Under review as a conference paper at ICLR 2026

NEURALIGNER: SCALABLE AND ROBUST DNA SE-
QUENCE ALIGNMENT VIA EMBEDDING-BASED SIMI-
LARITY SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

DNA sequence alignment is a fundamental task in genomics. Existing aligners
rely on the seed—chain—align paradigm, which achieves high efficiency but strug-
gles with sequencing errors and genetic variation. Moreover, most methods re-
main CPU-based and are poorly suited to large-scale GPU acceleration, limit-
ing their utility in time-sensitive settings. In this paper, we present NeurALigner
(NAL), a GPU-accelerated alignment framework that integrates DNA sequence
models with vector database retrieval. Instead of exact string matching, NAL en-
codes DNA subsequences into embeddings and reformulates seed matching as a
fast similarity search in feature space, providing robustness to mismatches caused
by sequencing errors or genetic variations. The learned embeddings enable the
use of longer seeds, raising specificity in matching and improving efficiency. Fur-
thermore, an adaptive seeding strategy dynamically adjusts the number of seeds,
balancing efficiency and accuracy. Together, these innovations enable scalable,
mismatch-tolerant alignment with high specificity and strong GPU performance.

1 INTRODUCTION

DNA is the fundamental blueprint for life, holding the genetic instructions essential for most living
organisms. The genetic information is deciphered using high-throughput DNA sequencing technolo-
gies (Shendure & Ji,|2008; Rhoads & Au,[2015; Wang et al.,2021), which generate vast numbers of
short DNA fragments, referred to as reads. These reads are significantly shorter than the complete
genome, which can span from millions of base pairs in bacteria to billions in humans. Therefore,
accurate and efficient alignment of short reads to a known reference genome, a process known as
read alignment (L1 & Homer, 2010), is an essential prerequisite that underpins the interpretation
of genetic information and a wide range of downstream applications. For example, in clinical ge-
nomics, accurate alignment allows for the detection of disease-related mutations, which supports
early diagnosis and informed therapeutic decisions (Yang et al.l 2013} [Network, 2008). Further-
more, in microbiology, read alignment facilitates the characterization of pathogen genomes, which
is crucial for tracking infectious outbreaks and informing effective public health responses (Quick:
et al.,[2016).

Early alignment methods such as Needleman-Wunsch (Needleman & Wunschl [1970) and Smith-
Waterman (Smith et al.l|{1981) provided exact alignment results but quickly became computationally
infeasible as genomic data grew in scale. To address this, heuristic approaches like BLAST (Altschul
et al., [1990) introduced efficient search strategies that enabled one-versus-many sequence queries
across large databases. However, BLAST is not efficient enough to support the many-to-one align-
ment required for high-throughput sequencing. To meet these demands, tools such as BWA (Li &
Durbin,|2009) and Minimap2 (Li}2018)) were developed and optimized for mapping large collections
of reads to a large reference genome. These aligners generally follow a seed—chain—align workflow:
the reference genome is first segmented and indexed for rapid querying; candidate regions are iden-
tified by locating exact-match seeds and chaining them into candidate alignment regions, followed
by base-level alignment permitting mismatches and gaps.

Under review as a conference paper at ICLR 2026

Despite these advances, three challenges remain. First, sequencing errors and genetic varia-
tions (Logsdon et al.,2025) introduce discrepancies between query reads and the reference genome.
Seed-and-extend methods such as BWA and Minimap?2 often struggle in these cases because their
seeding step requires exact matches, which breaks down when mismatches are frequent. Second,
repetitive genomic regions (which make up more than 50% of the human genome) cause the same
query fragment to map to multiple locations, leading to alignment ambiguities and errors. Third,
although some aligners have been adapted for GPU acceleration (Pham et al.,2023};|Sadasivan et al.,
2023)), most remain CPU-based since the string matching paradigm is not well suited to GPU paral-
lelism. As a result, achieving both high accuracy and efficient GPU-accelerated alignment remains
an open problem, yet it is critical for time-sensitive diagnostic workflows in clinical practice (Char-
alampous et al.; 2019;|Gu et al.,|2021} |Brind]l et al., [2025)).

To address these challenges, we propose NeurALigner (NAL), a GPU-accelerated sequence align-
ment framework that integrates DNA models with vector database retrieval (Johnson et al., 2019
Malkov & Yashunin, [2020). Instead of relying on exact string matches, our method encodes DNA
sequences into numerical embeddings and reformulates seed matching as a fast, mismatch-tolerant
similarity search in embedding space. Trained on large collections of DNA fragments randomly
sampled from the reference genome, the model preserves sequence similarity in the feature space
and is robust to sequencing errors and genetic variation. The embedding-based similarity search is
further accelerated by vector databases. The strength of the DNA model allows us to use longer
and fewer seeds, which improves alignment specificity while lowering computational cost. In ad-
dition, we introduce an adaptive seeding mechanism that adjusts the number of seeds according to
sequence complexity: highly unique sequences require only a few seeds, whereas low-specificity
regions trigger additional seeds to maintain accuracy.

In summary, our NeurALigner is a fast and robust DNA sequence alignment method, which com-
bines DNA models with embedding-based similarity search in vector databases. The advantages of
our method are fourfold:

* Mismatch tolerance: Vector similarity based on our DNA models provides strong tolerance to
mismatches, addressing the limitations of hash table-based string matching in handling sequence
variation.

* Higher specificity with longer seeds: Longer seeds provide higher specificity within the genome,
enabling the use of fewer seeds and thereby improving the efficiency of the seeding process.

* Adaptive seed allocation: Our method assigns fewer seeds to highly unique queries for efficiency
and more seeds to complex queries for accurate localization.

* GPU efficiency and scalability: Optimized for GPU execution, the framework benefits from
progress in GPU and vector database technologies, supporting rapid analysis in urgent clinical
contexts such as infectious disease detection and intraoperative diagnosis.

2 PRELIMINARIES: WORKFLOW OF SEQUENCE ALIGNMENT

Given a DNA fragment, known as a read, of length L,..q, DNA sequence alignment aims to de-
termine its position on a reference genome of length Lgyenome. A direct yet the most accurate ap-
proach is to compare the read against every possible subsequence of the genome with the same
length (Smith et al.l [1981). However, this brute-force method has a computational complexity of
O(Lgenome X Lread). Since Lgenome can exceed 3 billion, as in the human genome, and L4 typi-
cally ranges from 100 to 100,000, such an approach is computationally infeasible in practice.

To accelerate sequence matching, most alignment tools, including ours, adopt a heuristic seed-chain-
extend strategy (Li & Durbin,|2009; Li, 2018)). The strategy first identifies short exact or nearly exact
matching substrings between the read and the genome, called seeds. These seeds then narrow the
search space for more detailed alignment. Under this strategy, read mapping typically involves four
steps: Indexing the reference genome, Seeding, Chaining, and Alignment. Below, we first introduce
seed representation, which is central to fast indexing, followed by a description of these four steps.

Seed Representation: To accelerate seed matching, each seed s is mapped into a new space V for
efficient indexing and retrieval. Conventional methods define V as a fixed-length integer string space,
while our method uses a vector space. Formally, the mapping S is defined as S : {A, T, C, G} seed —
V, where {A,T,C,G} are the four nucleobases (Adenine, Thymine, Cytosine, Guanine), Lsccq iS

Under review as a conference paper at ICLR 2026

the seed length. The representation of s is obtained by » = S(s). For example, BWA-MEM (Li
& Durbin, 2009) encodes substrings as base-4 integers, making S injective, while Minimap2 (L1,
2018)) uses minimizers to select window-specific k-mers, minimizing redundancy and storage, while
partially tolerating mismatches. However, in these conventional methods, V is not a metric space,
so even a single nucleotide difference can lead to divergent representations. This makes their seeds
highly sensitive to sequencing errors and genetic variations.

