
Predicting Lagrangian Multipliers for Mixed Integer Linear Programs

Francesco Demelas 1 Joseph Le Roux 1 Mathieu Lacroix 1 Axel Parmentier 2

Abstract

Lagrangian Relaxation stands among the most ef-
ficient approaches for solving Mixed Integer Lin-
ear Programs (MILPs) with difficult constraints.
Given any duals for these constraints, called La-
grangian Multipliers (LMs), it returns a bound on
the optimal value of the MILP, and Lagrangian
methods seek the LMs giving the best such bound.
But these methods generally rely on iterative al-
gorithms resembling gradient descent to maxi-
mize the concave piecewise linear dual function:
the computational burden grows quickly with the
number of relaxed constraints. We introduce
a deep learning approach that bypasses the de-
scent, effectively amortizing per instance opti-
mization. A probabilistic encoder based on a
graph neural network computes, given a MILP
instance and its Continuous Relaxation (CR) solu-
tion, high-dimensional representations of relaxed
constraints, which are turned into LMs by a de-
coder. We train the encoder and the decoder
jointly by directly optimizing the bound obtained
from the predicted multipliers. Our method is ap-
plicable to any problem with a compact MILP for-
mulation, and to any Lagrangian Relaxation pro-
viding a tighter bound than CR. Experiments on
two widely known problems, Multi-Commodity
Network Design and Generalized Assignment,
show that our approach closes up to 85 % of
the gap between the continuous relaxation and
the best Lagrangian bound, and provides a high-
quality warm-start for descent-based Lagrangian
methods.

1Laboratoire d’Informatique de Paris-Nord, Université Sor-
bonne Paris Nord — CNRS, France 2CERMICS, École des
Ponts, France. Correspondence to: Francesco Demelas <deme-
las@lipn.fr>, Joseph Le Roux <leroux@lipn.fr>, Mathieu
Lacroix <lacroix@lipn.fr>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Mixed Integer Linear Programs (MILPs) (Wolsey, 2021)
have two main strengths that make them ubiquitous in com-
binatorial optimization (Korte & Vygen, 2012). First, they
can model many combinatorial optimization problems. Sec-
ond, extremely efficient solvers can now handle MILPs with
millions of constraints and variables. They therefore have
a wide variety of applications in logistics, telecommunica-
tions and beyond. MILP algorithms are exact: they return an
optimal solution, or an optimality gap between the returned
solution and an optimal one.

MILPs are sometimes hard to solve due to a collection of dif-
ficult constraints. Typically, a small number of constraints
link together otherwise independent subproblems. For in-
stance, in vehicle routing problems (Golden et al., 2008),
there is one independent problem for each vehicle, except
for the linking constraints that ensure that exactly one ve-
hicle operates each task of interest. Lagrangian relaxation
approaches are popular in such settings as they allow to
unlink the different subproblems.

More formally (Conforti et al., 2014, Chap. 8), let P be a
MILP of the form:

(P) min
x

w⊤x (1a)

Ax ≥ b (1b)
Cx ≥ d (1c)
x ∈ Rm

+ × Np (1d)

While CR amounts to simply removing the integrity con-
straints (i.e. (1d) becomes x ∈ Rm+p

+), the relaxed La-
grangian problem is obtained by dualizing difficult con-
straints (1b) and penalizing their violation with Lagrangian
multipliers (LMs) π ≥ 0:

(
LR(π)

)
min
x

w⊤x+ π⊤(b−Ax)

Cx ≥ d

x ∈ Rm
+ × Np

Standard weak Lagrangian duality ensures that LR(π) is a
lower bound on P . The Lagrangian dual problem aims at

1

Predicting Lagrangian Multipliers for MILPs

finding the best such bound:

(LD) max
π≥0

LR(π).

