
AnchorAlign: Self-Explanations Enhancement via Anchored Alignment

Anonymous ACL submission

Abstract001

In real-world applications, human-annotated002
rationales are often scarce or prohibitively ex-003
pensive, making classification datasets a more004
accessible alternative. As a result, supervised005
fine-tuning (SFT) of large language models006
(LLMs) using only classification data is a007
widely adopted strategy for domain-specific008
adaptation. However, our analysis reveals009
that while SFT enhances task-specific accu-010
racy, it weakens a model’s ability to jus-011
tify its reasoning—its self-explanation capabil-012
ity—underscoring the need for methods that im-013
prove explanation quality without compromis-014
ing classification performance. To address this,015
we propose ANCHORALIGN, an end-to-end016
framework that aligns LLMs on classification017
tasks while enhancing their ability to produce018
meaningful self-explanations. ANCHORALIGN019
leverages ground-truth labels from classifica-020
tion datasets to enhance the creation of self-021
preference datasets. It categorizes model be-022
havior in response to each input prompt into023
three groups—consistently correct, consistently024
incorrect, and variable—and applies tailored025
strategies to enhance preference-pair selection,026
improving the effectiveness of Direct Prefer-027
ence Optimization (DPO). Experimental results028
demonstrate that ANCHORALIGN consistently029
enhances explanation quality while preserving030
classification accuracy, outperforming align-031
ment strategies that rely solely on judge-based032
evaluations.033

1 Introduction034

Real-world applications often face the challenge035

that datasets containing human-annotated ratio-036

nales are either scarce or prohibitively expensive037

compared to classification datasets. In scenarios038

where only classification datasets are available for039

domain-specific adaptation, supervised fine-tuning040

(SFT) may lead to improved precision in the clas-041

sification task but at the cost of compromising the042

model’s generalization capabilities in other areas 043

(Yang et al., 2024; Kirk et al., 2024). 044

In our study, we first investigate how SFT us- 045

ing only classification datasets for domain-specific 046

adaptation can degrade performance on a secondary 047

task—specifically, the model’s ability to justify 048

their own reasoning, a skill referred to as self- 049

explanation (Madsen et al., 2024a). 050

To address this, we propose a framework 051

for the automated qualitative assessment of self- 052

explanations that are plausible to humans (Agarwal 053

et al., 2024), leveraging an LLM-as-evaluator. Our 054

framework evaluates a model’s ability to generate 055

holistic explanations—defined as those that excel 056

across multiple criteria and capture the character- 057

istics of high-quality explanations. Our findings 058

indicate that while SFT improves task-specific ac- 059

curacy, it often degrades self-explanation quality, 060

highlighting the need for methods that enhance ex- 061

planation quality without compromising accuracy 062

gains. 063

The lack of annotated data of both high- and low- 064

quality explanations can be framed in the context 065

of model aligning without human preference data. 066

Recent research has explored ways to align LLMs 067

without direct human input. Some approaches gen- 068

erate self-instruct data to fine-tune models (Wang 069

et al., 2023; Chen et al., 2023; Gulcehre et al., 070

2023), while others, like (Bai et al., 2022; Yuan 071

et al., 2024; Wu et al., 2024), use LLM-generated 072

feedback to train reward models. 073

Building on these advancements, we propose an 074

end-to-end approach to align LLMs on downstream 075

tasks while simultaneously ensuring the genera- 076

tion of high-quality self-explanations, in scenarios 077

where only classification datasets are available for 078

domain-specific adaptation. Since classification 079

datasets inherently contain ground-truth labels, we 080

leverage this information to design probes that im- 081

prove the creation of self-preference datasets. We 082

refer to this approach as ANCHORALIGN, a method 083
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that enhances preference pair selection by catego-084

rizing model responses for a given input prompt085

into three distinct groups: consistently correct, con-086

sistently incorrect, and variable. For each category,087

we apply tailored strategies to construct preference088

pairs, which are then used in the Direct Preference089

Optimization (DPO) phase (Rafailov et al., 2023).090

While our approach relies on ground-truth an-091

notations from the classification task, such labels092

are naturally available in the domain adaptation093

settings we address. Our results demonstrate that094

ANCHORALIGN consistently improves explanation095

quality, mitigating the degradation typically caused096

by SFT. Moreover, we show that anchor preference097

pairs outperform self-alignment strategies that rely098

solely on judge-based evaluations for preference099

pair selection.100

2 Related Work101

LLM-as-Evaluator: This concept refers to the102

ability of large language models (LLMs) to eval-103

uate the outputs of other LLMs, a technique com-104

monly referred to as LLM-as-a-Judge. This ap-105

proach has gained considerable traction in recent106

years (Dubois et al., 2023; Li et al., 2024; Fernan-107

des et al., 2023; Bai et al., 2023) and is frequently108

used to assess LLM performance across various109

downstream tasks. It has proven particularly effec-110

tive in automating evaluations, as demonstrated on111

platforms like LMSys Chatbot Arena (Zheng et al.,112

2023). Key implementations include direct scoring113

based on specific criteria (Bai et al., 2023), pair-114

wise comparisons (Liu et al., 2024), and ensemble115

methods (Verga et al., 2024). While LLM-as-a-116

Judge offers scalability and consistency, it can also117

inherit biases from the evaluation model, poten-118

tially amplifying problematic outputs (Huang et al.,119

2024). Despite these challenges, it remains a valu-120

able tool due to its efficiency and cost-effectiveness121

in evaluating LLM systems. In our work, we intro-122

duce a framework for the qualitative assessment of123

self-explanations using the LLM-as-a-Judge tech-124

nique, designed to evaluate how effectively a model125

conveys its reasoning.126

Self-Alignment: Several approaches have been127

developed to improve LLMs without requiring128

human-annotated feedback. One method in-129

volves fine-tuning models using high-quality, self-130

generated input-output pairs (Wang et al., 2023;131

Chen et al., 2023; Gulcehre et al., 2023), though132

this can perpetuate biases in example selection133

without a clear mechanism for improving selec- 134

tion quality. Another influential approach is Con- 135

stitutional AI (Bai et al., 2022), where an LLM 136

provides feedback and refines responses, which are 137

then used to train a separate, static reward model. 138

Building on this concept, (Yuan et al., 2024) and 139

Wu et al. (2024) proposed using the LLM itself 140

as a dynamic reward model, eliminating the need 141

for a static one. This allows for continuous im- 142

provement in both generation and evaluation ca- 143

pabilities through iterative training processes. In 144

our work, we introduce a novel method for creating 145

self-preference datasets. Our approach, called AN- 146

CHORALIGN, enhances preference pair selection 147

by categorizing model behavior in response to each 148

input prompt and applying tailored strategies for 149

each category. Evaluating a model’s consistency 150

for a given input prompt requires a probing mech- 151

anism. In our setup, this probe—or anchor—is 152

derived from the ground-truth labels in the classifi- 153

cation dataset used for domain adaptation. 154

LLM-as-a-Debater: This adversarial approach 155

aims to improve model performance through ar- 156

gumentation. In Perez et al. (2019), debaters are 157

limited to extracting relevant statements from a 158

source text, rather than generating original argu- 159

ments. Du et al. (2023) extended this concept by 160

involving multiple LLM instances to debate their 161

individual responses over several rounds, eventu- 162

ally converging on a shared final answer. Khan 163

et al. (2024) further developed this approach by 164

using debate-like scenarios to challenge and refine 165

model outputs through simulated arguments. In our 166

work, we adopt the LLM-as-a-Debater approach in 167

the role of a consultant, specifically following Khan 168

et al. (2024), for cases where the model’s response 169

to certain input prompts is consistently incorrect. 170

This strategy enables the creation of self-preference 171

examples that avoid reinforcing problematic behav- 172

ior. 173

3 A Framework for Qualitative 174

Assessment of Self-Explanations 175

3.1 Quality Criteria for Effective 176

Self-Explanations 177

We focus on the model’s ability to generate holistic 178

explanations, which we define as one that excels 179

across multiple criteria, collectively shaping what 180

qualifies as a plausible and high-quality explana- 181

tion. This approach contrasts with previous work 182

that emphasized specific trustworthiness metrics, 183
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such as faithfulness (Madsen et al., 2024b,a; Lan-184