Indexing: Indexing is a mapping Z that associates each substring with its genomic position(s), en-
abling efficient lookup during seeding. The genome is scanned using a sliding window of seed
length, generating all substrings of that length. Their representations and positions are then stored
in a specialized data structure, such as a hash table or vector database. Formally, indexing operates
in the representation space and is defined as 7 : V — Z*, with Z(r) = y;;—, for a substring repre-
sentation r, where y; is a matched position and m is the number of matches. Since a substring may
appear in multiple locations due to repeats or homology, the mapping can return several positions.

Seeding: Seeding identifies short subsequences with exact or near-exact matches between a query
read and the reference genome. These matches yield candidate positions, called anchors, which
serve as potential alignment start points. The process begins by extracting n subsequences from the
query read as seeds, denoted as {s;};—;. For each seed s;, we obtain its representation r; = S(s;)
and retrieve its anchors {y;; }"-{,. Equivalently, the anchors of a seed can be obtained through the

Jj=1*
composite mapping Z o S.

Chaining: A single seed often matches mul-
tiple genomic locations, so one seed alone
cannot determine the true genomic origin of § Seed2 ¢2=4b;
aread. To resolve this, multiple seeds are ex- & @ T
tracted in a linear order from the read, and
their corresponding anchors on the reference
genome are grouped into chains. The goal
is to find the longest co-linear chain of an-
chors that preserves the order and approxi-
mate spacing of seeds in the read. As shown
in Fig.[I] this can be visualized as connecting
anchors in a query—reference scatter plot with
line segments of slope close to one (or minus

Seed3 3 =

Seed1 @1 =0

Y2,1 ¥3,1 Y1,1 Y3,2 Y22 Y12
Reference

Figure 1: Illustration of seeding and chaining. Seeds
s; are extracted from the query read at positions x;, and
their corresponding anchor positions y; ; are retrieved
from an index of the reference genome. In the figure,

one for the negative strand). The longest con-
sistent trace is then selected as the candidate
region for alignment. The problem of finding
the longest consistent chain is usually solved

each seed is connected to its anchors by colored dashed
lines, forming a query—reference scatter plot. Chaining is
then applied to this plot to identify the longest consistent
sequence of anchors, which serves as the basis for down-

with dynamic programming. stream alignment.

Alignment: In the final stage, candidate regions from chaining are refined through nucleotide-level
alignment, commonly using dynamic programming algorithms such as Smith—Waterman (Smith
et al.| [1981). This step fills in gaps between seeds and resolves substitutions, insertions, and dele-
tions, producing a complete alignment represented by a CIGAR string (Li et al.,2009). To improve
efficiency, banded Smith—Waterman is often used, restricting computation to the neighborhood of
chained anchors and reducing the time complexity to0 O(Lycad X Lgap), Where Lgq, 1S the maximum
distance between consecutive anchors.

3 METHODS

Most existing DNA alignment methods, including the SOTA Minimap2 (Li, [2018), rely on hash
table—based string matching for fast indexing. Hash tables only support exact matches and cannot
capture approximate similarity. In practice, sequencing errors and genetic variations often cause
DNA reads to differ slightly from the reference genome. As a result, hash table indexing may fail to
retrieve seeds that are highly similar but not identical.

To overcome this limitation, we propose representing seeds with neural network embeddings that
preserve sequence similarity in a continuous space. In the following subsections, we first describe
our neural encoder for DNA seeds; then introduce our genome indexing method based on embed-

Under review as a conference paper at ICLR 2026

(") Indexing
[seeding
[: Chaining pos

Query

'
H Reference genome NeurALigner
'

Encoder

i rermenee |
H —_— Retrieve top-k H
H CCA. Inferring « [T [1] AAGT-CCAT... :
'-‘ S L1 [l omer

AAGTGCCA ,’

embeddings
\Sequencmg reads Extracting seeds. 9

Cross-entropy loss

Mean embedding pairs

A T C...

Mask AGTGC... Introduce
A TMC Predlct

CCGTG... bias&errors CGLGAM|
. Normalize+
: I — Inner product
CAATA... CAATG +InfoNCE loss
Embeddlngs 'Anchor' 'Positve’
Sabr:t[():IES Sig‘tilss RC augmentat\on

Figure 2: Overview of the proposed NeurALigner. The top figure demonstrates the process of aligning
reads using NeurALigner, while the bottom figure illustrates the training of three NeurALigner Encoders.

AGTGC.. AATGC...

dings and vector search, followed by our seeding and chaining procedure. Finally, we present an
adaptive seed number strategy that balances efficiency and accuracy. The overall framework of our
proposed method, NeurALigner (NAL), is illustrated in Fig. 2]

3.1 NEURAL ENCODER AND CONTRASTIVE TRAINING

The neural encoder is the central component of our alignment system. The quality of its generated
embeddings directly affects alignment accuracy, while its inference speed influences both indexing
and seeding efficiency.

Training loss. To obtain high-quality seed embeddings that are robust to sequencing errors, we
train our model using self-supervised contrastive learning (Liu et al., 2021} |Yu et al.| [2023). Given
a minibatch of NV sequences and their augmented counterparts, the encoder generates normalized
representations z; and z;. Each sequence and its augmented version form a positive pair, while
augmented versions of other sequences act as negatives. The model is optimized with the InfoNCE
loss (Oord et al., 2018)) with 7 being a temperature parameter:

Lo — NZ exp z z,/T) 0

] 1exp(z z’/T)

Training data. Training data are sampled from the Human Genome primary assembly of
GRCh38.p14 (Nurk et al.l 2022). We extract random fixed-length sequences from this reference
genome, discard those containing the unknown base ‘N,” and use the rest as training sequences.

Contrastive learning requires generating the augmented data as the positive sample for each train-
ing sequence. For each sequence, we construct its augmented version by introducing independent
errors and shifts. Error rates e; are sampled from the uniform distribution /[0.01, 0.1], with substitu-
tions, insertions, and deletions applied independently at each position, mimicking third-generation
sequencing noise. After error injection, the sequence is shifted by b; bases, where b; follows a
bounded normal distribution within £ Lgeeq/10 (with Leeq = 256 by default). Sequences are then
trimmed or padded to a fixed length.

Since the training objective of contrastive learning will push the training sequence and its positive
sample to be close in the representation space, augmenting the sequence by introducing errors allows
our model to extract embeddings robust to sequencing errors, while augmentation with shifting
encourages translation continuity. Translation continuity is important in improving the efficiency
and enhancing the robustness of alignment. It ensures that the embedding changes smoothly under
small positional shifts. When an index stores embeddings only at a subset of positions, the true

Under review as a conference paper at ICLR 2026

match at query time may be offset by a few bases. With translation continuity, embeddings for
nearby positions remain close in the representation space, so nearest neighbor search can still return
the correct region despite slight misalignment. This property improves robustness and recall and
enables a sparser index with lower memory and faster search. Without it, small shifts can cause
large embedding changes, and retrieval becomes unreliable, which harms alignment quality.

Ecnoder Architecture. To ensure fast inference, the encoder must be compact and parallelizable.
Although transformers (Vaswani et al.| 2017)) and recurrent networks (Yu et al.l 2019) are effective
for language and sequential data, they are not well-suited in the DNA alignment task, because trans-
formers scale quadratically with sequence length, and recurrent networks lack efficient sequence-
level parallelism. Instead, we adopt a convolutional architecture inspired by Hyena-DNA (Nguyen
et al.,|2023). We use its smallest variant, which has 0.5M parameters, enabling seed embeddings to
be computed within microseconds.