Geoffrion’s theorem (1974) ensures that LD is a lower
bound at least as tight as the continuous relaxation. It is
strictly better on most applications. Beyond this bound,
Lagrangian approaches are also useful to find good primal
solutions. Indeed, Lagrangian heuristics (Beasley, 1990)
exploit the dual solution π and the variable assignment for
x of LR(π) to compute good quality solutions of (1a)-(1d).
Note that both the bound and the heuristic hold even in the
case of non-optimal duals π. We define good Lagrangian
duals π as those that lead to a bound LR(π) better than the
CR solution, and thus closer to LD.

Since π 7→ LR(π) is piecewise linear and concave, it is
generally optimized using a subgradient algorithm. Unfor-
tunately, the number of iterations required to obtain good
duals quickly increases with the dimension of π, which
makes the approach extremely intensive computationally.

In this work1 we introduce a state-of-the-art encoder-
decoder neural network that computes good duals π from
the CR solution. The probabilistic encoder qϕ(z|ι), based
on a graph neural network (GNN), takes as input a MILP
instance ι as well as the primal and dual CR solutions, and
returns an embedding of the instance, where each dualized
constraint is mapped to a high-dimensional dense vector.
The deterministic decoder fθ(z) reconstructs single dimen-
sional duals from constraint vectors. The learning objective
is unsupervised since the Lagrangian dual function LR(π)
leads to a natural loss function that does not require gold ref-
erences. Experiments on two standard and widely used prob-
lems from the Combinatorial Optimization literature, Multi-
Commodity Network Design and General Assignment, show
that the predicted duals close up to 85% of the gap between
the CR and LD solutions. Finally, when optimal duals are
the target, we show that predicted duals provide an excellent
warm-start for state-of-the-art descent-based algorithms for
objective (1). Our approach is restricted to compact MILPs
and Lagrangian Relaxations admitting a tighter bound than
CR since primal and dual CR solutions are part of the GNN
input.

2. Learning Framework
2.1. Overall Architecture

Iterative algorithms for setting LMs to optimality such as
the subgradient method (SM) (Polyak, 1987, Chap 5.3) or
the Bundle method (BM) (Hiriart-Urruty & Lemaréchal,
1996; Le et al., 2007) start by initializing LMs. They can

1Code in JULIA at https://github.com/FDemelas/
Learning_Lagrangian_Multipliers.jl

be set to zero but a solution considered as better in practice
by the Combinatorial Optimization community is to take
advantage of the bound given by CR and its dual solution,
often computationally cheap for compact MILPs. Specifi-
cally, optimal values of the CR dual variables identified with
the constraints dualized in the Lagrangian relaxation can
be understood as LMs. In many problems of interest these
LMs are not optimal and can be improved by SM or BM.
We leverage this observation by trying to predict a deviation
from the LMs corresponding to the CR dual solution.

The architecture is depicted in Figure 1. We start from an
input instance ι of MILP P with a set of constraints for
which the Lagrangian relaxed problem is easy to compute,
then solve CR and obtain the corresponding primal and
dual solutions. The input enriched with CR solutions is
then passed through a probabilistic encoder, composed of
three parts: (i) the input is encoded as a bipartite graph
in a way similar to (Gasse et al., 2019), also known as a
factor graph in probabilistic modelling, and initial graph
node feature extraction is performed, (ii) this graph is fed
to a GNN in charge of refining the node features by taking
into account the structure of the MILP, (iii) the last layer of
the GNN is used to parameterize a distribution from which
vectors zc can be sampled for each dualized constraint c.

The decoder then translates zc to a positive LM πc = λc +
δc by predicting a deviation δc from the CR dual solution
variable λc. Finally, the predicted LMs can be used in
several ways, in particular to compute a Lagrangian bound
or to warm-start an iterative solver.

