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Abstract

The safe application of machine learning systems in healthcare relies on valid performance
claims. Such claims are typically established in a clinical validation setting designed to be
as close as possible to the intended use, but inadvertent domain or population shifts remain
a fundamental problem. In particular, subgroups may be differently represented in the data
distribution in the validation compared to the application setting. For example, algorithms
trained on population cohort data spanning all age groups may be predominantly applied in
elderly people. While these data are not “out-of distribution”, changes in the prevalence of
different subgroups may have considerable impact on algorithm performance or will at least
render original performance claims invalid. Both are serious problems for safely deploying
machine learning systems. In this paper, we demonstrate the fundamental limitations of
individual example out-of-distribution detection for such scenarios, and show that subgroup
shifts can be detected on a population-level instead. We formulate population-level shift
detection in the framework of statistical hypothesis testing and show that recent state-of-
the-art statistical tests can be effectively applied to subgroup shift detection in a synthetic
scenario as well as real histopathology images.

Keywords: safety, domain shift detection, subgroups, hypothesis testing, kernel methods

1. Introduction

Machine learning (ML) tools for medical image analysis have been approaching human-
level performance in controlled settings in various application areas such as ophthalmology,
breast, skin and lung cancer detection, respiratory diseases and orthopaedics (Liu et al.,
2019). However, major hurdles still obstruct the wide adoption of machine learning in
clinical practice. When ML is applied in a clinical setting, its outputs are typically used to
ultimately inform treatment decisions. Therefore, as a flipside to their vast potential, ML
algorithms can also indirectly cause harm to the patient. For example, failure to detect the
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Figure 1: a. The contours depict the probability density P. The blue and orange clusters
are samples drawn from distributions Q; and Q, which exhibit a subgroup and
OOD shift, respectively. b. Subgroup and OOD shifts render performance claims
obtained from P invalid, but OOD detection would typically fail on examples
drawn from subgroup Q.

presence of tumour cells on histopathology samples may lead to inappropriate treatment
and in the worst case, premature death. ML systems for healthcare in high risk settings are
therefore subject to strict regulations to ensure their safety and effectiveness.

A key step in certifying ML systems is clinical validation, where the system’s perfor-
mance is assessed on validation data that are intended to be representative of the real data
distribution encountered in the deployed system. After clinical validation, the system may
be considered safe and approved for use in the intended setting by regulatory authorities.
“Safe” in this context means that the benefits of using the ML system are considered to out-
weigh the risks associated with prediction errors. This risk-benefit analysis crucially hinges
on realistic ML performance estimates: if the performance in the application setting falls
short of the claimed performance estimated in the validation setting, the cumulative harm
associated with prediction errors in all patients may exceed the level deemed acceptable.

One approach towards detecting changes in the application setting w.r.t. the validation
setting is out-of-distribution (OOD) detection for individual examples. OOD detection is
applied to each data point separately to identify whether it is unlikely to be drawn from the
distribution the data was validated on, as this could lead to an unreliable prediction. There
exists a large body of recent research on OOD detection (e.g. Liang et al. (2018); Hendrycks
and Gimpel (2017); Daxberger et al. (2021); Erdil et al. (2021)). A comparison of OOD
detection methods applied to medical images is provided in Jungo and Reyes (2019); Berger
et al. (2021).

While the above-mentioned family of methods should be a crucial part of any safety-
critical ML system, they are — as we will show — not suitable for detecting certain distribution
shifts which can only be detected at a population level. In particular, conventional OOD
detection methods cannot detect subgroup shifts, i.e. distribution shifts within the support
of the original distribution (illustrated in Fig.1). The blue and orange points depict a
subgroup shift and an OOD shift, respectively (Fig.1a). Each individual point from the
blue cluster is not atypical w.r.t. the source distribution, but they clearly are on a population
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level (Fig. 1b). While both types of shifts are problematic, OOD detection would typically
fail on examples from the blue cluster, as also demonstrated experimentally in Sec. 3.2.