Unlike Hyena-DNA, which is designed for sequence generation and trained with next-token pre-
diction, our model is designed for embedding extraction and is trained with contrastive learning.
This difference in objective requires two key modifications to the architecture. First, for contrastive
training, we remove the language modeling head and take the final encoder output as the seed rep-
resentation. To reduce the risk of dimensional collapse in contrastive learning (Jing et al., 2021)), we
add a trainable projection layer that maps embeddings before they are used for the loss function. Sec-
ond, Hyena-DNA uses a unidirectional convolution kernel, which is effective for generation but less
suitable for alignment. A unidirectional kernel restricts error propagation to one direction, which
causes errors at the beginning of a seed to accumulate and become more harmful than those at the
end. To address this issue, we redesign the convolution kernels in NAL Encoders to be bidirectional.
With this design, errors occurring at different positions within a seed are treated almost equivalently.

3.1.1 ACHIEVING RC-INVARIANCE THROUGH DATA AUGMENTATION

In genomics, a reverse complement (RC) is functionally identical to the original sequence because
of the complementary base-pairing in DNA, as illustrated in Fig.[/| In standard seeding, both a seed
and its reverse complement must be indexed. If the embedding is reverse-complement equivariant,
a single embedding can represent both orientations. This reduces seeding time by about half since
only one computation and one query are needed per seed.

Prior works on RC-equivariant or RC-invariant DNA models primarily focus on architectural de-
signs. For example, [Shrikumar et al.[| (2017) designs RC-convolution layers with weight sharing,
while [Mallet & Vert| (2021)) provides a mathematical framework for designing RC-equivariant lay-
ers. These methods, however, require parameters to be reused multiple times during inference, which
increases runtime and can outweigh the efficiency gains of having RC-invariant embeddings. More
rcecent work (Schiff et al., [2024) enforces RC symmetry by mirroring the model and processing
both the original and reverse complement sequences separately. While effective, this method may
break translation continuity.

We adopt a simpler approach by encoding RC-equivariance through data augmentation. This strat-
egy is widely used to encourage approximate invariance (Chen et al., 2020). During training, each
sequence and its paired sequence are independently transformed into their reverse complements with
a probability of 50%. As a result, neither, one, or both sequences may be complemented. The model
is trained with the same contrastive objective as in Eq. (I). This RC data augmentation encourages
the encoder to produce similar embeddings for a seed and its reverse complement. We refer to the
model trained with RC-augmentation as NAL-RC, and the model trained without it as NAL-CL.

3.2 EMBEDDING-BASED GENOME INDEXING

To enable efficient retrieval of seeds with approximate matches, we represent subsequences of the
genome using embeddings extracted by our NAL Encoder. Each subsequence has the same length
as the seeds, and we store both its embedding and its starting position in a vector database. The
robustness of these embeddings allows the retrieval process to tolerate sequencing errors.

We further take advantage of the translation continuity of the embeddings to build a sparse index for
faster search. Instead of indexing every position in the genome with a sliding window of step size
1, we use a window of size k. Each seed embedding then represents & consecutive bases, and for

Under review as a conference paper at ICLR 2026

each window, we index only the embedding of the seed centered at the middle base. This means
that a seed from an error-free read can differ by up to | £ | bases from an indexed seed while their
embeddings remain close in the embedding space. Combined with compression techniques in the
vector database, this design achieves both efficiency and reduced memory usage. The index using

vector database is implemented using Faiss (Johnson et al., 2019) as detailed in Appendix [A.3]

3.3 SEEDING

The choice of seed length is an important trade-off in sequence alignment. Short seeds increase
the number of seeds and generate more candidates, which slows down the alignment because more
matches must be checked. Long seeds are more likely to be unique in the genome, which makes
them more informative and reduces the number of seeds needed per read. However, sequencing
errors often break exact matches for long seeds. In methods like Minimap?2 that rely on hash table
indexing, these errors can lead to failed lookups. To address this, Minimap2 favors short seeds,
typically 15-19.

NeurALigner takes a different approach by embedding seeds into a continuous vector space. Each
seed is represented by an embedding produced by our model, so sequences that are similar appear
close in this space. A vector index with Approximate Nearest Neighbor search retrieves matching
seeds efficiently, even when the query contains sequencing errors. This makes it possible to use
much longer seeds, typically 256 or 512. With longer seeds, NeurALigner achieves both high recall
and high precision while selecting only a small number of seeds per read.

Although a longer seed is more informative, it can still map to multiple locations in repetitive re-
gions, yielding multiple anchors. While similarity scores from the index may indicate anchor relia-
bility, they can be affected by index compression. Thus, a chaining phase to link consistent anchors
is necessary to improve mapping accuracy.

3.4 CHAINING

In our method, both seeds and their anchors can be inexact. In other words, the positions of anchors
may deviate slightly from the true positions of their corresponding seeds. To handle this, we relax the
conventional chaining rules, loosening constraints on relative positions and accommodating larger
gaps between neighboring anchors. This flexibility enables us to capture correct alignments even
when errors cause anchors to shift. Formally, we identify the left-most genomic position of the best
chain by solving the following problem:

n m

y:_hain = arg m1aX[ZZH(|yi,j — Ty — y| < C)]v
At

n m 2

yc_hain = arg m!?XHZ ZH(‘yz,] + Ty — Lread + Lseed - y| S C)]

i=1 j=1

+ — .
nge, Yohain and Yehain AT€ the left-m.ost genomic po-
sitions of the best chain on the positive and negative Chain ranked by coverage

strands. y; ; is the position of the j-th anchor for the >
. o, o . | 2 Anchors — PRIEREPAS (CRS H]
i-th seed, x; is the position of the seed in the read, and ¢
C is the allowed positional tolerance. For the negative £ \ <00
.. . us1 Vs, .

strand, positions are adjusted to account for the reversed & * ° Y _

. . . e > o wa Chain
sequencing. A seed with relative position x; on aread g = e .
whose left-most genomic position is y has the actual po- [o e g ot ouit
ition y; ; = Liead — Lseed — Ti- 0
sitio Yi,j Y + Liread seed Li .7 Reference positions

Yhoin

This chainigg process can be interpreted as selecting. a Figure 3: Illustration of Chaining in Neu-
diagonal stripe on a query—reference scatter plot, as il- (AT joner.

lustrated in Fig. [3| The stripe has slope 1 for the positive

strand and slope —1 for the negative strand, with width 2C'. The optimal chain is defined as the one
that contains the largest number of anchors rather than the longest span. In practice, we retain the
top-K chains with the most anchors for the next stage of alignment.

Under review as a conference paper at ICLR 2026

Table 1: Implementations of different phases in Minimap2, ESA, and NeurALigner

Phase \Method \ Minimap?2 (Li2018) ESA (Holur et al.|2025) NAL (Ours)
Index type hash table vector database vector database
Seed representation minimizer embedding embedding
Seed length 15~ 19 Lycad 64 ~ 1024
Seed number ~ | Lreqa/10] 1 5~ 20
Chaining v X v
Alignment Banded Smith-Waterman Global Smith-Waterman = Wavefront algorithm

While a single seed may not always be recalled, combining more seeds through chaining greatly
improves the chance of correct alignment. This effect is captured in the following proposition,
which states that alignment accuracy approaches 1 as the number of seeds tends to infinity.

Proposition 1. Assume that embeddings from different read positions are independent, and that the
recall p; for each seed s; under tolerance C' satisfies p; > p for some probability p > 0.5 and for all
it = 1,2,...,n. Then the probability that the chaining position ycn is within C of the ground-truth

2
position yy satisfies P{|yehain — yo| < C} > 1 —exp (— g”p_(ff;) n) }

3.5 ADAPTIVE SEED NUMBER: RESCUE STRATEGY

If most seeds from a read produce anchors that align to the same genomic position, this position
is likely the correct mapping location. If only a few seeds produce anchors that fall within the best
chaining region, or if the top- K chains have similar scores, where the score is the number of anchors
contained in the chain, the mapping becomes less reliable.