2.2. Objective

We train the network’s parameters in an end-to-end fashion
by maximizing the average Lagrangian bound LR(π) ob-
tained from the predicted LMs π over a training set. This
can be cast as an empirical risk optimization, or an Energy-
Based Model (Le Cun et al., 2006) with latent variables,
where the Lagrangian bound is the (negative) energy cor-
responding to the coupling of the instance with the sub-
problem solutions, and the LMs — or more precisely their
high-dimensional representations — the latent variables.
For our problem, a natural measure of the quality of the
prediction is provided by the value LR that we want to max-
imize to tighten the duality gap. Given an instance ι we
want to learn to predict the latent representations z of the
LMs for which the Lagrangian bound is the highest:

max
ϕ,θ

Ez∼qϕ(·|ι) [LR([λ+ fθ(z)]+; ι)]

where qϕ is the probabilistic encoder, mapping each du-
alized constraint c in ι to a latent vector zc computed by
independent Gaussian distributions, fθ is the decoder map-

2

https://github.com/FDemelas/Learning_Lagrangian_Multipliers.jl
https://github.com/FDemelas/Learning_Lagrangian_Multipliers.jl

Predicting Lagrangian Multipliers for MILPs

MILP ι
+

CR
Solution
x,λλλ

+
Dualized

Constraints

Input Encoder

Features
Extraction · · ·

GNNϕϕϕ

Sampler

z1

z2

...

z|λ|

Latent Decoder

MLPθθθ

MLPθθθ

...

MLPθθθ

π1
π2

...

π|λ|

Multipliers

Energy
Bound

LR(πππ)

Figure 1. Overall Architecture. From the bipartite graph representation of a MILP and its CR solution, the model computes a Lagrangian
dual solution. First the MILP is encoded by a GNN, from which we parameterize a sampler for constraint representations. These
representations are then passed through a decoder to compute Lagrangian Multipliers.

ping each2 zc to its corresponding LM deviation δc from
the CR dual value λc, and [·]+ is the component-wise soft-
plus function. We can observe that this objective has the
following properties amenable to gradient-based learning:

1. LR(π) is bounded from above: optimal LMs π∗ maxi-
mize LR(π) over all possible LMs, that is LR(π∗) ≥
LR(π) for any π = λ+ fθ(z). Moreover, LR(π) is
a concave piece-wise linear function, in other words
all optimal solutions will give the same bound.

2. It is straightforward to compute a subgradient w.r.t. to
parameters θ: ∇θLR([λ+ fθ(z)]+; ι) is equal to:(

∂[λ+ fθ(z)]+
∂θ

)⊤

∇πLR(π; ι)

The Jacobian on the left is computed via backpropa-
gation, while LR(π; ι) is simple enough for a subgra-
dient to be given analytically. Provided that x̄ is an
optimal solution of the relaxed Lagrangian problem of
ι associated with π, we derive:

∇πLR(π; ι) = b−Ax̄

This means that in order to compute a subgradient for
θ, we first need to solve each subproblem. Since sub-
problems are independent, this can be done in parallel.

3. For parameters ϕ, we again leverage function compo-
sition and the fact that qϕ is a Gaussian distribution, so
we can approximate the expectation by sampling and
use the reparameterization trick (Kingma & Welling,
2014; Schulman et al., 2015) to perform standard back-
propagation. We implement qϕ as a neural network,
described in details in the following section, returning
a mean vector and a variance vector for each dualized
constraint c, from which a sampler returns a represen-
tation vector zc. For numerical stability, the variance
is clipped to a safe interval (Rybkin et al., 2021).

2With a slight abuse of notation, we use function f : Rm → Rn

on batches of size p to become Rm×p → Rn×p.

2.3. Encoding and Decoding Instances

Encoder One of the challenges in Machine Learning ap-
plications to Combinatorial Optimization is that instances
have different input sizes, and so the encoder must be able to
cope with these variations to produce high-quality features.
Of course this is also the case in many other applications,
for instance NLP where texts may differ in size, but there
is no general consensus as to what a good feature extractor
for MILP instances looks like, contrarily to other domains
where variants of RNNs or Transformers have become the
de facto standard encoders.