In reality, subgroup shifts can occur when subgroups are differently represented in data
used to validate the algorithm compared to the application setting. For example, algorithms
evaluated on population cohort data spanning all age groups may be predominantly applied
in elderly people. As another example, algorithms for histopathology data analysis may be
evaluated across multiple hospitals but applied predominantly in a subset of them, which
could result in a overrepresentation of specific acquisition protocols, or screening devices
used to obtain the data. While in both cases a shift could be detected by measuring and
monitoring the age distribution or acquisition settings, crucial covariates characterising
relevant subgroup attributes are often unmeasured or unidentified, and performance across
subgroups may vary vary distinctly (Oakden-Rayner et al., 2020). When any distribution
shifts (including subgroup shifts) occur, this may therefore impact the actual performance
in the real application setting, or will at least render original performance claims invalid.
Both scenarios pose serious problems for safely deploying machine learning systems.

We therefore aim to detect distribution shifts at a population level, with a specific focus
on subgroup shift otherwise not detectable. We formulate shift detection in the framework
of statistical hypothesis testing with a null hypothesis that two samples (i.e. sets of data
points) are drawn from the same distribution. Recently developed hypothesis tests have
reached meaningful statistical power on high-dimensional data for some types of distribution
shift (Liu et al., 2020; Rabanser et al., 2019). As this problem has so far not been explored
in a medical imaging setting, in this paper we focus on the following key contributions:

1. We demonstrate the fundamental limitations of classical OOD detection methods for
detecting subgroup shifts, demonstrating the need for population-level shift detection.

2. We establish a baseline for subgroup shift detection on toy data as well as histopathol-
ogy data. In particular, we demonstrate reliable subgroup shift detection with deep-
kernel methods based on (Liu et al., 2020).

2. Methods for Distribution Shift Detection

We first introduce the exemplar state-of-the-art method (Sec. 2.1) we use to demonstrate
that OOD detection fails at detecting subgroup shifts. We then revisit the framework of
statistical hypothesis testing (Sec. 2.2) and introduce the population-level shift detection
methods recently proposed by Liu et al. (2020) and Rabanser et al. (2019). As far as we
are aware, these are the only existing methods potentially suitable for detecting subgroup
shifts in medical images, and will form the basis for our baseline experiments.

2.1. Classical OOD detection

We use ODIN (Liang et al., 2018) for individual OOD detection, as it is widely used and
performed best in a recent comparison of confidence-based OOD detection methods (Berger
et al., 2021). Let us assume two probability distributions P, Q over X', where in our case,
X = R"” is the space of n-dimensional images. ODIN relies on a task classifier trained in
P, and uses the confidence of the predicted class (i.e. the maximum softmax output) to
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predict whether a data point belongs to P or Q as in Hendrycks and Gimpel (2017). To
improve detection, the input data is perturbed such that the softmax output for the true
label increases, and temperature scaling is applied in the softmax layer (Liang et al., 2018).
The temperature 7 and perturbation magnitude € are hyperparameters (see App. A).

2.2. Hypothesis Testing for Distribution-Shift Detection

Following Casella and Berger (2002) and Gretton et al. (2012), we formulate the problem of
subgroup shift detection as a hypothesis test with null hypothesis Hy : P = QQ and alternative
Hy : P # Q. In general, the hypotheses make a statement about a population parameter
(e.g. difference in population mean for a two-sample ¢-test), and the test statistic ¢(X,Y) is
the corresponding estimate from the samples X = {z;}7, WP andY = T o) (e.g.
difference in sample means). Hj is rejected for some rejection region of ¢. The significance
level a or Type I error denotes the probability that Hy is rejected even if it is true. Typically,
the rejection region is selected at a specific significance level, e.g. a = 0.05. The test power
denotes the probability that Hy is correctly rejected if Hj is true.

Deep Kernel Tests (MMD-D) Two-sample kernel tests (Gretton et al., 2012) use the
Maximum Mean Discrepancy (MMD) on a Reproducing Kernel Hilbert Space (RKHS) as
a test statistic.

