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ABSTRACT

Existing studies in Human-Object Interaction (HOI) recognition rely heavily on
costly human-annotated labels, limiting the application of HOI in real-world sce-
narios like retail and surveillance. To address this issue, this paper investigates
a new zero-shot setup where no HOI labels are available for any image. We pro-
pose a novel heterogenous teacher-student framework that bridges two types of
pre-trained models, namely contrastive (e.g., CLIP) and generative (e.g., GIT)
image-language models. To bridge their gap, we introduce pseudo-label distillation
to extract HOI probabilities from image captions to train the student classifier.
Our method leverages the complementary strengths of both models. As a result,
the student model has “the best of two worlds”, e.g., the compact backbone of a
contrastive model and the fine-grained discriminability of a generative (captioning)
model. It achieves 49.6 mAP on the HICO dataset without any ground-truth labels,
becoming a new state-of-the-art that outperforms previous supervised approaches.
Code will be released upon acceptance.

1 INTRODUCTION

Human-Object Interaction (HOI) recognition is attracting growing interests (Li et al., 2020b; Tamura
et al., 2021; Ma et al., 2022) due to its essential role in scene understanding. It retrieves all interactions
that exist in the image, where each interaction class is a <verb, object> pair, e.g., <ride, bicycle>.
HOI datasets have high annotation cost for two reasons: (1) large number of classes (e.g., 600 classes
in HICO (Chao et al., 2015)) with fine-grained verb and object concepts, and (2) each class needs to
be labeled separately as it is a multi-label problem. However, existing methods in HOI heavily rely
on human annotations, which greatly undermines the applicability of these methods in real-world
scenarios like retail, healthcare, and surveillance, where tailored sets of HOIs need to be labeled. This
study aims to remove the strong dependency on such human annotation by introducing a zero-shot
method for HOI recognition.

We introduce a new zero-shot HOI setting where only the list of class names and unlabeled images
are provided during training, and no ground truth is available for any class. Compared with existing
studies that are partially zero-shot (Shen et al., 2018; Ma et al., 2022), this setting is even more
challenging, yet it resembles the real-world scenario where users can define a list of HOI classes and
expect a tailored HOI model without data annotation efforts.

A natural solution to achieve zero-shot HOI classification is to leverage large image-text pre-trained
models, such as image captioning models and contrastive models. However, neither of the models
perform satisfactorily alone in our HOI experiments, because their training data is not HOI-specific,
and they are not trained to perform classification tasks. Nonetheless, we found that their strengths are
complementary: the captioning model can produce fine-grained verb and object concepts in its output,
while the contrastive model provides modality-aligned representations with a relatively compact
backbone. Can we deliver an HOI model that has “the best of two worlds”?

This paper demonstrate a novel heterogenous teacher-student framework that incorporates two types
of image-text pre-trained models, including GIT (Wang et al., 2022), a large image captioning
model as the teacher, and a CLIP-based (Radford et al., 2021) classifier as the student. To bridge
the gap between the two models, we propose “pseudo-label distillation”, which extracts HOI class
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Figure 1: Heterogenous teacher-student framework for zero-shot HOI classification. Heterogenous
means the teacher and student perform different tasks. The teacher generates captions on multiple
regions in the image. Pseudo-label Distillation serves as a bridge which extracts HOI knowledge
from captions into class probabilities to train the student classifier. The teacher and student models
perform 35.6 mAP and 25.8 mAP, respectively. After learning, the student is improved to 41.1 mAP.

probabilities from image captions to train the student classifier. SimCSE (Gao et al., 2021) and
WordNet (Miller, 1995) are incorporated in this step to better distill the HOI knowledge while filtering
out non-HOI noise. The framework is different from conventional teacher-student methods in two
significant ways. First, our teacher and student models are heterogenous as they perform different
tasks. Second, the teacher is not supervised on the downstream HOI task.

Our zero-shot method achieves solid performance in multiple HOI classification benchmarks (49.6
mAP on HICO (Chao et al., 2015) and 35.2 mAP on MPII (Andriluka et al., 2014)), outperforming
existing supervised methods. With only 1/7 the size of the teacher model, the student learns to
perform on par with the teacher. Extensive experiments show the indispensable role of each of our
components and a satisfying transferability to the instance-level HOI detection task (11.6 mAP on
HICO-DET (Chao et al., 2018) with an off-the-shelf object detector). The main contributions of this
work are summarized as follows:

• We introduce a new zero-shot setting for HOI recognition.
• We demonstrate a novel heterogenous teacher-student framework that leverages image-text

pre-trained models of diverse types.
• We provide an HOI recognition model that outperforms supervised baselines without any

ground-truth data, removing the strong dependency on human annotations in the HOI task.