We depart from previous approaches to Lagrangian predic-
tion (Sugishita et al., 2024) restricted to instances of the
same size, and follow more generic approaches to MILP en-
coding such as (Gasse et al., 2019; Nair et al., 2020; Khalil
et al., 2017) where each instance is converted into a bipartite
graph and further encoded by GNNs to compute meaningful
feature vectors associated with dualized constraints. Each
MILP is converted to a bipartite graph composed of one
node for each variable and one node for each constraint.
There is an edge between a variable node nv and a con-
straint node nc if and only if v appears in c. Each node
(variable or constraint) is represented by an initial feature
vector en. We use features similar to ones given in (Gasse
et al., 2019).3 Following Nair et al. (2020), variables and
constraints are encoded as the concatenation of variable fea-
tures followed by constraint features, of which only one is
non-zero, depending on the type of nodes.

To design our stack of GNNs, we take inspiration from
structured prediction models for images and texts, where
Transformers (Vaswani et al., 2017) are ubiquitous. How-
ever, since our input has a bipartite graph structure, we
replace the multihead self-attention layers with simple lin-
ear graph convolutions4 (Kipf & Welling, 2017). Closer
to our work, we follow Nair et al. (2020) which showed

3See Appendix A for more details.
4Alternatively, this can be seen as a masked attention, where

the mask is derived from the input graph adjacency matrix.

3

Predicting Lagrangian Multipliers for MILPs

that residual connections (He et al., 2016), dropout (Srivas-
tava et al., 2014) and layer normalization (Ba et al., 2016)
are important for the successful implementation of feature
extractors for MILP bipartite graphs.

Before the actual GNNs, initial feature vectors {en}n are
passed through a MLP F to find feature combinations and
extend node representations to high-dimensional spaces:
h0
n = F (en),∀n. Then interactions between nodes are

taken into account by passing vectors through blocks, repre-
sented in Figure 2, consisting of two sublayers.

• The first sublayer connects its input via a residual con-
nection to a layer normalization LN followed by a
linear graph convolution CONV of length 1, followed
by a dropout regularization DO:

h′
n = hn +DO(CONV (LN(hn)))

The graph convolution passes messages between nodes.
In our context, it passes information from variables to
constraints, and conversely.

• The second sublayer takes as input the result of first
one, and connects it with a residual connection to a
sequence made of a layer normalization LN , a MLP
transformation and a dropout regularization DO:

hn = h′
n +DO(MLP (LN(h′

n)))

The MLP is in charge of finding non-linear interactions
in the information collected in the previous sublayer.

This block structure, depicted in Figure 2, is repeated sev-
eral times, typically 5 times in our experiments, in order
to extend the domain of locality. The learnable parame-
ters of a block are the parameters of the convolution in the
first sublayer and the parameters of the MLP in the second
one. Remark that we start each sublayer with normalization,
as it has become the standard approach in Transformer re-
cently (Chen et al., 2018). We note in passing that this has
also been experimented with by Gasse et al. (2019) in the
context of MILP, although only once before the GNN input,
whereas we normalize twice per block, at each block.

Finally, the GNN returns the vectors associated with du-
alized constraints {hc}c. Each vector hc is interpreted as
the concatenation of two vectors [zµ; zσ] from which we
compute zc = zµ + exp(zσ) · ϵ where elements of ϵ are
sampled from the normal distribution. This concludes the
implementation of the probabilistic encoder qϕ.

Decoder Recall that, in our architecture, from each latent
vector representation zc of dualized constraint c we want
to compute the scalar deviation δc to the CR dual value λc

so that the sum of the two improves the Lagrangian bound

given by the CR dual solution. In other words, we want to
compute δ such as π = [λ+ δ]+ gives a good Lagrangian
bound LR(π). Its exact computation is of combinatorial
nature and problem specific.5

The probabilistic nature of the encoder-decoder can be ex-
ploited further: during evaluation, when computing a La-
grangian Relaxation, we sample constraint representations
5 times from the probabilistic encoder and return the best
LR(π) value from the decoder.