Definition 1 (Gretton et al., 2012) Let Hy, be a RKHS with kernel k : X x X — R. The
MMD is defined as

MMD[H,P,Ql = sup  (Eenp[f(2)] — Eynolf(W)]) - (1)
FEH Iy, <1

For characteristic kernels k, the MMD is a metric and MMD[H,P,Q] =0 iff P = Q.
The metric property in the above definition implies that an estimator m\_/[\D(X ,Y) is an

appropriate test statistic for testing whether P = Q. An unbiased estimator for the MMD
is (Gretton et al., 2012):

i£J
Hij = k(wi, x5) + k(yi, y5) — k(zi,y5) — k(yi, 75) (3)

For a given kernel (e.g. a Gaussian kernel), m can be calculated on samples X,Y and a
permutation test can be used to determine whether Hy : P = Q can be rejected. The choice
of the kernel k affects test power in finite sample sizes and developing suitable kernels is an
active area of research (e.g. Sutherland et al. (2017); Liu et al. (2020). We follow Liu et al.
(2020) and parameterise the kernel kg with a neural network (see Appendix B for exact
architecture). The kernel parameters are optimised on training data from P and Q:

0 = arg maxﬁl\ﬁ(X,Y;kg) (4)
[4

It is important to note this diverges from Liu et al. (2020), where the objective function

also incorporated knowledge on the asymptotic distribution of MMD under H;. We did not
find this beneficial (see App. C for further analysis).
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Mass-Univariate Kolmogorov-Smirnov Tests on Task Predictions (MUKS) Al-
ternatively, Rabanser et al. (2019) propose hypothesis tests for domain shift detection that
operate on low-dimensional representations of the original image space X'. They use a black-
box classifier g : X — R trained on data from P as a dimensionality reduction technique,
where s = g(z) € RY is a softmax prediction for z with C classes. A mass-univariate
Kolmogorov-Smirnov (MUKS) test is then applied to the individual softmax predictions of
samples X and Y, yielding C' p-values. Rabanser et al. (2019) perform Bonferroni correction
for multiple comparisons, i.e. Hy is rejected if p < «/C for any of the C' comparisons.

3. Experiments and Results

We will first show that state-of-the-art OOD detection fails to detect distribution shifts in
subgroups. Subsequently, we examine the shift detection capabilities of approaches based
on hypothesis testing in a subgroup shift setting, evaluated on toy data and real-world
histopathology images. We made the code available! used public datasets.

3.1. Data

MNIST As a toy example, we used the MNIST dataset (Lecun et al., 1998) with the
official training and test splits (60’000 / 10’000 images). We held out 10’000 images from
the training split for hyperparameter and model selection. Subgroup distribution shifts
were modelled by artificially adjusting the prevalence of the digit 5 in P or Q.

Histopathology Images We used the fully annotated Camelyon17 challenge data (Bandi
et al., 2019) to demonstrate our results on real-world medical images. The dataset consists
of 50 whole slide images (WSI) of H&E stained lymph node biopsies acquired across different
hospitals. Due to differences in sample preparation and staining protocols, WSI typically
vary severely across sites. We used a patch-based version of Camelyonl7 that was recently
provided by the WILDS domain generalisation benchmark (Koh et al., 2021) to study tumor
detection across different hospitals. We split the data into training (284’219), validation
(70°219) and test patches (100’820) while making sure no data from the test slides were
used in the training and validation folds. Tumour prevalence was approximately 50% in all
folds. Subgroup shifts were modelled by increasing the proportion of data from hospital 3.
For this subgroup, shift detection is particularly important because of an observed drop in
classification performance (Sec.3.3.2)