To handle such cases, NeurALigner adopts a rescue strategy inspired by (Feng et al., [2014). In the
first step, reads are seeded and chained using only a small set of seeds. For high-identity reads, i.e.,
reads that are very similar to the reference sequence, the best chain often achieves the maximum
score, which equals the number of seeds sampled, and is directly accepted as the final mapping
position. For reads with lower identity or those from repetitive regions, chains that fall below a score
threshold or show ambiguous top-K results are marked for further processing. In these situations,
the rescue strategy adds more seeds and repeats the seeding and chaining process. This procedure
continues until the read is either mapped with high confidence or discarded. In our implementation,
we start with 5 seeds per read and increase to 16 seeds in the second round. Only one rescue round
is usually needed, so we do not include a third. This adaptive allocation of seeds allows most reads
to be mapped in the first round, while additional computation is reserved only for difficult cases.

3.6 ALIGNMENT

Our anchor points are approximate rather than exact matches. Therefore, the commonly used
banded Smith—Waterman algorithm is not directly applicable to our NeurALigner, and running a
full Smith-Waterman alignment would require O(L2, ;) time, which is impractical for long reads.
Instead, we adopt the wavefront algorithm (WFA) (Marco-Sola et al.||2021)), which aligns sequences
in O(Lyeaq X 8) time, where s is the alignment penalty score. Unlike Smith—Waterman, WFA avoids
computing full matching scores and focuses computation near the diagonal of the alignment matrix,
making it highly efficient for reads with high sequence identity. We further accelerate alignment
using a GPU-based WFA implementation (Aguado-Puig et al., |2023). WFA is most effective when
the query and reference segments have similar lengths. To achieve this, for each candidate position,
we extract from the reference a segment of length 1.002 x L., and use it as the alignment target.

Remark: Comparison to Existing DNA Alignment Methods. We have discussed the difference
between our method and Minimap2 (Li,[2018). Here we focus on another related work, ESA (Holur
et al.l 2025)), which is the first to apply DNA embeddings with vector database search for align-
ment. ESA encodes each short read as a single fixed-length embedding using a transformer model.
For every read, it retrieves the top 50-75 most similar sequences from the database and applies
Smith—Waterman alignment against each candidate. This design treats the entire read as a single
seed and omits a chaining phase. ESA targets short reads of up to 500 bases but is about 100x
slower than BWA, which limits its use in practice. Still, ESA showed that deep models can rep-
resent DNA sequences effectively, which motivated our development of NeurALigner. The main
differences between Minimap2, ESA, and NeurALigner (NAL) are summarized in Tab.

Under review as a conference paper at ICLR 2026

Table 2: Comparison of mapping accuracy of models on reads with different identities

Identity ‘ NAL-CL NAL-RC NT Hyena-DNA Minimap2
perfect 99.997% 100% Failed 96.124% 100%
good 100% 100 % Failed 93.757% 100 %
normal 99.643 % 99.600 % Failed 78.306% 99.483%
1207 T ! ' = "l:IN‘ALl:l‘l"arabric‘ksl:ll\‘/[unmap‘Zl:lml‘nZ—gb \‘ o
z @ infer 105 |
< 10|l T S
E 4 wha 2
g 80 10 ‘é’ 10t
E 60 o fg
Ec 407"“ : “ o s o * ';%m
gl abaldi
i — il kLA
> & W > B 2k 3k sk 8k 10k 15k 20k 30k
Length Length
Figure 4: Runtime of each component across Figure 5: Runtime comparison across seed
seed lengths on reads with 90% identity. lengths on reads with 90% identity.

4 EXPERIMENTAL STUDIES

To evaluate the effectiveness of NeurALigner, we design experiments to answer three questions.
Q1: Can the embeddings produced by the encoder allow accurate alignment, even when the reads
have low identity? Q2: How efficient is NeurALigner in performing alignments? Q3: Can a neural
encoder trained on the human genome be applied to alignment tasks in other species? Additional
results are provided in Appendix [B] We use Minimap2 (Li, [2018) as our primary baseline due to its
SOTA accuracy, efficiency, and widespread adoption in practice. We exclude ESA from comparison
since it is tailored to short reads and is not applicable to the long reads in our experiments.

Preparing Reads for Alignment Accurate ground truth mapping for real sequencing data is not
available because the true genomic origin of each read cannot be measured at scale. To enable reli-
able benchmarking, we generate synthetic reads by extracting segments from the reference genome,
recording their true origin, and adding error patterns that reflect different sequencing technologies.
This setup gives us reads with controlled length, identity, and documented origin.

We simulate reads at three identity levels to the reference. The perfect set has an average of 99.9%
identity and a minimum of 99%. The good set has an average of 98% and a minimum of 95%. The
normal set has an average of 95% and a minimum of 85%, modeling standard Nanopore-2023 reads.
To study the impact of multimapping on alignment accuracy, we use two types of origin regions in
the human genome (Nurk et al., [2022): (1) a 10 Mbp segment, chr1:170M—-180M, deliberately cho-
sen to avoid ENCODE blacklist regions (Amemiya et al., 2019), and (2) the entire human genome,
which represents standard alignment conditions. See Appendix [A.T|for more details.

4.1 ACCURACY OF NEURALIGNER EMBEDDINGS

To test whether the embeddings from NeurALigner enable accurate alignment, we compared our
models with Minimap2 on reads of different identity levels. Here, A read is considered correctly
mapped if its mapped target window overlaps at least 95% with the read’s true position on the
reference genome. We report results for two versions of NeurALigner. NAL-CL is trained with
contrastive learning, while NAL-RC adds reverse complement augmentation. Tab. |2| shows the
mapping accuracy on simulated reads. At high identity, both NAL and Minimap2 reach nearly
perfect accuracy. At the normal identity level, where sequencing errors are more frequent, NAL
slightly outperforms Minimap2. These results indicate that NAL achieves the same level of accuracy
as Minimap2, which demonstrates that it is equally applicable in practical scenarios. In Sec.[d.2] we
will further show that NAL provides a clear advantage in efficiency compared with Minimap2.

We also test other DNA model architectures, including Nucleotide Transformer (NT) (Dalla-Torre
et al} |2025) and Hyena-DNA (Nguyen et al.| 2023), by substituting our NAL Encoders with them,
keeping all other configurations unchanged. As shown in Tab. 2] NT fails in all cases, which is
consistent with the findings in (Holur et al., 2025). Additionally, Hyena-DNA performs much worse

Under review as a conference paper at ICLR 2026

than NAL-CL, with accuracy dropping sharply as identity decreases. These results confirm that our
architectural design and training strategy are important for achieving robust alignment.

4.2 EFFICIENCY OF NEURALIGNER

NAL achieves high efficiency by reducing the cost of seeding and by taking advantage of vectoriza-
tion. Minimap2 extracts seeds at every position, which requires O(Lyc.q) operations. In contrast,
NAL needs a few informative seeds. With the rescue strategy, an average of 5-8 seeds per read is suf-
ficient even when read length is up to 30k bases. This is especially beneficial for long reads. Fig. 4]
confirms that the costs of seeding and chaining remain constant, while the cost of alignment and I/O
increases with read length. The WFA is efficient for high-identity reads (Fig. [8|in Appendix), but
decreases for these noisier reads. Tab.[/|in Appendix reports similar results for high-identity reads,
where NAL uses only 5.39 seeds per read. The main bottlenecks are I/O and SAM output.

