | plaints’, ‘reusable cord’

’easy to install’, ’easy to use’, ’quality’, 'no com-

cessities for knitters.

I purchased the Kindle edition which is incredibly handy, particularly when trav-
eling. Melissa Leapman is always dependable for providing those wonderful ne- | ting necessities’, "handy’

reliable’, necessary’, "knitters’, ’dependable’, "knit-

This game is a bit hard to get the hang of, but when you do it’s great.

’game’, 'fun’, *hard’, enjoyment’, ’learning curve’,
’gameplay’, ’challenging’, ’frustrating’, ’persistent’,
“difficulty’

for my talnkless system

Awesome heater for the electrical requirements! Makes an awesome preheater | 'user experience’, “positive’, awesome’, ’electrical

requirements’

Keeps the mist of your wood trim and on you. Bendable too.

’good’, ’keeps the mist of your wood trim and on
you’, ’bendable’

scriptors and discard 3 of them from this list (["Positive”,
”Product Quality”, ”User Experience”]) (refer to Table 3] for
all representative descriptors and Appendix [D| for more ex-
amples). This is done as these 3 descriptors have broad con-
notation and have high activations for more than 80% of neu-
rons, skewing the evaluation metric, and making one of these
descriptors an easy win for the proposed method. We are in-
terested in analysing more specific and diverse descriptors.
Based on the end-user’s need, the final list of descriptors to
work with can be updated as seen fit.

5 Results and Analysis
5.1 Neuron Descriptor Evaluation

Firstly we present the evaluation result of neuron descriptors
{C.,, }. For quantitative analysis, we strategically sample D
in the following way to get the labeled data: First, for each
of 23 candidate descriptors, we randomly choose 15 sen-
tences that are tagged with the descriptor by Flan-T5 XXL,
and another 15 that are not, leading to a final sample of 690
sentences. A human assessor manually annotates them again
with Yes/No for each descriptor. We get 76% precision and
94% recall when the Flan-T5 XXL output is assessed against
manual annotations for these 690 sentences.

To scale up the evaluation, we propose using ChatGPT
as a proxy for human assessment. We compared the manual
and ChatGPT annotation for those 690 reviews and achieved
an inter-annotator agreement of 0.865 using Cohen’s kappa
score showing that ChatGPT annotations are reliable. We
randomly selected 10 neurons, and tag their top 1% acti-
vating sentences using ChatGPT with the list of 23 descrip-
tors. A total corpus of 4,350 sentences were labeled and then
used as ground truth to analyze these 10 neurons by comput-
ing precision and recall on the task of tagging descriptors to
neurons.

As shown in Figure E], overall, we see similar results but

with a lower recall likely due to biases in the LLMs. The
varying evaluation parameters show expected effects. The
top-left figure shows a general increase in the precision of
the predicted descriptors as we increase the composition
threshold. A higher composition threshold value would en-
courage the framework to pick only prominent descriptors
for the top activating sentences and discard anything that
falls below the threshold.

In order to eliminate the dependency on the composition
threshold, we use top-K descriptors. We first limit the tagged
descriptors in the ground truth to top-3 per neuron instead
of using a composition threshold. For evaluating the output
of tagging from our framework, we use top-K descriptors
per neuron to compute Precision@K and Recall@K for dif-
ferent values of K. When averaged over 10 neurons, Preci-
sion@K peaks when we consider the top-2 descriptors (see
Figure [5] bottom-left) resulting in an average precision@2
of 75%, and the average Recall@2 value is 50%. (see Fig-
ure[5] bottom-right).

5.2 Relations Among Descriptors

Once descriptors are obtained, we can compute the Pearson
Correlation between the descriptors using the |D| x |C| bi-
nary matrix B from Section [3.2] We can find strong dissim-
ilarity between “Negative” and “Positive”, and high similar-
ity between (“Taste/Flavour” and “Beverage”), (“Texture”
and “Fabric”), (“Graphics” and “Design”), and (“Gift/Pre-
sent” and “Age Appropriate/For Kids”), showing how they
often co-occur in the related inputs. More result can be found

in Appendix

5.3 Neuron Descriptor Consistency

We also evaluate the consistency of the descriptor as an addi-
tional automated evaluation to check if the obtained neuron
descriptors are spurious. For a specific neuron n;, we get the

2 sets of descriptors C,,; and C;L,- assigned to it from the



Table 2: Examples of clustered descriptors.