3.2. Experiment 1: Limitations of Individual OOD Detection
3.2.1. EXPERIMENTAL SETUP

To illustrate the inherent limitations of OOD detection methods for subgroup shifts, we
applied the state-of-the-art OOD method ODIN (Liang et al., 2018) to a subgroup shift
and OOD shift setting on MNIST. For the subgroup shift, we used MNIST as P (MNIST-
all), and MNIST with exclusively 5’s as Q (MNIST-5). For the OOD shift, we used MNIST
excluding digit 5 as P (MNIST-no-5), and MNIST-5 as Q as before. For both settings,
we trained a ResNet (He et al., 2016) as a digit classifier on the training fold of P. For

1. https://github.com/1lmkoch/subgroup-shift-detection
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Table 1: Detection performance of ODIN (Liang et al., 2018) on MNIST, applied to OOD
and subgroup shifts. Performance is reported using AUC (higher is better), FPR
(lower is better) and detection rate (1-FPR).

P (in) Q (out) Shift type AUC FPR Detection rate
(95% TPR) (95% TPR)

MNIST-no-5 MNIST-5 OOD 096  0.20 0.80

MNIST-all MNIST-5 subgroup 0.44 0.96 0.04

the OOD shift setting, the digit classifier was trained on nine digits (excluding 5). Both
classifiers reached an accuracy of 0.98 for the respective task on the validation split. The
hyperparameters for temperature and perturbation magnitude were chosen based on a grid
search in the validation set (see App. A).

As is common, the performance of ODIN was evaluated with the area under the ROC
curve (AUC) as well as the false positive rate (FPR) at a true positive rate of 95%. For
calculating these measures, P was assumed the positive class. The shift detection rate (1-
FPR) was added for ease of interpretation, denoting the proportion of examples from Q
that were correctly identified.

3.2.2. RESULTS

The detection performance of ODIN for the OOD setting was markedly better than for
subgroup shifts (Table 1). According to these measures, ODIN accurately detected OOD
shifts (AUC 0.96, detection rate 0.80), but showed close to chance performance for subgroup
shifts (AUC 0.44, detection rate 0.04). This experiment shows that OOD detection methods
cannot be used to detect subgroup shifts. These findings could also be confirmed with
evaluation on other shift settings and additional OOD detection methods (see App. D).

3.3. Experiment 2: Population-Level Subgroup Shift Detection
3.3.1. EXPERIMENTAL SETUP

We examined the population-level shift detection capabilities of the approaches outlined in
Sec. 2.2 (MMD-D) and Sec. 2.2 (MUKS) in the subgroup shift setting. We studied subgroup
shifts with over-representations of subgroups (MNIST: digits 5, Camelyon: hospital 3) of
factor w = {1,5,10,100} in the target distribution Q w.r.t. source distribution P . The
configuration w = 1 denotes the case where there was no over-representation, i.e. P = Q.

Deep kernel test (MMD-D) For each shift configuration, we trained a deep kernel to
optimise the power of the statistical hypothesis test based on MMD-D. The kernel archi-
tecture was chosen as in (Liu et al., 2020). The training used minibatches of size 64 from
the training fold of both P and Q. We used the Adam optimiser (Kingma and Ba, 2015)
with a learning rate of 1075,

Mass-univariate KS test (MUKS) The MUKS hypothesis test for shift detection relies
on a task classifier in the source distribution P. For MNIST, we re-used the classifier from



HIDDEN IN PLAIN SIGHT: SUBGROUP SHIFTS EscAPE OOD DETECTION

w=1

—

—o— MMD-D (MNIST)
—=%=MMD-D (Camelyon)
—®- MUKS (MNIST)
—x=_MUKS (Camelyon)

Test power
o o o
= (=) oo

o

=
=)

10t 10?
Sample size m

&
L
(6))]
w0y
V‘
g

SOV R
A NUY LRy
AU eO @
oyl +9-
Qoo 8%,
oo K-
Chunio N G e YQ
NAh—@g &0y
AU T YU G
Uk O Uy
NQv)Ohh |\ Y
4609 a9 n 9
NNy GGG

Figure 2: The top row shows test power (shaded area depicts standard error) of MMD-D and
MUKS on MNIST (@) and Camelyon17 (%) for varying degrees of subgroup shift,
from no shift (w = 1, left) to strong shift (w = 100, right). The bottom rows show
example images from different subgroup shifts Q for MNIST and Camelyonl7.