2 RELATED WORK

2.1 HOI RECOGNITION

HOI recognition includes an image-level classification task and an instance-level detection task. In
the classification task, positions of the HOIs are unknown, therefore most existing methods (Gkioxari
et al., 2015; Mallya & Lazebnik, 2016; Girdhar & Ramanan, 2017; Fang et al., 2018) depend on
object detectors to extract human and object regions and conduct training with Multiple Instance
Learning (MIL) (Maron & Lozano-Pérez, 1998). The state of the arts are PaStaNet (Li et al., 2020b)
and HAKE (Li et al., 2019), which infer the HOI by reasoning from body part-level actions (extra
labels required). HOI detection methods fall into three categories: (1) two-stage methods (Gao et al.,
2018; Gkioxari et al., 2018; Gao et al., 2020; Liu et al., 2020a; Li et al., 2020b; Kim et al., 2020b;
Zhang et al., 2021b) that detect objects first, then classify the HOI base on regional features, (2)
one-stage methods (Liao et al., 2020; Kim et al., 2020a; Zhong et al., 2021; Hou et al., 2021a; Wang
et al., 2020) that detect objects and HOI regions in parallel and then match them, and (3) end-to-end
methods (Chen et al., 2021; Kim et al., 2021; Zou et al., 2021; Tamura et al., 2021; Zhang et al.,
2021a; Dong et al., 2022; Qu et al., 2022; Zhou et al., 2022; Iftekhar et al., 2022; Kim et al., 2022),
the recent trend which follows a DETR-based architecture (Carion et al., 2020).
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A partially zero-shot setting was previously studied under the name of “zero-shot HOI recognition”.
The classes are split into a seen set (with labels) and an unseen set (without labels). The unseen
classes can be novel combinations of known elements (verbs and object types). The model is trained
on the seen set and is evaluated on the unseen set. This is different from our zero-shot setting as
all the classes in our setting is unseen. For clarity, we call their setting “partially zero-shot” and
ours “zero-shot”. Ma et al. (2022) study partially zero-shot HOI classification based on auxiliary
training objectives and EsViT (Li et al., 2021a). Methods on partially zero-shot HOI detection (Shen
et al., 2018; Hou et al., 2020; 2021a) focus on learning features of individual verbs, objects, or object
affordance to improve the generalization to new HOIs.

Besides these work, a list of methods (Li et al., 2021b; Peyre et al., 2019; Xu et al., 2019; Liao et al.,
2022; Iftekhar et al., 2022; Qu et al., 2022) leverage text features or image-text pre-training as an
additional feature, a weight initialization, or a distillation source.

2.2 LANGUAGE MODELS AND IMAGE-TEXT PRE-TRAINING

As a language model, BERT (Devlin et al., 2018) established new baselines with unsupervised training
and a transformer network. When adapted to text similarity or retrieval tasks, (Reimers & Gurevych,
2019; Li et al., 2020a; Su et al., 2021) adjusts the BERT embedding space to be more isotropic for
improved performance, and SimCSE (Gao et al., 2021) shows that a contrastive fine-tuning on BERT
with dropout as augmentation can achieve the state of the art performance.

Recent years also witness remarkable progress in image-text pre-training. Contrastive and generative
models can be pre-trained on millions of image-text pairs. In CLIP (Radford et al., 2021), ALIGN (Jia
et al., 2021) and Florence (Yuan et al., 2021), the contrastive loss is applied to align image and text
representations, which significantly boost the performance on various downstream tasks. DEFR (Jin
et al., 2022) demonstrates a significant improvement in HOI recognition with proper initialization
and fine-tuning. For generative models, GIT (Wang et al., 2022) achieves state-of-the-art in image
captioning with the contrastive-based image representation. In the HOI scenario, the captioning
models have fine-grained knowledge of verb and object concepts since their pre-training task enforces
reconstructing each work in the whole sentence. In contrast, contrastive models are prone to ignore
detailed features, e.g., visual relationships and small objects (Thrush et al., 2022).

3 ZERO-SHOT HOI RECOGNITION DEFINED

In this section, we define the zero-shot HOI recognition setting. Formally, the training set includes
unlabeled images X = {I1, I2, . . . , IN} and a list of HOI categories Y = {y1, y2, ...yC}, where
N and C are the number of images and classes, respectively. Each HOI category yi is in terms of
plain text like “hold dog”, “ride bicycle”. The test set has both images and labels for performance
evaluation. This setup differs from previous studies (Shen et al., 2018; Ma et al., 2022) where training
images have labels on a seen subset of classes (e.g., 480 seen classes for training and 120 unseen
classes for testing). In other words, our zero-shot setting can be considered as an extreme case of
previous studies where all classes are unseen.