ham et al., 2023; Lyu et al., 2023; Turpin et al.,185

2023; Parcalabescu and Frank, 2024) and truthful-186

ness (Zhang et al., 2024; Sharma et al., 2023; Burns187

et al., 2022; Joshi et al., 2024). A high-quality,188

holistic explanation may be unfaithful in the sense189

that it does not accurately represent the model’s190

internal reasoning, or conversely, a faithful expla-191

nation that truly reflects the model’s reasoning may192

suffer from a lack of clarity, reducing its quality.193

While aiming for explanations that fulfill a holistic194

explanation framework might incidentally enhance195

faithfulness, it is not a strict requirement.196

We evaluate self-explanations based on the fol-197

lowing criteria: logical coherence, clarity, rele-198

vance, depth of argumentation and factual accuracy199

(see Appendix A).200

3.2 Self-Explanations Evaluation201

Methodology202

LetM represent a LLM tasked with generating re-203

sponses for a classification problem. Each response204

consists of two components: a self-explanation,205

denoted as εi, and a predicted classification la-206

bel, ŷi, corresponding to an input prompt xi. The207

self-explanation εi is produced by prompting the208

model to articulate its reasoning before providing209

a final prediction, following the Chain-of-Thought210

prompting strategy (Wei et al., 2022).211

Our methodology is inspired by recent ap-212

proaches that utilize LLMs as evaluators of other213

models’ outputs (Dubois et al., 2023; Li et al., 2024;214

Fernandes et al., 2023; Bai et al., 2023; Saha et al.,215

2024). This approach has shown versatility, ex-216

tending beyond simple evaluation to various appli-217

cations in model improvement and self-alignment218

strategies. For instance, researchers have employed219

this framework to generate self-instruct data for220

fine-tuning models (Wang et al., 2023; Chen et al.,221

2023; Gulcehre et al., 2023) and to create feedback222

for training reward models (Bai et al., 2022; Yuan223

et al., 2024; Wu et al., 2024).224

To ensure a more reliable evaluation, we use a225

judge model,MJudge, from a different family than226

the base model generating the self-explanations.227

This distinction is critical because models within228

the same family—regardless of their size—tend to229

share training data, which can introduce correla-230

tions and bias the results.231

In this work, the judge model,MJudge, evaluates232

the quality of the self-explanations, εi, based on233

predefined criteria (described in Section 3.1). The234

evaluation process proceeds as follows: 235

1. For each criterion κ,MJudge assigns a qualita- 236

tive verdict vi,κ from the set {excellent, good, 237

fair, poor, bad}. The prompt used byMJudge 238

is provided in Appendix M. 239

2. Each verdict vi,κ is mapped to a numerical 240

score si,κ (see Appendix C.1). 241

3. The overall score for an explanation, si, is 242

computed as the sum of scores across all cri- 243

teria: si =
∑K

k=1 si,k 244

To assess the quality of self-explanations gen- 245

erated by different models, we adopt a pairwise 246

evaluation (see Appendix B) strategy consistent 247

with previous work (Chen et al., 2023; Yuan et al., 248

2024; Wu et al., 2024). 249

4 Impact of Supervised Fine-Tuning on 250

Self-Explanations 251

In this study, we first investigate how SFT, us- 252

ing only classification datasets for domain-specific 253

adaptation, can degrade performance on a sec- 254

ondary task—specifically, the model’s ability to 255

self-explain. 256

To examine this effect, we supervised fine-tuned 257

the base model,MBase, on classification datasets 258

(the primary task) to obtainMSFT, simulating real- 259

world scenarios where explanation annotations are 260

unavailable. To ensure a realistic domain adapta- 261

tion setting while preventing potential advantages 262

from multi-task learning, we trained separate mod- 263

els for each task. During fine-tuning, the loss was 264

computed only on the target tokens corresponding 265

to the correct choice sentence, excluding both the 266

system instruction and the question. Additionally, 267

we generated the full text of the selected option to 268

provide richer context and maintain the model’s 269

text generation capabilities. Further details on 270

datasets and training configurations are provided in 271

Section 6.1. 272

After obtainingMSFT, we evaluated its ability to 273

generate both a self-explanation, εi, and a predicted 274

classification label, ŷi, given an input prompt xi. 275

To assess explanation quality, we employed the 276

methodology described in Section 3. 277

Our evaluation revealed a notable trade-off be- 278

tween classification accuracy and explanation qual- 279

ity. While SFT improved classification perfor- 280

mance, it led to a substantial decline in self- 281

explanation quality compared to the base model 282
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(see Table 1). The average degradation1 inMSFT,283

as assessed across judge models, ranged from 5.8%284

to 13.3% across benchmarks.285

This decline aligns with prior findings that SFT286

enhances task-specific performance at the expense287

of a model’s generalization capabilities (Yang et al.,288

2024; Kirk et al., 2024). Our results suggest289

that classification fine-tuning, by design, does not290

incentivize the model to articulate its reasoning.291

Since classification tasks primarily involve select-292

ing predefined answers, the model becomes spe-293

cialized in answer selection while neglecting ex-294

planation generation, leading to a deterioration in295

self-explanation quality.296

These findings underscore the need for align-297

ment techniques that preserve high-quality expla-298

nations in scenarios where datasets with annotated299

rationales are unavailable for fine-tuning.300

5 Self-Explanation Alignment with301

Anchor Preference Pairs302

We introduce a methodology for aligning LLMs to303

improve self-explanation, even in the absence of304

annotated rationales. While explanation data is of-305

ten scarce or costly, classification datasets are more306

readily available. Our approach leverages these307

datasets for domain adaptation, ensuring practical308

applicability.309

Building on prior work (Bai et al., 2022;310

Wang et al., 2023; Yuan et al., 2024; Wu et al.,311

2024), our framework incorporates self-preference312

dataset generation, LLM-based evaluation (LLM-313

as-Judge), preference pair selection, and model314

alignment. However, we introduce two key in-315

novations: (1) an explanation quality assessment316

framework (Sections 3.1 and 3.2) and (2) AN-317

CHORALIGN, a novel preference pair selection318

method to enhance DPO alignment.319

Our approach consists of three main steps:320

1. Fine-tune the base model,MBase, on a target321

classification task to obtainMSFT.322

2. Construct a self-preference dataset using the323

anchor-based strategy, as detailed in Sections324

5.2 and 5.2.325

3. Apply DPO to align MSFT using the self-326

preference dataset, yielding the final model,327

MAnchor.328

1Degradation/improvement is measured as the deviation
from the equilibrium point established by the pairwise evalua-
tion of MBase vs. MBase, which is 50%.