Sec. 3.2. For Camelyonl7 data, we trained a DenseNet (Huang et al., 2017) using the
training regime proposed in Koh et al. (2021). We applied the MUKS test to the softmax
outputs of classifier predictions on test data from P and Q as described in Sec. 2.2.

Performance evaluation As in Liu et al. (2020); Rabanser et al. (2019), we assessed
the shift detection performance through the test power, which we calculated as the shift
detection rate, i.e. the proportion of rejected null hypotheses Hy : P = Q in repeated
experiments (100 repetitions at significance level a = 0.05). For each repetition, we drew
samples of size m € {10, 30, 50, 100, 200, 500} from the test folds of P and Q. We calculated
the empirical Type I error similarly by repeatedly drawing two independent samples of P.

3.3.2. RESULTS

For strong subgroup shifts in MNIST (w = 100, i.e. almost exclusively digit 5 present in Q)
both MMD-D and MUKS yielded perfect test power with a sample size m > 30 (top right in
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Fig. 2). In the same setting on histopathology images, both approaches approached perfect
test power for a sample size m = 500. With more subtle subgroup shifts (w = 5,10, middle
figures), the test power decreased gradually when evaluated for smaller sample sizes, but
on MNIST reached perfect test power for m = 200 (subgroup shift w = 5) and m = 100
(subgroup shift w = 10) for both MMD-D and MUKS (see App. E for some supplementary
results). The experiments on histopathology data yielded reduced performance compared
to MNIST, likely because the changes were more subtle (Fig. 2 bottom rows), but the overall
trends were consistent. Importantly, both approaches correctly failed to detect a shift when
no actual subgroup shift was present (Fig. 2, top, w = 1, i.e. P = Q). In this case,
as expected, the rate at which Hy was rejected was approximately equal to the chosen
significance level a = 0.05. The observed Type I error for all tests was also consistent with
a = 0.05: the mean (SD) across all tests was 0.05 (0.02) for MMD-D and 0.03 (0.02) for
MUKS on both datasets (the latter is expected to be lower than the desired 0.05 due to the
overly conservative Bonferroni correction).

In summary, MMD-D performed consistently better than MUKS, but overall, both
methods were able to effectively detect subgroup shifts. This is in clear contrast to the
detection performance obtained with classical OOD detection as demonstrated in Sec. 3.2.

To demonstrate the impact of subgroup shifts, we compared Camelyonl7 classification
performance in all hospitals (acc = 0.79) to performance on the subgroup (hospital 3,
acc = 0.73). This was possible as we had access to both task labels and subgroup attributes.
This shows that a subgroup shift towards hospital 3, as studied here, would have a negative
impact on classification performance in the application setting.

4. Discussion and Conclusion

We demonstrate in this paper that subgroup shifts escape OOD detection completely even
for very strong shifts. While this is not a surprising result given that OOD detection
was not designed to operate in this setting, it has implications for the safe application
of machine learning in safety-critical settings. For the studied subgroup shift, the results
can be contrasted directly with an effective detection using either of the population-level
approaches. In addition to improving robustness to distributions shifts, we argue that
population-level distribution shift detection should be used alongside OOD detection to
facilitate trust in the real-world performance of ML systems.

Comparing the hypothesis testing approaches, MMD-D clearly and consistently outper-
formed MUKS. This is likely because MMD-D was trained with access to data from the
application setting. When availability of real data is limited, this may motivate the use
of MUKS. However, as MMD-D does not requires any labelled examples, data availability
may not be a crucial limitation.