The proposed zero-shot setup resembles real-world scenarios such as retail and surveillance more
faithfully. Methods developed under this setting can significantly reduce human annotation cost.
Users will be released from the cumbersome labeling process and only need to define a list of
“interactions of interest” Y and record images X .

4 HETEROGENOUS TEACHER-STUDENT FRAMEWORK

We use a teacher-student framework that employs pre-trained image-text models to achieve zero-shot
in HOI recognition. The framework is heterogenous because the teacher and student models perform
different tasks. The goal of this framework is twofold. First, we want to leverage the complementary
strengths of both models. Second, we aim to deliver a small model (1/7 of the teacher’s size) with
adequate performance.

Our heterogenous teacher-student framework is different from conventional knowledge distillation in
three ways: (1) our teacher and student models are pre-trained for different tasks. The teacher is an
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image captioner and the student is a classifier, (2) both the teacher and the student are not supervised
on the downstream HOI task, and (3) knowledge is not transfered through feature distillation, but
pseudo-label distillation which serves as the bridge.

In this section, we introduce the details of the framework, and discuss the rationale of our approach.

4.1 TEACHER AND STUDENT MODELS

Teacher: we use an image captioning model which predicts a text sequence τ to describe an image I .
Although the model is trained for generic image captioning, it carries some HOI knowledge in the
form of verb and object concepts in the output. We choose GIT (Wang et al., 2022), which has 0.7
billion parameters pre-trained on 0.8 billion image-text pairs from the web. Due to the large size, it is
not feasible to be deployed.

Student: the student is an image classifier for HOI classes. The architecture follows Jin et al. (2022),
where the network has a vision backbone and a linear classification head, both initialized by CLIP.
We found that it crucial to use an image-text contrastive pre-trained model as initialization because
the backbone and the classification head (initialized by text embeddings) is already aligned before
fine-tuned for HOI.

The large pre-training data provides zero-shot capability for both GIT and CLIP. The teacher achieves
35.6 mAP on HICO when we convert the captioning output to class logits by evaluating text similar-
ities. The student model achieves 25.8 mAP (the zero-shot performance of CLIP ViT-B/32). The
performance of both models is not yet satisfactory. However, their strengths are complementary. The
captioning model can recognize fine-grained verb and object concepts, because during the generative
pre-training, it is required to reconstruct each word in the caption. The CLIP model, on the other hand,
is prone to ignore details like small objects and visual relationships (Thrush et al., 2022). However,
CLIP can initialize the student properly, giving it a good starting point to learn efficiently from the
captioning model. Thus, we pursue to bridge them to have the best of two worlds. As a result, the
student has only 1/7 number of parameters of the teacher, but can perform on par after learning.

4.2 THE BRIDGE: PSEUDO-LABEL DISTILLATION

The caption is in the format of natural language description, which is different from the discrete HOI
categories required to train the student. To mitigate this gap, we propose pseudo-label distillation to
essentially query the probabilities of all HOI classes Y = {y1, y2, . . . , yC} from the captions. For
example, given a caption “a man sitting on a couch holding a puppy”, we want high pseudo-label
values for <sit_on, couch> and <hold, dog>, and low values for other classes. A naive
approach is to use a text-similarity model to evaluate the semantic similarities between the caption
and the HOI classes, and use the similarities as pseudo-labels. A text similarity model can handle the
vocabulary gap from captions to HOI classes, for example, to match “puppy” from the captions to
“dog” in the HOI classes.

Formally, let τ denote an image caption, and ti denote a sentence converted from the ith HOI class
(e.g., <ride, bicycle> is converted to “a person riding a bicycle”). Let f(·) denote a language
model that encodes text sequences into embeddings. Here, we use SimCSE (Gao et al., 2021), which
is a BERT (Devlin et al., 2018) model fine-tuned for text similarity tasks. The choice of SimCSE
is due to its isotropic embedding space which promotes better performance. Firstly, we generate
embeddings for caption τ and HOI class ti as follows:

φ = f(τ), qi = f(ti) (1)

Then we use cosine similarity to roughly estimate the probability over HOI classes as:

P (yi|τ) ≈ φ qi
‖φ‖‖qi‖

(2)