Fig. 5| compares the alignment speeds of NAL with Minimap2 and its
two GPU variants, Parabricks (NVIDIA| [2025) and mm2-gb (Dong
et al.| 2024). We test reads of different lengths, using 5,000 reads per
length and duplicating them 300 times to ensure stable timing. GPU
baselines run on a single NVIDIA H20 GPU with a 256-core CPU
server, while Minimap2 runs on CPU. NAL achieves the fastest run-

Minimap2 (CPU time)

8.85ms
18.32ms

2

—
&

o

Alignment time per seq

NeurALi
times, up to 276 x faster than Minimap2 on 30k-base reads. Although s 3632
NAL is slower than Parabricks on short reads under 5k, its advantage
grows with read length, surpassing Parabricks beyond 8k. The time Lrens
to load indices into GPU, which is less than 1 second, is excluded. |
85% 95% 99.9%
To further demonstrate the advantage of efficient seeding, Fig. [f|com- Read identities

pares alignment time across read identities. NAL maintains low la- Figure 6: Runtime compari-
tency, while Minimap?2 slows down by up to 2x on high-identity reads son across read identity levels
because redundant seeds add chaining overhead. NAL avoids this by

using longer seeds with higher recall, and adopts the rescue strategy to keep it efficient.

4.3 GENERALIZATION TO OTHER SPECIES

A key question is whether NeurALigner
learns generalizable nucleotide embed-
dings or only memorizes the human

Table 3: Alignment accuracy on mouse and zebrafish.

Species Identity | NAL-CL NAL-RC | Minimap2

genome. To test this, we use the encoder Perfect | 99.516% 99.252% 100%

trained on human data to evaluate align- Mouse Good | 99.505% 99.249% | 99.997%
ment accuracy on simulated reads from Normal | 99.038% 98.557% | 99.498%
mouse (GRCm39, Mus musculus (Water- Perfect | 99.950% 99.952% | 99.996%
ston et al., 2002)) and zebrafish (GRCz11, Zebrafish ~ Good | 99.959% 99.952% | 99.996%
Danio rerio (Howe et al.,[2013)). The de- Normal | 99.548% 99.505% | 99.471%

tails of data generation are available in Ap-
pendix [A.T] Tab. 3] shows that NAL achieves high accuracy across both species. For mouse reads,
the accuracy remains close to that of Minimap2. For zebrafish, NAL even surpasses Minimap2 on
reads with normal identity, without training on the zebrafish genome. These results suggest that
the encoder captures sequence features that extend beyond the training genome, enabling robust
alignment in different species.

5 DISCUSSION

We presented NeurALigner, a GPU-accelerated alignment framework that reformulates seed match-
ing as embedding-based similarity search. By combining robust DNA embeddings, adaptive seed-
ing, and efficient chaining with vector databases, NeurALigner achieves both high accuracy under
sequencing noise and substantial speedups over existing aligners. Experiments show its ability to
generalize across species and maintain performance on long reads, making it suitable for large-scale
and time-sensitive genomic analysis. Looking ahead, we see opportunities to extend the framework
with more advanced DNA foundation models, integration with downstream variant calling, and fur-
ther optimization for distributed GPU clusters.

Under review as a conference paper at ICLR 2026

REFERENCES

Quim Aguado-Puig, Max Doblas, Christos Matzoros, Antonio Espinosa, Juan Carlos Moure, Santi-
ago Marco-Sola, and Miquel Moreto. Wfa-gpu: gap-affine pairwise read-alignment using gpus.
Bioinformatics, 39(12):btad701, 2023.

Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman. Basic local
alignment search tool. Journal of molecular biology, 215(3):403—410, 1990.

Haley M Amemiya, Anshul Kundaje, and Alan P Boyle. The encode blacklist: identification of
problematic regions of the genome. Scientific reports, 9(1):9354, 2019.

Bjorn Bréandl, Mara Steiger, Carolin Kubelt, Christian Rohrandt, Zhihan Zhu, Maximilian Evers,
Gaojianyong Wang, Bernhard Schuldt, Ann-Kristin Afflerbach, Derek Wong, et al. Rapid brain
tumor classification from sparse epigenomic data. Nature Medicine, pp. 1-9, 2025.

Daniel Branton, David W Deamer, Andre Marziali, Hagan Bayley, Steven A Benner, Thomas Butler,
Massimiliano Di Ventra, Slaven Garaj, Andrew Hibbs, Xiaohua Huang, et al. The potential and
challenges of nanopore sequencing. Nature biotechnology, 26(10):1146-1153, 2008.

Themoula Charalampous, Gemma L Kay, Hollian Richardson, Alp Aydin, Rossella Baldan, Christo-
pher Jeanes, Duncan Rae, Sara Grundy, Daniel J Turner, John Wain, et al. Nanopore metage-
nomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nature biotech-
nology, 37(7):783-792, 2019.

Shuxiao Chen, Edgar Dobriban, and Jane H Lee. A group-theoretic framework for data augmenta-
tion. Journal of Machine Learning Research, 21(245):1-71, 2020.

Nick Craswell. Mean reciprocal rank. In Encyclopedia of database systems, pp. 1-1. Springer, 2016.

Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza-Revilla, Nicolas Lopez Carranza, Adam Henryk
Grzywaczewski, Francesco Oteri, Christian Dallago, Evan Trop, Bernardo P de Almeida, Hassan
Sirelkhatim, et al. Nucleotide transformer: building and evaluating robust foundation models for
human genomics. Nature Methods, 22(2):287-297, 2025.

Juechu Dong, Xueshen Liu, Harisankar Sadasivan, Sriranjani Sitaraman, and Satish Narayanasamy.
mm?2-gb: Gpu accelerated minimap?2 for long read dna mapping. bioRxiv, 2024. doi: 10.1101/
2024.03.23.586366. URL https://www.biorxiv.org/content/early/2024/03/
27/2024.03.23.586366.

Weixing Feng, Peichao Sang, Deyuan Lian, Yansheng Dong, Fengfei Song, Meng Li, Bo He,
Fenglin Cao, and Yunlong Liu. Resseq: enhancing short-read sequencing alignment by rescuing
error-containing reads. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
12(4):795-798, 2014.

Wei Gu, Xianding Deng, Marco Lee, Yasemin D Sucu, Shaun Arevalo, Doug Stryke, Scot Federman,
Allan Gopez, Kevin Reyes, Kelsey Zorn, et al. Rapid pathogen detection by metagenomic next-
generation sequencing of infected body fluids. Nature medicine, 27(1):115-124, 2021.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array program-
ming with numpy. nature, 585(7825):357-362, 2020.

Pavan Holur, Kenneth C Enevoldsen, Shreyas Rajesh, Lajoyce Mboning, Thalia Georgiou, Louis-
S Bouchard, Matteo Pellegrini, and Vwani Roychowdhury. Embed-search-align: Dna sequence
alignment using transformer models. Bioinformatics, 41(3):btaf041, 2025.

Kerstin Howe, Matthew D Clark, Carlos F Torroja, James Torrance, Camille Berthelot, Matthieu
Muffato, John E Collins, Sean Humphray, Karen McLaren, Lucy Matthews, et al. The zebrafish
reference genome sequence and its relationship to the human genome. Nature, 496(7446):498—
503, 2013.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence, 33(1):117-128, 2010.

10

https://www.biorxiv.org/content/early/2024/03/27/2024.03.23.586366
https://www.biorxiv.org/content/early/2024/03/27/2024.03.23.586366

Under review as a conference paper at ICLR 2026

Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in
contrastive self-supervised learning. arXiv preprint arXiv:2110.09348, 2021.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535-547, 2019.

Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094—
3100, 2018.

Heng Li and Richard Durbin. Fast and accurate short read alignment with burrows—wheeler trans-
form. bioinformatics, 25(14):1754-1760, 2009.

