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Abstract

In real-world applications, human-annotated
rationales are often scarce or prohibitively ex-
pensive, making classification datasets a more
accessible alternative. As a result, supervised
fine-tuning (SFT) of large language models
(LLMs) using only classification data is a
widely adopted strategy for domain-specific
adaptation. However, our analysis reveals
that while SFT enhances task-specific accu-
racy, it weakens a model’s ability to jus-
tify its reasoning—its self-explanation capabil-
ity—underscoring the need for methods that im-
prove explanation quality without compromis-
ing classification performance. To address this,
we propose ANCHORALIGN, an end-to-end
framework that aligns LLMs on classification
tasks while enhancing their ability to produce
meaningful self-explanations. ANCHORALIGN
leverages ground-truth labels from classifica-
tion datasets to enhance the creation of self-
preference datasets. It categorizes model be-
havior in response to each input prompt into
three groups—consistently correct, consistently
incorrect, and variable—and applies tailored
strategies to enhance preference-pair selection,
improving the effectiveness of Direct Prefer-
ence Optimization (DPO). Experimental results
demonstrate that ANCHORALIGN consistently
enhances explanation quality while preserving
classification accuracy, outperforming align-
ment strategies that rely solely on judge-based
evaluations.

1 Introduction

Real-world applications often face the challenge
that datasets containing human-annotated ratio-
nales are either scarce or prohibitively expensive
compared to classification datasets. In scenarios
where only classification datasets are available for
domain-specific adaptation, supervised fine-tuning
(SFT) may lead to improved precision in the clas-
sification task but at the cost of compromising the

model’s generalization capabilities in other areas
(Yang et al., 2024; Kirk et al., 2024).

In our study, we first investigate how SFT us-
ing only classification datasets for domain-specific
adaptation can degrade performance on a secondary
task—specifically, the model’s ability to justify
their own reasoning, a skill referred to as self-
explanation (Madsen et al., 2024a).

To address this, we propose a framework
for the automated qualitative assessment of self-
explanations that are plausible to humans (Agarwal
et al., 2024), leveraging an LLLM-as-evaluator. Our
framework evaluates a model’s ability to generate
holistic explanations—defined as those that excel
across multiple criteria and capture the character-
istics of high-quality explanations. Our findings
indicate that while SFT improves task-specific ac-
curacy, it often degrades self-explanation quality,
highlighting the need for methods that enhance ex-
planation quality without compromising accuracy
gains.

The lack of annotated data of both high- and low-
quality explanations can be framed in the context
of model aligning without human preference data.
Recent research has explored ways to align LLMs
without direct human input. Some approaches gen-
erate self-instruct data to fine-tune models (Wang
et al., 2023; Chen et al., 2023; Gulcehre et al.,
2023), while others, like (Bai et al., 2022; Yuan
et al., 2024; Wu et al., 2024), use LLM-generated
feedback to train reward models.

Building on these advancements, we propose an
end-to-end approach to align LLMs on downstream
tasks while simultaneously ensuring the genera-
tion of high-quality self-explanations, in scenarios
where only classification datasets are available for
domain-specific adaptation. Since classification
datasets inherently contain ground-truth labels, we
leverage this information to design probes that im-
prove the creation of self-preference datasets. We
refer to this approach as ANCHORALIGN, a method



that enhances preference pair selection by catego-
rizing model responses for a given input prompt
into three distinct groups: consistently correct, con-
sistently incorrect, and variable. For each category,
we apply tailored strategies to construct preference
pairs, which are then used in the Direct Preference
Optimization (DPO) phase (Rafailov et al., 2023).

While our approach relies on ground-truth an-
notations from the classification task, such labels
are naturally available in the domain adaptation
settings we address. Our results demonstrate that
ANCHORALIGN consistently improves explanation
quality, mitigating the degradation typically caused
by SFT. Moreover, we show that anchor preference
pairs outperform self-alignment strategies that rely
solely on judge-based evaluations for preference
pair selection.

2 Related Work

LLM-as-Evaluator: This concept refers to the
ability of large language models (LLMs) to eval-
uate the outputs of other LLLMs, a technique com-
monly referred to as LLM-as-a-Judge. This ap-
proach has gained considerable traction in recent
years (Dubois et al., 2023; Li et al., 2024; Fernan-
des et al., 2023; Bai et al., 2023) and is frequently
used to assess LLLM performance across various
downstream tasks. It has proven particularly effec-
tive in automating evaluations, as demonstrated on
platforms like LMSys Chatbot Arena (Zheng et al.,
2023). Key implementations include direct scoring
based on specific criteria (Bai et al., 2023), pair-
wise comparisons (Liu et al., 2024), and ensemble
methods (Verga et al., 2024). While LLM-as-a-
Judge offers scalability and consistency, it can also
inherit biases from the evaluation model, poten-
tially amplifying problematic outputs (Huang et al.,
2024). Despite these challenges, it remains a valu-
able tool due to its efficiency and cost-effectiveness
in evaluating LLM systems. In our work, we intro-
duce a framework for the qualitative assessment of
self-explanations using the LL.M-as-a-Judge tech-
nique, designed to evaluate how effectively a model
conveys its reasoning.

Self-Alignment: Several approaches have been
developed to improve LLMs without requiring
human-annotated feedback. @ One method in-
volves fine-tuning models using high-quality, self-
generated input-output pairs (Wang et al., 2023;
Chen et al., 2023; Gulcehre et al., 2023), though
this can perpetuate biases in example selection

without a clear mechanism for improving selec-
tion quality. Another influential approach is Con-
stitutional AI (Bai et al., 2022), where an LLM
provides feedback and refines responses, which are
then used to train a separate, static reward model.
Building on this concept, (Yuan et al., 2024) and
Wu et al. (2024) proposed using the LLM itself
as a dynamic reward model, eliminating the need
for a static one. This allows for continuous im-
provement in both generation and evaluation ca-
pabilities through iterative training processes. In
our work, we introduce a novel method for creating
self-preference datasets. Our approach, called AN-
CHORALIGN, enhances preference pair selection
by categorizing model behavior in response to each
input prompt and applying tailored strategies for
each category. Evaluating a model’s consistency
for a given input prompt requires a probing mech-
anism. In our setup, this probe—or anchor—is
derived from the ground-truth labels in the classifi-
cation dataset used for domain adaptation.