This estimation is rough for the HOI task, as the cosine distance of text embeddings reflects the
semantic similarity of objects instead of the desired visual similarity. For example, “dog” and
“elephant” are semantically similar but visually different. Visual similarity is usually sparser than
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semantic similarity. To remove the noise from semantically similar but visually different false
positives, we use WordNet (Miller, 1995) to sparsify the pseudo-labels as follows:

P (yi|τ) ≈ π(oi, oτ )
φ qi
‖φ‖‖qi‖

(3)

where π(oi, oτ ) represents the WordNet-based mask between the object in the ith HOI class and
the object in caption τ . It equals 1 if the objects are “synsets” or hypernyms of each other, and 0
otherwise. A visual example is provided in Appendix subsection A.1.

4.3 MULTIPLE CAPTIONS TO PSEUDO-LABELS

There can be multiple HOIs in a single image. However, due to the limited length of the caption, the
captioning model may not describe all expected interactions in the image. To solve this issue, we
generate multiple regional crops R on varied positions of the image and generate one caption per
region. Each of the regional captions provides one set of pseudo-labels P (Y |τRj

), and we aggregate
the results by max pooling as follows:

P (yi) = max(P (yi|r)),∀r ∈ Φ(R) (4)

Where Φ denotes a sampling function that determines which regions r is included in the max pooling.
Φ can be either a uniform sampling or giving more weights to regions that cover more objects detected
in the scene. The performance difference is compared in subsection 6.3, and a visual example is
provided in Appendix subsection A.2.

Finally, the pseudo-labels of all classes per image P is normalized to [0, 1], given the prior knowledge
that each image must contain both positive classes and negative classes. In sum, the whole process
distills the HOI knowledge from generic image captions while filtering out non-HOI information,
and thus is called pseudo-label distillation. It differs from conventional teacher-student frameworks
that transfer knowledge through feature distillation or through soft labels that are right available.

5 EXPERIMENTS

We introduce the implementation details in this section. Experiments on two HOI classification
datasets are conducted. In the end, we demonstrate transfering the image-level model to the instance-
level HOI detection task.

5.1 DATASETS

HICO: the HICO dataset is the largest dataset for image level HOI classification, containing 600
HOI classes that are combinations of 80 object categories (same as COCO) and 117 verb categories.
Each image contains one or multiple labels. It has 38,118 training images and 9,658 testing images.
The rare HOI subset contains 162 classes that have no more than ten training images.

MPII: the MPII (Andriluka et al., 2014) dataset contains 15,205 training images and 5,708 testing
images. There are a total of 393 interaction classes. Each image is labeled with only one interaction.

Zero-shot Variant: we remove the ground-truth labels from the training set of each dataset and only
keep the images for the zero-shot HOI classification. The result is evaluated on the test set with
ground-truth labels.

5.2 TRAINING

Teacher model: We use GIT (Wang et al., 2022) as the image captioning model. We generate
pseudo-labels on the training set, and use a threshold of 0.97 to convert them to binary labels.

Student model: The classification model has a ViT-B/32 backbone pre-trained by CLIP. Following
(Jin et al., 2022), the classification head is initialized by normalized text embeddings of HOI class
names, and was fine-tuned on pseudo-labels with the LSE-Sign loss for five epochs. We use the
AdamW (Kingma & Ba, 2014) optimizer and a cosine learning rate scheduler with a base learning
rate 1e−5. We use image resolution 672 and a batch size of 128 on eight V100 GPUs.
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Table 1: HOI classification on HICO. We compare zero-shot methods with two existing settings
include Supervised and Partially zero-shot. Methods depend on different extra supervisions or input,
including bbox: object detection, pose: human pose, PaSta: part-level action labels and Image-text. †
results obtained from (Ma et al., 2022). Methods may use different backbones.

Method Extras Ground Truth mAP
Bbox Pose PaSta Image-text None-rare Rare

Supervised methods
R*CNN (Gkioxari et al., 2015) X X X 28.5
Girdhar & Ramanan (2017) X X X 34.6
Mallya & Lazebnik (2016) X X X 36.1
Pairwise-Part (Fang et al., 2018) X X X X 39.9
PastaNet (Li et al., 2020b) X X X X X 46.3
HAKE (Li et al., 2019) X X X X X 47.1

Partially zero-shot Methods

VCL† (Hou et al., 2020) X 26.7
VCL† (Hou et al., 2020) X 21.8
RelViT (Ma et al., 2022) X 37.2
RelViT (Ma et al., 2022) X 23.1