Heng Li and Nils Homer. A survey of sequence alignment algorithms for next-generation sequenc-
ing. Briefings in bioinformatics, 11(5):473—483, 2010.

Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth, Goncalo
Abecasis, Richard Durbin, and 1000 Genome Project Data Processing Subgroup. The sequence
alignment/map format and samtools. bioinformatics, 25(16):2078-2079, 2009.

Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-
supervised learning: Generative or contrastive. IEEE transactions on knowledge and data engi-
neering, 35(1):857-876, 2021.

Glennis A Logsdon, Peter Ebert, Peter A Audano, Mark Loftus, David Porubsky, Jana Ebler, Feyza
Yilmaz, Pille Hallast, Timofey Prodanov, DongAhn Yoo, et al. Complex genetic variation in
nearly complete human genomes. Nature, pp. 1-12, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Yury A. Malkov and Dmitry A. Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell., 42(4):
824-836, 2020. doi: 10.1109/TPAMI.2018.2889473. URL https://doi.org/10.1109/
TPAMI.2018.2889473.

Vincent Mallet and Jean-Philippe Vert. Reverse-complement equivariant networks for dna se-
quences. Advances in neural information processing systems, 34:13511-13523, 2021.

Santiago Marco-Sola, Juan Carlos Moure, Miquel Moreto, and Antonio Espinosa. Fast gap-affine
pairwise alignment using the wavefront algorithm. Bioinformatics, 37(4):456-463, 2021.

Saul B Needleman and Christian D Wunsch. A general method applicable to the search for similar-
ities in the amino acid sequence of two proteins. Journal of molecular biology, 48(3):443—-453,
1970.

The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines
human glioblastoma genes and core pathways. Nature, 455(7216):1061-1068, 2008.

Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes,
Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. Hyenadna: Long-range
genomic sequence modeling at single nucleotide resolution. Advances in neural information
processing systems, 36:43177-43201, 2023.

Sergey Nurk, Sergey Koren, Arang Rhie, Mikko Rautiainen, Andrey V Bzikadze, Alla Mikheenko,
Mitchell R Vollger, Nicolas Altemose, Lev Uralsky, Ariel Gershman, et al. The complete se-
quence of a human genome. Science, 376(6588):44-53, 2022.

NVIDIA. Clara parabricks. |https://www.nvidia.com/en-us/clara/genomics/,
2025. Version 4.4.0.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Minh Pham, Yicheng Tu, and Xiaoyi Lv. Accelerating bwa-mem read mapping on gpus. In Pro-
ceedings of the 37th international conference on supercomputing, pp. 155-166, 2023.

11

https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://www.nvidia.com/en-us/clara/genomics/

Under review as a conference paper at ICLR 2026

Joshua Quick, Nicholas J Loman, Sophie Duraffour, Jared T Simpson, Ettore Severi, Lauren Cowley,
Joseph Akoi Bore, Raymond Koundouno, Gytis Dudas, Amy Mikhail, et al. Real-time, portable
genome sequencing for ebola surveillance. Nature, 530(7589):228-232, 2016.

Anthony Rhoads and Kin Fai Au. Pacbio sequencing and its applications. Genomics, proteomics &
bioinformatics, 13(5):278-289, 2015.

Harisankar Sadasivan, Milos Maric, Eric Dawson, Vishanth Iyer, Johnny Israeli, and Satish
Narayanasamy. Accelerating minimap2 for accurate long read alignment on gpus. Journal of
biotechnology and biomedicine, 6(1):13, 2023.

Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov.
Caduceus: Bi-directional equivariant long-range dna sequence modeling. Proceedings of machine
learning research, 235:43632, 2024.

Jay Shendure and Hanlee Ji. Next-generation dna sequencing. Nature biotechnology, 26(10):1135-
1145, 2008.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Reverse-complement parameter sharing
improves deep learning models for genomics. BioRxiv, pp. 103663, 2017.

Temple F Smith, Michael S Waterman, et al. Identification of common molecular subsequences.
Journal of molecular biology, 147(1):195-197, 1981.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yunhao Wang, Yue Zhao, Audrey Bollas, Yuru Wang, and Kin Fai Au. Nanopore sequencing tech-
nology, bioinformatics and applications. Nature biotechnology, 39(11):1348-1365, 2021.

Robert H. Waterston, Kerstin Lindblad-Toh, Ewan Birney, Jane Rogers, Josep F. Abril, Pankaj Agar-
wal, and et al. Initial sequencing and comparative analysis of the mouse genome. Nature, 420
(6915):520-562, 2002. doi: 10.1038/nature01262.

Ryan R Wick. Badread: simulation of error-prone long reads. Journal of Open Source Software, 4
(36):1316, 2019.

Yaping Yang, Donna M Muzny, Jeffrey G Reid, Matthew N Bainbridge, Alecia Willis, Patricia A
Ward, Alicia Braxton, Joke Beuten, Fan Xia, Zhiyv Niu, et al. Clinical whole-exome sequencing
for the diagnosis of mendelian disorders. New England Journal of Medicine, 369(16):1502-1511,
2013.

Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Jundong Li, and Zi Huang. Self-supervised learning
for recommender systems: A survey. IEEE Transactions on Knowledge and Data Engineering,
36(1):335-355, 2023.

Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recurrent neural networks:
Lstm cells and network architectures. Neural computation, 31(7):1235-1270, 2019.

12

Under review as a conference paper at ICLR 2026

Appendix

Table of Contents
|A" Supplementary Experiment Details| 13
IA.1 Data Generation for Evaluationl 13
[A2 Training Details| 14
|A.3 Indexing Configuration| 14
[A.4 Implementation of Chamming|. 14
[A.5 Assessingmodelsandindex|. L. 15
B Supplementary Experimental Studies| 15
[B.1 Effectofseedlengthf. 15
IB.2 Evaluation with reads from the whole genome| 16
[B.3 RC-invariant model aligns reads from both strands simultaneously| 16
|C Proof of Proposition|l] 17
[D_Use of LLMSs| 18

A SUPPLEMENTARY EXPERIMENT DETAILS

A.1 DATA GENERATION FOR EVALUATION

We use Badread (Wickl, [2019) to simulate Oxford Nanopore (Branton et al., |2008) reads. Badread
provides both error modeling and QScore modeling, and we adopt the error model in our experi-
ments. In this model, errors are introduced by selecting k-mers in a sequence and replacing them
with new k-mers, with occasional reversions to the original. Error probabilities are determined
by a transfer matrix, which allows Badread to reproduce substitution patterns typical of different
sequencing technologies. In addition to substitutions, Badread can also generate random reads,
glitches such as overlapping segments or long deletions, and chimeric reads formed by joining un-
related fragments.

To evaluate alignment speed on reads of fixed length, we also construct synthetic sequences by
introducing substitutions, insertions, or deletions at each base with fixed probabilities. Although
these synthetic reads do not fully match real sequencing data, they provide a controlled setting to
demonstrate the speed of our method on long reads.

All reads from the negative strand are converted to their reverse complement so that the initial
dataset contains only positive-strand reads. For dual-strand alignment experiments, half of the reads
are again converted to their reverse complement. Each read is labeled with its true leftmost genomic
position to enable accuracy evaluation. Pure noise sequences are not labeled, and they are considered
correctly aligned if they produce no matches.

For each identity level, we generate four sets of reads: a(1) ~965,000 reads from the entire human
genome, (2) ~32,000 reads from human chrl:170M-180M, (3) ~32,000 reads from the mouse
genome, and (4) ~23,000 reads from the zebrafish genome. These datasets are generated using
Badread, with read lengths between 1 kb and 32 kb. The average length is 15 kb. Reads longer than
32 kb are excluded.