Descriptor Cluster Representative Descriptor
’simple and easy to use’, "such as ease of use’, ’simple and straightforward’, "easy to pick up’, ’basic | Easy to use
instructions included’, ’friendly user interface’, ’versatile and easy to use’, 'no easy to use’, ’easy to

use and learn’, ’simple but nice’, *fairly easy’

"well-packaged’, "quality/service/packaging’, bulk pack’, ’second box’, ’case’, ’nice little case”the | Packaging
packaging was good too’, ’quality of packaging’, ’inaccurate packaging’, *delivery and packaging’,

wooden box’, *cardboard box’

’determining size’, “attractive fit’, "nice fit’, ’fit as expected’, ’little’, *good width’, "not big enough’, | Size/Fit

’slim size’, *classic fit’, ’fit and finish’

"taste preferences’, 'tasteful’, *flavor is just okay’, ’sugar water’, ’sweet but not overly so’, ’tastes | Taste/Flavour
like cheese’, *sweet and spicy’, ’delicious food’, *smooth and flavorful’, ’rich flavor’

“unhealthy skin’, ’skin hygiene’, great for sensitive skin’, "normal skin’, ’skin imperfections’, 'mois- | Skincare
turizer’, ’intense moisturizing’, "effective for pimples’, acne free’, 'makeup sponge’, ’good shave’,

“effective pre-shave’, *dry skin relief’

"flavored tea’, "Tea’, ’premium tea’, "thai iced tea’, ’strong tea’, *Turkish coffee’, *coffee taste’, *great | Beverage
coffee’, *white tea’, "tea as a daily treat’, diverse coffee flavors’, *foreign to coffee notes’
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drop as we increase the composition threshold. The shade

shows standard deviation, which increases as the composi-
tion threshold increases.

calibration and validation sets, respectively. We analyze the
consistency of these 2 sets by computing the Jaccard simi-
larity between them using this formula:

L 1CanC
T Co) =155

As it can be seen in Figure [6] the average Jaccard sim-
ilarity for the 10 selected neurons peaks at a composition
threshold of 0.35. We obtain a Jaccard similarity of 0.95 at
this value of the composition threshold. When we increase
the composition threshold from 0.05 to 0.35, we are elimi-
nating low-quality descriptors, as their percentage frequency
is low. But when we increase the composition threshold be-
yond 0.35, we see a drop in the size of the descriptor sets
obtained using both the calibration and the validation set.
Hence, the Jaccard similarity is smaller for these composi-
tion threshold values.

Jaccard Similarity vs Composition Threshold for 4 descriptors
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Figure 7: Descriptor-level Jaccard similarity follows the

trends from Neuron-level Average Jaccard similarity and
drops as composition threshold increases.

Similarly, when we invert this mapping of neuron to de-
scriptors, we obtain a distinct set of neurons tagged to each
descriptor. Figure [7] shows the Jaccard similarity in neu-
ron sets for four descriptors when we vary the composition
threshold. Intuitively, a low composition threshold should
lead to low-quality neuron descriptors and many neurons
would get tagged to many descriptors. This leads to high Jac-
card similarity but low-quality descriptors. We notice that
this descriptor-level Jaccard similarity peaks at a composi-
tion threshold of 0.45, indicating that we get a maximum
overlap between the calibration and validation set neurons.
We then see a sharp drop when we increase the composition
threshold to 0.5. This plot also shows that at a composition
threshold of 0.45, a neuron is often tagged with similar sets
of descriptors, using both the calibration set and the valida-
tion set.



6 Limitations

Our experiments focus on discriminative models for M.
While we believe a similar framework can be used for a gen-
erative model, our evaluation is limited to a discriminative
model. We think explaining neurons of a generative LLM
would provide us even more interesting result. In this paper,
we exclusively focused on sentence level semantics by con-
sidering the activation of the [CLS] tokens which is often
used to represent the overall semantic of the input sentence.
Therefore, our approach focuses on the presence of informa-
tion in the sentence regardless of the token position, captured
by individual neurons. On the other hand, applying a similar
approach while targeting token level semantics may provide
additional insights on more neurons as well as generative
models where the first token does not pay attention to other
tokens appearing after it.

The effectiveness and accuracy of our approach are heav-
ily dependent on the ability of generative LLMs to discover
the inherent concepts in the sentences. Despite the high Co-
hen’s kappa in our evaluation, when dealing with a textual
corpus of large input text like stories or legal documents,
these LLMs may not provide an exhaustive list of descrip-
tors. Also, they are prone to hallucinations which can bring
in noise as well.