5.1 Self-Preference Dataset Creation 329

We generate self-preference data for alignment as 330

follows: 331

1. Generate candidate responses: Sample N 332

diverse pairs of explanations and predictions 333

fromMSFT, denoted as {εni , ŷni }Nn=1, where 334

εni represents the explanation for the n-th pre- 335

diction ŷni corresponding to the prompt xi. 336

2. Score responses: Evaluate the self- 337

explanations using the methodology 338

described in Section 3.2, assigning a score 339

sni to each εni . To ensure a self-contained 340

alignment process, we useMBase as the judge 341

(MJudge)2. This approach eliminates the need 342

for external models during training. However, 343

it is important to note that we employ a model 344

from a different family for evaluation to 345

reduce potential biases. 346

3. Anchor Preference Pair Selection: Con- 347

struct preference pairs for the DPO phase 348

using the ANCHORALIGN methodology de- 349

tailed in Section 5.2. 350

5.2 ANCHORALIGN: Preference Pairs via 351

Anchor Selection 352

We propose ANCHORALIGN, a method that im- 353

proves preference pair selection by categorizing 354

model responses to a given input prompt into three 355

distinct groups—consistently correct, consistently 356

incorrect, and variable. Each category follows a 357

tailored strategy for constructing preference pairs, 358

which are subsequently used in the DPO phase. As- 359

sessing a model’s consistency for a given prompt 360

requires a reliable ground truth reference, or an- 361

chor. To achieve this, we utilize classification task 362

labels from the domain adaptation process as a 363

probing mechanism, as these labels are naturally 364

available in the settings we consider. 365

Preference Pairs for Consistently Correct 366

Prompts: For input prompts xi whereMSFT con- 367

sistently produces correct answers (i.e., ŷni = yi 368

for all n ∈ {1, . . . , N}), preference pairs are 369

constructed based on the quality of the explana- 370

tions. Let sni denote the score assigned by the 371

judgeMJudge to the n-th explanation εni for prompt 372

xi. We define two sets: Aw
i = {εni : sni = 373

maxj∈{1,...,N} s
j
i}, which contains all explanations 374

2We choose MBase instead of MSFT as the judge based on
the observation that MSFT exhibits a decline in explanation
quality (see Section 4).
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that achieve the highest score for prompt xi, and375

Al
i = {εni : sni < maxj∈{1,...,N} s

j
i}, which in-376

cludes all explanations with scores lower than the377

maximum for prompt xi.378

Preference Pairs for Variable Performance:379

For input prompts xi whereMSFT produces a mix380

of correct and incorrect predictions (i.e., ŷni ̸= yi381

for some n ∈ {1, . . . , N}), preference pairs are382

constructed contrastively. We define the set Bw
i =383

{εni : ŷni = yi}, which contains explanations as-384

sociated with correct predictions. From this set,385

we extract Aw
i ⊆ Bw

i , the subset of explanations386

with the highest scores assigned by MJudge, i.e.,387

Aw
i = {εni ∈ Bw

i : sni = maxj∈Bw
i
sji}. The388

set Al
i = {εni : ŷni ̸= yi and sni < maxj∈Aw

i
sji}389

contains explanations corresponding to incorrect390

predictions, with scores lower than the maximum391

score in Aw
i .392

Preference Pairs for Consistently Incorrect393

Prompts: For prompts where all predictions from394

MSFT are incorrect (i.e., ŷni ̸= yi for all n ∈395

{1, . . . , N}), all corresponding explanations are396

placed in the set Al
i. To generate a winning ex-397

planation, we employ theMBase model in a con-398

sultant role, similar to the LLM-as-a-Debater ap-399

proach proposed by Khan et al. (2024). Since the400

inference hyperparameters for the LLM in this con-401

sulting role might differ from those used during402

the generation of preference pairs, we refer to this403

model asMConsultant to avoid confusion. Specifi-404

cally, we provide the correct answer yi to the LLM405

and request an argument supporting this answer,406

which is then assigned to the set Aw
i as the winning407

explanation.408

Finally, preference pairs are constructed for each409

instruction prompt xi by randomly sampling εwi410

from Aw
i as the winning explanation and εli from411

Al
i as the losing explanation. The resulting prefer-412

ence pair is denoted as (xi, ε
w
i , ε

l
i). The detailed413

methodology is presented in Algorithm 1.414

6 Experiments415

In all experiments, we used416

Llama-3-8B-Instruct as our base model417

and evaluated four distinct model configurations:418

1. MBase: The unmodified base model.419

2. MSFT: A supervised fine-tuned version of420

MBase, trained exclusively on classification421

tasks to simulate scenarios where explanation422

annotations are unavailable.423

3. MRank (Baseline): Built upon MSFT, this 424

model was further refined using DPO with 425

a self-preference dataset composed of rank- 426

ordered preference pairs, derived solely from 427

judge-based evaluations of explanations. This 428

methodology follows prior works (Bai et al., 429

2022; Wang et al., 2023; Yuan et al., 2024; 430

Wu et al., 2024) and serves as our baseline for 431

measuring the performance improvements of 432

our proposed approach. 433

4. MAnchor (Ours): Like MRank, this model 434

underwent additional refinement using DPO. 435

However, instead of relying solely on judge- 436

based rankings, it utilized a self-preference 437

dataset constructed via our proposed prefer- 438

ence pair selection method, ANCHORALIGN, 439

as described in Section 5.2. 440

Both MRank and MAnchor incorporate an ad- 441

ditional DPO alignment phase with the self- 442

preference dataset. Throughout our comparisons, 443

we refer to these models collectively as self-aligned 444

models, distinguishing them fromMSFT. 445

6.1 Experimental Setup 446

Datasets: We selected four datasets for our 447

experiments: AQuA-Rat (Ling et al., 2017), 448

ARC-Challenge (Clark et al., 2018), LogiQA (Liu 449

et al., 2020), and OpenbookQA (Mihaylov et al., 450

2018). These datasets are established benchmarks 451

for reasoning tasks, requiring a challenging rea- 452

soning process, which makes them an ideal fit for 453

evaluating the quality of self-explanations. A key 454

factor in their selection was the size of their train- 455

ing sets, which provided a sufficient number of 456

input prompts to support the creation of the self- 457

preference dataset. For evaluation, we used the test 458

split of each dataset. For detailed dataset descrip- 459

tions, see Appendix F. 460

Self-Alignment Details: Appendix G provides 461

further insights into the self-alignment process, 462

which includes SFT-based domain adaptation, the 463

creation of the self-preference dataset, and the sub- 464

sequent alignment through DPO. 465

Evaluation: We evaluated our models along 466

two key dimensions: prediction accuracy and 467

self-explanation quality. To capture variability in 468

model outputs, we generated N = 16 explanation- 469

prediction pairs per input prompt. The inference 470

settings were consistent with those used to create 471

the self-preference dataset, with a temperature of 472
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Algorithm 1 Generating Preference Pairs Via Anchor Selection