Zero-shot Methods
CLIP (ResNet101) X 25.8
CLIP (ViT-B/32) X 25.8
CLIP (ViT-L/14) X 33.8
HTS (ViT-B/32, ours) X 41.1
HTS (ViT-L/14, ours) X 49.6

5.3 HOI CLASSIFICATION RESULTS

On the HICO dataset, we compare with state of the arts under three settings: supervised, partially
zero-shot and zero-shot, as is described in Table 1. Our zero-shot method HTS (Heterogenous
Teacher-Student) achieves 41.1 mAP without dependencies on object detection or human pose. It
outperforms existing partially zero-shot methods that can access ground-truth labels of 480 classes,
and surpasses multiple supervised methods that require additional object and keypoint detections.
With the same backbone, it outperforms the zero-shot CLIP baseline significantly. Table 2 compares
our zero-shot method with supervised state-of-the-arts. Since we use no ground-truth labels, our
method loses on classes with sufficient training samples, but wins on the few-shot subsets. The credit
goes to the proper way of leveraging image-text pre-training.

On the MPII dataset, Table 3 shows that our method also outperforms multiple supervised baselines
and the zero-shot CLIP. In this experiment, the gap between our method and zero-shot CLIP is not as
significant as in the HICO dataset. The reason is that the interaction classes in MPII are not strictly
mutually exclusive (e.g., ”bicycling, general”, ”bicycling, mountain”; ”jogging”, ”running”). Hence,
the dataset is slightly biased, which the pseudo-label is harder to fit.

5.4 HOI DETECTION RESULTS

We transfer the student HOI classification model to HOI detection by connecting with an off-the-shelf
object detector trained on COCO (Lin et al., 2014) by Gao et al. (2020). We pair detected humans
and objects and use the classification model to recognize the regional HOI. To do so, we modify the
last transformer layer in the classifier’s backbone so that the CLS token only attends to the region
specified by the boxes. Please see Appendix Appendix B for detailed implementations. The method
achieves 11.6 mAP, showing a good transferability to HOI detection.
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Table 2: Few-shot performance on HICO. Few@i stands for the set of classes with no more than
i training images. Few@1, 5, 10 have 49, 125 and 162 classes, respectively. Please note that the
methods may have different backbones and dependencies on object detectors, human pose detectors
and etc.

Method Labels mAP Few@1 Few@5 Few@10

Supervised methods
Pairwise-Part (Fang et al., 2018) HOI, Bbox, Pose 39.9 13.0 19.8 22.3
PastaNet (Li et al., 2020b) HOI, Bbox, Pose, Pasta 46.3 24.7 31.8 33.1
HAKE (Li et al., 2019) HOI, Bbox, Pose, Pasta 47.1 25.4 32.5 33.7

Zero-shot methods
HTS (ViT-B/32, ours) Image-text 41.4 33.6 36.3 37.2

Table 3: HOI classification on the MPII dataset. We report performance on the validation set that
contains 6,987 images. The Zero-shot CLIP is their original model with an image encoder and a text
encoder. HTS does not have a text encoder.

Method Backbone mAP
Supervised methods
R*CNN (Gkioxari et al., 2015) VGG16 21.7
Girdhar et al. (Girdhar & Ramanan, 2017) ResNet101 30.6
Pairwise-Part (Fang et al., 2018) ResNet101 32.0

Zero-shot methods
CLIP (Radford et al., 2021) ResNet101 33.7
HTS, ours ResNet101 35.2

6 ABLATION STUDIES

In this section, we conduct ablation studies on key decisions of the framework. We compare the
teacher model of difference sizes, the language model that computes text similarities, and the design
of the student model.

6.1 IMAGE CAPTIONING MODELS

To study the impact of different captioning models, we use UFO-B/32 and UFO-L/16 from (Wang
et al., 2021) to replace GIT. The captioning performance on COCO (Lin et al., 2014) is 122.8, 131.2
and 144.8 in CIDEr (Vedantam et al., 2015) for UFO-B/32, UFO-L/16 and GIT, respectively.

Table 4 demonstrates the optimal result in the fine-tuned student model is dependent on the quality of
the image captions. We evaluated both the pseudo-label performance and the eventual student perfor-
mance. This comparison shows that our pseudo-label distillation provides consistent enhancements
over naive text similarities (up to 5.3 mAP). The student model also consistently performs on par
with or better than the teacher.

