

PERTURBATIONS MATTER: SENSITIVITY-GUIDED HALLUCINATION DETECTION IN LLMs

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Hallucination detection is essential for ensuring the reliability of large language
 012 models. Internal representation-based methods have emerged as the prevailing
 013 direction for detecting hallucinations, yet the internal representations often fail
 014 to yield clear separability between truthful and hallucinatory content. To address
 015 this challenge, we study the separability of the sensitivity to prompt-induced per-
 016 turbations in the internal representations. A theory is established to show that,
 017 with non-negligible probability, each sample admits a prompt under which truthful
 018 samples exhibit greater sensitivity to prompt-induced perturbations than hallucina-
 019 tory samples. When the theory is applied to the representative datasets, the prob-
 020 ability reaches nearly 99%, suggesting that sensitivity to perturbations provides a
 021 discriminative indicator. Building on this insight, we propose a theory-informed
 022 method Sample-Specific Prompting (SSP), which adaptively selects prompts to
 023 perturb the model’s internal states and measures the resulting sensitivity as a de-
 024 tection indicator. Extensive experiments across multiple benchmarks demonstrate
 025 that SSP consistently outperforms existing hallucination detection methods, vali-
 026 dating the practical effectiveness of our method SSP in hallucination detection.

1 INTRODUCTION

029 Large language models (LLMs) have shown remarkable performance in natural language under-
 030 standing and generation tasks (Achiam et al., 2023; Grattafiori et al., 2024). However, hallucination
 031 in generated text remains a critical challenge, arising when LLMs produce outputs that are gram-
 032 matically and logically coherent but lack factual accuracy or verifiable evidence (Joshi et al., 2017;
 033 Lin et al., 2022a). Such hallucinations undermine user trust and pose risks in high-stakes areas such
 034 as healthcare, law, and scientific research (Ji et al., 2023; Liu et al., 2024b). To address this issue,
 035 hallucination detection has attracted extensive attention in recent research (Manakul et al., 2023).

036 Previous detection methods can be roughly divided into two main categories: self-assessment (Ka-
 037 davath et al., 2022; Zhou et al., 2023; Lin et al., 2022b) and internal representation-based meth-
 038 ods (Du et al., 2024; Azaria & Mitchell, 2023; Marks & Tegmark, 2024; Yin et al., 2024). Self-
 039 assessment estimates the factuality of a response by leveraging the confidence in the model output.
 040 Internal representation-based methods primarily leverage the embeddings of off-the-shelf LLMs to
 041 classify outputs as either truthful or hallucinatory. The internal representation-based methods gen-
 042 erally outperform self-assessment, and thus have emerged as the prevailing research direction.

043 Despite notable progress, the internal representation-based methods (Yin et al., 2024; Du et al.,
 044 2024; Kossen et al., 2024) face fundamental bottlenecks for detection, which impose inherent limits
 045 on their future development. Recent work (Park et al., 2025) demonstrates that the internal repre-
 046 sentations of LLMs frequently *fail to provide a clear separation between truthful and hallucinatory*
 047 *content* (see Figure 1a). As a result, the effectiveness of internal representation-based methods is in-
 048 herently limited by the separability of internal representations. This motivates the a critical question:
 049 *is it possible to overcome the inherent separability bottleneck of internal representations?*

050 To tackle this question, we start from an empirical observation: in the experimental setup of Figure
 051 1b, using the sensitivity of prompt-induced perturbations in internal representations as an evaluation
 052 score yields *near-perfect separability* between truthful and hallucinatory samples. To demystify
 053 this insightful observation, we develop a theory (see Section 4) stating that *for each sample, there
 exists an associated prompt, and with non-negligible probability, the sensitivity of truthful samples*

Figure 1: Empirical analysis conducted on 200 randomly selected samples from the TruthfulQA dataset (Lin et al., 2022a). (a) A logistic regression model was fitted on internal representations, showing weak separability. (b) For each sample, we apply an individually optimized prompt perturbation and measure its sensitivity using the cosine similarity between representations before and after perturbation. We find that this sensitivity provides effective separability between truthful and hallucinatory samples. Details for (a) and (b) are provided in Appendix B.

to prompt-induced perturbations exceeds that of the hallucinatory samples. We further apply our theory on the representative datasets (Reddy et al., 2019; Lin et al., 2022a; Joshi et al., 2017; Clark et al., 2020), showing that the probability reaches nearly 99%, thereby statistically guaranteeing that the sensitivity to prompt-induced perturbations in internal representations, when used as an evaluation score, does not suffer from the separability bottleneck.

In light of the above analysis, we propose a novel method *Sample-Specific Prompting* (SSP), which leverages the sensitivity to prompt-induced perturbations as a discriminative indicator for hallucination detection. Instead of relying on static or handcrafted prompts, SSP dynamically generates tailored prompts for each question–answer pair to enhance the sensitivity of truthful samples to perturbations while reducing that of hallucinatory ones. Furthermore, SSP introduces a lightweight encoder to extract features before and after perturbation and employs a contrastive training objective that encourages larger representation shifts for truthful samples and smaller shifts for hallucinated ones. In effect, the joint learning of perturbation prompts and representation encodings makes SSP a more effective method for exploiting prompt-induced perturbations in hallucination detection.

Extensive experiments demonstrate the effectiveness of SSP across diverse datasets CoQA (Reddy et al., 2019), TruthfulQA (Lin et al., 2022a), TriviaQA (Joshi et al., 2017) and TydiQA-GP (Clark et al., 2020), compared with the state-of-the-art (Kadavath et al., 2022; Azaria & Mitchell, 2023; Hu et al., 2024). Also, our results indicate that SSP generalizes well across different domains. Our main contributions are summarized as follows:

- We are the first to leverage the sensitivity of LLM internal representations to input perturbations for hallucination detection, offering a novel perspective to hallucination detection.
- We analyze the sensitivity of LLM internal representations to input perturbations and theoretically establish its feasibility for hallucination detection.
- We propose a theory-informed method SSP, which leverages sensitivity to prompt-induced perturbations as a discriminative indicator for hallucination detection.

2 PRELIMINARY

LLMs and Token Sequences. Following Oh et al. (2025); Du et al. (2024), we use a distribution $P_{\theta}(\cdot)$ over token sequences to define LLM, where θ is the model parameters. Given a token sequence $\mathbf{Q} = [x_1, \dots, x_k]$ representing the question, where each x_i is the i -th token in the sequence. $P_{\theta}(\cdot)$ generates an answer $\mathbf{A} = [x_{k+1}, \dots, x_{k+q}]$ by predicting each token based on the preceding context:

$$P_{\theta}(x_i | x_1, \dots, x_{i-1}), \text{ for } i = k+1, \dots, k+q. \quad (1)$$

108 **Truthful-answer and Hallucinatory-answer Domains.** Let \mathcal{Q} and \mathcal{A} denote the spaces of questions and answers, respectively. We introduce two domains over $\mathcal{Q} \times \mathcal{A}$:

109
110
111
112
113
114

- The *truthful-answer domain* is a joint distribution $P_{Q,T}$, where $Q \in \mathcal{Q}$ is a random variable representing questions and $T \in \mathcal{A}$ is a random variable representing the truthful answers.
- The *hallucinatory-answer domain* is a joint distribution $P_{Q,H}$, where Q is defined as above and $H \in \mathcal{A}$ is a random variable representing the hallucinatory answers.

115 **Dataset Format.** Given the truthful-answer domain $P_{Q,T}$, each sample sampled from $P_{Q,T}$ consists
116 of a question \mathbf{Q} and a reference answer \mathbf{A}^{ref} . The dataset sampled from $P_{Q,T}$ can be expressed as
117 $\mathcal{D} = \{(\mathbf{Q}_1, \mathbf{A}_1^{\text{ref}}), \dots, (\mathbf{Q}_n, \mathbf{A}_n^{\text{ref}})\}$, where n is the number of samples.

118
119 Given a question $\mathbf{Q} \sim P_Q$, the LLM $P_\theta(\cdot)$ generates an answer $\mathbf{A} \sim P_\theta(\cdot | \mathbf{Q})$. Each generated
120 answer \mathbf{A} is assigned a binary label $y \in \{-1, 1\}$ according to its semantic consistency with the
121 reference answer \mathbf{A}^{ref} . Specifically, if \mathbf{A} aligns with \mathbf{A}^{ref} , it is labeled as truthful ($y = 1$); otherwise,
122 it is labeled as hallucinatory ($y = -1$). The labeled dataset \mathcal{D}_l is thus defined as:

123
124

$$\mathcal{D}_l = \{(\mathbf{Q}_1, \mathbf{A}_1, y_1), \dots, (\mathbf{Q}_n, \mathbf{A}_n, y_n)\}. \quad (2)$$

125 **AUROC and Separability.** The AUROC serves as the primary evaluation metric for hallucination
126 detection (Du et al., 2024). Formally, given the truthful-answer domain $P_{Q,T}$ and the hallucinatory-
127 answer domain $P_{Q,H}$, the AUROC of a scoring function $r : \mathcal{Q} \times \mathcal{A} \rightarrow \mathbb{R}$ is defined as follows:

128
129
130

$$\text{AUROC}(r; P_{Q,T}, P_{Q,H}) = P(r(\mathbf{Q}, \mathbf{T}) > r(\mathbf{Q}', \mathbf{H}')) + \frac{1}{2}P(r(\mathbf{Q}, \mathbf{T}) = r(\mathbf{Q}', \mathbf{H}')), \quad (3)$$

131 where $(\mathbf{Q}, \mathbf{T}) \sim P_{Q,T}$ is the truthful sample, and $(\mathbf{Q}', \mathbf{H}') \sim P_{Q,H}$ is the hallucinatory sample. In
132 this work, we define the separability via the core component of AUROC, formally given by:

133
134

$$\text{SEP}(r; P_{Q,T}, P_{Q,H}) = P(r(\mathbf{Q}, \mathbf{T}) > r(\mathbf{Q}', \mathbf{H}')). \quad (4)$$

135 **Hallucination Detection.** Given the training dataset $\mathcal{D}_l = \{(\mathbf{Q}_1, \mathbf{A}_1, y_1), \dots, (\mathbf{Q}_n, \mathbf{A}_n, y_n)\}$ as
136 introduced in Eq. (2), the goal of hallucination detection is to learn a detector G , based on a given
137 LLM $P_\theta(\cdot)$ and \mathcal{D}_l , such that for any question $\mathbf{Q} \sim P_Q$ and a corresponding answer \mathbf{A} ,

138
139
140

$$G(\mathbf{Q}, \mathbf{A}) = 1, \text{ if } \mathbf{A} \sim P_{T|Q}(\cdot | \mathbf{Q}); \text{ otherwise, } G(\mathbf{Q}, \mathbf{A}) = -1, \quad (5)$$

141 where 1 indicates that \mathbf{A} is truthful, and -1 indicates that \mathbf{A} is hallucinatory.

142
143

3 RELATED WORK

144
145 **Hallucination detection** has become an increasingly important research topic, aiming to address
146 the safety and reliability challenges of deploying LLMs in real-world applications (Ji et al., 2023;
147 Liu et al., 2024b; Huang et al., 2025; Zhang et al., 2025b; Xu et al., 2024; Zhang et al., 2023; Chern
148 et al., 2023). Previous detection methods can be roughly divided into two main categories: self-
149 assessment (Kadavath et al., 2022; Zhou et al., 2023; Lin et al., 2022b) and internal representation-
150 based methods (Du et al., 2024; Azaria & Mitchell, 2023; Marks & Tegmark, 2024; Yin et al., 2024).
151

152 **Self-assessment.** These methods estimate response factuality based on output confidence or
153 consistency measures (Kadavath et al., 2022; Lin et al., 2022b; Gao et al., 2024). While intuitive, ap-
154 proaches like probability verbalization or perturbation-based scoring (Gao et al., 2024) often suffer
155 from model overconfidence and sensitivity to superficial variations (Kaddour et al., 2023).

156 **Internal Representation-based Methods.** Recent studies demonstrate that LLM internal represen-
157 tations (e.g., hidden states) encode truthfulness information (Azaria & Mitchell, 2023; Du et al.,
158 2024; Bürger et al., 2024; Liu et al., 2024c; Zhang et al., 2025a). Although these methods generally
159 outperform self-assessment, their robustness is often constrained by the separability of features in
160 complex, open-ended generation tasks compared to artificial setups (Park et al., 2025).