LLM-as-a-Debater: This adversarial approach
aims to improve model performance through ar-
gumentation. In Perez et al. (2019), debaters are
limited to extracting relevant statements from a
source text, rather than generating original argu-
ments. Du et al. (2023) extended this concept by
involving multiple LLM instances to debate their
individual responses over several rounds, eventu-
ally converging on a shared final answer. Khan
et al. (2024) further developed this approach by
using debate-like scenarios to challenge and refine
model outputs through simulated arguments. In our
work, we adopt the LLM-as-a-Debater approach in
the role of a consultant, specifically following Khan
et al. (2024), for cases where the model’s response
to certain input prompts is consistently incorrect.
This strategy enables the creation of self-preference
examples that avoid reinforcing problematic behav-
ior.

3 A Framework for Qualitative
Assessment of Self-Explanations

3.1 Quality Criteria for Effective
Self-Explanations

We focus on the model’s ability to generate holistic
explanations, which we define as one that excels
across multiple criteria, collectively shaping what
qualifies as a plausible and high-quality explana-
tion. This approach contrasts with previous work
that emphasized specific trustworthiness metrics,



such as faithfulness (Madsen et al., 2024b,a; Lan-
ham et al., 2023; Lyu et al., 2023; Turpin et al.,
2023; Parcalabescu and Frank, 2024) and truthful-
ness (Zhang et al., 2024; Sharma et al., 2023; Burns
et al., 2022; Joshi et al., 2024). A high-quality,
holistic explanation may be unfaithful in the sense
that it does not accurately represent the model’s
internal reasoning, or conversely, a faithful expla-
nation that truly reflects the model’s reasoning may
suffer from a lack of clarity, reducing its quality.
While aiming for explanations that fulfill a holistic
explanation framework might incidentally enhance
faithfulness, it is not a strict requirement.

We evaluate self-explanations based on the fol-
lowing criteria: logical coherence, clarity, rele-
vance, depth of argumentation and factual accuracy
(see Appendix A).

3.2 Self-Explanations Evaluation
Methodology

Let M represent a LLM tasked with generating re-
sponses for a classification problem. Each response
consists of two components: a self-explanation,
denoted as ¢;, and a predicted classification la-
bel, y;, corresponding to an input prompt z;. The
self-explanation ¢; is produced by prompting the
model to articulate its reasoning before providing
a final prediction, following the Chain-of-Thought
prompting strategy (Wei et al., 2022).

Our methodology is inspired by recent ap-
proaches that utilize LLMs as evaluators of other
models’ outputs (Dubois et al., 2023; Li et al., 2024;
Fernandes et al., 2023; Bai et al., 2023; Saha et al.,
2024). This approach has shown versatility, ex-
tending beyond simple evaluation to various appli-
cations in model improvement and self-alignment
strategies. For instance, researchers have employed
this framework to generate self-instruct data for
fine-tuning models (Wang et al., 2023; Chen et al.,
2023; Gulcehre et al., 2023) and to create feedback
for training reward models (Bai et al., 2022; Yuan
et al., 2024; Wu et al., 2024).

To ensure a more reliable evaluation, we use a
judge model, Mjygge, from a different family than
the base model generating the self-explanations.
This distinction is critical because models within
the same family—regardless of their size—tend to
share training data, which can introduce correla-
tions and bias the results.

In this work, the judge model, M jyqge, €valuates
the quality of the self-explanations, ¢;, based on
predefined criteria (described in Section 3.1). The

evaluation process proceeds as follows:

1. For each criterion k, Mjygge assigns a qualita-
tive verdict v; ,, from the set {excellent, good,
fair, poor, bad}. The prompt used by Mjygge
is provided in Appendix M.

2. Each verdict v; ,; is mapped to a numerical
score s; ., (see Appendix C.1).

3. The overall score for an explanation, s;, is
computed as the sum of scores across all cri-

teria: §; = S 1, Sik

To assess the quality of self-explanations gen-
erated by different models, we adopt a pairwise
evaluation (see Appendix B) strategy consistent
with previous work (Chen et al., 2023; Yuan et al.,
2024; Wu et al., 2024).

4 Impact of Supervised Fine-Tuning on
Self-Explanations

In this study, we first investigate how SFT, us-
ing only classification datasets for domain-specific
adaptation, can degrade performance on a sec-
ondary task—specifically, the model’s ability to
self-explain.

To examine this effect, we supervised fine-tuned
the base model, Mg, on classification datasets
(the primary task) to obtain Mgpr, simulating real-
world scenarios where explanation annotations are
unavailable. To ensure a realistic domain adapta-
tion setting while preventing potential advantages
from multi-task learning, we trained separate mod-
els for each task. During fine-tuning, the loss was
computed only on the target tokens corresponding
to the correct choice sentence, excluding both the
system instruction and the question. Additionally,
we generated the full text of the selected option to
provide richer context and maintain the model’s
text generation capabilities. Further details on
datasets and training configurations are provided in
Section 6.1.

After obtaining Mgpr, we evaluated its ability to
generate both a self-explanation, €;, and a predicted
classification label, g;, given an input prompt z;.
To assess explanation quality, we employed the
methodology described in Section 3.

Our evaluation revealed a notable trade-off be-
tween classification accuracy and explanation qual-
ity. While SFT improved classification perfor-
mance, it led to a substantial decline in self-
explanation quality compared to the base model



(see Table 1). The average degradation1 in Mggr,
as assessed across judge models, ranged from 5.8%
to 13.3% across benchmarks.

This decline aligns with prior findings that SFT
enhances task-specific performance at the expense
of a model’s generalization capabilities (Yang et al.,
2024; Kirk et al., 2024). Our results suggest
that classification fine-tuning, by design, does not
incentivize the model to articulate its reasoning.
Since classification tasks primarily involve select-
ing predefined answers, the model becomes spe-
cialized in answer selection while neglecting ex-
planation generation, leading to a deterioration in
self-explanation quality.

These findings underscore the need for align-
ment techniques that preserve high-quality expla-
nations in scenarios where datasets with annotated
rationales are unavailable for fine-tuning.

S Self-Explanation Alignment with
Anchor Preference Pairs

We introduce a methodology for aligning LLMs to
improve self-explanation, even in the absence of
annotated rationales. While explanation data is of-
ten scarce or costly, classification datasets are more
readily available. Our approach leverages these
datasets for domain adaptation, ensuring practical
applicability.

Building on prior work (Bai et al., 2022;
Wang et al., 2023; Yuan et al., 2024; Wu et al.,
2024), our framework incorporates self-preference
dataset generation, LLM-based evaluation (LLM-
as-Judge), preference pair selection, and model
alignment. However, we introduce two key in-
novations: (1) an explanation quality assessment
framework (Sections 3.1 and 3.2) and (2) AN-
CHORALIGN, a novel preference pair selection
method to enhance DPO alignment.