6.2 LANGUAGE MODELS

A language model is used to generate text embeddings of the caption and HOI classes to compute
the cosine similarity for pseudo-labels. We compare the difference in the pseudo-label performance
when using language models of different types, including BERT, SimCSE and CLIP-T (text encoder
from CLIP). Results in Table 5 show that SimCSE plays an important role in our framework. Please
note that normalizing the cosine similarities to [0, 1] range per image improves the result, especially
for CLIP-T. This is because CLIP-T has aligned vision-text representation but is not fine-tuned with
text-similarity as a training objective.
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Table 4: Comparison of image captioning models. Performance is evaluated on the HICO test set
using one caption per image. Cosine similarity: the performance of directly using the cosine similarity
as the pseudo-label (e.g. object types not sparsified). Pseudo-label Distillation: the performance of
the pseudo-label processed by our method. Student model: the performance of the classification
model fine-tuned with pseudo-labels.

Captioning Model mAP Few@1 Few@5 Few@10
Pseudo-label: cosine similarity
GIT 35.556 31.833 31.728 31.563
UFO-L/16 29.578 21.051 21.652 21.976
UFO-B/32 25.878 16.636 17.367 17.759

Pseudo-label: pseudo-label distillation output
GIT 40.855 32.698 37.947 38.024
UFO-L/16 32.677 20.353 23.324 23.595
UFO-B/32 28.203 17.908 19.222 19.490

Student model: ViT-B/32
GIT 40.43 31.90 35.76 35.85
UFO-L/16 38.39 31.67 33.82 33.85
UFO-B/32 35.24 26.46 28.01 28.68

Table 5: Language models in pseudo-label distillation. Three models has the same architecture
while trained for different objectives. CLIP-T is the text encoder from CLIP, and SimCSE is BERT
fine-tuned on text similarity tasks. Language models like SimCSE provide an isotropic embedding
space making the cosine similarity more accurate in our pseudo-label generation. Normalization
means scaling the pseudo-labels in each image to the full [0, 1] range.

Language Model mAP Few@1 Few@5 Few@10
Without normalization
BERTbase 1.018 0.212 0.661 0.551
CLIP-Tbase 17.563 16.346 14.601 13.985
SimCSEbase 35.556 31.833 31.728 31.563

With normalization
BERTbase 1.767 0.446 1.034 0.960
CLIP-Tbase 34.784 27.972 32.320 32.388
SimCSEbase 38.438 31.343 34.460 35.172

6.3 MULTI-REGION CAPTION SAMPLING STRATEGY

When we generate multiple captions per image on different regional crops, a strategy is required to
select the regions with clear HOI training signals and avoid regions like the sky or grass fields in
the background. Table 6 compares three different sampling methods, and the results show that it
influences the result critically. The best result achieved by Object 5 10, which selects the captions of
regions that cover the most detected humans and objects.

6.4 BACKBONE OF THE CLASSIFICATION MODEL

A vital building block for the student model is the initialization method for both the backbone and
the linear classification head. In Table 7, we compare a ViT-B/32 backbone initialized by image-
only (ImageNet) and image-text (CLIP) pre-training, and the linear classification head initialized
randomly (Glorot & Bengio, 2010; He et al., 2015), and initialized by language embeddings of the
corresponding HOI class. Results show that the joint use of image-text pre-training in the backbone
and language embedding initialized classifier is necessary. Besides, our method generalizes well to
ResNet backbones.
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Table 6: Sampling strategy of regional captions. Center: use the largest center crop and send to
the captioning model. Uniform: uniformly sample 10 regional crops. Object: sample 10 regions
that cover the most detected human and objects, which performs the best since it avoids regions not
related to HOI. The pool of candidates contains regional crops of three sizes: [1.0, 0.75, 0.5] of the
shortest image edge. All regions are squared in shape for the best captioning performance.

Sampling Strategy mAP Few@1 Few@5 Few@10
Center 5 1 40.43 31.90 35.76 35.85
Uniform 5 10 38.74 30.57 33.47 33.81
Object 5 10 41.42 33.56 36.30 37.24

Please note that the combined use of CLIP-initialized vision backbone and language embedding
initialized classification head runs faster than CLIP at inference time since it does not carry a text
encoder.