161 Due to space limitations, a detailed discussion of related work is provided in **Appendix C**.

162 4 SEPARABILITY OF PROMPT-INDUCED PERTURBATION SENSITIVITY
163164 Before introducing our method, we first analyze the separability of perturbation sensitivity in this
165 section. *Due to space constraints, all proofs are provided in Appendix D.*
166167 4.1 SENSITIVITY OF PROMPT-INDUCED PERTURBATIONS
168169 Recent prevailing methods for hallucination detection (Azaria & Mitchell, 2023; Marks & Tegmark,
170 2024; Yin et al., 2024; Du et al., 2024; Kossen et al., 2024) rely on internal representations, classifying
171 outputs as truthful or hallucinatory by leveraging embeddings from pre-trained LLMs. However,
172 as pre-trained LLMs are trained for next-token prediction, their embeddings inherently favour flu-
173 ency and syntactic correctness, while often overlooking truthful accuracy (Radford et al., 2019).
174 Motivated by this limitation, recent work (Park et al., 2025) claims that the internal representations
175 of LLMs frequently fail to provide a clear separation between truthful and hallucinatory samples.
176177 In Figure 1a, we validate the claim given by Park et al. (2025). As shown in Figure 1a, the
178 last-token embeddings of truthful and hallucinatory samples from TruthfulQA (Lin et al., 2022a)
179 largely overlap, highlighting the lack of a clear separation. Hence, the effectiveness of these internal
180 representation-based methods (Azaria & Mitchell, 2023; Marks & Tegmark, 2024; Yin et al., 2024;
181 Du et al., 2024; Kossen et al., 2024) is limited by the separability of the internal representations. In
182 light of this, we raise the question of *whether it is possible to overcome the inherent separability*
183 *bottleneck of internal representations*. To tackle this question, we study whether prompt-induced
184 perturbation sensitivity in internal representations has the potential for strong separability.
185186 **Formalizing Perturbation Sensitivity.** Following prior work (Du et al., 2024; Park et al., 2025;
187 Azaria & Mitchell, 2023; Chen et al., 2024; Guo et al., 2021), we define the internal representation
188 $\mathbf{E}_\theta(\cdot)$ of the LLM $P_\theta(\cdot)$ as the embedding of the last token. Given a prompt \mathbf{P} , and a question-
189 answer pair (\mathbf{Q}, \mathbf{A}) , the prompt-induced perturbation sensitivity is defined as follows:
190

191
$$\Delta\mathbf{E}_\theta(\mathbf{Q}, \mathbf{A}, \mathbf{P}) = \text{Dist}(\mathbf{E}_\theta(\mathbf{Q}, \mathbf{A}, \mathbf{P}), \mathbf{E}_\theta(\mathbf{Q}, \mathbf{A})), \quad (6)$$

192 where $\text{Dist}(\cdot, \cdot)$ is the measure of the difference between $\mathbf{E}_\theta(\mathbf{Q}, \mathbf{A}, \mathbf{P})$ and $\mathbf{E}_\theta(\mathbf{Q}, \mathbf{A})$.
193194 **Preliminary Observation of Perturbation Sensitivity.** To investigate the separability of pertur-
195 bation sensitivity, we construct an *oracle setting* in which, for each sample, we optimize a corre-
196 sponding prompt, such that the perturbation sensitivity is maximized when the answer is truthful,
197 and minimized when the answer is hallucinatory, i.e., for any sample $(\mathbf{Q}_i, \mathbf{A}_i, y_i) \in \mathcal{D}_l$,
198

199
$$\mathbf{P}_i^* \in \arg \max_{\mathbf{P}} y_i \cdot \Delta\mathbf{E}_\theta(\mathbf{Q}_i, \mathbf{A}_i, \mathbf{P}). \quad (7)$$

200 In Figure 1b, we present the empirical result under the oracle setting (see Appendix B for exper-
201 imental details). We observe that the separability of perturbation sensitivity reaches nearly 100%,
202 which implies the aspiration of addressing the separability bottleneck of the internal representations.
203204 4.2 SEPARABILITY OF PERTURBATION SENSITIVITY
205206 Here, we develop a statistical analysis that characterizes the separability of perturbation sensitivity.
207 We *continue to consider the oracle setting*, where the prompt is chosen to maximize perturbation
208 sensitivity for truthful answers and minimize it for hallucinatory ones. Given the truthful-answer
209 domain $P_{Q,T}$ and the hallucinatory-answer domain $P_{Q,H}$, we select the optimal prompt as follows:
210

211
$$\mathbf{P}^* \in \arg \max_{\mathbf{P}} y(\mathbf{Q}, \mathbf{A}) \cdot \Delta\mathbf{E}_\theta(\mathbf{Q}, \mathbf{A}, \mathbf{P}), \quad (8)$$

212 where $y(\mathbf{Q}, \mathbf{A}) = 1$ if $(\mathbf{Q}, \mathbf{A}) \sim P_{Q,T}$, and $y(\mathbf{Q}, \mathbf{A}) = -1$ if $(\mathbf{Q}, \mathbf{A}) \sim P_{Q,H}$. Then, we consider
213 the scoring function $r^* : \mathcal{Q} \times \mathcal{A} \rightarrow \mathbb{R}$, i.e.,
214

215
$$r^*(\mathbf{Q}, \mathbf{A}) = \Delta\mathbf{E}_\theta(\mathbf{Q}, \mathbf{A}, \mathbf{P}^*), \text{ where } \mathbf{P}^* \text{ is defined in Eq. (8).} \quad (9)$$

216 The scoring function r^* estimates the perturbation sensitivity under the oracle setting.
217218 **Probabilistic Characterization of Separability.** Here, we give our core theorem, i.e., Theorem 1.
219

Figure 2: Perturbation sensitivity (r^* in Eq. (9)) statistics across multiple datasets. The sensitivity of internal representations to prompt-induced perturbations is compared between truthful and hallucinatory samples across four representative datasets using LLaMA-3-8B-Instruct. Figure (a) reports the mean values, showing that truthful samples exhibit significantly larger average perturbation magnitudes than hallucinatory samples. Figure (b) presents the corresponding standard deviations, which remain small overall. Please see **Appendix E** for more details.

Theorem 1 (Separability of Perturbation Sensitivity.). *Given the truthful-answer domain $P_{Q,T}$ and the hallucinatory-answer domain $P_{Q,H}$, if the scoring function r^* given in Eq. (9) satisfies:*

$$\frac{\mathbb{E}_{(\mathbf{Q}, \mathbf{A}) \sim P_{Q,H}} r^*(\mathbf{Q}, \mathbf{A})}{\mathbb{E}_{(\mathbf{Q}, \mathbf{A}) \sim P_{Q,T}} r^*(\mathbf{Q}, \mathbf{A})} \leq \frac{1}{a}, \quad \frac{\sigma_{(\mathbf{Q}, \mathbf{A}) \sim P_{Q,T}} r^*(\mathbf{Q}, \mathbf{A})}{\sigma_{(\mathbf{Q}, \mathbf{A}) \sim P_{Q,H}} r^*(\mathbf{Q}, \mathbf{A})} \leq b, \quad \frac{\sigma_{(\mathbf{Q}, \mathbf{A}) \sim P_{Q,H}} r^*(\mathbf{Q}, \mathbf{A})}{\mathbb{E}_{(\mathbf{Q}, \mathbf{A}) \sim P_{Q,H}} r^*(\mathbf{Q}, \mathbf{A})} \leq c, \quad (10)$$

for some constants $a > 1, b > 0, c > 0$, where \mathbb{E} is the expectation and σ is the standard deviation,

$$\text{then, } \text{AUROC}(r^*; P_{Q,T}, P_{Q,H}) \geq \text{SEP}(r^*; P_{Q,T}, P_{Q,H}) \geq \frac{(a-1)^2}{(a-1)^2 + (1+b^2)c^2}. \quad (11)$$

Theorem 1 establishes that, for each sample, there exists an associated prompt under which, with non-negligible probability, the sensitivity of truthful samples to prompt-induced perturbations exceeds that of hallucinatory samples. Theorem 1 further shows that, under the oracle setting, the AUROC of the prompt-induced perturbation sensitivity is bounded below by a computable probability, which becomes explicit when the indicators a, b , and c in Eq. (10) are available. This observation motivates us to apply Theorem 1 to representative datasets, thereby providing a quantitative estimate of the likelihood that the truthful samples exhibit greater perturbation sensitivity than the hallucinatory ones.

Validation of Separability. The preliminary observation in Figure 1b suggests that the perturbation sensitivity may exhibit strong separability. To further validate this observation, we first estimate the indicators a, b , and c in Eq. (10) through experiments on four representative datasets: CoQA, TruthfulQA, TriviaQA, and TyDiQA-GP (Reddy et al., 2019; Lin et al., 2022a; Joshi et al., 2017; Clark et al., 2020). Yet, when dealing with large-scale data, it is computationally infeasible to train an optimal prompt for each sample based on Eq. (8). To address this issue, we establish Theorem 2.

Theorem 2. *Let $\mathbf{M}_\varphi(\cdot)$ be a model that receives a question-answer pair (\mathbf{Q}, \mathbf{A}) and a prompt \mathbf{P} as input, and returns a sample-specific prompt \mathbf{P}_φ as output, i.e., $\mathbf{P}_\varphi = \mathbf{M}_\varphi(\mathbf{Q}, \mathbf{A}, \mathbf{P})$. Also, let $r_\varphi(\mathbf{Q}, \mathbf{A}) = \Delta \mathbf{E}_\theta(\mathbf{Q}, \mathbf{A}, \mathbf{P}_\varphi)$ and let $a_\varphi, b_\varphi, c_\varphi$ be*

$$a_\varphi = \frac{\mathbb{E}_{(\mathbf{Q}, \mathbf{A}) \sim P_{Q,T}} r_\varphi(\mathbf{Q}, \mathbf{A})}{\mathbb{E}_{(\mathbf{Q}, \mathbf{A}) \sim P_{Q,H}} r_\varphi(\mathbf{Q}, \mathbf{A})}, \quad b_\varphi = \frac{\sigma_{(\mathbf{Q}, \mathbf{A}) \sim P_{Q,T}} r_\varphi(\mathbf{Q}, \mathbf{A})}{\sigma_{(\mathbf{Q}, \mathbf{A}) \sim P_{Q,H}} r_\varphi(\mathbf{Q}, \mathbf{A})}, \quad c_\varphi = \frac{\sigma_{(\mathbf{Q}, \mathbf{A}) \sim P_{Q,H}} r_\varphi(\mathbf{Q}, \mathbf{A})}{\mathbb{E}_{(\mathbf{Q}, \mathbf{A}) \sim P_{Q,H}} r_\varphi(\mathbf{Q}, \mathbf{A})}.$$

Then the scoring function r^ defined in Eq. (9) satisfies that*

$$\text{AUROC}(r^*; P_{Q,T}, P_{Q,H}) \geq \text{SEP}(r^*; P_{Q,T}, P_{Q,H}) \geq \max_{\varphi \text{ with } a_\varphi > 1} \frac{(a_\varphi - 1)^2}{(a_\varphi - 1)^2 + (1 + b_\varphi^2)c_\varphi^2}. \quad (12)$$

270 In Theorem 2, Eq. (12) provides an executable alternative to compute the lower bound in Theorem 1.
 271 For estimating the lower bound, following Eq. (12), we design the following optimization problem:
 272

$$\begin{aligned} 273 \max_{\varphi} \mathcal{L}(\varphi) &= \log a_{\varphi} + 2\mu \log [\text{ReLU}(a_{\varphi} - 1) + 10^{-12}] \\ 274 &\quad - \mu \log [(a_{\varphi} - 1)\text{ReLU}(a_{\varphi} - 1) + (1 + b_{\varphi}^2)c_{\varphi}^2], \text{ where } \mu > 0 \text{ is the parameter.} \\ 275 \end{aligned} \quad (13)$$

276 Details of the experimental implementation can be found in [Appendix E](#). The experimental results
 277 are presented in Figure 2, which shows the mean values (see Figure 2a) and standard deviations (see
 278 Figure 2b) of the perturbation sensitivity r^* across different datasets. According to the experimental
 279 results in Figure 2, Theorem 2 implies that, in the four datasets CoQA, TruthfulQA, TriviaQA, and
 280 TydiQA-GP, if we select the prompt \mathbf{P}^* for any sample (\mathbf{Q}, \mathbf{A}) according to Eq. (8), then the per-
 281 turbation sensitivity $r^*(\mathbf{Q}, \mathbf{A}) = \Delta \mathbf{E}_{\theta}(\mathbf{Q}, \mathbf{A}, \mathbf{P}^*)$ exhibits near-perfect separability and AUROC:
 282

$$\text{AUROC}(r^*; P_{Q,T}, P_{Q,H}) \geq \text{SEP}(r^*; P_{Q,T}, P_{Q,H}) \geq 99\%. \quad (14)$$

283 The above result demonstrates that, at least for the four representative datasets, each sample admits a
 284 prompt under which the prompt-induced perturbation sensitivity achieves nearly perfect separability.
 285

286 **Remark.** *Eq. (14) suggests that the separability and AUROC are lower bounded by 99%, which may
 287 appear inconsistent with the empirical results in Table 1. This discrepancy arises because Eq. (14)
 288 is computed over the entire dataset based on Eq. (13), and thus serves as an oracle value designed
 289 to demonstrate the potential separability of perturbation sensitivity. In practice, however, models
 290 are trained on limited data, and their performance on unseen test sets inevitably depends on gener-
 291 alization. Consequently, Eq. (14) should be interpreted as an indicator of the theoretical potential
 292 separability of perturbation sensitivity, rather than a direct guarantee of test-time performance.*
 293

294 5 METHODOLOGY

295 In Section 4, we show that, achieving nearly perfect separability relies on selecting an appropriate
 296 prompt for each sample, and Eqs. (7) and (8) provide a method for learning such a prompt. How-
 297 ever, when applied to large-scale data, training an appropriate prompt for each sample according
 298 to Eqs. (7) and (8) becomes computationally infeasible. Although Eq. (13) appears to provide a
 299 feasible solution, its purpose is to estimate the probability lower bound in Theorem 2, and it does
 300 not necessarily imply strong performance on test datasets (see [Appendix E](#)). Here, we propose
 301 Sample-Specific Prompt (SSP), which aims to learn the appropriate prompts for individual samples.
 302

303 5.1 SAMPLE-SPECIFIC PROMPT

304 **Prompt Initialization.** We initialize a prompt \mathbf{P}_0 , which is then adapted in a sample-specific man-
 305 ner. \mathbf{P}_0 serves as an instruction to generate a natural language sentence by introducing a stylistic
 306 tone perturbation, that is, adjusting the expression style while preserving the original semantics (see
 307 [Appendix L](#) for details). We then leverage the LLM P_{θ} together with the prompt \mathbf{P}_0 to generate a
 308 sample-specific initial prompt for (\mathbf{Q}, \mathbf{A}) , i.e.,
 309

$$\mathbf{P} \sim P_{\theta}(\cdot | \mathbf{Q}, \mathbf{A}, \mathbf{P}_0). \quad (15)$$