For fixed-length read benchmarks, we manually generate 5,000 human reads for each of eight lengths
(2 kb, 3 kb, 5 kb, 8 kb, 10 kb, 15 kb, 20 kb, and 30 kb) and four identity levels (90%, 95%, 99%,
and 99.9%). These reads are duplicated several times to obtain stable measurements of alignment
speed.

13

Under review as a conference paper at ICLR 2026

A.2 TRAINING DETAILS

The model takes strings as input, where each character is automatically tokenized into its ASCII
code. We adopt the same architecture as Hyena-DNA tiny-1k, but remove the language modeling
head, add a trainable projection for contrastive learning, and replace the unidirectional convolution
kernels with bidirectional ones. The output of the model has the shape [B, L, D], where B is the
batch size, L is the input length, and D is the embedding dimension. The embedding of a sequence
is obtained by averaging along the L dimension, after which the embeddings are normalized to unit
Ly norm. In our implementation, L ranges from 64 to 1024, and D = 128.

All models are optimized with the AdamW optimizer (Loshchilov & Hutter, 2017). The learning
rate is set to 1 x 1073, the weight decay is 0.1, and the coefficients 5; and /32 are 0.9 and 0.999. The
learning rate is reduced by 1/5 if the validation loss does not decrease for four consecutive epochs.
Training stops if the validation loss does not improve for twelve epochs.

To increase diversity, training data are not pre-generated. Instead, new samples are created at every
step. The training and validation sets are drawn from the same distribution but with different random
seeds to keep them independent. The random seed is fixed so that models of the same type and
sequence length see identical data at each step.

For NAL-CL and NAL-RC, the InfoNCE minibatch size is 8,192, with 128 steps per epoch. The
best performance is reached after processing about 13 million sample pairs.

Training a single model requires about 30 minutes on eight NVIDIA H20 GPUs, using PyTorch and
PyTorch Lightning.

A.3 INDEXING CONFIGURATION

We build the index using Faiss (Johnson et al., 2019), with inverted file and product quantization
(IVFPQ). IVFPQ reduces the cost of approximate nearest neighbor search to about O(\/N) by
clustering the vectors and restricting comparisons to cluster centroids and their neighbors. While
the Hierarchical Navigable Small World (HNSW) index can also be fast, it requires much more
memory, which makes it less practical in our setting.

All vector similarity searches are performed on the GPU to fully exploit parallelism. This design
makes the entire seeding phase GPU-accelerated, but it also requires the index to fit into GPU mem-
ory. Product quantization (Jegou et al.| 2010) addresses this constraint by reducing the storage size
of embeddings. For instance, a 128-dimensional FP32 embedding can be compressed to 24 bytes
using the PQ16x8 setting in Faiss. With product quantization and an indexing stride of 32, the
GRCh38.p14 primary assembly requires only 2.1 GB of GPU memory, which is feasible on most
modern GPUs.

We follow a simple set of guidelines for configuring the index. The number of clusters nlist is
set to the square root of the total number of vectors. The indexing stride should be no larger than
1/8 of the seed length, since larger strides cause a notable loss of accuracy. For the vector search,
the number of clusters to probe nprobe is set between 8 and 32. Probing more clusters yields
only small gains in recall but slows down search considerably. For each seed, we keep the top K
nearest neighbors, which serve as candidate anchors in the chaining phase. By default, K = 32.
Additionally, we use the inner product as the distance metric.

Indexing the entire human genome on a single NVIDIA H20 GPU takes between 20 and 50 minutes,
depending on the configuration.

A.4 IMPLEMENTATION OF CHAINING

The chaining algorithm has a time complexity of O(N - M K log(M K)), which is dominated by
the sorting step. Since M and K are bounded by constants independent of the read length L,...q,
the overall complexity does not grow with L,.,q. The results of this algorithm may differ slightly
from those of Eq. 2] because the stripe axis is fixed to anchors with the locally maximum retrieval
similarity, and anchors within C}, are merged into the stripe. All operations in the pseudocode can
be efficiently vectorized using NumPy (Harris et al.,|2020) and PyTorch.

14

Under review as a conference paper at ICLR 2026

Algorithm 1 Vectorized chaining for indexes that use distance as the metric

Require: Read count IV, number of seeds per read M, number of anchors per seed K, bias tolerance Cj, score
threshold no, relative seed positions X = [2;;] € Z" >, anchor positions Y = [y;;x] € ZNV*M*K,
retrieved similarities D = [d;;;,] € RNV *M*K

1: Set anchor scores C = [c; jx] € ZN*ME with ¢; j, = 1

2: Expand X = [X/i], Xy = X4, k=1, , K

3: AdjustY =Y — X'. For the negative strand set’ Y =Y + X'+ Lyead — Lseced

4: Reshape Y, D to ZN*MK

5: For each read in parallel compute sorted index I; = argsort(Y) in ascending order

6: Rearrange Y = Y[I;], D = D[I4]

7: forj=0to MK —2do

8: In parallel across reads compute dyqe = maX(D;yj, D. j+1) and ymee = argmax(D. ;, D, j4+1)
9: In parallel across reads compute merge index U =(Y. 41— Y.; <C) _
10: Update D:_,j+1 [Ié} = dmae, _Y:,j+1 [I;] = Ymaaz, and Cf’j+1 [IJ2] = Ci,j+1[I%] + CZ,J‘[IJQ}
11: SetD. ;[I3] = —inf, Y. ;[I3] = -1, C.;[I3] = —1
12: end for

13: For each read in parallel compute sorted index Is = argsort(C) in descending order

14: Rearrange Y = Y [I3], D = D[I3], C = C[I3]

15: For each read in parallel compute acceptance index Iy = (C. o > no)

16: return accepted chain positions Y o[I4] and indices of rejected reads where 14 is False

A.5 ASSESSING MODELS AND INDEX

From each read, we uniformly select 5 seeds. Their embeddings are computed, and the top 256
nearest neighbours for each embedding are retrieved. Recall@k is measured by checking whether a
correct retrieval is present among the top-k results. All indices used in these experiments are built
with the configuration IVF16384, PQ16, stride 16, and query parameter nprobe set to 32.

For alignment accuracy experiments, each dataset is aligned using indices built on the complete
genome of the corresponding species. The indexing configuration is IVF16384,PQ16, with
stride set to 16 and nprobe set to 8. We use 7 seeds in the first iteration and 13 seeds in
the second, and set top-k to 32. These settings are chosen to maximize alignment accuracy. The
alignment phase is omitted, since our chaining stage already selects one or more windows covering
the true genomic locus of each read. A read is considered correctly mapped if at least one mapped
window overlapped 95 percent or more of its true position. Random reads are considered correctly
mapped only if no window is mapped. These same accuracy criteria are applied to Minimap?2 for
fair comparison.

For speed experiments, we use the fixed-length and identity dataset. Indexes are identical to those in
the accuracy experiments, except that the number of seeds per iteration is set to 5 and 11. To avoid
warm-up effects, each read is duplicated 300 times to create a large dataset, as PyTorch exhibits
noticeable lag before the first inference. We measure the runtime of each phase of NeurALigner
after the alignment process completes. For comparison, we also record the alignment time of WFA-
GPU and the CPU runtime of Minimap2. The input and output time reported in Fig. #|may fluctuate,
since Python is inefficient at loading FASTA files and printing SAM output.

All evaluation experiments for our models and indexing are conducted on a single NVIDIA H20
GPU.

B SUPPLEMENTARY EXPERIMENTAL STUDIES

B.1 EFFECT OF SEED LENGTH

We examine whether longer seeds provide higher specificity in the NAL framework by measuring
recall for single seeds of different lengths using NAL-CL. All indexes are built with the same con-
figuration, IVF16384 with PQ16 and a stride of 16. A retrieval is considered correct if the difference
between the predicted and true positions is no more than 64 bases. The results in Tab. {] show that
recall at rank 1 increases steadily as the seed length grows, across all three identity levels. This
demonstrates that longer seeds provide more informative signals for alignment.