Table 7: Pre-training and backbone architecture for the classification model. Architectures include
ResNets and vision transformers. The backbone initialization includes image-only (ImageNet-1K)
and image-text contrastive learning (CLIP). Initializations for the classifier (classification head)
include the conventional random (Kaiming) initialization (He et al., 2015) and language embedding
initialization

Backbone Pre-training Classifier Init. mAP Few@1 Few@5 Few@10
ResNet-50 CLIP Language 34.49 26.02 26.90 27.13
ResNet-101 CLIP Language 36.49 28.91 30.20 31.13

ViT-B/32 ImageNet-1K Random 27.53 5.61 9.69 11.46
ViT-B/32 CLIP Random 18.91 2.71 4.87 5.52
ViT-B/32 CLIP Language 41.42 33.56 36.30 37.24

ViT-B/16 CLIP Language 45.36 35.49 40.26 41.75
ViT-L/14 CLIP Language 49.58 41.57 47.09 47.41

7 FINE-TUNING ITERATIVELY

To inspire future work, we further experimented with switching the roles of teacher and student, so
that in the second round, the classifier becomes the teacher to fine-tune GIT for the HOI task. In the
third round, the HOI fine-tuned GIT teaches the classifier again. We observed an additional gain of
0.6 mAP on all classes and 2.8 mAP on the Few@1 subset. The fine-tuned GIT model predicts only
HOI-related captions. We hope this new perspective will inspire future work in this area.

8 DISCUSSION OF LIMITATIONS

As the first work that investigates fully zero-shot HOI recognition, we see additional room for
improvements after this paper. For example, the process can be used to bring in additional training
images from the web. Also, apart from using only the pseudo-labels, the visual feature from the
captioning model can be a valuable training signal as well. We will leave these to the research
community as potential future directions.

9 CONCLUSION

This paper introduces a new zero-shot setting for human-object interaction (HOI) recognition and
presents a heterogenous teacher-student framework for this challenging setup. This method not only
achieves solid performance by outperforming multiple supervised baselines, but also delivers a HOI
classifier with a reasonable size (ViT-B) for deployment.
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A APPENDIX

A.1 EXAMPLES OF IMAGE CAPTIONS AND OBJECT SPARSIFICATION

Figure 2 provides examples of the image captions. It also shows that object sparsification using
WordNet effectively reduces the noisy labels coming from semantically related objects, helping the
ground-truth HOIs surface to the top.

To map the object types from the caption (open-vocabulary) to pre-defined object categories in the
dataset, we use the following information from WordNet. Take ”bicycle” for example:

• Synsets that provide synonyms, which includes bike, cycle

• Hyponyms that includes variations of the object, like tandem, E-bike

• Derived Forms for example biker, cyclist, bicyclist
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Figure 2: Examples of pseudo-labels generated with and without object sparsification. Only top-
ranking classes are shown. In both images, the ground-truth HOI classes (highlighted in grey) rank
near the top of the 600 classes, showing the efficacy of the captioning model being a teacher. However,
noisy labels are found which involve objects that are semantically related but visually distant to the
ground-truth (highlighted in red). We effectively reduce such noise by sparsifying the objects.

Image Caption:
a man laying on a couch holding a remote control.

Ground-truth HOI:
<hold, remote>, <point, remote>

Pseudo-HOI
(w/o sparsification):

Pseudo-HOI
(w/ sparsification):

✕ 1.00 lie_on, couch

✕ 0.97 none, couch

✓ 0.88 hold, remote

✕ 0.88 sit_on, couch

✕ 0.87 none, remote

✕ 0.80 carry, couch

✕ 0.79 lie_on, chair

✕ 0.77 control, tv

✕ 0.76 none, tv

✕ 0.73 none, bed

✕ 0.72 swing, remote

✕ 0.69 none, chair

✕ 0.68 lie_on, bed

✓ 0.67 point, remote

✕ 1.00 lie_on, couch

✕ 0.97 none, couch

✓ 0.88 hold, remote

✕ 0.88 sit_on, couch

✕ 0.87 none, remote

✕ 0.80 carry, couch

✕ 0.72 swing, remote

✓ 0.67 point, remote

(a)

Image Caption:
a man in a white hat and glasses with a dog
in his lap.

Ground-truth HOI:
<hold, dog>, <hug, dog>

Pseudo-HOI
(w/o sparsification):

Pseudo-HOI
(w/ sparsification):

✕ 1.00 none, dog

✓ 0.98 hold, dog

✕ 0.88 straddle, dog

✕ 0.84 pet, dog

✕ 0.83 carry, dog

✓ 0.82 hug, dog

✕ 0.81 inspect, dog

✕ 0.76 kiss, dog

✕ 0.75 walk, dog

✕ 0.72 feed, dog

✕ 0.72 none, giraffe

✕ 0.72 hold, hot_dog

✕ 0.71 groom, dog

✕ 0.70 none, hot_dog

✕ 1.00 none, dog

✓ 0.98 hold, dog

✕ 0.88 straddle, dog

✕ 0.84 pet, dog

✕ 0.83 carry, dog

✓ 0.82 hug, dog

✕ 0.81 inspect, dog

✕ 0.76 kiss, dog

✕ 0.75 walk, dog

✕ 0.72 feed, dog

✕ 0.71 groom, dog

(b)