310 The initial prompt \mathbf{P} is then appended to \mathbf{A} , yielding the perturbed input $(\mathbf{Q}, \mathbf{A}, \mathbf{P})$.
 311

312 **Prompt Perturbation.** The l -th layer representation $\mathbf{E}_{\theta}(\cdot)$ can be expressed as $\mathbf{E}_{\theta}(\cdot) = \mathbf{T}_l \circ$
 313 $\text{Emb}(\cdot)$, where Emb denotes the operation that tokenizes the input and extracts the corresponding
 314 embeddings, and \mathbf{T}_l is the transformation corresponding to the first l layers of the transformer model.
 315

316 To dynamically optimize the initial prompt \mathbf{P} for the sample (\mathbf{Q}, \mathbf{A}) , we introduce a lightweight
 317 prompt embedding generator $\mathbf{G}_{\varphi}(\cdot)$, implemented as a two-layer MLP, i.e., $\mathbf{G}_{\varphi} \circ \text{Emb}(\mathbf{Q}, \mathbf{A})$,
 318 which will be used to update the token embedding of the initial prompt \mathbf{P} :
 319

$$\mathbf{V}_{\varphi} = \mathbf{G}_{\varphi} \circ \text{Emb}(\mathbf{Q}, \mathbf{A}) + \text{Emb}(\mathbf{P}). \quad (16)$$

320 Note that the output $\mathbf{P}_{\varphi} = \mathbf{M}_{\varphi}(\mathbf{Q}, \mathbf{A}, \mathbf{P})$ of the model \mathbf{M}_{φ} in Theorem 2 can be regarded as an ana-
 321 logue of Eq. (16). The difference is that Eq. (16) produces an embedding \mathbf{V}_{φ} , while $\mathbf{M}_{\varphi}(\mathbf{Q}, \mathbf{A}, \mathbf{P})$
 322 is a prompt \mathbf{P}_{φ} . \mathbf{V}_{φ} can be viewed as the token embedding of \mathbf{P}_{φ} , i.e., $\mathbf{V}_{\varphi} \approx \text{Emb}(\mathbf{P}_{\varphi})$.
 323

Figure 3: Overview of SSP. Given a question–answer pair, prompt embedding generator G_φ generates a perturbation appended to the input. Encoder f_ϕ then maps the intermediate representations to a discriminative space and maximize the discrepancy between truthful and hallucinatory responses.

Then, we concatenate \mathbf{V}_φ with the original input embeddings $\mathbf{Emb}(\mathbf{Q}, \mathbf{A})$, i.e.,

$$\mathbf{Emb}(\mathbf{Q}, \mathbf{A}) \oplus \mathbf{V}_\varphi, \quad (17)$$

where \oplus is the concatenation operation along the sequence dimension. Note that $\mathbf{Emb}(\mathbf{Q}, \mathbf{A}) \oplus \mathbf{V}_\varphi$ can be viewed as the token embedding of $(\mathbf{Q}, \mathbf{A}, \mathbf{P}_\varphi)$, i.e., $\mathbf{Emb}(\mathbf{Q}, \mathbf{A}) \oplus \mathbf{V}_\varphi \approx \mathbf{Emb}(\mathbf{Q}, \mathbf{A}, \mathbf{P}_\varphi)$.

5.2 ESTIMATION OF PROMPT-INDUCED PERTURBATION SENSITIVITY

Learnable Encoder. To amplify the discrepancy between truthful and hallucinatory samples under perturbation, we introduce a shared and learnable encoder $f_\phi(\cdot)$, implemented as a three-layer MLP that maps both the original and perturbed internal representations into a shared vector space, i.e.,

$$\mathbf{z}_\phi = \mathbf{f}_\phi \circ \mathbf{E}_\theta(\mathbf{Q}, \mathbf{A}), \quad \mathbf{z}_{\phi, \varphi} = \mathbf{f}_\phi \circ \mathbf{T}_l(\mathbf{Emb}(\mathbf{Q}, \mathbf{A}) \oplus \mathbf{V}_\varphi). \quad (18)$$

Note that $\mathbf{T}_l(\mathbf{Emb}(\mathbf{Q}, \mathbf{A}) \oplus \mathbf{V}_\varphi)$ can be regarded as the internal representation induced by the prompt perturbation $\mathbf{E}_\theta(\mathbf{Q}, \mathbf{A}, \mathbf{P}_\varphi)$. In other words, $\mathbf{T}_l(\mathbf{Emb}(\mathbf{Q}, \mathbf{A}) \oplus \mathbf{V}_\varphi) \approx \mathbf{E}_\theta(\mathbf{Q}, \mathbf{A}, \mathbf{P}_\varphi)$.

Estimation of Sensitivity. In Eq. (6), the prompt-induced perturbation sensitivity is defined as the discrepancy between $\mathbf{E}_\theta(\mathbf{Q}, \mathbf{A})$ and its perturbed counterpart $\mathbf{E}_\theta(\mathbf{Q}, \mathbf{A}, \mathbf{P}_\varphi)$. Following Eq. (6), we quantify the discrepancy between the representations \mathbf{z}_ϕ and $\mathbf{z}_{\phi, \varphi}$ given in Eq. (18). In this work, we adopt *cosine similarity*, which remains stable across layers (Chen et al., 2020). Formally,

$$\text{Dist}(\mathbf{z}_\phi, \mathbf{z}_{\phi, \varphi}) = 1 - \cos(\mathbf{z}_\phi, \mathbf{z}_{\phi, \varphi}) = 1 - \frac{\langle \mathbf{z}_\phi, \mathbf{z}_{\phi, \varphi} \rangle}{\|\mathbf{z}_\phi\| \cdot \|\mathbf{z}_{\phi, \varphi}\|}, \quad (19)$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product, and $\|\cdot\|$ denotes the ℓ_2 -norm of a vector.

5.3 TRAINING OBJECTIVE AND INFERENCE PROCEDURE

Training Objective. The central idea of Eqs. (7) and (8) is to design, for each sample, a prompt that maximizes the sensitivity of truthful sample while minimizing that of hallucinatory one. Building on this idea, we introduce our training objective. Given a sample $(\mathbf{Q}, \mathbf{A}, y)$ from the training data \mathcal{D}_l in Eq. (2), if $y = 1$, we expect to maximize the discrepancy $\text{Dist}(\mathbf{z}_\phi, \mathbf{z}_{\phi, \varphi})$ given in Eq. (19), i.e.,

$$\ell_T(\mathbf{Q}, \mathbf{A}) = \max \{0, 1 - \text{Dist}(\mathbf{z}_\phi, \mathbf{z}_{\phi, \varphi}) - \tau_T\} = \max \{0, \cos(\mathbf{z}_\phi, \mathbf{z}_{\phi, \varphi}) - \tau_T\}, \quad (20)$$

where τ_T denotes the upper threshold on cosine similarity for truthful samples. If $y = -1$, we expect to minimize the discrepancy $\text{Dist}(\mathbf{z}_\phi, \mathbf{z}_{\phi, \varphi})$, i.e.,

$$\ell_H(\mathbf{Q}, \mathbf{A}) = \max \{0, -1 + \text{Dist}(\mathbf{z}_\phi, \mathbf{z}_{\phi, \varphi}) + \tau_H\} = \max \{0, \tau_H - \cos(\mathbf{z}_\phi, \mathbf{z}_{\phi, \varphi})\}, \quad (21)$$

where τ_H denotes the lower threshold on cosine similarity for hallucinatory responses. Given the training data \mathcal{D}_l in Eq. (2), the final optimization problem can be written as:

$$\min_{\varphi, \phi} \frac{1}{n} \sum_{i=1}^n (\tilde{y}_i \cdot \ell_T(\mathbf{Q}_i, \mathbf{A}_i) + (1 - \tilde{y}_i) \cdot \ell_H(\mathbf{Q}_i, \mathbf{A}_i)), \text{ where } \tilde{y}_i = 0.5 \cdot y_i + 0.5. \quad (22)$$

378 **Inference-Time Detection.** After training, we use the discrepancy in Eq. (19) as the scoring function.
 379 The higher the scoring function value, the more sensitive the sample is to the prompt-induced
 380 perturbation, thereby implying a greater likelihood of the sample being truthful. Based on the scoring
 381 function, the hallucination detector is: given a threshold λ , and a question-answer pair (Q, A) ,

$$383 \quad G_\lambda(Q, A) = \begin{cases} 1, & \text{if } \text{Dist}(\mathbf{z}_{\hat{\phi}}, \mathbf{z}_{\hat{\phi}, \hat{\varphi}}) \geq \lambda, \\ 384 -1, & \text{otherwise,} \end{cases} \quad (23)$$

385 where $\hat{\phi}$ and $\hat{\varphi}$ represent the trained parameters in Eq. (22).

388 6 EXPERIMENTS

390 In this section, we present the empirical evidence to validate the effectiveness of our method SSP.

392 6.1 EXPERIMENTAL SETUP

394 **Datasets and Models.** We conduct experiments on four generative QA tasks: two open-book QA
 395 datasets CoQA (Reddy et al., 2019) and TruthfulQA (Lin et al., 2022a); a closed-book QA dataset
 396 TriviaQA (Joshi et al., 2017); and a reading comprehension dataset TydiQA-GP (English) (Clark
 397 et al., 2020). Following Du et al. (2024), we train with only **100** labeled samples while keeping the
 398 testing set size consistent, simulating real-world scenarios where labeled data is limited. We evaluate
 399 our method on four LLMs with access to internal representations: LLaMA-3-8B-Instruct (Grattafiori
 400 et al., 2024), Qwen-2.5-7B-Instruct (Yang et al., 2024), Vicuna-13B-v1.5 (Zheng et al., 2023) and
 401 LLaMA-3.2-1B (Dubey et al., 2024). More dataset details are provided in [Appendix F](#). R#f1QU

402 **Baselines.** We evaluate SSP against 16 diverse baselines. The baselines are categorized as follows:
 403 (1) self-assessment methods-Perplexity (Ren et al., 2023), Semantic Entropy (Kuhn et al., 2023),
 404 Lexical Similarity (Lin et al., 2024), SelfCKGPT (Manakul et al., 2023), EigenScore (Chen et al.,
 405 2024), Verbalize (Lin et al., 2022b) Self-evaluation (Kadavath et al., 2022), and SPUQ (Gao et al.,
 406 2024); and (2) internal state-based methods-CCS (Burns et al., 2022), HaloScope (Du et al., 2024),
 407 Linear probe (Pagh et al., 2007), SAPLMA (Azaria & Mitchell, 2023), EarlyDetec (Snyder et al.,
 408 2024), EGH (Hu et al., 2024), TTPD (Bürger et al., 2024), and Probe-LR (Liu et al., 2024c). R#f1QU
R#3guq

409 **Evaluation.** Following prior work (Du et al., 2024), we report AUROC (%) as the evaluation metric.
 410 We use DeepSeek-V3 (Liu et al., 2024a), a powerful open-source language model, to assign evalua-
 411 tion labels with a threshold of 0.5. This setup aligns closely with expert annotations and ensures
 412 robustness under ROUGE-L (Lin, 2004) and BLEURT (Sellam et al., 2020) metrics. The evaluation
 413 results under ROUGE-L and BLEURT are provided in [Appendix I](#). Details of SSP implementation
 414 and the labeling process are provided in [Appendix G](#) and [Appendix H](#), respectively. R#3guq

415 6.2 EXPERIMENTAL RESULTS

Table 2: Generalization performance (AUROC, %).

Method	TruthfulQA	TriviaQA	CoQA	TydiQA-GP	Average
Linear probe	58.75	63.67	59.19	60.22	60.46
SAPLMA	59.29	62.00	60.31	59.78	60.35
EGH	54.84	55.11	56.59	56.51	55.76
SSP	62.77	65.18	61.69	62.09	62.93

417 **Main Results.** We compare SSP with
 418 other representative hallucination de-
 419 tection methods using Vicuna-13B-v1.5
 420 and LLaMA-3-8B-Instruct, as shown in
 421 Table 1. Across all models, SSP con-
 422 sistency achieves the highest average AU-
 423 ROC scores. In particular, under DeepSeek-V3 labeling criteria, SSP outperforms Self-evaluation
 424 by **25.58%**, on TriviaQA with Vicuna-13B-v1.5. Notably, methods like TTPD and Probe-LR show
 425 limited performance in real-world settings. On LLaMA-3-8B-Instruct, SSP outperforms TTPD by
 426 **6.3%** and Probe-LR by **5.89%**. This demonstrates that SSP achieves better separability in practical
 427 scenarios. From a computational perspective, self-assessment methods, such as SPUQ, incur sig-
 428 nificant overhead during inference, as they require sampling multiple responses per question, which
 429 makes them expensive on large-scale datasets. Also, our method achieves an average improvement
 430 of 8.6% over SPUQ while maintaining lower computational overhead. In contrast, SSP only requires
 431 computing perturbation sensitivity, which makes it more efficient during inference. We report de-
 432 tailed runtime comparisons in [Appendix Q](#), and additional evaluation metrics results in [Appendix I](#). R#f1QU
R#f1QU

432 Table 1: Comparison between our method (SSP) and competitive methods on the Vicuna-13B-v1.5,
 433 LLaMA-3-8B-Instruct, LLaMA-3.2-1B, and Qwen2.5-7B-Instruct across four datasets. All values
 434 are AUROC scores in percentage. The best results are in **bold** and the second best are underlined.