1: Input: Instruction prompt xi, model predictions {ŷni }Nn=1, true label yi, judge modelMJudge, debater
modelMConsultant

2: Output: Preference pairs (xi, εwi , ε
l
i)

3: Initialize: Aw
i ← ∅, Al

i ← ∅
4: for each explanation εni do
5: Compute score sni fromMJudge
6: end for
7: if ŷni = yi for all n ∈ {1, . . . , N} then ▷ Consistently Correct Prompts
8: Aw

i ← {εni : sni = maxj∈{1,...,N} s
j
i}

9: Al
i ← {εni : sni = minj∈{1,...,N} s

j
i}

10: else if ŷni ̸= yi for some n ∈ {1, . . . , N} then ▷ Variable Performance Prompts
11: Bw

i ← {εni : ŷni = yi}
12: Aw

i ← {εni ∈ Bw
i : sni = maxj∈Bw

i
sji}

13: Al
i ← {εni : ŷni ̸= yi ∧ sni < maxj∈Aw

i
sji}

14: else ▷ Consistently Incorrect Prompts
15: Al

i ← {εni : ŷni ̸= yi for all n ∈ {1, . . . , N}}
16: Generate argument εConsultant

i usingMConsultant given yi
17: Aw

i ← {εConsultant
i }

18: end if
19: Sample εwi from Aw

i

20: Sample εli from Al
i

21: Return (xi, ε
w
i , ε

l
i)

T = 0.6, top-k set to 0.9, and the same prompt473

(see Appendix O).474

To assess the quality of the explanations, we475

used Mistral-Large-123B-Instruct-2407 and476

Qwen2.5-72B-Instruct as judges. We then477

conducted head-to-head comparisons of the self-478

explanation scores across all models.479

It is important to note that both the base and480

aligned models used Llama3-8B-Instruct, while481

the evaluation was conducted using judges from482

a different family of models. This distinction is483

crucial as it helps mitigate potential biases that484

could arise from using models within the same485

family, which often share training data.486

Ablation Study: To validate our design choices,487

we create variants of MAnchor by combining dif-488

ferent strategies outlined in Section 5.2 to con-489

struct the anchor-preference dataset. The vari-490

ants studied includeMAnchor (CC),MAnchor (CC+V),491

and MAnchor (CC+V+CI), where "Consistently Cor-492

rect" (CC), "Variant" (V), and "Consistently In-493

correct" (CI) denote the respective strategies. No-494

tably,MAnchor (CC+V+CI) represents the full version495

ofMAnchor, and the terms may be used interchange-496

ably throughout the discussion.497

6.2 Analysis of Self-Aligned Models 498

Prediction Accuracy: The self-preference dataset 499

used during the DPO phase is designed with the 500

primary objective of improving explanation qual- 501

ity rather than maximizing accuracy. However, it 502

is essential to ensure that enhancing the models’ 503

self-explanation capabilities does not compromise 504

their performance on the primary task, as measured 505

by classification accuracy. To assess this, we com- 506

pute the average classification accuracy3 and the 507

standard deviation across multiple evaluation runs 508

(N = 16), as shown in Table 1. 509

The results indicate that the self-aligned mod- 510

els, MRank and MAnchor, across all tested strat- 511

egy combinations, either maintain or improve upon 512

the classification accuracy gains achieved by the 513

seed model, MSFT, relative to the base model, 514

MBase. Notably, while the accuracy performances 515

of MAnchor and MRank are similar across most 516

tasks, there is one exception:MAnchor significantly 517

outperformsMRank on the Aqua-Rat dataset, with 518

statistical significance. Further analysis of the vari- 519

ability inMAnchor’s performance across different 520

datasets is provided in Section 6.3. 521

3The maximum value is bolded, and results marked with a
(*) indicate no statistical difference from the top performer.
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Dataset MBase
Acc. (%)

MAlign
Type

MAlign
Acc. (%)

ε (W + T
2 ) Rate (%) ↑

JQwen JMistral JAvg

MSFT 47.7±2.7 47.2 41.1 44.2
MRank (Baseline) 48.3±2.1 48.3 41.5 44.9

AQuA Rat 47.1±2.9 MAnchor (CC) 49.3±3.1
∗ 49.0 43.3 46.2

MAnchor (CC+V) 48.3±2.9 48.1 42.6 45.3
MAnchor (CC+V+CI) 51.1±3.0 49.5 46.3 47.9

MSFT 81.0±0.7 32.0 41.3 36.7
MRank (Baseline) 81.9±1.1

∗ 48.2 49.2 48.7
ARC-Challenge 76.4±0.7 MAnchor (CC) 81.6±1.3

∗ 46.7 48.0 47.3
MAnchor (CC+V) 82.0±1.1 48.7 49.7 49.2
MAnchor (CC+V+CI) 82.0±0.9 52.1 52.4 52.3

MSFT 45.2±0.7 34.6 42.6 37.6
MRank (Baseline) 46.0±1.5

∗ 45.0 47.8 46.4
LogiQA 41.4±1.1 MAnchor (CC) 45.8±1.4

∗ 46.8 49.2 48.0
MAnchor (CC+V) 46.1±1.7

∗ 45.2 48.1 46.7
MAnchor (CC+V+CI) 46.6±2.2 50.9 51.3 51.1

MSFT 87.4±1.1 36.2 46.3 41.3
MRank (Baseline) 87.0±1.1

∗ 45.1 48.9 46.5
OpenbookQA 71.7±1.3 MAnchor (CC) 87.1±0.5

∗ 45.4 49.2 47.3
MAnchor (CC+V) 87.4±0.8 46.0 49.6 47.8
MAnchor (CC+V+CI) 87.0±0.9

∗ 46.9 49.6 48.3

Table 1: Comparison of Aligned Models. The table presents the average accuracy alongside pairwise evaluations
of self-explanation quality. Both base and aligned models use LLama3-8B-Instruct, while pairwise evaluations
are conducted using Mistral-Large-Instruct-2407 and Qwen2.5-72B-Instruct as judges. Additionally, in the
ablation study, we report the performance ofMAnchor under various strategy combinations. These strategies include
Consistently Correct (CC), Variant (V), and Consistently Incorrect (CI).

Self-Explanation Quality: Pairwise evaluations522

of self-explanation quality (see Table 1) show523

that the initial decline in explanation performance524

observed in MSFT is partially inherited by both525

MRank and MAnchor, since they both use MSFT526

as the seed model during the DPO alignment527

phase. Nevertheless, both MRank and MAnchor528

achieve significant improvements in explanation529

quality overMSFT, withMAnchor demonstrating530

the strongest performance across benchmarks and531

evaluation judges. When compared to the base532

model,MAnchor shows similar performance, win-533

ning half of the benchmarks, and significantly nar-534

rows the gap in explanation quality introduced by535

MSFT on the remaining benchmark datasets. Re-536

garding the ablation study, we observe that the537

highest explanation quality is achieved when the538

strategies (CC), (V), and (CI) are combined.539

6.3 Impact of Preference Pairs Category 540

Distribution 541

We define λ as the proportion of the self-preference 542

dataset used to align MAnchor, corresponding to 543

preference pairs selected under the (CI) or (V) 544

strategies (see Appendix J). 545

Since the (CI) and (V) cases are not explicitly 546

distinguished—instead, they are treated the same as 547

(CC) cases—when the DPO alignment phase relies 548

solely on judge-assigned scores (as inMRank), λ 549

provides valuable insight into the improvements in 550

both accuracy and explanation quality achieved by 551

MAnchor compared toMRank, relative to dataset- 552

specific characteristics. 553

In the case ofMAnchor, the (CI) and (V) strate- 554

gies ensure—assuming the self-explanation is faith- 555

ful—that the winning explanation εwi supports the 556

ground-truth label yi. For the (V) strategy, this is 557

achieved by sampling εwi from the set Bw
i = {εni : 558
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Figure 1: Impact of Preference Pairs Category Dis-
tribution: Presents the Relative Gains (RG) (see Ap-
pendix K) in accuracy (left) and JAvg betweenMAnchor
andMRank (right) with respect to λ.