Our approach consists of three main steps:

1. Fine-tune the base model, Mpye, On a target
classification task to obtain Mgp.

2. Construct a self-preference dataset using the
anchor-based strategy, as detailed in Sections
5.2 and 5.2.

3. Apply DPO to align Mgpr using the self-
preference dataset, yielding the final model,
MAnchor-

"Degradation/improvement is measured as the deviation

from the equilibrium point established by the pairwise evalua-
tion of MBasc VS. MBasc, which is 50%.

5.1 Self-Preference Dataset Creation

We generate self-preference data for alignment as
follows:

1. Generate candidate responses: Sample N
diverse pairs of explanations and predictions
from Mgpr, denoted as {7, 7];7:1, where
e;! represents the explanation for the n-th pre-

diction ¢;* corresponding to the prompt ;.

2. Score responses: Evaluate the self-
explanations using the methodology
described in Section 3.2, assigning a score
si' to each €. To ensure a self-contained
alignment process, we use Mp,ge as the judge
(M Judge)z. This approach eliminates the need
for external models during training. However,
it is important to note that we employ a model
from a different family for evaluation to
reduce potential biases.

3. Anchor Preference Pair Selection: Con-
struct preference pairs for the DPO phase
using the ANCHORALIGN methodology de-
tailed in Section 5.2.

5.2 ANCHORALIGN: Preference Pairs via
Anchor Selection

We propose ANCHORALIGN, a method that im-
proves preference pair selection by categorizing
model responses to a given input prompt into three
distinct groups—consistently correct, consistently
incorrect, and variable. Each category follows a
tailored strategy for constructing preference pairs,
which are subsequently used in the DPO phase. As-
sessing a model’s consistency for a given prompt
requires a reliable ground truth reference, or an-
chor. To achieve this, we utilize classification task
labels from the domain adaptation process as a
probing mechanism, as these labels are naturally
available in the settings we consider.

Preference Pairs for Consistently Correct
Prompts: For input prompts x; where Mgspt con-
sistently produces correct answers (i.e., §;' = y;
for all n € {1,...,N}), preference pairs are
constructed based on the quality of the explana-
tions. Let s denote the score assigned by the
judge Mjygge to the n-th explanation €7 for prompt
x;. We define two sets: A = {e : s =
maxje(1,.. N} sg }, which contains all explanations

2We choose M. instead of Mspr as the judge based on
the observation that Mspr exhibits a decline in explanation
quality (see Section 4).



that achieve the highest score for prompt x;, and
AL = {e : s? < maxjeq . ny s}, which in-
cludes all explanations with scores lower than the
maximum for prompt x;.

Preference Pairs for Variable Performance:
For input prompts x; where Mgt produces a mix
of correct and incorrect predictions (i.e., §;' # y;
for some n € {1,...,N}), preference pairs are
constructed contrastively. We define the set B}" =
{e}’ : gy = y;}, which contains explanations as-
sociated with correct predictions. From this set,
we extract A" C B}, the subset of explanations
with the highest scores assigned by Myygge, i.€.,
AY = {e} € BY : s} = maxjcpv si} The
set Al = {e? : g7 # y;and s7 < max; eAw sf}
contains explanations corresponding to incorrect
predictions, with scores lower than the maximum
score in A",

Preference Pairs for Consistently Incorrect
Prompts: For prompts where all predictions from
Megrr are incorrect (i.e., g # y; for all n €
{1,...,N}), all corresponding explanations are
placed in the set Ai-. To generate a winning ex-
planation, we employ the Mp,s model in a con-
sultant role, similar to the LLLM-as-a-Debater ap-
proach proposed by Khan et al. (2024). Since the
inference hyperparameters for the LLM in this con-
sulting role might differ from those used during
the generation of preference pairs, we refer to this
model as M consultant t0 avoid confusion. Specifi-
cally, we provide the correct answer y; to the LLM
and request an argument supporting this answer,
which is then assigned to the set A" as the winning
explanation.

Finally, preference pairs are constructed for each
instruction prompt x; by randomly sampling &}’
from A}" as the winning explanation and 5é from
Aé as the losing explanation. The resulting prefer-
ence pair is denoted as (x;,e,¢!). The detailed

methodology is presented in Algorithm 1.

6 Experiments

In all experiments, we used
Llama-3-8B-Instruct as our base model
and evaluated four distinct model configurations:

1. MBase: The unmodified base model.

2. Msrr: A supervised fine-tuned version of
MBase, trained exclusively on classification
tasks to simulate scenarios where explanation
annotations are unavailable.

3. MRank (Baseline): Built upon Mgy, this
model was further refined using DPO with
a self-preference dataset composed of rank-
ordered preference pairs, derived solely from
judge-based evaluations of explanations. This
methodology follows prior works (Bai et al.,
2022; Wang et al., 2023; Yuan et al., 2024;
Wu et al., 2024) and serves as our baseline for
measuring the performance improvements of
our proposed approach.

4. Manchor (Ours): Like Mgank, this model
underwent additional refinement using DPO.
However, instead of relying solely on judge-
based rankings, it utilized a self-preference
dataset constructed via our proposed prefer-
ence pair selection method, ANCHORALIGN,
as described in Section 5.2.

Both MRgank and M anchor incorporate an ad-
ditional DPO alignment phase with the self-
preference dataset. Throughout our comparisons,
we refer to these models collectively as self-aligned
models, distinguishing them from Mggr.

6.1 Experimental Setup

Datasets: We selected four datasets for our
experiments: AQuA-Rat (Ling et al., 2017),
ARC-Challenge (Clark et al., 2018), LogiQA (Liu
et al., 2020), and OpenbookQA (Mihaylov et al.,
2018). These datasets are established benchmarks
for reasoning tasks, requiring a challenging rea-
soning process, which makes them an ideal fit for
evaluating the quality of self-explanations. A key
factor in their selection was the size of their train-
ing sets, which provided a sufficient number of
input prompts to support the creation of the self-
preference dataset. For evaluation, we used the test
split of each dataset. For detailed dataset descrip-
tions, see Appendix F.

Self-Alignment Details: Appendix G provides
further insights into the self-alignment process,
which includes SFT-based domain adaptation, the
creation of the self-preference dataset, and the sub-
sequent alignment through DPO.