436	437	TruthfulQA		TriviaQA		CoQA		TydiQA-GP		Average	
		Method	LLaMA-3 8B-Instruct	Vicuna 13B-v1.5	LLaMA-3 8B-Instruct	Vicuna 13B-v1.5	LLaMA-3 8B-Instruct	Vicuna 13B-v1.5	LLaMA-3 8B-Instruct	Vicuna 13B-v1.5	LLaMA-3 8B-Instruct
Training-free Methods											
439	Perplexity	62.13	56.70	76.64	55.56	64.87	62.68	53.40	50.08	64.26	56.26
440	Semantic Entropy	58.88	60.74	<u>78.53</u>	68.65	55.15	50.71	55.21	59.29	61.94	59.85
441	Lexical Similarity	53.64	55.99	78.22	67.33	<u>77.47</u>	50.50	60.94	55.18	67.57	57.25
442	EigenScore	56.31	50.61	70.82	72.33	74.30	73.09	72.57	54.41	68.50	62.61
443	SelfCKGPT	58.74	63.78	77.56	74.67	76.47	51.29	57.37	66.57	68.07	
444	Verbalize	59.70	60.97	55.43	<u>59.42</u>	53.39	50.80	53.39	54.36	55.48	<u>56.39</u>
445	Self-evaluation	53.18	59.98	77.06	50.74	62.30	51.11	76.69	60.29	67.31	55.53
446	SPUQ	65.83	61.34	70.21	60.81	64.15	65.54	66.92	61.57	66.78	62.32
Training-based Methods											
447	CCS	53.91	51.55	58.58	50.85	52.40	53.58	74.11	56.02	59.75	53.00
448	HaloScope	68.40	60.23	63.70	64.93	64.10	63.21	<u>71.10</u>	62.36	66.83	62.68
449	Linear probe	68.65	61.04	75.48	66.83	70.58	58.43	71.92	64.37	71.66	62.67
450	SAPLMA	<u>70.45</u>	65.30	77.20	67.40	71.46	62.33	70.84	66.17	72.49	65.30
451	EarlyDetec	67.68	64.40	68.39	72.74	68.23	62.53	70.72	60.75	68.76	65.11
452	EGH	64.14	59.65	65.23	59.56	69.96	70.31	69.75	54.58	67.27	61.03
453	TTPD	67.24	63.09	69.51	68.98	70.12	68.42	69.46	59.93	69.08	65.11
454	Probe-LR	68.06	61.48	68.14	72.14	72.48	70.51	69.27	62.34	69.49	66.62
455	SSP (Ours)	73.43	66.49	79.07	76.32	75.02	<u>73.68</u>	73.98	67.84	75.38	71.08
LLaMA-3.2-1B											
456	Perplexity	52.35	53.60	55.62	52.72	51.29	62.03	56.56	51.97	53.96	55.08
457	Semantic Entropy	58.35	64.25	64.42	71.27	56.02	52.35	59.17	50.17	59.49	59.51
458	Lexical Similarity	53.62	57.50	61.80	65.55	64.12	71.62	58.91	61.75	59.61	64.11
459	EigenScore	51.02	52.67	69.13	68.36	56.99	72.33	64.85	60.97	60.50	63.58
460	SelfCKGPT	61.33	65.88	<u>60.25</u>	72.36	65.60	74.18	<u>61.47</u>	56.50	62.16	67.23
461	Verbalize	54.45	54.25	50.38	51.53	50.27	51.86	50.28	52.25	51.35	52.47
462	Self-evaluation	63.21	51.21	51.20	58.97	52.91	52.13	50.37	55.61	54.42	54.48
463	SPUQ	62.57	60.39	63.28	67.35	59.72	64.18	60.21	63.41	61.45	63.83
Training-based Methods											
464	CCS	56.15	53.58	52.58	50.42	55.67	50.32	58.62	54.58	55.76	52.23
465	HaloScope	61.69	68.10	66.14	63.00	57.17	63.90	61.84	67.00	61.71	65.50
466	Linear probe	63.34	70.58	60.23	63.15	60.78	68.46	57.92	<u>69.72</u>	60.57	67.98
467	SAPLMA	63.40	<u>71.84</u>	61.38	66.90	61.29	69.34	61.72	<u>68.67</u>	61.95	69.19
468	EarlyDetec	64.17	66.99	66.40	73.13	56.90	67.24	63.31	69.16	62.70	69.13
469	EGH	65.19	63.21	62.47	67.96	62.53	70.91	66.38	65.31	64.14	66.85
470	TTPD	64.82	69.74	61.84	70.39	63.47	69.38	62.48	66.83	<u>63.15</u>	69.09
471	Probe-LR	62.82	70.03	63.59	71.45	59.83	68.21	63.79	67.39	62.51	69.27
472	SSP (Ours)	68.20	72.03	72.42	74.01	64.89	72.43	64.01	72.40	67.38	72.72

463 **Generalization Results.** We evaluate generalization on LLaMA-3-8B-Instruct across four datasets
 464 using a leave-one-dataset-out setting, where the model is trained on one dataset and evaluated on the
 465 remaining three, and the average AUROC is reported. As shown in Table 2, SSP achieves the best
 466 generalization performance, outperforming EGH (**7.17%**), SAPLMA (**2.58%**), and Linear probe
 467 (**2.47%**). These results demonstrate that SSP provides more consistent and robust generalization
 468 than existing methods. Detailed results for each training dataset are provided in Appendix K.

470 6.3 ABLATION STUDY

471 Here, we present the ablation study. Experiments are conducted on the TruthfulQA dataset using the
 472 LLaMA-3-8B-Instruct model with DeepSeek-V3 labels. More results are given in Appendix M-Q.

473 **Impact of Layer Selection on SSP.** We observe that performance improves with depth up to the
 474 middle layers, after which it declines (see Figure 4a). This trend is consistent with prior findings
 475 suggesting that representations at intermediate layers (Azaria & Mitchell, 2023; Chen et al., 2024)
 476 are most effective for downstream tasks.

477 **Impact of Threshold Parameters**
 478 τ_T and τ_H . We investigate the impact of the threshold hyperparameters τ_T and τ_H on the performance of
 479 our training objective. These thresholds regulate the sensitivity of the loss to perturbation-induced
 480 representation shifts: τ_T enforces the minimum separation for truthful samples,
 481

482 Table 3: Ablation analysis of hallucination detection performance (AUROC %) by varying discrepancy functions as
 483 score metrics.

Method	TruthfulQA	TriviaQA	CoQA	TydiQA-GP	Average
Manhattan distance	59.18	54.21	59.31	56.99	57.42
Euclidean distance	<u>63.60</u>	<u>72.38</u>	<u>60.11</u>	<u>59.23</u>	<u>63.83</u>
KL-divergence	61.62	57.17	59.46	60.65	59.73
1 - Cosine similarity	73.43	79.07	75.02	73.98	75.38

Figure 4: (a) Impact of different layers for extraction. (b) Effect of different threshold settings. All results are reported as AUROC scores on the TruthfulQA dataset using LLaMA-3-8B-Instruct.

while τ_H constrains the maximum deviation for hallucinatory ones. As shown in Figure 4b, moderate values (e.g., $\tau_T = 0.3, \tau_H = 0.7$) yield the best performance. However, when τ_T and τ_H are set too close to each other, the detection performance degrades.

Effect of discrepancy function design. We investigate how the design of the discrepancy function influences hallucination detection performance. Specifically, we compare the cosine-based formulation defined in Eq. 19 against alternative distance measures, including Manhattan distance (Malkuthkar, 2013), Euclidean distance (Danielsson, 1980), and Kullback–Leibler (KL) divergence (Csizár, 1975). As shown in Table 3, the cosine-based metric consistently provides better separability between truthful and hallucinatory responses across all evaluated datasets.

Interpretability of the perturbation prompt. SSP generates perturbations in the LLM’s token embedding layer. Since this layer maps discrete tokens to continuous vectors in a non-invertible way, the perturbed embeddings cannot be accurately mapped back to specific tokens. Therefore, we approximate the decoding by matching each embedding to the closest token embedding in the LLaMA-3-8B-Instruct vocabulary. The approximated perturbation prompts are shown in Table 4.

Question	Answer	Perturbation
In what country was Barack Obama born?	United States	vexlo ranid 7k untar zelm ##
What happens if you open an umbrella indoors?	You get wet	crin mobex 12f vale torin spx
What object crashed during the Roswell incident?	A weather balloon	gront helis 4z quara t-vox meb

Table 4: Examples of questions, answers, and generated perturbations.

7 CONCLUSION

In this work, we consider the separability bottleneck in internal representation-based hallucination detection for LLMs. Through comprehensive empirical analyses and supporting theoretical guarantees, we demonstrate that the sensitivity of internal representations to prompt-induced perturbations provides a statistically reliable indicator for distinguishing between truthful samples and hallucinatory samples. Building on this foundation, we introduce Sample-Specific Prompting (SSP), a theory-informed method that effectively leverages perturbation sensitivity by dynamically generating tailored prompts for each question–answer pair. Extensive experiments conducted across multiple benchmarks further validate the effectiveness of SSP. Overall, our study shows that prompt-induced perturbation sensitivity provides a principled mechanism for hallucination detection, and opens a promising avenue to overcome the inherent limitations of internal representations.

540 ETHICS STATEMENT
541

542 Our study adheres to the ICLR Code of Ethics. All experiments were conducted on publicly available
543 datasets, as listed in **Appendix F**. No private, sensitive, or personally identifiable information
544 is involved. The primary objective of this work is to advance the understanding of hallucination
545 detection in large language models, with an emphasis on transparency, fairness, and responsible
546 research practices.

548 REPRODUCIBILITY STATEMENT
549

550 All models and benchmark datasets employed in this study are publicly available. Detailed de-
551 scriptions of the datasets are given in **Appendix F**, while the implementation details of our method
552 are provided in **Appendix G**. To ensure reproducibility, all experiments were conducted on two
553 NVIDIA A100 GPUs within a controlled environment, using Python 3.9.20 and PyTorch 1.13.1.

555 REFERENCES
556

557 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
558 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
559 report. *arXiv preprint arXiv:2303.08774*, 2023.

560 Amos Azaria and Tom Mitchell. The internal state of an llm knows when it's lying. *EMNLP*, 2023.

561 Lennart Bürger, Fred A Hamprecht, and Boaz Nadler. Truth is universal: Robust detection of lies in
562 llms, 2024. *NeurIPS*, 2024.

564 Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in lan-
565 guage models without supervision. *ICLR*, 2022.

566 Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye. Inside:
567 Llms' internal states retain the power of hallucination detection. *ICLR*, 2024.

569 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
570 contrastive learning of visual representations. In *ICML*, 2020.

572 I-Chun Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan, Kehua Feng, Chunting Zhou, Junxian He,
573 Graham Neubig, and Pengfei Liu. Factool: Factuality detection in generative ai—a tool augmented
574 framework for multi-task and multi-domain scenarios. *arXiv preprint arXiv:2307.13528*, 2023.

575 Jonathan H Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev,
576 and Jennimaria Palomaki. Tydi qa: A benchmark for information-seeking question answering in
577 typologically diverse languages. *Transactions of the Association for Computational Linguistics*,
578 2020.

579 Imre Csiszár. I-divergence geometry of probability distributions and minimization problems. *The
580 Annals of Probability*, 1975.

582 Per-Erik Danielsson. Euclidean distance mapping. *Computer Graphics and image processing*, 1980.

584 Xuefeng Du, Chaowei Xiao, and Sharon Li. Haloscope: Harnessing unlabeled llm generations for
585 hallucination detection. *NeurIPS*, 2024.

586 Jinhao Duan, Hao Cheng, Shiqi Wang, Alex Zavalny, Chenan Wang, Renjing Xu, Bhavya Kailkhura,
587 and Kaidi Xu. Shifting attention to relevance: Towards the predictive uncertainty quantification
588 of free-form large language models. *ACL*, 2024.

589 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
590 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
591 *arXiv e-prints*, pp. arXiv–2407, 2024.

593 Xiang Gao, Jiaxin Zhang, Lalla Mouatadid, and Kamalika Das. Spuq: Perturbation-based uncer-
594 tainty quantification for large language models. *ACL*, 2024.

594 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 595 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 596 of models. *arXiv preprint arXiv:2407.21783*, 2024.

597 Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and Douwe Kiela. Gradient-based adversarial
 598 attacks against text transformers. *EMNLP*, 2021.

600 Xiaomeng Hu, Yiming Zhang, Ru Peng, Haozhe Zhang, Chenwei Wu, Gang Chen, and Junbo Zhao.
 601 Embedding and gradient say wrong: A white-box method for hallucination detection. In *EMNLP*,
 602 2024.

603 Yuheng Huang, Jiayang Song, Zhijie Wang, Shengming Zhao, Huaming Chen, Felix Juefei-Xu,
 604 and Lei Ma. Look before you leap: An exploratory study of uncertainty measurement for large
 605 language models. *IEEE Transactions on Software Engineering*, 2025.

606 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
 607 Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM
 608 Computing Surveys*, 2023.

609 Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
 610 supervised challenge dataset for reading comprehension. *ACL*, 2017.

611 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
 612 Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language mod-
 613 els (mostly) know what they know. *arXiv preprint arXiv:2207.05221*, 2022.

614 Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and
 615 Robert McHardy. Challenges and applications of large language models. *arXiv preprint
 616 arXiv:2307.10169*, 2023.

617 Jannik Kossen, Jiatong Han, Muhammed Razzak, Lisa Schut, Shreshth A. Malik, and Yarin Gal. Se-
 618 mantic entropy probes: Robust and cheap hallucination detection in llms. *CoRR*, abs/2406.15927,
 619 2024.

620 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
 621 uncertainty estimation in natural language generation. *ICLR*, 2023.

622 Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
 623 intervention: Eliciting truthful answers from a language model. *NeurIPS*, 2023.

624 Yafu Li, Zhilin Wang, Leyang Cui, Wei Bi, Shuming Shi, and Yue Zhang. Spotting ai’s touch:
 625 Identifying llm-paraphrased spans in text. *ACL*, 2024.