Link with Energy Based Models in Structured Predic-
tion The relaxed Lagrangian problem usually decomposes
into independent subproblems due to the dualization of the
linking constraints. In this case, for each independent La-
grangian subproblem we want to find its optimal variable
assignment, usually with local combinatory constraints, for
its objective reparameterized with π. This approach is typi-
cal of structured prediction: we leverage neural networks to
extract features in order to compute local energies (scalars),
which are used by a combinatorial algorithm outputting
a structure whose objective value can be interpreted as a
global energy. For instance, this is reminiscent of how graph-
based syntactic parsing models in NLP compute parse scores
(global energies) as sums of arc scores (local energies) com-
puted by RNNs followed by MLPs, where the choice of
arcs is guided by well-formedness constraints enforced by
a maximum spanning tree solver, see for instance (Kiper-
wasser & Goldberg, 2016). Thus, the decoder is local to
each dualized constraint, and we leverage subproblems to
interconnect predictions:

1. We compute LMs (local energies) πc = [λc+fθ(zc)]+
for all dualized constraints c, where fθ is implemented
as a feed-forward network computing the deviation.

2. For parameter learning or if the subproblem solutions
or the Lagrangian bound are the desired output, vector
π is then passed to the Lagrangian subproblems which
compute independently and in parallel their local solu-
tions x and the corresponding values are summed to
give (global energy) LR(π).

3. Related Work
There is growing interest in leveraging Machine Learn-
ing (ML) alongside optimization algorithms (Bengio et al.,
2021), in particular with the goal of improving MILP
solvers’s efficiency (Zhang et al., 2023). Indeed, even
though MILP solvers solve problems in an exact way, they
make many heuristic decisions which can be based on data-
driven ML systems. For instance, classifiers have been

5LR(π) is described in Appendices B and C for the two prob-
lems on which we evaluate our method.

4

Predicting Lagrangian Multipliers for MILPs

node
features

Graph Neural Network Block

Graph Message Passing Non-Linear Transformation

hi
1

...
hi

n

Layer
Normalization

Layer
Normalization

Graph
Convolution
Layer

Parallel MLP

MLPϕ

...
MLPϕ

Dropout
Layer

Dropout
Layer

hi
1

′

...
hi

n

′

node
features

hi+1
1

...
hi+1

n

+ +

Figure 2. The Graph Neural Network block. The first part is graph message-passing: we apply layer normalization to node features,
then convolution over the instance’s bipartite graph representation and finally dropout. The second phase consists of normalization, a
Multi-Layer perceptron in parallel over all the nodes of the bipartite graph, then dropout. Both sublayers use residual connection between
input and output. We apply this block several times to improve feature representations.

designed for Branch and Bound (B&B) algorithms (Lodi
& Zarpellon, 2017) in order to choose which variables to
branch on (Alvarez et al., 2017; Khalil et al., 2016; He et al.,
2014; Etheve et al., 2020), which B&B node to process (Yil-
maz & Yorke-Smith, 2021; Labassi et al., 2022), to decide
when to perform heuristics (Hottung et al., 2020; Khalil
et al., 2017) or how to schedule them (Chmiela et al., 2021).

In this work, we depart from this main trend and predict a
dual bound for MILP instances sharing common features,
which can in turn be used to improve solvers. Several propo-
sitions have tackled the prediction of high quality primal and
dual bounds. For instance, Nair et al. (2020) predict partial
variable assignments, resulting in small MILPs which can
be solved to optimality. Another way to provide primal solu-
tions is to transform a MILP into an easier one, solve it and
apply a procedure to recover primal feasibility (Dalle et al.,
2022; Parmentier, 2022). Many works use Reinforcement
Learning and guided greedy decoding to find high-quality
approximate solutions for NP-hard problems, e.g. (Kool
et al., 2019). For dual bounds, ML has been employed for
cut selection in cutting planes algorithms (Baltean-Lugojan
et al., 2018; Wang et al., 2023; Balcan et al., 2021; Berthold
et al., 2022; Tang et al., 2020; Huang et al., 2022; Afia
& Kabbaj, 2017, Tetouan Morocco; Morabit et al., 2021),
an essential feature of MILP solvers which must balance
strengthened linear relaxations with increased computations
due to added cuts (Dey & Molinaro, 2018).