Evaluation: We evaluated our models along
two key dimensions: prediction accuracy and
self-explanation quality. To capture variability in
model outputs, we generated N = 16 explanation-
prediction pairs per input prompt. The inference
settings were consistent with those used to create
the self-preference dataset, with a temperature of



Algorithm 1 Generating Preference Pairs Via Anchor Selection

1: Input: Instruction prompt x;, model predictions {g"

model MConsultant

Output: Preference pairs (z;, €

Initialize: AY « (), Al < 0

for each explanation ' do
Compute score s} from M yqge

end for

if g =y, foralln € {1,..., N} then
AY —{ef : s = maxjeqn Ny Sg}

)

R A A S o

Al {e? : s = minjeqy, Ny 57}

else if ' # y; forsome n € {1,..., N} then
By« {ef" : 9" = v} ,
AY <« {e} € BY : s} = maxjepw 5]}

p—
M =2

e
Aé —A{el g Fyi NS < max; eAw sl}
: else

—_ = =
W AW

Consultant
i

a

Generate argument &
A;w — {EiConsultant}

: end if

: Sample €}’ from AY’
Sample ¢! from Al

: Return (z;,£%, €l

NN = = e
=R

i15

Al {et . gr #y; foralln € {1,...,N}}
using MCOnsultant giVen Y;

N
n=1:

true label y;, judge model Mjygge, debater

> Consistently Correct Prompts

> Variable Performance Prompts

> Consistently Incorrect Prompts

T = 0.6, top-k set to 0.9, and the same prompt
(see Appendix O).

To assess the quality of the explanations, we
used Mistral-Large-123B-Instruct-2407 and
Qwen2.5-72B-Instruct as judges. We then
conducted head-to-head comparisons of the self-
explanation scores across all models.

It is important to note that both the base and
aligned models used L1ama3-8B-Instruct, while
the evaluation was conducted using judges from
a different family of models. This distinction is
crucial as it helps mitigate potential biases that
could arise from using models within the same
family, which often share training data.

Ablation Study: To validate our design choices,
we create variants of M anchor by combining dif-
ferent strategies outlined in Section 5.2 to con-
struct the anchor-preference dataset. The vari-
ants studied include M anchor (cc)> M Anchor (CC+V)s
and M anchor (cc+v+cry, Where "Consistently Cor-
rect" (CC), "Variant" (V), and "Consistently In-
correct" (CI) denote the respective strategies. No-
tably, M Anchor (cC+v-+cr) represents the full version
of M anchor, and the terms may be used interchange-
ably throughout the discussion.

6.2 Analysis of Self-Aligned Models

Prediction Accuracy: The self-preference dataset
used during the DPO phase is designed with the
primary objective of improving explanation qual-
ity rather than maximizing accuracy. However, it
is essential to ensure that enhancing the models’
self-explanation capabilities does not compromise
their performance on the primary task, as measured
by classification accuracy. To assess this, we com-
pute the average classification accuracy® and the
standard deviation across multiple evaluation runs
(N = 16), as shown in Table 1.

The results indicate that the self-aligned mod-
els, MRank and M anchor, across all tested strat-
egy combinations, either maintain or improve upon
the classification accuracy gains achieved by the
seed model, Mgqpr, relative to the base model,
Mpase. Notably, while the accuracy performances
of M anchor and Mpgank are similar across most
tasks, there is one exception: M anchor Significantly
outperforms Mpgank on the Aqua-Rat dataset, with
statistical significance. Further analysis of the vari-
ability in M anchor’s performance across different
datasets is provided in Section 6.3.

3The maximum value is bolded, and results marked with a
(*) indicate no statistical difference from the top performer.



Dataset MBase MAlign MAlign € (W + %) Rate (%) T
Acc. (%) Type Acc. (%) Jowen st Jave

MsET 47. 7497 47.2 41.1 44.2

MRank (Baseline) 48.349.1 48.3 41.5 44.9

AQuA Rat 4714909 M Anchor (CC) 49.3431" 49.0 43.3 46.2
M Anchor (CC+V) 48.349.9 48.1 42.6 45.3

M anchor (cc+v+cry 911439 49.5 46.3 479

Mgt 81.040.7 32.0 41.3 36.7

MRank (Baseline) 81.9414% 48.2 49.2 48.7

ARC-Challenge 76.441¢.7 M Anchor (CC) 81.6413" 46.7 48.0 47.3
M Anchor (CC+V) 82.0411 48.7 49.7 49.2

M Anchor (cc+v+cry  82.040.9 52.1 524 52.3

MsFr 45.240.7 34.6 42.6 37.6

MRank (Baseline) 46.0415" 45.0 47.8 46.4

LOgiQA 41-4i1.1 MAnchor (CO) 45.8i1.4* 46.8 49.2 48.0
M Anchor (CC+V) 46.141 7" 45.2 48.1 46.7

M Anchor (cc+v+cry  46.6422 50.9 51.3 51.1

Mspr 87441, 36.2 46.3 41.3

MRank (Baseline) 87.0411 45.1 48.9 46.5

OpenbookQA 71.7:‘:1.3 MAnchor (CC) 87.1:&0.5* 45.4 49.2 47.3
M Anchor (CC+V) 87.4103 46.0 49.6 47.8

M anchor (cc+v+cn  87.0+0.9" 46.9 49.6 48.3

Table 1: Comparison of Aligned Models. The table presents the average accuracy alongside pairwise evaluations
of self-explanation quality. Both base and aligned models use LLama3-8B-Instruct, while pairwise evaluations
are conducted using Mistral-Large-Instruct-2407 and Qwen2.5-72B-Instruct as judges. Additionally, in the
ablation study, we report the performance of M anchor Under various strategy combinations. These strategies include
Consistently Correct (CC), Variant (V), and Consistently Incorrect (CI).

Self-Explanation Quality: Pairwise evaluations
of self-explanation quality (see Table 1) show
that the initial decline in explanation performance
observed in Mgpr is partially inherited by both
MuRank and M anchor, Since they both use Mggr
as the seed model during the DPO alignment
phase. Nevertheless, both Mpganx and M anchor
achieve significant improvements in explanation
quality over Mgpr, with M anchor demonstrating
the strongest performance across benchmarks and
evaluation judges. When compared to the base
model, M anchor Shows similar performance, win-
ning half of the benchmarks, and significantly nar-
rows the gap in explanation quality introduced by
Mk on the remaining benchmark datasets. Re-
garding the ablation study, we observe that the
highest explanation quality is achieved when the
strategies (CC), (V), and (CI) are combined.

6.3 Impact of Preference Pairs Category
Distribution

We define ) as the proportion of the self-preference
dataset used to align M anchor, cOrresponding to
preference pairs selected under the (CI) or (V)
strategies (see Appendix J).