ŷni = yi}. Under the (CI) strategy, MConsultant559

is employed to provide arguments that explicitly560

support yi.561

In contrast, MRank selects preference pairs562

solely based on scores assigned by judges during563

dataset creation. As a result, it does not guarantee564

that the winning explanations, εwi , will support the565

ground-truth label yi. The likelihood of selecting566

cases where εwi aligns with an outcome different567

from yi increases, particularly as λ grows.568

We evaluated these improvements by analyzing569

the Relative Gains (RG) (see Appendix K) in ac-570

curacy and the average explanation quality score571

assigned by judges, JAvg, between MAnchor and572

MRank in relation to λ (see Figure 1). In both573

cases, we observed a trend indicating thatMAnchor574

demonstrates a greater relative improvement com-575

pared toMRank as λ increases. Conversely, when576

the alignment dataset consists primarily of (CC)577

instances, the performance ofMAnchor andMRank578

remains comparable. This supports our design prin-579

ciple that tailoring alignment strategies based on580

model behavior is crucial for improving the quality581

of self-preference datasets and avoiding the rein-582

forcement of problematic behavior.583

7 Analysis of Individual Evaluation 584

Dimensions 585

Appendix H reports the average scores for 586

each evaluation criterion used to assess self- 587

explanations, as outlined in Section 3.1, across all 588

evaluated models and benchmark datasets. 589

Overall, the self-aligned models outperform 590

MSFT across all evaluation criteria, withMAnchor 591

consistently achieving better results thanMRank. 592

Additionally, we observe that the degradation 593

in self-explanation quality due to SFT varies sig- 594

nificantly depending on the dataset used for fine- 595

tuning. Two notable trends emerge from the anal- 596

ysis. First, for more complex tasks—where com- 597

plexity is measured by lower test accuracy—such 598

as AQuA-Rat and LogiQA, the decline in explana- 599

tion quality is more pronounced across all criteria. 600

Second, evaluation dimensions for which the base 601

model originally received lower scores tend to ex- 602

perience a more significant drop in performance 603

after SFT. 604

8 Conclusion 605

In this work, we introduce ANCHORALIGN, an 606

end-to-end framework for aligning LLMs on classi- 607

fication tasks while enhancing their ability to gen- 608

erate high-quality self-explanations. Our approach 609

addresses a key challenge in real-world applica- 610

tions: the scarcity of annotated rationales, which 611

limits direct supervision for explanation quality. 612

ANCHORALIGN leverages ground-truth labels 613

inherently available in classification datasets for 614

domain adaptation to construct self-preference 615

datasets. It categorizes model responses into three 616

groups—consistently correct, consistently incor- 617

rect, and variable—applying targeted strategies to 618

improve preference pair selection. These anchor 619

preference pairs are then used in the DPO phase to 620

refine explanation quality. 621

Our empirical results show that ANCHORALIGN 622

consistently mitigates the degradation in explana- 623

tion quality typically caused by SFT, ensuring mod- 624

els remain interpretable while maintaining clas- 625

sification performance gains. Furthermore, we 626

demonstrate that ANCHORALIGN outperforms self- 627

alignment strategies that rely solely on judge-based 628

evaluations for preference pair selection. 629

9 Limitations 630

We acknowledge some limitations in our approach. 631

First, evaluating the model’s consistency on a given 632

8



input prompt requires a anchor—ground truth ref-633

erence. Consequently, the selection of preference634

pairs via the anchor strategy relies on a classi-635

fication task as the probing mechanism, which636

restricts its applicability. Second, when ranking637

the quality of self-explanations, we assign equal638

weights across all evaluation dimensions. This uni-639

form weighting may not accurately reflect the vary-640

ing significance of different aspects of explanation641

quality, which can differ depending on the user or642

specific application. Moreover, this approach may643

overlook instances where individual explanations644

degrade in separate criteria, potentially leading to645

preference pairs where score differences arise from646

unrelated factors.647
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A Quality Criteria for Effective890

Self-Explanations891

We evaluate self-explanations based on the follow-892

ing criteria 4:893

1. Logical coherence: The explanation should894

follow a clear and logical reasoning process,895

with all components cohesively connected to896

form a unified, non-contradictory narrative.897

2. Clarity: The explanation must present ideas898

clearly and precisely, using appropriate termi-899

nology to effectively communicate complex900

concepts without unnecessary complexity.901

3. Relevance: The explanation should compre-902

hensively address the task at hand, directly an-903

swering the specific context or requirements904

without omitting critical information.905

4Appendix L provides a complementary analysis of the cor-
relation between LLM and human judges across the evaluation
criteria.

4. Depth of argumentation: The explanation 906

must provide strong reasoning and credible 907

evidence to support its conclusions, reflecting 908

a deep understanding of the task. 909

5. Factual accuracy: This criterion assesses the 910

correctness of individual claims within the 911

explanation. While related to truthfulness, 912

factual accuracy focuses on whether specific 913

statements align with established knowledge. 914

B Pairwise Model Evaluation 915

To compare the performance of two models, de- 916

noted asM1 andM2, we perform a pairwise eval- 917

uation of the self-explanations generated for a given 918

prompt xi. Each model produces N explanations, 919

and we compare each explanation fromM1 with 920

every explanation fromM2, resulting in N2 pair- 921

wise comparisons. 922

For a given comparison between the n-th expla- 923

nation from modelM1 and the m-th explanation 924

from model M2, where n,m ∈ {1, . . . , N}, we 925

compare the corresponding scores, sni (M1) and 926

smi (M2). A win forM1 is recorded if the score 927

fromM1 is strictly greater than that fromM2: 928

sni (M1) > smi (M2) 929

Conversely, a loss for M1 occurs if the score 930

fromM1 is strictly less than the score fromM2: 931

sni (M1) < smi (M2) 932

A tie is defined when both scores are equal: 933

sni (M1) = smi (M2) 934

For each prompt xi, we count the total number 935

of wins, losses, and ties across all N2 comparisons 936

between the explanations from both models. To 937

summarize the performance of the models across 938

the entire dataset, we compute the win rate, tie rate, 939

and loss rate. 940

The win rate W (M1,M2) is the average pro- 941

portion of pairwise comparisons in which model 942

M1 outperforms modelM2 across all prompts in 943

the set X . It is computed as: 944

W (M1,M2) =
1

|X |
∑
xi∈X

(
1

N2

N∑
n=1

N∑
m=1

⊮win

)
945

Here, X is the set of all prompts, and ⊮[·] is the 946

indicator function, which returns 1 if the condition 947
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inside the brackets is true (i.e., ifM1 wins) and 0948