Regarding specifically prediction for Lagrangian dual solu-
tions, Nair et al. (2018) consider 2-stage stochastic MILPs,
approached by a Lagrangian decomposition for which they
learn to predict LMs compliant with any second-stage sce-
nario to give a good bound on average. Lange & Swoboda
(2021) propose a heuristic to solve binary ILPs based on a
specific LD where the relaxed LR problem is decomposed
into many subproblems, one per constraint, solved using bi-
nary decision diagrams. This method is modified by Abbas
& Swoboda (2022) to be run on GPU. The block coordinate
method used to heuristically solve LD is improved by learn-

ing parameters used for initializing and updating Lagrangian
multipliers (Abbas & Swoboda, 2024). In contrast to our
generic method, other previous attempts at Lagrangian dual
solution prediction for deterministic MILPs focus on a spe-
cific combinatorial optimization problem, such as the cutting
stock problem (Kraul et al., 2023), where a MLP predicts
the dual Lagrangian value for each constraint (i.e. stock)
separately, or the unit commitment problem (Sugishita et al.,
2024), where the same problem is solved daily but with
different demand forecasts with either a MLP or a random
forest which predicts dual solutions used to warm-start BM.

In our work, we assume that the set of dualized constraints
is given, but predicting such a set is also an active avenue
of research where solutions must find a good compromise
between the quality of the Lagrangian dual bound and the
running time to compute this bound (Kruber et al., 2017;
Basso et al., 2020).

Regarding our use of GNNs, this has become a common
MILP feature extractor in recent works, either on the factor
bipartite graph (Gasse et al., 2019; Nair et al., 2020) or di-
rectly on the underlying graph in routing problems (Sun &
Yang, 2023). While these works use GNNs to extract fea-
tures for variable predictions, we use GNNs to extract fea-
tures for constraints, which are then decoded to Lagrangian
Multipliers. Our specific GNN architecture is based on the
block structure of Transformers (Vaswani et al., 2017) where
attention is replaced by a linear graph convolution.

Our method predicts a deviation from an initial solution,
and can also be understood as predicting a gradient or sub-
gradient step. We can thus relate our approach to works
on gradient descent (Andrychowicz et al., 2016; Ba et al.,
2022) and unrolling of iterative methods for structured pre-
diction (Yang et al., 2016; Belanger et al., 2017). This
is also related to amortization especially in relation with
subgradient methods already studied in the ML commu-
nity (Komodakis et al., 2014; Meshi et al., 2010). However,
in previous works amortization was performed only during
training, and iterative methods were used at testing time.

5

Predicting Lagrangian Multipliers for MILPs

In the case of semi-amortization, our method can be used
as an informed starting point for a descent algorithm ap-
plied to quadratic optimization (Sambharya et al., 2022), or
probabilistic inference (Kim et al., 2018).

4. Evaluation
We evaluate our approach6 on two standard problems of Op-
erations Research, namely Multi-Commodity Fixed-Charge
Network Design and Generalized Assignment.

4.1. Problems and Datasets

We review briefly the two problems and the data genera-
tion process. More details on MILP formulations and La-
grangian relaxations can be found in Appendices B and C
and a thorough description of dataset generation is given in
Appendix D.