Since the (CI) and (V) cases are not explicitly
distinguished—instead, they are treated the same as
(CC) cases—when the DPO alignment phase relies
solely on judge-assigned scores (as in Mpgank), A
provides valuable insight into the improvements in
both accuracy and explanation quality achieved by
M anchor compared to Mgk, relative to dataset-
specific characteristics.

In the case of M anchor, the (CI) and (V) strate-
gies ensure—assuming the self-explanation is faith-
ful—that the winning explanation ;" supports the
ground-truth label y;. For the (V) strategy, this is
achieved by sampling €}’ from the set B’ = {" :
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Figure 1: Impact of Preference Pairs Category Dis-
tribution: Presents the Relative Gains (RG) (see Ap-
pendix K) in accuracy (left) and Ja,, between M anchor
and Mgk (right) with respect to \.

g = yi}. Under the (CI) strategy, Mconsultant
is employed to provide arguments that explicitly

support y;.

In contrast, Mpgak selects preference pairs
solely based on scores assigned by judges during
dataset creation. As a result, it does not guarantee
that the winning explanations, €3, will support the
ground-truth label y;. The likelihood of selecting
cases where ¢’ aligns with an outcome different
from y; increases, particularly as \ grows.

We evaluated these improvements by analyzing
the Relative Gains (RG) (see Appendix K) in ac-
curacy and the average explanation quality score
assigned by judges, Jayg, between M anchor and
MRank in relation to A (see Figure 1). In both
cases, we observed a trend indicating that M anchor
demonstrates a greater relative improvement com-
pared to MRgank as A increases. Conversely, when
the alignment dataset consists primarily of (CC)
instances, the performance of M anchor and MRank
remains comparable. This supports our design prin-
ciple that tailoring alignment strategies based on
model behavior is crucial for improving the quality
of self-preference datasets and avoiding the rein-
forcement of problematic behavior.

7 Analysis of Individual Evaluation
Dimensions

Appendix H reports the average scores for
each evaluation criterion used to assess self-
explanations, as outlined in Section 3.1, across all
evaluated models and benchmark datasets.

Overall, the self-aligned models outperform
Mgt across all evaluation criteria, with M anchor
consistently achieving better results than Mgy

Additionally, we observe that the degradation
in self-explanation quality due to SFT varies sig-
nificantly depending on the dataset used for fine-
tuning. Two notable trends emerge from the anal-
ysis. First, for more complex tasks—where com-
plexity is measured by lower test accuracy—such
as AQuA-Rat and LogiQA, the decline in explana-
tion quality is more pronounced across all criteria.
Second, evaluation dimensions for which the base
model originally received lower scores tend to ex-
perience a more significant drop in performance
after SFT.

8 Conclusion

In this work, we introduce ANCHORALIGN, an
end-to-end framework for aligning LLMSs on classi-
fication tasks while enhancing their ability to gen-
erate high-quality self-explanations. Our approach
addresses a key challenge in real-world applica-
tions: the scarcity of annotated rationales, which
limits direct supervision for explanation quality.

ANCHORALIGN leverages ground-truth labels
inherently available in classification datasets for
domain adaptation to construct self-preference
datasets. It categorizes model responses into three
groups—consistently correct, consistently incor-
rect, and variable—applying targeted strategies to
improve preference pair selection. These anchor
preference pairs are then used in the DPO phase to
refine explanation quality.

Our empirical results show that ANCHORALIGN
consistently mitigates the degradation in explana-
tion quality typically caused by SFT, ensuring mod-
els remain interpretable while maintaining clas-
sification performance gains. Furthermore, we
demonstrate that ANCHORALIGN outperforms self-
alignment strategies that rely solely on judge-based
evaluations for preference pair selection.

9 Limitations

We acknowledge some limitations in our approach.
First, evaluating the model’s consistency on a given



input prompt requires a anchor—ground truth ref-
erence. Consequently, the selection of preference
pairs via the anchor strategy relies on a classi-
fication task as the probing mechanism, which
restricts its applicability. Second, when ranking
the quality of self-explanations, we assign equal
weights across all evaluation dimensions. This uni-
form weighting may not accurately reflect the vary-
ing significance of different aspects of explanation
quality, which can differ depending on the user or
specific application. Moreover, this approach may
overlook instances where individual explanations
degrade in separate criteria, potentially leading to
preference pairs where score differences arise from
unrelated factors.
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A Quality Criteria for Effective
Self-Explanations

We evaluate self-explanations based on the follow-
ing criteria *:

1. Logical coherence: The explanation should
follow a clear and logical reasoning process,
with all components cohesively connected to
form a unified, non-contradictory narrative.

Clarity: The explanation must present ideas
clearly and precisely, using appropriate termi-
nology to effectively communicate complex
concepts without unnecessary complexity.

Relevance: The explanation should compre-
hensively address the task at hand, directly an-
swering the specific context or requirements
without omitting critical information.

* Appendix L provides a complementary analysis of the cor-

relation between LLM and human judges across the evaluation
criteria.
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4. Depth of argumentation: The explanation
must provide strong reasoning and credible
evidence to support its conclusions, reflecting
a deep understanding of the task.

. Factual accuracy: This criterion assesses the
correctness of individual claims within the
explanation. While related to truthfulness,
factual accuracy focuses on whether specific
statements align with established knowledge.

B Pairwise Model Evaluation

To compare the performance of two models, de-
noted as M and Mo, we perform a pairwise eval-
uation of the self-explanations generated for a given
prompt x;. Each model produces N explanations,
and we compare each explanation from M; with
every explanation from M, resulting in N2 pair-
wise comparisons.

For a given comparison between the n-th expla-
nation from model M; and the m-th explanation
from model My, where n,m € {1,...,N}, we
compare the corresponding scores, s]'(M;) and
s (Mz). A win for M is recorded if the score
from M is strictly greater than that from Ma:

si'(My) > si"(Ma)

Conversely, a loss for M7 occurs if the score
from M is strictly less than the score from Mo:

s; (M1) < 7" (Ma)

A tie is defined when both scores are equal:

s; (M1) = 7" (Ma)

For each prompt x;, we count the total number
of wins, losses, and ties across all N2 comparisons
between the explanations from both models. To
summarize the performance of the models across
the entire dataset, we compute the win rate, tie rate,
and loss rate.

The win rate W (M, M>) is the average pro-
portion of pairwise comparisons in which model
M outperforms model My across all prompts in
the set X'. It is computed as:

1

W (M, Ms) = m

1 N N
(]\72 Z Z H‘win)
T, EX

n=1m=1

Here, X is the set of all prompts, and k-] is the
indicator function, which returns 1 if the condition
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inside the brackets is true (i.e., if M7 wins) and O
otherwise.