otherwise.949

Similarly, we define the tie rate T (M1,M2) as950

the proportion of pairwise comparisons where the951

models perform equally:952

T (M1,M2) =
1

|X |
∑
xi∈X

(
1

N2

N∑
n=1

N∑
m=1

⊮tie

)
953

The loss rate L(M1,M2) captures the propor-954

tion of comparisons where M1 performs worse955

thanM2:956

L(M1,M2) =
1

|X |
∑
xi∈X

(
1

N2

N∑
n=1

N∑
m=1

⊮loss

)
957

To measure overall performance, we define the958

win overall rate, combining wins and half of the959

ties:960

Woverall = W +
1

2
T.961

Throughout the evaluations presented in this962

work,M2 refers to the baseline modelMBase.963

C Judge Component964

The judge modelMJudge evaluates the quality of965

self-explanation, denoted as εi, associated with966

an input prompt xi. based on predefined criteria,967

which are elaborated in Section 3.1. The evaluation968

process proceed as follows:969

1. For each criterion κ,MJudge assigns a qualita-970

tive verdict vi,κ from the set {excellent, good,971

fair, poor, bad}. The prompt used byMJudge972

is provided in Appendix M.973

MJudge(xi, εi)→ {vi,κ} for κ ∈ {1, . . . ,K}974

2. Each verdict vi,κ is mapped to a numerical975

score si,κ (see Appendix C.1).976

3. The overall score for an explanation, si, is977

computed as the sum of scores across all cri-978

teria:979

si =

K∑
k=1

si,k980

C.1 Judge Score Mapping 981

Each verdict vi,κ, assigned byMJudge for criterion 982

κ on self-explanation εi corresponding to prompt 983

xi, is mapped to a numerical score si,κ as follows: 984

si,κ =



1.0 if vi,κ = Excellent,

0.8 if vi,κ = Good,

0.6 if vi,κ = Fair,

0.2 if vi,κ = Poor,

0.0 if vi,κ = Bad.

985

Higher scores si,κ indicate superior perfor- 986

mance. 987

D Consultant Component 988

In cases where the model MSFT behaves consis- 989

tently incorrectly for the input prompt xi, we em- 990

ploy the modelMBase in a consultant role. Specifi- 991

cally, we provide the correct answer yi to the LLM 992

and request an explanation εi supporting this an- 993

swer. 994

MConsultant(xi, yi)→ εi 995

E Inference Parameters 996

Table 2 summarizes the inference parameters, in- 997

cluding temperature and top-k, used for each com- 998

ponent, such as the judge, consultant, and sampler. 999

Component Temperature Top-k

Judge 0.0
Consultant 0.5 0.9
Sampler 0.6 0.9

Table 2: Inference parameters per component

F Dataset Details 1000

All datasets used in our experiments are established 1001

reasoning benchmarks. The questions, along with 1002

related context and answer options, were inserted 1003

into our template (provided in 10) and used as input 1004

prompts for the model. 1005

F.1 AQuA-Rat 1006

AQuA-Rat (Ling et al., 2017) contains approxi- 1007

mately 100,000 algebraic word problems, each ac- 1008

companied by a natural language rationale explain- 1009

ing the solution steps. Each problem includes a 1010
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question and five answer options. Due to compu-1011

tational constraints, we sampled 5,000 examples1012

from the training set and used 254 test samples for1013

our experiments. We utilized only the questions1014

and answer options and excluded the provided ratio-1015

nales since our study aims to enhance the model’s1016

ability to generate self-explanations in natural lan-1017

guage while performing the primary classification1018

task, without relying on human-annotated reason-1019

ing patterns.1020

F.2 ARC-Challenge1021

The ARC-Challenge dataset (Clark et al., 2018)1022

is a subset of the ARC dataset containing grade-1023

school level, multiple-choice science questions. We1024

used 1,119 training samples and 1,172 test sam-1025

ples from ARC-Challenge dataset. These samples1026

are selected for being challenging, as they could1027

not be answered correctly by either retrieval-based1028

or word co-occurrence algorithms. In our exper-1029

iments, we incorporated the questions and their1030

corresponding four answer options. We omitted1031

the associated corpus of sentences to focus purely1032

on the model’s reasoning capabilities rather than1033

external knowledge retrieval.1034

F.3 LogiQA1035

LogiQA (Liu et al., 2020) consists of logical rea-1036

soning problems derived from the National Civil1037

Servants Examination of China. The questions are1038

designed to assess critical thinking and problem-1039

solving abilities, requiring examinees to read a con-1040

text passage and answer questions based on logical1041

reasoning. In our experiments, we utilized English1042

versions of 7,376 training samples and 651 test1043

samples, including the context passages, questions,1044

and answer options. The context passages were re-1045

tained because they were integral to understanding1046

and answering the questions.1047

F.4 OpenBookQA1048

OpenBookQA (Mihaylov et al., 2018) features1049

elementary-level science questions requiring multi-1050

step reasoning and common knowledge applica-1051

tion. The dataset simulates an "open book" exam1052

setting to assess understanding beyond simple fact1053

retrieval. It includes a corpus of scientific facts1054

alongside multiple-choice questions, each with four1055

answer options. In our experiments, we used 4,9571056

training samples and 500 test samples while ex-1057

cluding the related facts to align with our goal of1058

developing self-explanation capabilities without 1059

leveraging pre-existing explanatory content. 1060

G Self-Alignment Details 1061

G.1 SFT Training Details 1062

ForMSFT, we used the AdamW optimizer with a 1063

learning rate of 5×10−5 for one epoch, following a 1064

cosine schedule with 10% warmup steps. Gradient 1065

clipping was set to 0.3, and we used an effective 1066

batch size of 12. Loss was computed only on the 1067

assistant’s completions. Instead of fine-tuning the 1068

entire model, we applied a LoRA adapter (α = 128, 1069

dropout = 0.05, rank r = 256) to all linear layers. 1070

LoRA adapters were used to accelerate training 1071

and to act as a regularization method (Biderman 1072

et al., 2024), addressing the overfitting tendencies 1073

of DPO (Thakkar et al., 2024), which is applied 1074

during the later alignment phase. 1075

G.2 Self-Preference Dataset 1076

To ensure the integrity of our evaluation process, 1077

we constructed separate self-preference datasets 1078

for each benchmark. These datasets were created 1079

using input prompts specific to each task, ensuring 1080

that the DPO alignment data remained unaffected 1081

by cross-task contamination. This approach pre- 1082

vents potential result inflation, which could occur if 1083

models were aligned across diverse tasks—unlike 1084

SFT models, which are fine-tuned on a single clas- 1085

sification task at a time. 1086

For aligningMRank andMAnchor, we generated 1087

the self-preference dataset by sampling N = 4 1088

responses fromMSFT for each input prompt (with 1089

settings: temperature T = 0.6 and top-k value of 1090

0.9). The specific prompt used for this process is 1091

provided in Appendix O. 1092

In cases where the responses were consistently 1093

incorrect, we employedMConsultant to generate can- 1094

didate explanations based on the correct answer yi. 1095

The consultant model was configured with parame- 1096

ters T = 0.5 and top-k = 0.9. The corresponding 1097

prompt used for generating these explanations is 1098

detailed in Appendix N. 1099

The responses were scored by MJudge, which 1100

was the same base model used in the alignment 1101

process, ensuring a self-contained procedure. This 1102

setup contrasts with the evaluation phase, where a 1103

more capable model, drawn from a different fam- 1104

ily of models, serves as the judge. The scoring 1105

methodology followed the approach described in 1106

Section 3.2, withMJudge utilizing fixed inference 1107
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parameters (T = 0). The specific prompt used by1108