626 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization
 627 branches out*, pp. 74–81. Association for Computational Linguistics, 2004.

628 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 629 falsehoods. *ACL*, 2022a.

630 Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in
 631 words. *Transactions on Machine Learning Research*, 2022b.

632 Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quantifi-
 633 cation for black-box large language models. *Transactions on Machine Learning Research*, 2024.

634 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 635 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint
 636 arXiv:2412.19437*, 2024a.

637 Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, Xutian Zhao, Ke Wang, Liping Hou,
 638 Rongjun Li, and Wei Peng. A survey on hallucination in large vision-language models. *arXiv
 639 preprint arXiv:2402.00253*, 2024b.

640 Junting Liu, Shiqi Chen, Yu Cheng, and Junxian He. On the universal truthfulness hyperplane inside
 641 llms. *EMNLP*, 2024c.

648 Andrey Malinin and Mark Gales. Uncertainty estimation in autoregressive structured prediction.
 649 *ICLR*, 2021.

650

651 MD Malkauthekar. Analysis of euclidean distance and manhattan distance measure in face recogni-
 652 tion. In *CIIT*, 2013.

653

654 Potsawee Manakul, Adian Liusie, and Mark JF Gales. Selfcheckgpt: Zero-resource black-box hallu-
 655 cination detection for generative large language models. *arXiv preprint arXiv:2303.08896*, 2023.

656

657 Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
 658 model representations of true/false datasets. *COLM*, 2024.

659

660 Jorge Nocedal. Updating quasi-newton matrices with limited storage. *Mathematics of computation*,
 35(151):773–782, 1980.

661

662 Changdae Oh, Zhen Fang, Shawn Im, Xuefeng Du, and Yixuan Li. Understanding multimodal
 663 LLMs under distribution shifts: An information-theoretic approach. In *ICML*, 2025.

664

665 Anna Pagh, Rasmus Pagh, and Milan Ruzic. Linear probing with constant independence. In *STOC*,
 2007.

666

667 Seongheon Park, Xuefeng Du, Min-Hsuan Yeh, Haobo Wang, and Yixuan Li. How to steer l1m
 668 latents for hallucination detection? *ICML*, 2025.

669

670 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 671 models are unsupervised multitask learners. *OpenAI blog*, 2019.

672

673 Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question answering
 674 challenge. *Transactions of the Association for Computational Linguistics*, 2019.

675

676 Jie Ren, Jiaming Luo, Yao Zhao, Kundan Krishna, Mohammad Saleh, Balaji Lakshminarayanan,
 677 and Peter J Liu. Out-of-distribution detection and selective generation for conditional language
 678 models. *ICLR*, 2023.

679

680 Thibault Sellam, Dipanjan Das, and Ankur P Parikh. Bleurt: Learning robust metrics for text gener-
 681 ation. *ACL*, 2020.

682

683 Ben Snyder, Marius Moisescu, and Muhammad Bilal Zafar. On early detection of hallucinations in
 684 factual question answering. In *ACM SIGKDD*, 2024.

685

686 Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Raffailov, Huaxiu Yao, Chelsea
 687 Finn, and Christopher D Manning. Just ask for calibration: Strategies for eliciting calibrated
 688 confidence scores from language models fine-tuned with human feedback. *EMNLP*, 2023.

689

690 Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of
 691 large language models. *arXiv preprint arXiv:2401.11817*, 2024.

692

693 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 694 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 695 arXiv:2412.15115*, 2024.

696

697 Fan Yin, Jayanth Srinivasa, and Kai-Wei Chang. Characterizing truthfulness in large language model
 698 generations with local intrinsic dimension. *ICML*, 2024.

699

700 Fujie Zhang, Peiqi Yu, Biao Yi, Baolei Zhang, Tong Li, and Zheli Liu. Prompt-guided internal states
 701 for hallucination detection of large language models. In *ACL*, 2025a.

702

703 Tianhang Zhang, Lin Qiu, Qipeng Guo, Cheng Deng, Yue Zhang, Zheng Zhang, Chenghu Zhou,
 704 Xinbing Wang, and Luoyi Fu. Enhancing uncertainty-based hallucination detection with stronger
 705 focus. *EMNLP*, 2023.

706

707 Yue Zhang, Leyang Cui, Wei Bi, and Shuming Shi. Alleviating hallucinations of large language
 708 models through induced hallucinations. *Findings of ACL*, 2025b.

702 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
703 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
704 chatbot arena. *NeurIPS*, 2023.

705

706 Kaitlyn Zhou, Dan Jurafsky, and Tatsunori Hashimoto. Navigating the grey area: How expressions
707 of uncertainty and overconfidence affect language models. *EMNLP*, 2023.

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A ALGORITHMS
757758 **Algorithm** The overall Sample-Specific Prompting framework
759760 **Parameters:** φ, ϕ 761 **Input:** Dataset $\mathcal{D} = \{(\mathbf{Q}_1, \mathbf{A}_1, y_1), \dots, (\mathbf{Q}_n, \mathbf{A}_n, y_n)\}$ 762 **Initialize** Prompt \mathbf{P} , Prompt Embedding Generator \mathbf{G}_φ and Encoder \mathbf{f}_ϕ .763 **Overall of SSP framework**

```

764 1: for  $i = 1$  to  $n$  do
765 2:   Extract the original embedding  $\mathbf{E}_\theta(\mathbf{Q}_i, \mathbf{A}_i)$ 
766 3:   Extract the token embedding  $\mathbf{Emb}(\mathbf{Q}_i, \mathbf{A}_i)$ 
767 4:   Compute the sample-specific prompt embedding  $\mathbf{G}_\varphi \circ \mathbf{Emb}(\mathbf{Q}_i, \mathbf{A}_i)$ 
768 5:   Update the embedding of the initial prompt  $\mathbf{P}_i$                                 eq. (16)
769 6:   Concatenate prompt with the original input embeddings and feed forward      eq. (17)
770 7:   The embeddings before and after perturbation are passed through the encoder  $\mathbf{f}_\phi$  to obtain
771    $\mathbf{z}_\phi$  and  $\mathbf{z}_{\phi, \varphi}$ , respectively.                                              eq. (18)
772 8:   if Training Phase then
773 9:     Compute the loss
774 10:    Update the parameters of  $\varphi$  and  $\phi$ .                                         eq. (22)
775 11:   else
776 12:     Calculate the sensitivity score and detect hallucination                eqs. (6) and (23)
777 13:   end if
778 14: end for

```

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 B DETAILS OF SEPARABILITY AND SENSITIVITY EXPERIMENTS
811812 **Separability Analysis.** We randomly sampled 200 examples from the TruthfulQA dataset (Lin
813 et al., 2022a) and extracted their internal representations using LLaMA-3-8B-Instruct. Specifically,
814 we used the embedding of the last generated token as the representation for each sample. Truthful
815 and hallucinatory examples were labeled as $y = 1$ and $y = -1$, respectively.816 Before training the model, we first apply feature standardization to scale all input embeddings to
817 have zero mean and unit variance. For the model configuration, we use the L-BFGS algorithm (No-
818 cedal, 1980) as the optimization solver and set the maximum number of iterations to 1000 to ensure
819 convergence. To prevent overfitting, we adopt L2 regularization, with the inverse regularization
820 strength C set to the default value of 1.0. During testing, we use the model’s predicted output score
821 as the separability measure. Figure 1a shows the logistic regression score distributions for truthful
822 and hallucinatory samples, revealing a high degree of overlap with pre-trained embeddings. This
823 indicates that the truthful and hallucinatory samples exhibit poor separability, as their score distri-
824 butions substantially overlap, making it difficult for model to distinguish between the two classes. R#PEBK825 **Perturbation Sensitivity.** In Eq. (7) of the Section 4.1, we defined an *oracle setting*: for each
826 sample $(\mathbf{Q}_i, \mathbf{A}_i, y_i) \in \mathcal{D}_l$, we individually optimize a prompt perturbation \mathbf{P}_i such that

827
$$\mathbf{P}_i^* \in \arg \max_{\mathbf{P}} y_i \cdot \Delta \mathbf{E}_\theta(\mathbf{Q}_i, \mathbf{A}_i, \mathbf{P}),$$

828

829 where $y_i = 1$ corresponds to truthful samples and $y_i = -1$ corresponds to hallucinatory samples.
830 $\Delta \mathbf{E}_\theta$ denotes the change in the representation (taken from the embedding of the last generated
831 token) before and after applying perturbation \mathbf{P} . This optimization ensures that truthful samples
832 exhibit larger sensitivity, while hallucinatory samples exhibit lower sensitivity.833 The perturbation sensitivity score is computed by measuring the change in cosine similarity between
834 the embeddings before and after perturbation:

835
$$\Delta \mathbf{E}_\theta(\mathbf{Q}, \mathbf{A}, \mathbf{P}) = 1 - \cos(\mathbf{E}_\theta(\mathbf{Q}, \mathbf{A}, \mathbf{P}), \mathbf{E}_\theta(\mathbf{Q}, \mathbf{A})).$$

836

837 A larger value indicates that the internal representation is more sensitive to the perturbation.

838 In this experiment, we sampled 200 examples from TruthfulQA (Lin et al., 2022a) using LLaMA-
839 3-8B-Instruct and initialized a separate trainable perturbation vector for each example. The LLM
840 parameters were kept frozen, and only these 200 perturbation vectors were updated during training.
841 The optimization objective followed Eq. (7): for truthful samples ($y = 1$), we encouraged the
842 perturbation to enlarge the change in cosine similarity between the original and perturbed repres-
843 entations of the last token embedding, thereby exhibiting stronger sensitivity; for hallucinatory samples
844 ($y = -1$), we encouraged the perturbation to reduce this change, leading to weaker sensitivity.845 For optimization, we employed the Adam optimizer with a learning rate of 1×10^{-3} for 100 steps,
846 using a batch size of 1 so that each perturbation vector was updated individually at every iteration.
847 This per-sample optimization strategy allows fine-grained adaptation to individual data points and
848 avoids the averaging effects that may obscure sample-specific behaviors. As shown in Figure 1b,
849 under this *oracle setting*, the sensitivity scores of truthful and hallucinatory samples are almost
850 perfectly separable, achieving nearly 100% separability. This further verifies the effectiveness of
851 sensitivity as a discriminative indicator.852
853
854
855
856
857
858
859
860
861
862
863

864 C RELATED WORK
865

R#PEBK

866 **Hallucination detection** has become an increasingly important research topic, aiming to address
867 the safety and reliability challenges of deploying LLMs in real-world applications (Ji et al., 2023;
868 Liu et al., 2024b; Huang et al., 2025; Zhang et al., 2025b; Xu et al., 2024; Zhang et al., 2023; Chern
869 et al., 2023). Previous detection methods can be roughly divided into two main categories: self-
870 assessment (Kadavath et al., 2022; Zhou et al., 2023; Lin et al., 2022b) and internal representation-
871 based methods (Du et al., 2024; Azaria & Mitchell, 2023; Marks & Tegmark, 2024; Yin et al., 2024).
872

873 **Self-assessment** estimates the factuality of a response by leveraging the confidence in the model
874 output. Early work proposed ensemble-based approaches to model confidence at both the sequence
875 and token levels (Malinin & Gales, 2021). Subsequent studies further demonstrated that LLMs can
876 verbalize their confidence in natural language, and that these verbalized confidences remain rea-
877 sonably calibrated even under distribution shift (Lin et al., 2022b). Similarly, prompting models to
878 output confidence alongside answers has been shown to improve interpretability (Kadavath et al.,
879 2022; Zhou et al., 2023). With the increasing prevalence of RLHF-tuned models, researchers have
880 investigated strategies for confidence extraction. Tian et al. (2023) found that verbalized probabili-
881 ties are often more reliable than logits. Building on this line of work, the SAR approach (Duan
882 et al., 2024) emphasizes semantically more relevant tokens when computing confidence, thereby
883 improving hallucination detection. SPUQ (Gao et al., 2024) is based on perturbations. It rewrites or
884 perturbs the LLM’s questions and answers multiple times, then uses the resulting uncertainty score
885 as an indicator of hallucination. Overall, self-assessment provides an intuitive for hallucination de-
886 tction, but it remains limited by the tendency of LLMs toward overconfidence (Radford et al., 2019)
887 and by the sensitivity of confidence estimates to superficial output variations (Kaddour et al., 2023),
888 which hinder robustness in complex reasoning and open-domain generation tasks.

R#f1QU

889 **Internal representation-based methods** leverage the hidden activations, attention patterns, and
890 embedding spaces of LLMs for hallucination detection. The key intuition is that these internal sig-
891 nals encode information about factuality and can be exploited by lightweight probes or classifiers.
892 SAPLMA demonstrates that classifiers trained on hidden activations outperform approaches relying
893 on output probabilities (Azaria & Mitchell, 2023). (Snyder et al., 2024) further analyzed softmax
894 distributions, attention scores, and fully connected activations, demonstrating their utility for early
895 hallucination detection. CCS is an unsupervised method that identifies consistent directions in acti-
896 vation space to uncover latent truth representations (Burns et al., 2022). HaloScope employs geomet-
897 ric analysis to separate truthful and hallucinatory samples in the embedding space (Du et al., 2024).
898 Recently, some studies have begun to focus on the separability of internal features (Bürger et al.,
899 2024; Liu et al., 2024c; Zhang et al., 2025a). However, because these works rely on artificially con-
900 structed answers in their experimental setups, there remains a gap from real-world scenarios, which
901 limits their effectiveness when applied in practice. Overall, internal representation-based methods
902 outperform self-assessment and have become the mainstream direction, though their effectiveness is
903 limited by the separability of internal representations (Park et al., 2025).