Similarly, we define the tie rate (M1, Ms) as
the proportion of pairwise comparisons where the
models perform equally:

The loss rate L(M, M3) captures the propor-
tion of comparisons where M performs worse

than Mo:

To measure overall performance, we define the
win overall rate, combining wins and half of the
ties:

T(My, M3) = |21( >

T, EX

| NN
NZZZH‘tie)

n=1m=1

LMy, M;) = |1X] >

T, €EX

1 N N
N2 Z Z JHOSS)

n=1m=1

1
Woverall =W+ §T-

Throughout the evaluations presented in this
work, M refers to the baseline model Mpgse.

C Judge Component

The judge model Mjygge evaluates the quality of
self-explanation, denoted as ¢;, associated with
an input prompt ;. based on predefined criteria,
which are elaborated in Section 3.1. The evaluation
process proceed as follows:

1. For each criterion x, Mjygge assigns a qualita-
tive verdict v; ,, from the set {excellent, good,
fair, poor, bad}. The prompt used by Mjydge
is provided in Appendix M.

Miudge (i, €5) = {vip} fork € {1,..., K}

Each verdict v; . is mapped to a numerical
score s; ., (see Appendix C.1).

3. The overall score for an explanation, s;, is
computed as the sum of scores across all cri-
teria:

K
5= s
k=1
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C.1 Judge Score Mapping

Each verdict v; 4, assigned by M jyqg. for criterion
 on self-explanation ¢; corresponding to prompt
x;, 1s mapped to a numerical score s; ;. as follows:

(1.0 if v;,, = Excellent,
0.8 ifv;, = Good,
six =4 0.6 ifv;, = Fair,
0.2 ifwv;, = Poor,
(0.0 if v; , = Bad.

Higher scores s;, indicate superior perfor-
mance.

D Consultant Component

In cases where the model Mgt behaves consis-
tently incorrectly for the input prompt z;, we em-
ploy the model Mg, in a consultant role. Specifi-
cally, we provide the correct answer y; to the LLM
and request an explanation &; supporting this an-
SWer.

MConsultant(l'i’ yz) — &
E Inference Parameters

Table 2 summarizes the inference parameters, in-
cluding temperature and top-k, used for each com-
ponent, such as the judge, consultant, and sampler.

Component Temperature Top-k
Judge 0.0

Consultant 0.5 0.9
Sampler 0.6 0.9

Table 2: Inference parameters per component

F Dataset Details

All datasets used in our experiments are established
reasoning benchmarks. The questions, along with
related context and answer options, were inserted
into our template (provided in 10) and used as input
prompts for the model.

F.1 AQuA-Rat

AQuA-Rat (Ling et al., 2017) contains approxi-
mately 100,000 algebraic word problems, each ac-
companied by a natural language rationale explain-
ing the solution steps. Each problem includes a



question and five answer options. Due to compu-
tational constraints, we sampled 5,000 examples
from the training set and used 254 test samples for
our experiments. We utilized only the questions
and answer options and excluded the provided ratio-
nales since our study aims to enhance the model’s
ability to generate self-explanations in natural lan-
guage while performing the primary classification
task, without relying on human-annotated reason-
ing patterns.

F.2 ARC-Challenge

The ARC-Challenge dataset (Clark et al., 2018)
is a subset of the ARC dataset containing grade-
school level, multiple-choice science questions. We
used 1,119 training samples and 1,172 test sam-
ples from ARC-Challenge dataset. These samples
are selected for being challenging, as they could
not be answered correctly by either retrieval-based
or word co-occurrence algorithms. In our exper-
iments, we incorporated the questions and their
corresponding four answer options. We omitted
the associated corpus of sentences to focus purely
on the model’s reasoning capabilities rather than
external knowledge retrieval.

F.3 LogiQA

LogiQA (Liu et al., 2020) consists of logical rea-
soning problems derived from the National Civil
Servants Examination of China. The questions are
designed to assess critical thinking and problem-
solving abilities, requiring examinees to read a con-
text passage and answer questions based on logical
reasoning. In our experiments, we utilized English
versions of 7,376 training samples and 651 test
samples, including the context passages, questions,
and answer options. The context passages were re-
tained because they were integral to understanding
and answering the questions.

F.4 OpenBookQA

OpenBookQA (Mihaylov et al., 2018) features
elementary-level science questions requiring multi-
step reasoning and common knowledge applica-
tion. The dataset simulates an "open book" exam
setting to assess understanding beyond simple fact
retrieval. It includes a corpus of scientific facts
alongside multiple-choice questions, each with four
answer options. In our experiments, we used 4,957
training samples and 500 test samples while ex-
cluding the related facts to align with our goal of
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developing self-explanation capabilities without
leveraging pre-existing explanatory content.

G Self-Alignment Details
G.1 SFT Training Details

For Mgspr, we used the AdamW optimizer with a
learning rate of 5 x 10~° for one epoch, following a
cosine schedule with 10% warmup steps. Gradient
clipping was set to 0.3, and we used an effective
batch size of 12. Loss was computed only on the
assistant’s completions. Instead of fine-tuning the
entire model, we applied a LoRA adapter (o = 128,
dropout = 0.05, rank = 256) to all linear layers.
LoRA adapters were used to accelerate training
and to act as a regularization method (Biderman
et al., 2024), addressing the overfitting tendencies
of DPO (Thakkar et al., 2024), which is applied
during the later alignment phase.

G.2 Self-Preference Dataset

To ensure the integrity of our evaluation process,
we constructed separate self-preference datasets
for each benchmark. These datasets were created
using input prompts specific to each task, ensuring
that the DPO alignment data remained unaffected
by cross-task contamination. This approach pre-
vents potential result inflation, which could occur if
models were aligned across diverse tasks—unlike
SFT models, which are fine-tuned on a single clas-
sification task at a time.

For aligning MRgank and M anchor, We generated
the self-preference dataset by sampling N = 4
responses from Mgpr for each input prompt (with
settings: temperature 7' = 0.6 and top-k value of
0.9). The specific prompt used for this process is
provided in Appendix O.

In cases where the responses were consistently
incorrect, we employed M consultant tO generate can-
didate explanations based on the correct answer ;.
The consultant model was configured with parame-
ters 7' = 0.5 and top-k = 0.9. The corresponding
prompt used for generating these explanations is
detailed in Appendix N.

The responses were scored by Myqge, Which
was the same base model used in the alignment
process, ensuring a self-contained procedure. This
setup contrasts with the evaluation phase, where a
more capable model, drawn from a different fam-
ily of models, serves as the judge. The scoring
methodology followed the approach described in
Section 3.2, with Mjyqge utilizing fixed inference



parameters (1" = 0). The specific prompt used by
M udge is detailed in Appendix M.