As subgroup shift detection has, to our knowledge, not been explored on medical data, we
focused this paper on formulating and motivating the problem setting and establishing a first
baseline on real-world data. However, our work suggests several avenues for further research.
We expect that both hypotheses tests studied in this paper can be improved further through
more expressive kernel architectures for MMD-D, and more powerful task classifiers for
MUKS. To broaden the clinical impact, we will investigate other types of clinically relevant
population shifts, e.g. in protected subgroups based on gender or ethnicity.
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Figure 3: This figure shows subgroup shift detection performance on the MNIST validation
set for all hyperparameter choices 7,e. (a) shows FPRQTPRI5 (lower is better),
and (b) shows ROC AUC (higher is better).

Appendix A. Temperature Scaling and Input Perturbation for ODIN
The softmax predictions after temperature scaling can be calculated as (Liang et al., 2018):
exp (f(x)/T)
>S5 exp (f9()/7)

where f(z) denotes a logit prediction. In addition, the inputs were perturbed to increase
the softmax output for the predicted class label ¢ (Liang et al., 2018):

9 (w;7) = : ()

I = x — esign (—Vm log ¢'9 (; 7')) . (6)

Figures 3 and 4 show the grid search results obtained for the subgroup shift and
OOD shift settings, respectively, using the exploration range 7 € {1,10,100,1000},¢ €
{0,0.001,0.002,0.003,0.004}. The hyperparameters were selected to minimise the false
positive rate (FPRQTPROI5), resulting in 7 = 1,€ = 0.0 for the subgroup shift setting and
7 =1,e¢ =0.002 for the OOD shift setting.

Appendix B. Kernel Architecture Deep Kernel Test
In this paper, we used the kernel proposed in Liu et al. (2019):

ko(z,y) = (1 =0)f(¢0(x), Po(y)) +6) g(z,y) (7)

11
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Figure 4: This figure shows OOD shift detection performance on the MNIST validation set
for all hyperparameter choices 7,¢. (a) shows FPRQTPR95 (lower is better), and
(b) shows ROC AUC (higher is better).

where f and g are Gaussian kernels taking pairs of deep feature vectors ¢g(x), ¢g(y) and
original data x,y as inputs, respectively. Both Gaussian kernels have a lengthscale parame-
ter that is also optimised with Eq. 9 along with 6. The architecture of the feature extractor
¢g consists of four convolutional layers followed by a linear layer as used in the DCGAN
discriminator (Radford et al., 2016).

Appendix C. Estimators and Architecture for Optimal MMD Kernel
Tests

Sutherland et al. (2017) proposed a mechanism for choosing a kernel ky that maximises
the test power by exploiting knowledge of the variance oy, of the asymptotic sampling
distribution of the test statistic under H;. An estimator &l%ll,k for the variance is (Liu
et al., 2020)

m m 2 m m 2
o2 (X, Y ky) —%Z(ZH& —%<ZZH“) +X . (8)
1 \i=1 i=1 1=1

The test power can then be optimised by finding kernel parameters that optimise the ob-
jective function

MMD(X, Y; ko)
UHl, (X7Ya k@)

IANX,Y:0) = (9)

12



HIDDEN IN PLAIN SIGHT: SUBGROUP SHIFTS ESCAPE OOD DETECTION

1.0

g —_— -—
[e]
[oN
3
'_
=@~ MMD ratio
- = MMD
10~* 1072 10° 102

Figure 5: Test power for different choices of A is shown in blue. Overlaid is the test power
obtained by maximising without considering the denominator of Eq. 9. Here, we
assessed test power for samples of size m = 50.

Optimising test power requires a hyperparameter A which controls the contribution of
the variance of of the test statistic under H;. Examining various hyperparameter values, we
s/m_p\risingly found that using the objective in Eq. 9 did not yield a benefit over maximising
MMD(X,Y; kg) only (Eq. 4). Results of a hyperparameter search are shown in Fig.5. The
experiment was carried out using MNIST to model P, and MNIST with a 5-fold oversampling
of digit 5 as Q.