A.2 EXAMPLES OF REGIONAL IMAGE CAPTIONS

Figure 3 compares using a single caption for the whole image v.s. aggregating HOI from multiple
regional image captions. When the interacting object is small, the captioning model tends to ignore it
in the output. However, we can recover from this case by generating multiple regional captions. Then,
we use object-guided sampling to select regions that cover more objects of interest, and max-pooling
to aggregate regional pseudo-labels.
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Figure 3: Examples of regional captions. (a) shows that the image caption for the whole image
may not reveal the HOI information. The image caption for the left image doesn’t mention the book,
which is an object category in our HOI list. This can be fixed by using a regional image crop. (b)
shows that when using regional captions, the sampling strategy becomes vital to find the HOI-related
region (underlined) while filtering out the others.

Image Caption:
a man and a woman standing in front
of a subway.

Ground-truth HOI:
<hold, book>, <open, book>,
<read, book>

Regional Image Caption:
a person holding a book and 
a backpack.

(a)

Image Caption:
a woman and two children are
standing next to each other.

Ground-truth HOI:
<wear, tie>

Regional Image Caption:
a boy looking at a woman.

Regional Image Caption:
a boy wearing a tie and tie.

Regional Image Caption:
a person standing outside.

(b)

B ZERO-SHOT HOI DETECTION

We apply a binary self-attention mask Φ in the Attention (Mallya & Lazebnik, 2016) function in the
last transformer layer:

Attention(Q,K, V ) = softmax(Φ +
QKT

√
dk

)V (5)

Φ is a binary mask converted from the bounding boxes. Φi,j equals −∞ if i is the CLS token and j a
patch outside the given bounding boxes, and 0 otherwise. dk is the dimension of Q,K and V .
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Experiments are conduction on the HICO-DET (Chao et al., 2018) dataset. The whole pipeline
uses no labels from the HICO-DET dataset. Table 8 compares our method with existing partially
unsupervised methods. We achieve 11.62 mAP, surpassing multiple baselines on the unseen subset
even we have no “seen” classes.

Table 8: Comparison on HOI detection. It includes four partially zero-shot settings, including UC
(unseen classes are novel compositions of seen verbs and objects) and UO (unseen classes include
novel objects). RF (rare first) selects rare HOIs for the unseen set, leaving more images for training,
and NF (non-rare first) vise versa. Some results are from (Liao et al., 2022) where † indicates detected
bounding box positions (no object categories) are used. Results are mAP.

Method Setting Unseen Seen Full
Shen et al. (Shen et al., 2018) 5.62 - 6.26
FG (Bansal et al., 2020) UC 10.93 12.60 12.26
ConsNet (Liu et al., 2020b) 16.99 20.51 19.81

VCL (Hou et al., 2020)

UC (RF)

10.06 24.28 21.43
ATL (Hou et al., 2021a) 9.18 24.67 21.57
FCL (Hou et al., 2021b) 13.16 24.23 22.01
GEN-VLKTs (Liao et al., 2022) 21.36 32.91 30.56

VCL (Hou et al., 2020)

UC (NF)

16.22 18.52 18.06
ATL (Hou et al., 2021a) 18.25 18.78 18.67
FCL (Hou et al., 2021b) 18.66 19.55 19.37
GEN-VLKTs (Liao et al., 2022) 25.05 23.38 23.71

FCL† (Hou et al., 2021b)
UO

0.00 13.71 11.43
ATL† (Hou et al., 2021a) 5.05 14.69 13.08
GEN-VLKTs (Liao et al., 2022) 10.51 28.92 25.63

HTS (ViT-B/16, ours) Zero-shot - - 11.62

16


	Introduction
	Related work
	HOI Recognition
	Language models and image-text pre-training

	Zero-shot HOI recognition defined
	Heterogenous Teacher-Student Framework
	Teacher and Student Models
	The bridge: Pseudo-label Distillation
	Multiple captions to pseudo-labels

	Experiments
	Datasets
	Training
	HOI classification results
	HOI detection results

	Ablation Studies
	Image captioning models
	Language Models
	Multi-region caption sampling strategy
	Backbone of the classification model

	Fine-tuning Iteratively
	Discussion of limitations
	Conclusion
	Appendix
	Examples of image captions and object sparsification
	Examples of regional image captions

	Zero-shot HOI detection