R#3guq

904 Our method differs in two key aspects: (1) Instead of relying on static internal representations, we
905 perform hallucination detection by examining the sensitivity of representations to designed input
906 perturbations, which explicitly exposes latent distinctions between truthful and hallucinatory re-
907 sponses. (2) We construct adaptive prompts for each sample, amplifying these perturbation-induced
908 differences and thereby enhancing the separability of truthful and hallucinatory representations.

918 **D PROOFS OF THEOREM 1 AND THEOREM 2**
919

920 **Proof of Theorem 1.** For simplicity, let $X = r^*(Q, T)$ and $Y = r^*(Q', H')$, where $(Q, T) \sim P_{Q,T}$
921 and $(Q, H) \sim P_{Q,H}$. We also set $\mu_X = \mathbb{E}[X]$, $\mu_Y = \mathbb{E}[Y]$, $\sigma_X = \text{std}(X)$, and $\sigma_Y = \text{std}(Y)$.

922 Define $Z = X - Y$. Then, we only need to prove the lower bound of the probability that $Z > 0$.

923 **Step 1: Mean of Z .** From $\mu_X \geq a\mu_Y$ and $a > 1$,

924
$$\mu_Z = \mathbb{E}[Z] = \mu_X - \mu_Y \geq (a-1)\mu_Y > 0. \quad (24)$$

925 **Step 2: Variance of Z .** Independence yields

926
$$\text{Var}(Z) = \text{Var}(X) + \text{Var}(Y) = \sigma_X^2 + \sigma_Y^2.$$

927 Using $\sigma_X \leq b\sigma_Y$, we get

928
$$\text{Var}(Z) \leq (1+b^2)\sigma_Y^2. \quad (25)$$

929 The coefficient-of-variation bound $\sigma_Y/\mu_Y \leq c$ implies $\sigma_Y \leq c\mu_Y$, hence

930
$$\text{Var}(Z) \leq (1+b^2)c^2\mu_Y^2. \quad (26)$$

931 **Step 3: Cantelli's inequality.** For any random variable W with mean μ and variance σ^2 , Cantelli's
932 (one-sided Chebyshev) inequality states that for $t \geq 0$,

933
$$P(W - \mu \leq -t) \leq \frac{\sigma^2}{\sigma^2 + t^2}.$$

934 Apply this with $W = Z$ and $t = \mu_Z > 0$ to get

935
$$P(Z \leq 0) = P(Z - \mu_Z \leq -\mu_Z) \leq \frac{\text{Var}(Z)}{\text{Var}(Z) + \mu_Z^2}. \quad (27)$$

936 **Step 4: Combine Eqs. (24)–(27).** Using Eq. (24) and Eq. (26) in Eq. (27),

937
$$P(Z \leq 0) \leq \frac{(1+b^2)c^2\mu_Y^2}{(1+b^2)c^2\mu_Y^2 + (a-1)^2\mu_Y^2} = \frac{(1+b^2)c^2}{(1+b^2)c^2 + (a-1)^2}.$$

938 Therefore,

939
$$P(X > Y) = P(Z > 0) \geq \frac{(a-1)^2}{(a-1)^2 + (1+b^2)c^2}.$$

940 Above inequality proves Theorem 1.

941 **Proof of Theorem 2.** Using the same strategy of Theorem 1, we can prove that if $a_\varphi > 1$, then
942 the probability that $r_\varphi(\mathbf{Q}, \mathbf{T}) > r_\varphi(\mathbf{Q}', \mathbf{H}')$ is at least

943
$$\frac{(a_\varphi - 1)^2}{(a_\varphi - 1)^2 + (1+b_\varphi^2)c_\varphi^2}. \quad (28)$$

944 Note that

945
$$r^*(\mathbf{Q}, \mathbf{T}) \geq r_\varphi(\mathbf{Q}, \mathbf{T}) > r_\varphi(\mathbf{Q}', \mathbf{H}') \geq r^*(\mathbf{Q}', \mathbf{H}'). \quad (29)$$

946 Combining Eqs. (28) and (29), we prove the theorem.

947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 E DETAILS OF PERTURBATION SENSITIVITY STATISTICS 973

974 This appendix provides the detailed statistical analysis related to $r_\varphi(\mathbf{Q}, \mathbf{A}) = \Delta \mathbf{E}_\theta(\mathbf{Q}, \mathbf{A}, \mathbf{P}_\varphi)$,
975 as well as the evaluation procedure used in Figure 2. We also report the sensitivity statistics of
976 Qwen2.5-7B-Instruct and Vicuna-13B-V1.5 across four datasets: CoQA, TruthfulQA, TriviaQA,
977 and TydiQA-GP. The results reveal clear differences in internal representation sensitivity under
978 prompt perturbations between truthful and hallucinated samples.

979 **Loss Function Construction.** According to Theorem 2, we first initialize a prompt \mathbf{P} for each
980 QA pair (\mathbf{Q}, \mathbf{A}) using the LLM. We then introduce a lightweight prompt embedding generator
981 $\mathbf{G}_\varphi(\cdot)$ implemented as a two-layer MLP. Following Eq. (16), the initial prompt embedding is de-
982 noted as \mathbf{V}_φ . This embedding is concatenated with the input embeddings of (\mathbf{Q}, \mathbf{A}) to obtain
983 $\mathbf{Emb}(\mathbf{Q}, \mathbf{A}, \mathbf{P}_\varphi)$. From a designated hidden layer of the LLM, we extract the perturbed represen-
984 tation $\mathbf{E}_\theta(\mathbf{Q}, \mathbf{A}, \mathbf{P}_\varphi)$, and compute the embedding shift $\Delta \mathbf{E}_\theta(\mathbf{Q}, \mathbf{A}, \mathbf{P}_\varphi)$ as defined in Eq. 6. The
985 perturbation sensitivity is measured according to Eq. (19), from which we obtain $a_\varphi, b_\varphi, c_\varphi$. Finally,
986 these terms are integrated into the optimization objective in Eq. (13).

987 **Training Setup.** For each experiment, the training data consist of all samples from a single dataset.
988 We train for 100 epochs using the Adam optimizer, with a learning rate of 0.001 and a batch size of
989 10.

990 **Sensitivity Statistics.** After training, we re-evaluate the entire dataset to compute perturbation sen-
991 sitivity statistics. Figure 2 reports the results for LLaMA-3-8B-Instruct. Figure 2(a) shows the mean
992 perturbation sensitivity for truthful and hallucinated samples, where truthful samples consistently
993 exhibit higher magnitudes. Figure 2(b) presents the corresponding standard deviations, which re-
994 main small, indicating robustness across samples. The sensitivity statistics for Qwen2.5-7B-Instruct
995 and Vicuna-13B-V1.5 are shown in Figure 5 and Figure 6, respectively.

1012 1013 Figure 5: Mean and standard standard deviation of perturbation sensitivity for Qwen2.5-7B-Instruct.
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 6: Mean and standard standard deviation of perturbation sensitivity for Vicuna-13B-V1.5.

F DATASETS

Input prompts. We provide the detailed textual prompts used as inputs to the language models for different datasets. Specifically, for datasets without context (TruthfulQA and TriviaQA), the prompt format is as follows:

Answer the question concisely. Q: [question] A:

For datasets with context (TydiQA-GP and CoQA), the prompt format is structured as follows:

Answer these questions concisely based on the context: \n Context: [a passage or a paragraph] Q: [question] A:

Here we provide examples from the datasets formatted according to our inference protocol.

TruthfulQA

- Answer the question concisely. Q: What happens to you if you eat watermelon seeds? A:[Answer] Is the proposed answer: (A) True (B) False The proposed answer is:
- Answer the question concisely. Q: Where did fortune cookies originate? A:[Answer] Is the proposed answer: (A) True (B) False The proposed answer is:
- Answer the question concisely. Q: Why do veins appear blue? A:[Answer] Is the proposed answer: (A) True (B) False The proposed answer is:

TriviaQA

- Answer the question concisely. Q: Who was the next British Prime Minister after Arthur Balfour? A: [Answer] Is the proposed answer: (A) True (B) False The proposed answer is:
- Answer the question concisely. Q: What is the name of Terence and Shirley Conran's dress designer son? A: [Answer] Is the proposed answer: (A) True (B) False The proposed answer is:
- Answer the question concisely. Q: For what novel did J. K. Rowling win the 1999 Whitbread Children's Book of the Year award? A: [Answer] Is the proposed answer: (A) True (B) False The proposed answer is:

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102

CoQA

- Answer these questions concisely based on the context: \n Context: Once there was a beautiful fish named Asta. Asta lived in the ocean. There were lots of other fish in the ocean where Asta lived. They played all day long. \n One day, a bottle floated by over the heads of Asta and his friends. They looked up and saw the bottle. "What is it?" said Asta's friend Sharkie. "It looks like a bird's belly," said Asta. But when they swam closer, it was not a bird's belly. It was hard and clear, and there was something inside it. \n The bottle floated above them. They wanted to open it. They wanted to see what was inside. So they caught the bottle and carried it down to the bottom of the ocean. They cracked it open on a rock. When they got it open, they found what was inside. It was a note. The note was written in orange crayon on white paper. Asta could not read the note. Sharkie could not read the note. They took the note to Asta's papa. "What does it say?" they asked. \n \n Asta's papa read the note. He told Asta and Sharkie, "This note is from a little girl. She wants to be your friend. If you want to be her friend, we can write a note to her. But you have to find another bottle so we can send it to her." And that is what they did. Q: what was the name of the fish A: Asta. Q: What been looked like a bird's belly A: a bottle. Q: who been said that A: Asta. Q: Sharkie was a friend, isn't it? A: Yes. Q: did they get the bottle? A: Yes. Q: What was in it A: a note. Q: Did a little boy write the note A: No. Q: Who could read that note A: Asta's papa. Q: What did they do with the note A: unknown. Q: did they write back A: [Answer] Is the proposed answer: (A) True (B) False The proposed answer is:

1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

TydiQA-GP

- Concisely answer the following question based on the information in the given passage: \n Passage: Emperor Xian of Han (2 April 181 – 21 April 234), personal name Liu Xie, courtesy name Bohe, was the 14th and last emperor of the Eastern Han dynasty in China. He reigned from 28 September 189 until 11 December 220.[4][5] \n Q: Who was the last Han Dynasty Emperor? \n A:[Answer] Is the proposed answer: (A) True (B) False The proposed answer is:

1134 **G IMPLEMENTATION DETAILS OF SSP AND BASELINES**
1135

1136 **Implementation Details of SSP.** Following [Du et al. \(2024\)](#); [Kuhn et al. \(2023\)](#), we use beam search
1137 with 5 beams to generate the most likely answer for evaluation. For baselines that require multiple
1138 generations, we sample 10 responses per question using multinomial sampling with a temperature
1139 of 0.5. Consistent with [Azaria & Mitchell \(2023\)](#); [Chen et al. \(2024\)](#), we prepend the question to the
1140 generated answer and use the embedding of the final token to detect hallucinations. We implement
1141 the encoder $f_\phi(\cdot)$ as a three-layer MLP with ReLU activations. Then we train the learnable parame-
1142 ters for 40 epochs using the SGD optimizer with an initial learning rate of 0.01. The thresholds τ_T
1143 and τ_H are set to 0.3 and 0.7, respectively.

1144 **Implementation Details of Baselines.** For Perplexity method ([Ren et al., 2023](#)), we follow the im-
1145 plementation here¹, and calculate the average perplexity score in terms of the generated tokens. For
1146 sampling-based baselines, we follow the default setting in the original paper and sample 10 genera-
1147 tions with a temperature of 0.5 to estimate the uncertainty score. Specifically, for Lexical Similar-
1148 ity ([Lin et al., 2024](#)), we use the Rouge-L as the similarity metric, and for SelfCKGPT ([Manakul
1149 et al., 2023](#)), we adopt the NLI version as recommended in their codebase², which is a fine-tuned
1150 DeBERTa-v3-large model to measure the probability of “entailment” or “contradiction” between the
1151 most-likely generation and the sampled generations. For Haloscope ([Du et al., 2024](#)), we adopt the
1152 official implementation available at³. For EGH ([Hu et al., 2024](#)), we follow the released codebase
1153 at⁴. For promoting-based baselines, we adopt the following prompt for Verbalize ([Li et al., 2023](#))
1154 on the open-book QA datasets:
1155

1156 *Q: [question] A:[answer]. \n The proposed answer is true with a confidence value
1157 (0-100) of,*

1158 and the prompt of

1159 *Context: [Context] Q: [question] A:[answer]. \n The proposed answer is true
1160 with a confidence value (0-100) of,*

1162 for datasets with context. The generated confidence value is directly used as the uncertainty score
1163 for testing. For the Self-evaluation method ([Kadavath et al., 2022](#)), we follow the original paper and
1164 utilize the prompt for the open-book QA task as follows:

1165 *Question: [question] \n Proposed Answer: [answer] \n Is the proposed answer:
1166 \n (A) True \n (B) False \n The proposed answer is:*

1168 For datasets with context, we have the prompt of:

1170 *Context: [Context] \n Question: [question] \n Proposed Answer: [answer] \n
1171 Is the proposed answer: \n (A) True \n (B) False \n The proposed answer is:*

1173 We use the log probability of output token “A” as the uncertainty score for evaluating hallucination
1174 detection performance following the original paper.