MJudge is detailed in Appendix M.1109

ForMRank, preference pairs were selected based1110

on the assigned scores, with the highest-scoring1111

explanation chosen as the winner, and the losing1112

explanation randomly selected from the remaining1113

candidates. ForMAnchor, preference pairs were se-1114

lected using the methodology described in Section1115

5.2.1116

G.3 DPO Training Details1117

For DPO-aligned models (MRank, MAnchor), we1118

used similar hyperparameters as in the SFT phase1119

but reduced the learning rate to 5×10−7 and trained1120

for 2.6k steps with an effective batch size of 6. The1121

DPO process used a β value of 0.1 and updated the1122

LoRA weights obtained during SFT.1123

G.4 Infrastructure1124

All LLMs used in this study were directly down-1125

loaded from Hugging Face. Regarding computa-1126

tional costs, each stage—including SFT, building1127

the preference dataset, and DPO alignment—was1128

executed on a single NVIDIA H100 or H200 GPU,1129

completing within 24 hours.1130

H Analysis of Individual Evaluation1131

Dimensions1132

Figure 2 presents the average scores for each eval-1133

uation criterion used to assess self-explanations, as1134

described in Section 3.1, for all evaluated models1135

across the benchmark datasets.1136

I Generated Instructions1137

Table 3 presents the distribution of cate-1138

gories—Consistently Correct (CC), Consistently1139

Incorrect (CI), and Variable (V)—across the1140

datasets used during the DPO alignment phase of1141

MAnchor.1142

J Definition λ1143

We define λ as the proportion of the self-preference1144

dataset used to align MAnchor, corresponding to1145

preference pairs selected under the (CI) or (V)1146

strategies:1147

λ =
CI + V

CC + CI + V
(1)1148

Dataset Category Samples Ratio

AQuA-Rat
V 1196 41.17

CC 1010 34.77
CI 699 24.06

ARC-Chg.
V 62 8.09

CC 645 84.20
CI 59 7.70

LogiQA
V 1251 26.86

CC 2487 53.39
CI 920 19.75

OpenbookQA
V 176 5.13

CC 3178 92.60
CI 78 2.27

Table 3: Distribution of anchor categories.

K Relative Gains: Measuring 1149

Self-Alignment Improvement 1150

The effectiveness of self-alignment strategies in 1151

improving explanation quality and classification 1152

accuracy can be assessed by measuring the perfor- 1153

mance gains ofMAnchor relative to a ranking-based 1154

self-alignment approach, both evaluated against the 1155

baseline supervised fine-tuning (MSFT). This im- 1156

provement is captured by the Relative Gain (RG) 1157

metric. 1158

K.1 Individual Gains 1159

Performance gains are first computed relative to 1160

the SFT baseline. Given a performance metric 1161

Metric(·), which can represent either accuracy or 1162

explanation quality, the individual gains for each 1163

approach are defined as: 1164

GRank = Metric(MRank)−Metric(MSFT) (2) 1165

GAnchor = Metric(MAnchor)−Metric(MSFT)
(3) 1166

K.2 Relative Gain (RG) 1167

The Relative Gain quantifies the effectiveness of 1168

MAnchor compared toMRank: 1169

RG =
GAnchor

GRank
− 1 (4) 1170

This metric captures the additional improvement 1171

achieved by MAnchor beyond what is obtained 1172
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Figure 2: Average Self-Explanation Scores per Evaluation Criterion. Average scores for each evaluation criterion
used to assess self-explanations, as described in Section 3.1.

through ranking-based self-alignment alone. A pos-1173

itive RG indicates thatMAnchor provides greater1174

enhancement in explanation quality or accuracy1175

compared to ranking-based methods, while an RG1176

near zero suggests comparable performance.1177

L Correlation with Human Judgments1178

We conducted a complementary human evaluation1179

to assess whether the LLM-as-a-Judge approach1180

aligns with human raters across the evaluation cri-1181

teria.1182

This evaluation provides insight into whether the1183

criteria used by the LLM-based judge are effec-1184

tively captured by the model. A lack of positive1185

correlation with human ratings would indicate that1186

a specific criterion is not well understood by the 1187

LLM, suggesting the need for modification or re- 1188

moval from the evaluation framework. 1189

While this experiment serves as supporting evi- 1190

dence for the approach, it is not a scalable method 1191

for general evaluation. 1192

For this study, we sampled 30 explanations 1193

generated by either an aligned model or a base 1194

model across 10 distinct questions from the LogiQA 1195

dataset, which covers a diverse range of logical rea- 1196

soning problems across different domains. 1197

To evaluate these explanations, we em- 1198

ployed three state-of-the-art language mod- 1199

els—Mistral-Large-Instruct-2407 and 1200

Qwen2.5-72B-Instruct—as automated judges. 1201
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These models rated the explanations on a five-point1202

scale: Bad, Poor, Fair, Good, and Excellent.1203

In addition, the same set of questions were in-1204

cluded in a survey administered to multiple human1205

raters. Each rater independently evaluated the qual-1206

ity of the explanations based on a specific criterion1207

(e.g., Depth of Argumentation). To enhance diver-1208

sity and reliability, each explanation was evaluated1209

by at least three human raters, all of whom volun-1210

tarily participated in the study.1211

Overall, the participant pool consisted of a mix1212

of graduate and undergraduate volunteers, with1213

no compensation provided. Participants were in-1214

formed about how their data would be used, and1215

the experimental design received ethics approval.1216

The demographic breakdown was 22% female and1217

78% male.1218

We computed the Spearman correlation between1219

LLM ratings and human consensus ratings to eval-1220

uate the strength and direction of their monotonic1221

relationship. Results are summarized in Table 4.1222

The analysis revealed moderate posi-1223

tive correlations for both judge models.1224

Mistral-Large-Instruct-2407 exhibited1225

the strongest alignment with human judgments,1226

consistently achieving correlation coefficients1227

above 0.45 across all criteria (p < 0.01).1228

In contrast, Qwen2.5-72B-Instruct showed1229

more variable performance. While it achieved sig-1230

nificant correlations for Clarity (ρ = 0.48, p <1231

0.01) and Factual Accuracy (ρ = 0.45, p < 0.02),1232

its correlation for Relevance was notably weaker1233

and non-significant (ρ = 0.28, p = 0.15).1234

Figure 5 visualizes the relationship between1235

LLM ratings and human consensus scores across1236

five evaluation criteria. Each point represents the1237

mean LLM rating for a given human consensus1238

score, with error bars indicating standard devia-1239

tion. The plots indicate a positive correlation with1240

human judgments; however, sensitivity to specific1241

criteria varies. While human raters utilize the full1242

scoring range, LLMs—particularly for criteria like1243

Clarity—tend to concentrate ratings within the mid-1244

to-high range while still maintaining a positive cor-1245

relation.1246

Notably, (a) Mistral-Large-Instruct-24071247

demonstrates the most consistent alignment1248

with human judgments, showing a steadily1249

increasing relationship compared to (b)1250

Qwen2.5-72B-Instruct.1251
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Figure 3: Mistral-Large-2407
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Figure 4: Qwen2.5-72B-Instruct

Figure 5: LLM vs Human Consensus Ratings Across Evaluation Criteria: Mean LLM ratings plotted against
human consensus scores for each evaluation dimension with standard deviation error bars.