The textual descriptors that we use in the experiments sec-
tion are limited to words or short phrases instead of lengthier
sentences. We see potential in this approach and believe that
our work can be extended by adapting the prompts to obtain
sentence-like descriptors for neurons as well.

Getting ground truth descriptors for neurons is a labor-
intensive task. We believe tagging more neurons manually or
using ChatGPT could have benefited the evaluation process.
Similarly, evaluation can be performed on different down-
stream models M and different datasets D.

Other extensions of this work would include expanding
the number of neurons to work with, exploring other datasets
or a mix of datasets, analyzing the effect of model fine-
tuning on the generated descriptors.

7 Conclusion

Through this paper, we provide a novel unsupervised frame-
work to explaining neurons with human-interpretable de-
scriptors in LLMs. We eliminate the requirement of starting
out with an initial inventory of descriptors for neuron-level
analysis and minimize human interventions. Our experimen-
tal results validate the potential of our approach with reason-
able precision and recall. Our framework is scalable and can
adapt to any natural language dataset and can work on any
text-based deep learning models.
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A Descriptors Derived from AMZN

Table [3]lists all 26 descriptors extracted from AMZN dataset
that activates neurons in the model as discussed in Sec-
tion3.11

Table 3: The 26 descriptors that we generated from AMZN
dataset.

Age Appropri- | Audio / Sound Battery / Charg-
ate / For Kids ing
Beverage Cleaning /| Color
Maintenance
Controls Design / Looks | Durability
/ Appearance
Fabric Gift / Present Graphics
Grip Healthy / Fresh | Negative
Packaging / Positive Price
Shipping/ De-
livery
Product Quality | Protection/ Size / Fit
Safety
Skincare / Hair- | Smell/Fragrance| Taste / Flavor
care / Odor
Texture User  Experi-
ence

B Correlation of Descriptors

Figure [§| shows the correlation matrix of descriptors based
on the response matrix from FLAN-T5 XXL on the sen-
tences and the descriptors.

C Data and Descriptor Distribution

Figure [9] shows the distribution of data across different de-
scriptors.

D Examples of Descriptors and Clusters
Table @] shows the examples of descriptors generated using
Flan-T5 XXL and OpenAssistant SFT Pythia. Table[5|shows
the examples of clustered descriptors. The representative de-
scriptors are manually assigned for readability.



Table 4: Examples of descriptor generation using OpenAssistant SFT Pythia model and FlanT5 XXL model

Reviews Descriptors generated from OpenAssistant and
FlanT5 XXL model

My son really likes the pink. Ones which I was nervous about “user experience’, "color’, *pink’, *favorable’

I like this as a vent as well as something that will keep house warmer in winter. | ’looks great’, ’as a vent’, ’easy to use’, "user experi-

I sanded it and then painted it the same color as the house. Looks great. ence’, hopeful’

Great book but the index is terrible. Had to write and high light my own cross | ’good’, ’incomplete’, ’well-written’, ’user experi-

ref info. ence’

I recommend this starter Ukulele kit. I has everything you need to learn the | ’ample storage’, ’easy to learn’, ’comfortable’, af-

Ukulele. fordable’, 'recommend’, ’kit’, "ukulele’

The stained glass pages are pretty cool. And it is nice how the black outlines are | ’fun’, "user experience’, ’gameplay’, ’visuals’, ’char-

super dark and thick. And that the dragons aren’t all fighting with the wizards. acters’

Table 5: Examples of descriptors generated using Flan-T5 XXL and OpenAssistant SFT Pythia model clustered using agglom-
erative clustering and their final cleaned descriptors created manually.

Generated descriptor Final descriptor
“yellow color’, ’pretty colors’, ’stunning color’, "unsatisfactory color’, ’nicely colored’, ‘neon pink’, [ Color
‘pigments’, ‘redness’, *appealing color palette’, ‘richer pigment’
’stench’, “bad scent’, "unexplainable chemical smell’, *fragrance selection’, *fragrance-free version’, | Smell/Fragrance/Odor
’fragrance usage’, 'nice smelling’, smells delicious’, ’different scents’, *pleasant aroma’,’scent con-
trol’

Entertainment

’fun for most ages’, 'fun and challenging’, ’enjoyed’, ’good playing time’, *unexpectedly enjoyable’,
’enjoyable. hopeful: nice’,
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Figure 8: Heat map of the correlation between 26 descriptors



Distribution of reviews in AMZN dataset
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Figure 9: Calibration and Validation subsets of AMZN dataset contain similar distribution across all the descriptors
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