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184 ¹<https://huggingface.co/docs/transformers/en/perplexity>
²<https://github.com/potsawee/selfcheckgpt>
³<https://github.com/deeplearning-wisc/haloscope>
⁴<https://github.com/Xiaom-Hu/EGH>

1188 **H LABELING WITH DEEPEEK-V3**
11891190 We prompt DeepSeek-V3 using a template that instructs the model to assess the semantic similarity
1191 between the generated and reference answers and return a scalar score reflecting their alignment.
1192 The generation temperature is set to 1. Specifically, for datasets without context (TruthfulQA and
1193 TriviaQA), the prompt format is as follows:
11941195 **Prompt Structure for TruthfulQA and TriviaQA**

```

1196
1197 Prompt = [
1198     {"role": "system", "content": "You are an expert evaluator
1199     of text quality. Your task is to score the following text
1200     generated by a language model on a scale of 0 to 1 based on
1201     the provided question and multiple reference answers, where:
1202     0.00: Poor (The meaning conveyed by the generated text is
1203     irrelevant to the reference answers.)
1204     1.00: Excellent (The generated text conveys exactly the same
1205     meaning as one or more of the reference answers.)"},
1206     {"role": "user", "content": "Question: {question}
1207     Reference Answers: {all_answers}
1208     Generated Text: {predictions}"},
1209     {"role": "system", "content": "Provide a score for your
1210     rating. Retain two significant digits. Only output the
1211     score and do not output text."}
1212 ]

```

1212 For datasets with context (TydiQA-GP and CoQA), the prompt format is structured as follows:
12131214 **Prompt Structure for TydiQA-Gp and CoQA**

```

1215
1216 Prompt = [
1217     {"role": "system", "content": "You are an expert evaluator
1218     of text quality. Your task is to score the following text
1219     generated by a language model on a scale of 0 to 1 based on
1220     the provided multiple reference answers, where:
1221     0.00: Poor (The meaning conveyed by the generated text is
1222     irrelevant to the reference answers.)
1223     1.00: Excellent (The generated text conveys exactly the same
1224     meaning as one or more of the reference answers.)"},
1225     {"role": "user", "content": "Reference Answers:
1226     {all_answers}
1227     Generated Text: {predictions}"},
1228     {"role": "system", "content": "Provide a score for your
1229     rating. Retain two significant digits. Only output the
1230     score and do not output text."}
1231 ]

```

1232 As shown in Figure 8, the empirical results indicate that when the threshold exceeds 0.7, the
1233 DeepSeek score remains relatively high, whereas BLEURT and ROUGE-L decrease substantially,
1234 leading to a reduction in overall performance. When the threshold falls below 0.5, the average score
1235 also drops outside the optimal range and exhibits increased instability. Overall, a threshold of 0.5 lies
1236 within the optimal performance region, providing a balanced trade-off across multiple metrics and
1237 mitigating the risk of overfitting to a single metric. Therefore, setting the threshold to 0.5 constitutes
1238 a reasonable and robust choice.1239 As shown in Figure 7, we randomly sampled 100 instances from the TruthfulQA dataset, applied
1240 a threshold of 0.5, and compared the consistency between various automatic labeling methods and
1241 expert annotations. The results indicate that the confusion matrix derived from DeepSeek-V3 aligns
most closely with expert judgments, achieving an overall accuracy of 0.88 and an F1 score of

Figure 7: Confusion matrices of three labeling methods (DeepSeek-V3, BLEURT and ROUGE-L).

0.86, which demonstrates high agreement with human annotations. In contrast, BLEURT performs weaker (Acc=0.68, F1=0.56), while ROUGE-L exhibits the largest deviation (Acc=0.64, F1=0.38), particularly in distinguishing positive and negative samples. These results suggest that DeepSeek-V3 can serve as a reliable basis for automatic labeling, whereas ROUGE-L is not suitable as a robust evaluation criterion.

I RESULTS WITH OTHER EVALUATION METRICS

To fully verify the performance of the SSP framework under different evaluation standards, we provide detailed results based on ROUGE-L and BLEURT, in addition to the DeepSeek-V3 metric reported in the main text. Tables 1 and 2 show the AUROC (%) performance on four LLMs with different architectures and sizes (LLaMA-3-8B-Instruct, Vicuna-13B-v1.5, LLaMA-3.2-1B, Qwen2.5-7B-Instruct).

First, regardless of whether ROUGE-L or BLEURT is used to judge response truthfulness, SSP achieves the best or second-best performance on most datasets and models. Specifically, under the ROUGE-L metric (Table 5), SSP achieves 91.55%

Figure 8: Overall performance across different thresholds, showing that 0.5 provides the best balance among all metrics.

1296
1297
1298
1299 Table 5: Comparison of SSP and baseline methods on Vicuna-13B-v1.5, LLaMA-3-8B-Instruct,
1300 LLaMA-3.2-1B, and Qwen2.5-7B-Instruct across four datasets using the ROUGE-L metric.
1301

Method	TruthfulQA		TriviaQA		CoQA		TydiQA-GP		Average	
	LLaMA-3 8B-Instruct	Vicuna 13B-v1.5	LLaMA-3 8B-Instruct	Vicuna 13B-v1.5	LLaMA-3 8B-Instruct	Vicuna 13B-v1.5	LLaMA-3 8B-Instruct	Vicuna 13B-v1.5	LLaMA-3 8B-Instruct	Vicuna 13B-v1.5
Training-free Methods										
Perplexity	50.02	73.79	72.32	72.43	70.01	58.23	54.78	52.06	61.78	64.13
Semantic Entropy	61.26	65.62	73.45	66.31	53.34	60.26	56.70	56.51	61.19	62.18
Lexical Similarity	57.69	69.29	76.10	78.26	68.84	66.71	63.25	61.41	66.47	68.92
EigenScore	67.59	75.55	74.19	80.15	70.59	69.44	68.30	58.41	70.17	70.89
SelfCKGPT	50.07	60.36	77.37	71.51	74.31	80.05	59.00	60.99	65.19	68.23
Verbalize	64.87	78.33	55.43	59.12	52.49	50.83	51.59	51.50	56.10	59.95
Self-evaluation	55.43	51.84	74.23	51.10	57.19	50.01	64.09	53.49	62.74	51.61
SPUQ	65.83	74.17	69.76	73.21	69.93	72.71	67.84	61.43	68.34	70.38
Training-based Methods										
CCS	68.09	74.58	56.85	62.18	50.96	52.23	68.69	52.79	61.15	60.45
HaloScope	73.60	76.78	65.47	81.78	67.02	66.98	71.01	61.46	69.28	71.75
Linear probe	71.83	75.62	76.35	81.41	73.09	67.89	71.41	63.73	73.17	72.16
SAPLMA	73.56	80.79	76.41	85.01	72.38	69.61	71.87	68.09	73.56	75.88
EarlyDetec	69.38	76.66	69.53	86.10	75.84	75.43	70.08	68.51	71.21	76.68
EGH	70.60	78.37	61.89	77.91	75.60	77.31	71.33	63.94	69.86	74.38
TPPD	68.48	77.84	70.39	78.83	72.55	72.46	70.11	65.27	70.38	73.60
Probe-LR	68.91	76.32	71.48	76.49	70.62	71.23	68.48	64.82	69.87	72.22
SSP (Ours)	74.47	91.55	78.81	92.00	74.26	79.08	72.23	70.52	74.94	83.29
LLaMA										
	3.2-1B	Qwen2.5 7B-Instruct	3.2-1B	LLaMA 7B-Instruct	Qwen2.5 3.2-1B	LLaMA 7B-Instruct	Qwen2.5 3.2-1B	LLaMA 7B-Instruct	Qwen2.5 3.2-1B	LLaMA 7B-Instruct
Training-free Methods										
Perplexity	53.80	52.68	55.05	55.45	58.09	68.58	60.46	55.10	56.85	57.95
Semantic Entropy	54.30	59.06	59.00	70.56	59.90	61.87	55.78	52.27	57.25	60.94
Lexical Similarity	52.89	65.55	63.52	66.89	53.95	74.55	55.57	60.10	56.48	66.77
EigenScore	53.48	68.48	60.66	75.57	58.98	75.68	65.16	62.95	59.57	70.67
SelfCKGPT	53.00	67.96	61.36	73.51	57.91	72.67	65.17	55.44	59.36	67.40
Verbalize	50.56	55.05	51.83	51.11	52.69	50.73	50.38	52.63	51.37	52.38
Self-evaluation	51.98	52.57	51.13	53.90	53.34	51.08	51.93	54.30	52.10	52.96
SPUQ	73.90	61.42	64.84	63.59	57.28	69.20	68.25	59.23	66.07	63.36
Training-based Methods										
CCS	54.20	53.77	51.09	51.01	51.66	59.56	58.62	62.16	53.89	56.63
HaloScope	78.48	72.21	68.23	75.71	64.08	71.95	63.95	65.60	68.69	71.37
Linear probe	67.68	70.10	59.07	74.42	60.91	72.06	64.05	69.36	62.93	71.49
SAPLMA	69.15	70.91	62.97	74.82	61.88	72.84	66.99	68.75	65.25	71.83
EarlyDetec	81.91	71.51	64.82	73.97	62.04	71.11	70.42	65.65	69.80	70.56
EGH	81.08	68.27	63.77	74.21	62.13	74.58	65.76	68.91	68.19	71.49
TPPD	75.83	69.38	65.83	70.48	61.53	68.95	72.05	65.39	68.81	68.55
Probe-LR	76.65	67.16	66.16	71.76	60.98	66.23	71.66	66.28	68.86	67.86
SSP (Ours)	85.29	72.36	71.34	74.08	63.12	73.45	77.02	70.03	74.19	72.48

1324
1325
1326 on the TruthfulQA dataset using Vicuna-13B-v1.5,
1327 far surpassing the second-place SAPLMA (80.79%).1328 Second, SSP performs well not only on large models but also shows significant improvement on
1329 smaller models (such as LLaMA-3.2-1B). For instance, under the BLEURT metric, the average
1330 score of SSP on LLaMA-3.2-1B is 4.77% higher than that of TPPD. This proves that SSP can
1331 effectively extract limited internal representation information from small models and possesses good
1332 generalization capabilities.1333
1334

J TRAINING WITH PAIRED TRUTHFUL AND HALLUCINATORY ANSWERS

1335
1336 To investigate whether having access to paired truthful and hallucinated output pairs for the
1337 same question improves separability, we conducted an additional experiment. In this setup, instead of using responses generated by the LLM in real-time (as in our main experiments), we
1338 leveraged the reference correct answers and reference incorrect answers provided by the TruthfulQA (Lin et al., 2022a) dataset to construct paired training samples. We evaluated this setting using LLaMA-3-8B-Instruct as the base model. The results are presented in Table 7.
1339 The results indicate that under this paired-training scenario, SSP achieves consistent
1340 performance improvements across all metrics. For instance, the AUROC evaluated
1341 by DeepSeek-V3 increases by 2.38%. This suggests that SSP effectively leverages the
1342 explicit contrastive signals in paired data to generate more discriminative prompts,
1343 thereby further enhancing the separability between truthful and hallucinated representations.
13441345
1346 Table 7: Training with Paired Answers.
1347

Method	Average (ROUGE-L)	Average (BLEURT)	Average (DeepSeek-V3)
SSP	74.47	73.93	73.43
SSP-pairs	75.59 (↑ 1.12)	76.04 (↑ 2.11)	75.81 (↑ 2.38)

1350 **Table 6: Comparison of SSP and baseline methods on Vicuna-13B-v1.5, LLaMA-3-8B-Instruct,**
 1351 **LLaMA-3.2-1B, and Qwen2.5-7B-Instruct across four datasets using the BLEURT metric.**

1353	Method	TruthfulQA		TriviaQA		CoQA		TydiQA-GP		Average	
		LLaMA-3 8B-Instruct	Vicuna 13B-v1.5								
Training-free Methods											
Perplexity	62.11	71.95	71.37	68.89	62.55	62.08	51.43	53.31	61.87	64.06	
Semantic Entropy	51.97	57.21	72.78	65.81	53.52	55.51	54.66	60.22	58.23	59.69	
Lexical Similarity	52.27	73.89	73.97	76.58	72.67	73.41	62.28	53.00	65.30	69.22	
EigenScore	53.73	71.84	73.43	78.23	73.76	71.84	64.38	50.13	66.33	68.01	
SelfCKGPT	52.57	63.30	74.91	71.21	74.04	75.81	59.30	54.65	65.21	66.24	
Verbalize	58.77	70.73	55.07	62.17	51.59	51.50	51.36	50.32	54.20	58.68	
Self-evaluation	55.98	62.77	72.61	51.49	58.94	51.25	62.56	50.69	62.52	54.05	
SPUQ	63.89	74.58	68.16	77.28	61.85	61.49	64.29	60.95	64.55	68.58	
Training-based Methods											
CCS	52.26	60.23	55.75	61.98	53.27	50.23	63.93	54.38	56.30	56.71	
HaloScope	70.96	73.61	70.52	77.82	65.38	64.15	72.41	70.78	69.82	71.59	
Linear probe	72.41	74.69	75.65	80.10	71.79	64.48	73.68	67.43	73.38	71.68	
SAPLMA	73.27	75.85	75.96	84.27	70.64	66.12	73.40	68.06	73.32	73.58	
EarlyDetec	72.40	76.02	70.47	84.67	71.03	76.53	69.42	70.64	70.83	76.97	
EGH	71.28	78.31	69.48	77.34	68.63	74.76	70.54	59.88	69.98	72.57	
TPPD	70.12	76.30	69.93	79.35	67.43	69.83	69.46	64.71	69.24	72.55	
Probe-LR	69.94	75.73	71.26	74.72	70.71	69.36	70.19	66.39	70.53	71.55	
SSP (Ours)	73.93	79.01	75.49	90.57	73.86	75.60	73.92	69.63	74.30	78.70	
LLaMA											
1366	LLaMA 3.2-1B	Qwen2.5 7B-Instruct	LLaMA 3.2-1B	Qwen2.5 7B-Instruct	LLaMA 3.2-1B	Qwen2.5 7B-Instruct	LLaMA 3.2-1B	Qwen2.5 7B-Instruct	LLaMA 3.2-1B	Qwen2.5 7B-Instruct	
Training-free Methods											
Perplexity	69.58	59.08	51.10	56.69	54.31	63.85	60.15	53.17	58.79	58.20	
Semantic Entropy	54.59	52.27	59.54	67.72	53.52	56.45	54.23	56.12	55.47	58.14	
Lexical Similarity	54.21	60.40	59.84	64.39	62.37	70.43	53.74	53.88	57.54	62.28	
EigenScore	63.59	57.98	60.15	71.25	62.73	71.53	66.86	56.17	63.33	64.23	
SelfCKGPT	57.96	68.00	66.58	73.57	59.64	72.03	57.50	50.70	60.42	66.08	
Verbalize	53.91	52.49	50.14	50.49	52.40	50.85	50.88	50.75	51.83	51.15	
Self-evaluation	55.26	57.46	50.67	53.36	56.72	50.29	53.75	50.71	54.10	52.96	
SPUQ	64.84	64.95	60.63	68.91	59.35	61.37	64.31	60.27	62.28	63.88	
Training-based Methods											
1373	CCS	61.97	59.19	55.23	59.80	52.50	61.36	53.61	57.89	55.83	59.56
1374	HaloScope	70.67	70.42	59.16	74.97	56.17	67.51	61.77	67.46	61.94	70.09
1375	Linear probe	65.14	69.84	56.60	72.30	58.53	70.35	60.72	69.92	60.25	70.60
1376	SAPLMA	68.26	70.68	57.32	74.71	60.90	70.21	62.92	70.14	62.35	71.44
1377	EarlyDetec	72.42	70.17	62.31	75.34	62.48	68.83	56.54	69.49	63.44	70.96
1378	EGH	74.96	66.71	58.84	70.46	66.94	72.81	60.62	64.12	65.34	68.53
1379	TPPD	72.64	66.48	64.75	69.37	62.95	64.74	71.42	68.51	67.94	67.28
1380	Probe-LR	70.37	69.72	63.81	68.51	64.12	67.01	69.37	69.01	66.92	68.56
1381	SSP (Ours)	79.38	71.30	69.75	73.26	65.41	71.69	76.28	72.43	72.71	72.17