For MRgank, preference pairs were selected based
on the assigned scores, with the highest-scoring
explanation chosen as the winner, and the losing
explanation randomly selected from the remaining
candidates. For M anchor, preference pairs were se-
lected using the methodology described in Section
5.2.

G.3 DPO Training Details

For DPO-aligned models (Mgank, M Anchor), W€
used similar hyperparameters as in the SFT phase
but reduced the learning rate to 5x 10~ and trained
for 2.6k steps with an effective batch size of 6. The
DPO process used a 3 value of 0.1 and updated the
LoRA weights obtained during SFT.

G.4 Infrastructure

All LLMs used in this study were directly down-
loaded from Hugging Face. Regarding computa-
tional costs, each stage—including SFT, building
the preference dataset, and DPO alignment—was
executed on a single NVIDIA H100 or H200 GPU,
completing within 24 hours.

H Analysis of Individual Evaluation
Dimensions

Figure 2 presents the average scores for each eval-
uation criterion used to assess self-explanations, as
described in Section 3.1, for all evaluated models
across the benchmark datasets.

I Generated Instructions

Table 3 presents the distribution of cate-
gories—Consistently Correct (CC), Consistently
Incorrect (CI), and Variable (V)—across the
datasets used during the DPO alignment phase of
MAnchor-

J Definition \

We define A as the proportion of the self-preference
dataset used to align M anchor, corresponding to
preference pairs selected under the (CI) or (V)
strategies:

CI+V

A= ecraay

)

Dataset Category Samples Ratio
v 1196 41.17
AQuA-Rat CC 1010 34.77
CI 699 24.06
\Y% 62 8.09
ARC-Chg. CC 645 84.20
CI 59 7.70
v 1251 26.86
LogiQA CC 2487 53.39
CI 920 19.75
v 176 5.13
OpenbookQA CC 3178 92.60
CI 78 2.27

Table 3: Distribution of anchor categories.

K Relative Gains: Measuring
Self-Alignment Improvement

The effectiveness of self-alignment strategies in
improving explanation quality and classification
accuracy can be assessed by measuring the perfor-
mance gains of M apcnor relative to a ranking-based
self-alignment approach, both evaluated against the
baseline supervised fine-tuning (Mggr). This im-
provement is captured by the Relative Gain (RG)
metric.

K.1 Individual Gains

Performance gains are first computed relative to
the SFT baseline. Given a performance metric
Metric(-), which can represent either accuracy or
explanation quality, the individual gains for each
approach are defined as:

GRrank = Metric(MRgank) — Metric(Mspr)  (2)

GAnchor - MetriC(MAnchor) - MetriC(MSFT)
(3)

K.2 Relative Gain (RG)

The Relative Gain quantifies the effectiveness of
M Anchor compared to MRgank:

RG — CTYAnchor 1 ( 4)
GRank

This metric captures the additional improvement
achieved by Manchor beyond what is obtained
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Figure 2: Average Self-Explanation Scores per Evaluation Criterion. Average scores for each evaluation criterion
used to assess self-explanations, as described in Section 3.1.

through ranking-based self-alignment alone. A pos-
itive RG indicates that M apchor provides greater
enhancement in explanation quality or accuracy
compared to ranking-based methods, while an RG
near zero suggests comparable performance.

L Correlation with Human Judgments

We conducted a complementary human evaluation
to assess whether the LLM-as-a-Judge approach
aligns with human raters across the evaluation cri-
teria.

This evaluation provides insight into whether the
criteria used by the LLM-based judge are effec-
tively captured by the model. A lack of positive
correlation with human ratings would indicate that
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a specific criterion is not well understood by the
LLM, suggesting the need for modification or re-
moval from the evaluation framework.

While this experiment serves as supporting evi-
dence for the approach, it is not a scalable method
for general evaluation.

For this study, we sampled 30 explanations
generated by either an aligned model or a base
model across 10 distinct questions from the LogiQA
dataset, which covers a diverse range of logical rea-
soning problems across different domains.

To evaluate these explanations, we em-
ployed three state-of-the-art language mod-
els—Mistral-Large-Instruct-2407 and
Qwen2.5-72B-Instruct—as automated judges.



These models rated the explanations on a five-point
scale: Bad, Poor, Fair, Good, and Excellent.

In addition, the same set of questions were in-
cluded in a survey administered to multiple human
raters. Each rater independently evaluated the qual-
ity of the explanations based on a specific criterion
(e.g., Depth of Argumentation). To enhance diver-
sity and reliability, each explanation was evaluated
by at least three human raters, all of whom volun-
tarily participated in the study.

Overall, the participant pool consisted of a mix
of graduate and undergraduate volunteers, with
no compensation provided. Participants were in-
formed about how their data would be used, and
the experimental design received ethics approval.
The demographic breakdown was 22% female and
78% male.

We computed the Spearman correlation between
LLM ratings and human consensus ratings to eval-
uate the strength and direction of their monotonic
relationship. Results are summarized in Table 4.

The analysis revealed moderate posi-
tive correlations for both judge models.
Mistral-Large-Instruct-2407 exhibited
the strongest alignment with human judgments,
consistently achieving correlation coefficients
above 0.45 across all criteria (p < 0.01).

In contrast, Qwen2.5-72B-Instruct showed
more variable performance. While it achieved sig-
nificant correlations for Clarity (p = 0.48, p <
0.01) and Factual Accuracy (p = 0.45, p < 0.02),
its correlation for Relevance was notably weaker
and non-significant (p = 0.28, p = 0.15).

Figure 5 visualizes the relationship between
LLM ratings and human consensus scores across
five evaluation criteria. Each point represents the
mean LLM rating for a given human consensus
score, with error bars indicating standard devia-
tion. The plots indicate a positive correlation with
human judgments; however, sensitivity to specific
criteria varies. While human raters utilize the full
scoring range, LLMs—particularly for criteria like
Clarity—tend to concentrate ratings within the mid-
to-high range while still maintaining a positive cor-
relation.

Notably, (a) Mistral-Large-Instruct-2407
demonstrates the most consistent alignment
with human judgments, showing a steadily
increasing relationship compared to (b)
Qwen2.5-72B-Instruct.
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Figure 5: LLM vs Human Consensus Ratings Across Evaluation Criteria: Mean LLM ratings plotted against
human consensus scores for each evaluation dimension with standard deviation error bars.