15

Under review as a conference paper at ICLR 2026

Table 4: Recall@1 with different seed length

identity\Lacea | 128 256 384 512
perfect 90.08% 94.16% 95.21% 95.57%
good 86.99% 92.61% 94.25% 94.83%
normal 75.50% 83.93% 86.74% 88.41%

Table 5: Alignment accuracy for reads sampled from the whole genome.

Identity ‘ NAL-CL NAL-CL NAL-RC NAL-RC
Lseea ‘ 256 512 256 512

perfect | 99.446% 99.507% 99.620% 99.710%
good 99.398% 99.460% 99.320% 99.481%
normal | 98.891% 98.985% 98.940% 99.100%

B.2 EVALUATION WITH READS FROM THE WHOLE GENOME

In previous experiments, query reads are drawn only from non-repetitive regions of the genome.
To create a more difficult but more real test, we now sample query reads from the entire genome,
which includes many repetitive sequences and regions of homology. These characteristics introduce
frequent cases of multimapping, making alignment more challenging.

As shown in Tab. [B.2] both NAL-CL and NAL-RC models show a consistent decrease in alignment
accuracy compared with the results on non-repetitive reads. Compared to the results shown in Tab.
the drop is about 0.5% across different identity levels when the seed length is 256.

Increasing the seed length improves the seed specificity within the genome and, therefore, reduces
the occurrence of spurious matches. It provides a useful way to handle repetitive regions in whole-
genome alignment. As observed, it gave an improvement in accuracy of about 0.05% to 0.1%.

B.3 RC-INVARIANT MODEL ALIGNS READS FROM BOTH STRANDS SIMULTANEOUSLY

So far, we have considered alignment only for reads originating from the positive strand of the refer-
ence genome. In practice, however, reads can come from either strand, and the strand orientation is
usually unknown before alignment. Minimap?2 addresses this issue by aligning each read in both its
original and reverse-complement orientations, then selecting the alignment with the higher score (L1,
2018). While effective, this strategy doubles the computational cost.

The NAL-RC model avoids this overhead by using reverse-complement invariance. It produces
nearly identical embeddings for a sequence and its reverse complement, with an average cosine sim-
ilarity of 0.9995 and a minimum of 0.99 in our experiments. As a result, a single mean embedding
for each seed can represent both strands in the index. During seeding, NAL-RC retrieves anchors for
both strands simultaneously. Strand orientation is then resolved during chaining, which is performed
twice. Because chaining is highly efficient in our vectorized implementation, NAL-RC completes
alignment for both strands with almost no additional computational cost.

The alignment accuracy of NAL-RC is comparable to that of NAL-CL. Although NAL-RC shows
slightly lower performance during training, it maintains high accuracy in alignment, achieving 100%
for reads of perfect and good identity, and 99.600% for reads of normal identity.

16

Under review as a conference paper at ICLR 2026

Table 6: Recall of a single seed and correlation check.

NAL-CL NAL-CL NAL-RC NAL-RC
(256) (512) (256) (512)

Recall@1 94.16% 95.57% 94.41% 96.35%

Perfect Recall@32 97.63% 98.14% 97.58% 98.53%
MRR 0.9519£0.1990 0.9630+0.1764 0.953440.1968 0.9697+0.1600

Recall@1 92.61% 94.83% 92.52% 95.51%

Good Recall@32 97.16% 97.89% 96.97% 98.17%
MRR 0.9396+0.2204 0.9569+0.1895 0.938440.2233 0.9627£0.1767

Recall@1 83.93% 88.41% 81.91% 88.24%

Normal Recall@32 92.12% 94.61% 90.70% 94.06%
MRR 0.8632+0.3218 0.9016£0.2792 0.8446+0.3402 0.8990+0.2838

Correlation ‘ 0.0239 0.0262 0.0231 0.0214

C PROOF OF PROPOSITION]

Proof.
P{lychain - ygt‘ S C}

3

=P ‘argmaxzzﬂ [Yij —xi =yl < CO)] —ya| <C

=1 5=1

{Zn n/2} ©)
> i: (?)pi(lp)“

i=[n/2]+1
>1—exp(—an) — 1

. L < . _ . 2
where 7 1, 37, |yw. Yot| < C (a successful retrieval) ’ _ (p—0.5)
0, otherwise 2p(1 —p)
The inequality third line holds because the chain will always be retained when the chain contains
more than half anchors. O

To check the assumptions of Proposition[I} we evaluated two aspects.

First, we examined whether the recall of each seed is larger than 0.5. Tab. E] reports Recall@1,
Recall@32, and Mean Reciprocal Rank (MRR, (Craswell, [2016)) at three identity levels. The mean
reciprocal rank (MRR) is calculated as the average reciprocal of the rank of the first correct retrieval,
with a value of zero assigned when no correct match is found. We also report the standard deviation
of the MRR. Across all settings, the recall values are well above 50%, confirming that the condition
p; > 0.5 1is satisfied.

Second, we measured whether embeddings from different read positions are independent. We com-
puted the correlation matrix between the embeddings of two random non-overlapping seeds in each
read. Specifically, given the embeddings, calculate the Pearson correlation coefficient across all
pairs of the 128 dimensions, and obtain a 128 x 128 correlation matrix. The maximum absolute cor-
relation value from this matrix is reported as “Correlation” in Tab. [f]to evaluate redundancy among
embedding dimensions. The correlation values in all experiments are below 0.03, which shows that
embeddings produced by NAL Encoders are essentially uncorrelated.

Together, these results support the independence and recall assumptions in Proposition

17

Under review as a conference paper at ICLR 2026

Table 7: Average runtime breakdown for reads of length 15,000 bases with 99.9% identity. In this case, NAL
uses only 5.39 seeds per read on average. We can observe that seeding and chaining costs remain constant
across both length and identity, while alignment and I/O vary. Therefore, the current bottlenecks are load reads

and SAM output.

Phase Time
Load 35.8us
Seed(Infer) 7.8us X 5.39
Seed(Query) 2.5us x 5.39
Chain 0.43us
Align 6.0ps
Print SAM 16.4pus
Total 114.3ps
Sequencing order > g sl e |
positive strand T CAC A 7777777 A TC‘ [;f:n e
] i
parng—> ITITTTTTT s
negative strand AGTGCCTCTA g h ’ |
< Sequencing order éﬂ 7
Sequencing reads: ATCT £ v *
mutually & s ¥
reverse-complementaryfA””ATC} ,,,,,,,,,,,, Length
Figure 8: Runtime of each component vs. seed

Figure 7: Illustration of DNA base pairing and
RC reads

D USE oOF LLMS

We use LLMs to assist with refining the writing.

18

length for reads with 99.9% identity

	
	Introduction
	Preliminaries: Workflow of Sequence Alignment
	Methods
	Neural Encoder and Contrastive Training
	Achieving RC-Invariance through Data Augmentation

	Embedding-based Genome Indexing
	Seeding
	Chaining
	Adaptive seed number: Rescue strategy
	Alignment

	Experimental Studies
	Accuracy of NeurALigner embeddings
	Efficiency of NeurALigner
	Generalization to Other Species

	discussion
	Appendix

	 Appendix
	Supplementary Experiment Details
	Data Generation for Evaluation
	Training Details
	Indexing Configuration
	Implementation of Chaining
	Assessing models and index

	Supplementary Experimental Studies
	Effect of seed length
	Evaluation with reads from the whole genome
	RC-invariant model aligns reads from both strands simultaneously

	Proof of Proposition 1
	Use of LLMs