LLM-as-a-Judge Criteria Spearman Correlation p-value

Factual Accuracy 0.51 0.01∗

Logical Coherence 0.49 0.01∗

Mistral-Large Clarity 0.52 0.01∗

Instruct-2407 Relevance 0.45 0.01∗

Depth of Argumentation 0.50 0.01∗

Factual Accuracy 0.45 0.02∗

Logical Coherence 0.34 0.07

Qwen2.5 Clarity 0.48 0.01∗

72B-Instruct Relevance 0.28 0.15

Depth of Argumentation 0.40 0.04∗

Table 4: Analysis of Agreement Between LLM and Human Evaluations: A comparative analysis of agreement
between LLM-based and human consensus ratings using Spearman Correlation (measuring ranking consistency).
Results are broken down by evaluation criteria for each LLM judge, with p-values indicating statistical significance
(∗p < 0.05).
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M Judge prompt1252

Table 5 presents the complete prompt that guides the judge model in evaluating the self-explanations.1253

Table 5: Judge prompt.

Prompt Judge

System: You are an expert judge tasked with evaluating the quality and correctness of a STATEMENT in
response to a given QUESTION.

Your goal is to assess whether the STATEMENT accurately and comprehensively answers the QUESTION
while providing sound reasoning and clear explanations. Be vigilant for any errors, misleading information,
or gaps in the reasoning.

Evaluate the STATEMENT based on the following criteria:

• Factual Accuracy: Are all specific claims, data points, and facts in the STATEMENT verifiably correct?

• Logical Coherence: Does the STATEMENT follow a clear, logical sequence of reasoning without
contradictions, and do all parts logically connect to form a cohesive and unified explanation?

• Clarity and Comprehensibility: Is the STATEMENT expressed clearly and precisely, using appropriate
terminology and effectively explaining complex ideas?

• Relevance and Completeness: Does the STATEMENT fully address all relevant aspects of the QUESTION,
ensuring that it directly responds to the specific context or requirements, leaving no key details
omitted?

• Depth of Argumentation: Does the STATEMENT provide strong reasoning and credible evidence to support
its conclusions?

For each criterion, select one of the following assessments:

• EXCELLENT: The STATEMENT exemplifies this criterion, setting a high standard.

• GOOD: The STATEMENT meets this criterion well, with only minor room for improvement.

• FAIR: The STATEMENT adequately meets this criterion but has noticeable areas for enhancement.

• POOR: The STATEMENT partially meets this criterion but requires significant revisions.

• BAD: The STATEMENT fails to meet this criterion.

Provide the assessments (EXCELLENT/GOOD/FAIR/POOR/BAD) for each criterion without additional justification.
Respond with the following structure:

• Factual Accuracy: [Assessment]

• Logical Coherence: [Assessment]

• Clarity: [Assessment]

• Relevance: [Assessment]

• Depth of Argumentation: [Assessment]

User: Here is the question: [QUESTION]

Here is the statement you need to evaluate: [STATEMENT]
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N Consultant prompt 1254

Table 6: Consultant prompt.

Consultant prompt

System: You will act as an expert consultant. You will be shown a QUESTION and one OPTION to argue for.
Your goal is to construct convincing arguments supporting your option as correct.

Maintain a scholarly yet assertive tone, focusing on evidence-based analysis while crafting your
arguments and answering questions. Avoid phrases like "In summary", "In conclusion", or similar at the end
of your argument. Be as concise as possible.

Your argument must fulfill the following criteria:

• Truthfulness: Any factual information mentioned in your argument must be true and accurate.

• Logical Consistency: Your argument must be logically sound, free of logical fallacies or
contradictions.

• Clarity: Your argument directly addresses and answers the question. It is clear, concrete, concise,
and well-structured.

User: Here is the question: [QUESTION]

Here is option you need to back up: [OPTION]

O Prompts inference per task 1255

Table 7: Prompt for LogiQA task.

Prompt for LogiQA task

System: You will be presented with a CONTEXT passage and a corresponding QUESTION with four answer CHOICES.
Carefully read the passage to understand its content. Then, read the QUESTION and CHOICES thoroughly.
Choose the correct CHOICE and explain your reasoning.

Your response will consist of two parts: an EXPLANATION followed by your selected CHOICE.

Enclose your explanation within tags as follows:
<explanation>[Your EXPLANATION here]</explanation>

Enclose your chosen choice (e.g., if the question has only 4 choices, then A, B, C, or D) within
tags as follows:
<choice>[Your CHOICE here]</choice>

User: Context: [CONTEXT]

Question: [QUESTION]

Choices: [CHOICES]
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Table 8: Prompt for AQuA-Rat task.

Prompt for AQuA-Rat task

System: You will be given a QUESTION along with multiple answer CHOICES, involving a math problem that
requires step-by-step reasoning to determine the correct answer. Carefully read the QUESTION and CHOICES.
Choose the correct CHOICE and explain your reasoning.

Your response will consist of two parts: an EXPLANATION followed by your selected CHOICE.

Enclose your explanation within tags as follows:
<explanation>[Your EXPLANATION here]</explanation>

Enclose your chosen choice (e.g., if the question has only 4 choices, then A, B, C, or D) within
tags as follows:
<choice>[Your CHOICE here]</choice>

User: Context: [CONTEXT]

Question: [QUESTION]

Choices: [CHOICES]

Table 9: Prompt for ARC-Challenge task.

Prompt for ARC-Challenge task

System: You will be presented a QUESTION with multiple answer CHOICES. Carefully read the QUESTION and
CHOICES. Choose the correct CHOICE and explain your reasoning.

Your response will consist of two parts: an EXPLANATION followed by your selected CHOICE.

Enclose your explanation within tags as follows:
<explanation>[Your EXPLANATION here]</explanation>

Enclose your chosen choice (e.g., if the question has only 4 choices, then A, B, C, or D) within
tags as follows:
<choice>[Your CHOICE here]</choice>

User: Context: [CONTEXT]

Question: [QUESTION]

Choices: [CHOICES]

Table 10: Prompt for OpenbookQA task.

Prompt for OpenbookQA task

System: You will be presented a QUESTION with multiple answer CHOICES. Carefully read the QUESTION and
CHOICES. Choose the correct CHOICE and explain your reasoning.

Your response will consist of two parts: an EXPLANATION followed by your selected CHOICE.

Enclose your explanation within tags as follows:
<explanation>[Your EXPLANATION here]</explanation>

Enclose your chosen choice (e.g., if the question has only 4 choices, then A, B, C, or D) within
tags as follows:
<choice>[Your CHOICE here]</choice>

User: Context: [CONTEXT]

Question: [QUESTION]

Choices: [CHOICES]
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