LLM-as-a-Judge Criteria Spearman Correlation p-value

Factual Accuracy 0.51 0.01*

Logical Coherence 0.49 0.01*

Mistral-Large Clarity 0.52 0.01*
Instruct-2407  Relevance 0.45 0.01*
Depth of Argumentation 0.50 0.01*

Factual Accuracy 0.45 0.02*

Logical Coherence 0.34 0.07

Qwen2.5 Clarity 0.48 0.01*
72B-Instruct  Relevance 0.28 0.15
Depth of Argumentation 0.40 0.04*

Table 4: Analysis of Agreement Between LLM and Human Evaluations: A comparative analysis of agreement
between LLM-based and human consensus ratings using Spearman Correlation (measuring ranking consistency).
Results are broken down by evaluation criteria for each LLM judge, with p-values indicating statistical significance

(xp < 0.05).
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M Judge prompt
Table 5 presents the complete prompt that guides the judge model in evaluating the self-explanations.

Table 5: Judge prompt.

Prompt Judge

System: You are an expert judge tasked with evaluating the quality and correctness of a STATEMENT in
response to a given QUESTION.

Your goal is to assess whether the STATEMENT accurately and comprehensively answers the QUESTION
while providing sound reasoning and clear explanations. Be vigilant for any errors, misleading information,
or gaps in the reasoning.

Evaluate the STATEMENT based on the following criteria:

e Factual Accuracy: Are all specific claims, data points, and facts in the STATEMENT verifiably correct?

e Logical Coherence: Does the STATEMENT follow a clear, logical sequence of reasoning without
contradictions, and do all parts logically connect to form a cohesive and unified explanation?

e Clarity and Comprehensibility: Is the STATEMENT expressed clearly and precisely, using appropriate
terminology and effectively explaining complex ideas?

¢ Relevance and Completeness: Does the STATEMENT fully address all relevant aspects of the QUESTION,
ensuring that it directly responds to the specific context or requirements, leaving no key details
omitted?

¢ Depth of Argumentation: Does the STATEMENT provide strong reasoning and credible evidence to support

its conclusions?

Fo

3

each criterion, select one of the following assessments:

e EXCELLENT: The STATEMENT exemplifies this criterion, setting a high standard.

e GOOD: The STATEMENT meets this criterion well, with only minor room for improvement.

e FAIR: The STATEMENT adequately meets this criterion but has noticeable areas for enhancement.
* POOR: The STATEMENT partially meets this criterion but requires significant revisions.

e BAD: The STATEMENT fails to meet this criterion.

Provide the assessments (EXCELLENT/GOOD/FAIR/POOR/BAD) for each criterion without additional justification.
Respond with the following structure:

¢ Factual Accuracy: [Assessment]

¢ Logical Coherence: [Assessment]

e Clarity: [Assessment]

¢ Relevance: [Assessment]

¢ Depth of Argumentation: [Assessment]

User: Here is the question: [QUESTION]

Here is the statement you need to evaluate: [STATEMENT]
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N Consultant prompt

Table 6: Consultant prompt.

Consultant prompt

System: You will act as an expert consultant. You will be shown a QUESTION and one OPTION to argue for
Your goal is to construct convincing arguments supporting your option as correct.

Maintain a scholarly yet assertive tone, focusing on evidence-based analysis while crafting your
arguments and answering questions. Avoid phrases like "In summary”, "In conclusion”, or similar at the end
of your argument. Be as concise as possible.

Your argument must fulfill the following criteria:

e Truthfulness: Any factual information mentioned in your argument must be true and accurate.

e Logical Consistency: Your argument must be logically sound, free of logical fallacies or
contradictions.

e Clarity: Your argument directly addresses and answers the question. It is clear, concrete, concise,
and well-structured.

User: Here is the question: [QUESTION]

Here is option you need to back up: [OPTION]

O Prompts inference per task

Table 7: Prompt for LogiQA task.

Prompt for LogiQA task

System: You will be presented with a CONTEXT passage and a corresponding QUESTION with four answer CHOICES.
Carefully read the passage to understand its content. Then, read the QUESTION and CHOICES thoroughly.
Choose the correct CHOICE and explain your reasoning.

Your response will consist of two parts: an EXPLANATION followed by your selected CHOICE.

Enclose your explanation within tags as follows:
<explanation>[Your EXPLANATION here]</explanation>

Enclose your chosen choice (e.g., if the question has only 4 choices, then A, B, C, or D) within
tags as follows:
<choice>[Your CHOICE here]</choice>

User: Context: [CONTEXT]
Question: [QUESTION]

Choices: [CHOICES]
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Table 8: Prompt for AQuA-Rat task.

Prompt for AQuA-Rat task

System: You will be given a QUESTION along with multiple answer CHOICES, involving a math problem that
requires step-by-step reasoning to determine the correct answer. Carefully read the QUESTION and CHOICES.
Choose the correct CHOICE and explain your reasoning.

Your response will consist of two parts: an EXPLANATION followed by your selected CHOICE.

Enclose your explanation within tags as follows:
<explanation>[Your EXPLANATION here]</explanation>

Enclose your chosen choice (e.g., if the question has only 4 choices, then A, B, C, or D) within
tags as follows:
<choice>[Your CHOICE herel</choice>

User: Context: [CONTEXT]
Question: [QUESTION]

Choices: [CHOICES]

Table 9: Prompt for ARC-Challenge task.

Prompt for ARC-Challenge task

System: You will be presented a QUESTION with multiple answer CHOICES. Carefully read the QUESTION and
CHOICES. Choose the correct CHOICE and explain your reasoning.

Your response will consist of two parts: an EXPLANATION followed by your selected CHOICE.

Enclose your explanation within tags as follows:
<explanation>[Your EXPLANATION here]</explanation>

Enclose your chosen choice (e.g., if the question has only 4 choices, then A, B, C, or D) within
tags as follows:
<choice>[Your CHOICE here]</choice>

User: Context: [CONTEXT]
Question: [QUESTION]

Choices: [CHOICES]

Table 10: Prompt for OpenbookQA task.

Prompt for OpenbookQA task

System: You will be presented a QUESTION with multiple answer CHOICES. Carefully read the QUESTION and
CHOICES. Choose the correct CHOICE and explain your reasoning.

Your response will consist of two parts: an EXPLANATION followed by your selected CHOICE.

Enclose your explanation within tags as follows:
<explanation>[Your EXPLANATION here]</explanation>

Enclose your chosen choice (e.g., if the question has only 4 choices, then A, B, C, or D) within
tags as follows:
<choice>[Your CHOICE here]</choice>

User: Context: [CONTEXT]
Question: [QUESTION]

Choices: [CHOICES]
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