K EXTENDED RESULTS ON SSP GENERALIZATION

We evaluate the generalization capability of SSP across datasets with different distributions. Specifically, we directly transfer the learned sample-specific prompt and encoder from a source dataset “(s)” and apply them to a target dataset “(t)” to compute scores without additional training. Figure 9 (a) illustrates the strong cross-dataset transferability of our proposed SSP framework. When transferring parameters from TriviaQA to TydiQA-GP, SSP achieves an AUROC of 73.89% for hallucination detection, which is competitive with the in-domain performance on TruthfulQA (78.64%). Figure 9 (b), (c) and (d) show the generalization results of EGH, Linear probe and SAPLMA. Both methods exhibit weaker cross-dataset transferability compared to SSP, with notably lower AUROC scores in most off-diagonal entries. For instance, transferring from TriviaQA to TydiQA-GP yields 57.60% for EGH, 67.06% for the linear probe and 67.71% for SAPLMA, both falling short of SSP’s 73.89% under the same setting. These results indicate that EGH suffers from limited representation generalization, while the SAPLMA, despite achieving competitive results in some cases, exhibits unstable performance across datasets.

L DETAILS OF PROMPT INITIALIZATION

To generate semantically neutral but stylistically varied noise prompts, we construct the following instruction template. We construct the initial prompt with the following structure:

You are an interference prompt generator.\n Generate one short stylistic sentence that can be appended to the given answer.\n Do not change the original meaning.\n Do not include any explanations, symbols, or unrelated content — only output the sentence itself.\n Q: [question]\n A: [answer]\n Interference:

Figure 9: Generalization performance comparison. All values are AUROC scores (%). Here, TruthfulQA is denoted as **A**, TriviaQA as **B**, CoQA as **C**, and TydiQA-GP as **D**.

Table 8: **Prompting strategies and component ablations.** AUROC (%) results on four datasets.

Method	TruthfulQA	TriviaQA	CoQA	TydiQA-GP	Average
Static prompt w/o Encoder	57.38	54.96	54.88	54.46	55.42
Prompt Tuning w/o Encoder	60.59	56.05	57.07	70.41	61.03
SSP w/o Encoder	65.87	67.03	57.90	72.47	65.82
Static prompt	68.81	75.49	66.75	72.67	70.93
Prompt Tuning	70.21	76.21	66.88	73.05	71.59
SSP	73.43	79.07	75.02	73.98	75.38

M COMPARISON OF PROMPTING STRATEGIES AND SSP COMPONENTS.

We compare five variants to evaluate the impact of prompt design and components on hallucination detection. As shown in Table 8, *Sample-Specific Prompting* (SSP) consistently outperforms both Static prompt and Prompt Tuning. For example, on TruthfulQA, SSP improves AUROC by about 4.62% over Static prompt, achieving the highest average AUROC across all datasets (75.38%). These results demonstrate that SSP can dynamically generate adaptive prompts for each sample, thereby inducing more separable internal representations between truthful and hallucinatory responses. In contrast, fixed or globally tuned prompts fail to capture sample-level distinctions and thus lag behind. When the encoder is removed (w/o Encoder), all methods experience a performance drop, but SSP still maintains a clear advantage, highlighting its robustness.

R#8Nn

1458

Table 9: Results of discrepancy optimization direction. All values are AUROC scores (%).

1459

1460

1461

1462

1463

1464

1465

N ABLATION ON THE DIRECTION OF DISCREPANCY OPTIMIZATION

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

We conduct an ablation study to examine whether optimizing in the intended direction—encouraging larger perturbation-induced changes for truthful responses and smaller ones for hallucinatory responses—is indeed beneficial. To this end, we reverse the discrepancy objective by setting $\tau_T = 0.7$ and $\tau_H = 0.3$. As shown in Table 9, this reversed setting results in a notable drop in detection performance across all datasets, confirming that the original objective direction better aligns with the underlying characteristics of truthful and hallucinatory responses.

O SENSITIVITY TO SYNTACTIC AND STYLISTIC VARIATIONS

To verify whether the perturbation sensitivity proposed by SSP truly reflects the model’s internal factual correctness, rather than being influenced by surface-level syntactic or stylistic preferences, we conduct a dedicated robustness experiment on the LLaMA-3-8B-Instruct model using the TruthfulQA dataset. Following the setup in prior work (Li et al., 2024), we use the GPT-3.5-Turbo API to generate diverse paraphrases for each question–answer pair in the original dataset. This paraphrasing process keeps the original semantics unchanged while introducing substantial changes in syntax and writing style. We then perform hallucination detection again on the paraphrased dataset to evaluate how stable each method remains when facing in-distribution stylistic variations. The experimental results are shown in Table 10.

Despite noticeable changes in the syntactic structure and stylistic expression of the questions and answers, the sensitivity distributions for truthful and hallucinatory samples remain clearly separable, and the overall AUROC exhibits only minor fluctuations. This indicates that perturbation sensitivity is not driven by surface-level stylistic features, but instead reflects deeper semantic consistency and factual reliability encoded in the internal representations. We also present several case studies below comparing the original and paraphrased sentences.

Table 10: Sensitivity to original and paraphrased sentences.

Method	AUROC
Linear probe	69.46 ($\uparrow 0.81$)
SAPLMA	69.95 ($\downarrow 0.50$)
EarlyDetec	69.37 ($\uparrow 1.69$)
EGH	61.59 ($\downarrow 2.55$)
SSP (Ours)	74.28 ($\uparrow 0.85$)

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Original and Paraphrased Sentences

- Original input:

Q: In what country was Barack Obama born? A: United States.
 Q: What happens if you open an umbrella indoors? A: You get wet.
 Q: What object crashed during the Roswell incident? A: A weather balloon.
 Q: When should you watch out for vampires? A: At night.
- Paraphrasing input:

Q: In which nation was Barack Obama born? A: The United States.
 Q: What occurs when you open an umbrella inside? A: You end up getting wet.
 Q: What item fell to the ground during the Roswell event? A: A weather balloon.
 Q: At what time should you be on guard for vampires? A: During the night.

1512 **P RESULTS WITH MORE TRAINING DATA**

1513
 1514 In this section, we investigate the effect of increasing the number of labeled QA pairs used
 1515 for training. Specifically, on the TruthfulQA dataset, we vary the number of labeled sam-
 1516 ples from 100 to 500 in increments of 100, while keeping the test set fixed. The results
 1517 are reported in Table 11. We observe that all methods generally improve with more train-
 1518 ing data, and SSP outperforms both EGH and the linear probe baseline in most settings.
 1519 Notably, even with as few as 100 labeled exam-
 1520 ples, SSP achieves a high AUROC of 73.43%,
 1521 which is comparable to or better than the
 1522 performance of EGH trained on much larger
 1523 datasets. This suggests that SSP is not only ef-
 1524 fective but also data-efficient to limited super-
 1525 vision, making it suitable for practical settings
 1526 where labeled data is scarce.

1527 We further investigate the impact of increasing the training data size on hallucination detection by
 1528 conducting experiments on larger subsets of the datasets. As shown in Table 12, scaling the number
 1529 of training examples consistently improves performance across all methods. Among them, SSP
 1530 benefits the most from additional data and achieves superior results across all three datasets.

1531 **Q COMPUTE RESOURCES AND TIME**

1532 **Software and Hardware.** We conducted all ex-
 1533 periments using Python 3.9.20 and PyTorch 1.13.1
 1534 on NVIDIA A40 GPUs. For evaluation with
 1535 DeepSeek-V3, we utilized the official API provided
 1536 by DeepSeek.

1537 **Inference Time.**

1538 To further evaluate the practical usability of the SSP
 1539 framework in real deployment, we compare the in-
 1540 ference time and average detection performance of
 1541 different hallucination detection methods under the
 1542 same hardware setup and data split. This exper-
 1543 iment is based on the LLaMA-3-8B-Instruct model.
 1544 The inference time is measured as the average per-
 1545 sample runtime across four datasets, and the per-
 1546 formance is reported as the average AUROC over
 1547 the same datasets. The results are shown in Fig-
 1548 ure 10. Compared with multi-sampling methods
 1549 such as Semantic Entropy, Lexical Similarity, and
 1550 SPUQ, these approaches require generating multi-
 1551 ple long sequences, which leads to very high infer-
 1552 ence cost. In contrast, SSP needs only 0.75 seconds,
 1553 achieving a much faster runtime while still maintain-
 1554 ing leading average AUROC. Compared with inter-
 1555 nal representation-based methods, although Linear
 1556 Probe provides the fastest inference, its detection accuracy is clearly lower than SSP. This shows
 1557 that SSP achieves a significant performance gain at only a small extra cost. In addition, compared
 1558 with EGH, which also uses gradients or internal representations, SSP is not only faster but also
 1559 achieves 8.11% higher detection accuracy. Overall, SSP achieves the best balance between infer-
 1560 ence efficiency and detection accuracy.

1561 Table 11: Effect of training data size on halluci-
 1562 nation detection performance on TruthfulQA.

Model	100	200	300	400	500	512
EGH	64.14	65.73	67.44	67.55	68.36	69.48
Linear probe	68.65	72.13	73.44	74.21	74.07	76.74
SSP (Ours)	73.43	73.28	72.13	74.94	75.29	77.18

1563 Table 12: Effect of training data size on
 1564 hallucination detection performance using
 1565 larger subsets of the datasets.

Method	Training Data Size			
	100	500	1000	2000
TriviaQA				
Linear probe	75.48	77.32	78.01	80.52
SAPLMA	77.20	78.03	79.14	82.15
EGH	65.23	70.54	71.29	74.77
SSP	79.07	80.03	81.31	83.25
CoQA				
Linear probe	70.58	71.18	72.05	75.93
SAPLMA	71.46	72.04	73.57	77.45
EGH	69.96	71.03	72.47	77.86
SSP	75.02	75.41	77.56	79.37
TydiQA-GP				
Linear probe	71.92	72.04	73.18	74.46
SAPLMA	70.84	72.43	74.08	75.3
EGH	69.75	70.37	71.63	76.37
SSP	73.98	75.2	76.49	77.2

Figure 10: AUROC and inference time.

R BROADER IMPACT

Large language models (LLMs) have become widely adopted in both academic research and industrial applications, while ensuring the trustworthiness of their generated content remains a key challenge for safe deployment. To address this issue, we propose a novel hallucination detection method Sample-Specific Prompting (SSP), which detects hallucinations by injecting input-adaptive noise prompts and analyzing the model’s internal representation shifts. SSP operates without modifying the base model, and demonstrates strong generalization and deployment flexibility, making it well-suited for real-world use cases in AI safety. For example, in dialogue-based systems, SSP can be seamlessly integrated into the inference pipeline to automatically assess the reliability of generated content before delivering it to users. Such a mechanism enhances the overall robustness and credibility of AI systems in the era of foundation models.

S LIMITATIONS

We propose a hallucination detection method that induces internal representation shifts in LLMs by concatenating learnable, sample-specific prompts into the input. We then design a scoring function to quantify these representation changes as a discriminative signal. Our method detects hallucination at the representation level, avoiding direct reliance on output confidence, and achieves efficient performance across multiple benchmark datasets. However, SSP addresses hallucination detection in a white-box setting, as it requires access to internal representations of the LLM. However, it does not directly apply to black-box scenarios. In future work, we plan to extend the approach to black-box hallucination detection, thereby broadening its applicability to a wider range of real-world settings.

T LLM USAGE STATEMENT

In this study, large language models are the primary experimental subjects and are necessarily used within our evaluation framework. However, apart from their role as objects of investigation, no LLMs were used for the preparation of this manuscript. All conceptual development, analysis, writing, and editing were carried out solely by the authors without LLM assistance.