Appendix D. Additional Results for Individual OOD Detection

Here, we show additional results for classical OOD detection in OOD and subgroup shift
settings (see Table 2). Distribution shifts were modelled by changing the proportion of each
individual digit in MNIST. In addition to ODIN, which was evaluated in Sec. 3.2, we show
results on two other OOD detection methods: ”Baseline” (Hendrycks and Gimpel, 2017)
using the maximum probability output to distinguish domains, and ”Laplace” (Daxberger
et al., 2021), which is an approach based on Laplace approximations of the loss function
and has been shown to be useful for OOD detection.

The results for the different digits were consistent with the results reported in Sec. 3.2,
with classical OOD detection failing catastrophically on subgroup shift settings (bottom
rows in Table 2) for all digits, and obtaining detection rates between 0.7-0.95 for OOD shift
settings (top rows in Table 2) .

Appendix E. Additional Results for Population-Level Subgroup Shift
Detection

Here, we expand the evaluation of population-level subgroup shift detection (Sec.3.3) by
modelling additional subgroup shifts in MNIST. Similarly to the additional experiments in
AppD), we modelled these shifts by changing the proportion of each individual digit in

13
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Table 2: Detection performance of OOD detection methods on MNIST, applied to OOD
(top rows) and subgroup shifts (bottom rows). Performance is reported using
AUROC (higher is better) and detection rate (1-FPR, higher is better).

P (in) Q (out) AUC Detection rate
(95% TPR)
Baseline / Laplace / ODIN
MNIST-no-0 MNIST-0 0.98 / 0.98 / 0.98 0.91 / 0.94 / 0.92
MNIST-no-1 MNIST-1 0.98 /0.99 / 0.98 0.89 / 0.95 / 0.89
MNIST-no-2 MNIST-2 0.96 / 0.97 / 0.96 0.77 / 0.79 / 0.77
MNIST-no-3 MNIST-3 0.95 /0.96 / 0.95 0.70 / 0.73 / 0.70
MNIST-no-4 MNIST-4 0.95/0.95/0.95 0.78 /0.76 / 0.77
MNIST-no-5 MNIST-5 0.96 / 0.96 / 0.96 0.80 / 0.78 / 0.80
MNIST-no-6 MNIST-6 0.97 / 0.98 / 0.97 0.87 / 0.90 / 0.87
MNIST-no-7 MNIST-7 0.97 /0.97 /0.97 0.87 / 0.87 / 0.88
MNIST-no-8 MNIST-8 0.97 / 0.96 / 0.97 0.83 / 0.81 / 0.83
MNIST-no-9 MNIST-9 0.96 / 0.97 / 0.96 0.79 / 0.80 / 0.78
MNIST-all MNIST-0 0.32 /0.34 / 0.32 0.02 / 0.02 / 0.02
MNIST-all MNIST-1 0.46 / 0.43 / 0.46 0.02 / 0.01 / 0.02
MNIST-all ~ MNIST-2 0.52 / 0.51 / 0.52 0.04 / 0.03 / 0.04
MNIST-all MNIST-3 0.44 / 0.40 / 0.44 0.04 / 0.04 / 0.04
MNIST-all  MNIST-4 0.47 / 0.46 / 0.47 0.05 / 0.05 / 0.05
MNIST-all MNIST-5 0.44 / 0.41 / 0.44 0.04 / 0.04 / 0.04
MNIST-all MNIST-6 0.47 / 0.60 / 0.47 0.05 / 0.06 / 0.05
MNIST-all ~ MNIST-7 0.70 / 0.72 / 0.70 0.06 / 0.06 / 0.06
MNIST-all MNIST-8 0.51 / 0.47 /0.51 0.06 / 0.07 / 0.06
MNIST-all MNIST-9 0.70 / 0.64 / 0.70 0.12 / 0.11 / 0.12
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Figure 6: The panels shows test power of MMD-D (blue) and MUKS (orange) on MNIST
for varying degrees of subgroup shift, from no shift (w = 1, left) to strong shift
(w = 100, right). Different curves of the same color denote shifts w.r.t. different
digits.

MNIST, leading to relatively consistent results (see Fig. 6) with some variability in test
power for different digits.
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