Multi-Commodity Fixed-Charge Network Design (MC)
Given a network with arc capacities and a set of commodi-
ties, MC consists in activating a subset of arcs and routing
each commodity from its origin to its destination, possibly
fractioned on several paths, using only the activated arcs.
The objective is to minimize the total cost induced by the
activation of arcs and the routing of commodities. This
problem has been used in many real-world applications for
a long time, see for instance (Magnanti & Wong, 1984) for
telecommunications. It is NP-hard and its continuous re-
laxation provides poor bounds when arc capacities are high.
Hence, it is usually tackled with Lagrangian relaxation-
based methods (Akhavan Kazemzadeh et al., 2022).

While the Canad dataset is the standard and well-established
dataset of instances for evaluating MC solvers (Crainic et al.,
2001), it is too small to be used as a training set for Machine
Learning where large collections of instances sharing com-
mon features are required. Thus, we generate new instances
from a subset of instances of the Canad dataset (Crainic
et al., 2001), that we divide into four datasets of increasing
difficulty. The first two datasets, MC-SML-40 and MC-SML-
VAR, contain instances that all share the same network (20
nodes and 230 edges) and the same arc capacities and fixed
costs, but with different values for origins, destinations, vol-
umes, and routing costs. Instances of the former all involve
the same number of commodities (40), while for the latter
the number of commodities varies from 40 to 200. Dataset
MC-BIG-40 is generated similarly to MC-SML-40 but upon
a bigger graph containing 30 nodes and 520 arcs. Finally,
MC-BIG-VAR contains examples generated using either the
network of MC-SML-40 or the one of MC-BIG-40, with the
number of commodities varying between 40 and 200.

6See Appendix E for hyperparameter values used in our experi-
ments.

Generalized Assignment (GA) GA consists, given a set
of items and a set of capacitated bins, in assigning items to
bins without exceeding their capacity in order to maximize
the profit of the assignment. GA is a well-known problem in
Operations Research and has numerous applications such as
job-scheduling in Computer Science (Balachandran, 1976),
distributed caching (Fleischer et al., 2011) or even parking
allocation (Mladenović et al., 2020).

We generated two datasets, namely GA-10-100 and GA-20-
400, containing respectively instances with 10 bins and 100
items, and with 20 bins and 400 items. Weights, profits and
bin capacities are sampled using a distribution determined
from values of standard instances (Yagiura et al., 1999).

4.2. Numerical Results

We want to evaluate how our Lagrangian bound prediction
compares to an iterative model based on subgradient, and
how useful the former is as an initial point to warm-start the
latter. For that purpose, we choose a state-of-the-art prox-
imal bundle solver provided by SMS++ (Frangioni et al.,
2023) which allows writing a MILP in a block structure
fashion and using decomposition techniques to solve sub-
problems efficiently. We also compare our approach with
CR computed using the CPLEX7 optimizer.

All MILP instances for which we want to evaluate our model
are first solved by SMS++. For an instance ι we denote π∗

ι

the LMs returned by SMS++.

Metrics We use the percentage gap as metrics to evaluate
the quality of the bounds computed by the different systems,
averaged over a dataset of instances I. For a system re-
turning a bound Bι for an instance ι the percentage GAP
is:

100× 1

|I|
∑
ι∈I

LR(π∗
ι)−Bι

LR(π∗
ι)

GAP measures the quality of the bound Bι, and is zero when
Bι equals the optimal Lagrangian bound.

Data for Evaluation We divide each dataset of 2000 in-
stances in train (80%), validation (10%) and test (10%).
Parameters are learned on the train set, model selection is
performed on validation set, and test proxies for unseen data.
Results are averaged over 3 random initializations.

Bound Accuracy Table 1 reports the performance of dif-
ferent systems on our 6 datasets. We compare the bound
returned by CR, and the bound of the Lagrangian relaxed

7https://www.ibm.com/products/
ilog-cplex-optimization-studio

6

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

Predicting Lagrangian Multipliers for MILPs

problem obtained with LMs computed by different methods:

• LR(0) is the LR value computed with LMs set to zero.

• LR(CR) is the LR value computed with LMs set to CR
dual solution.

• LR(k-NN) is the LR value computed with LMs set to
the average value of LMs from the train set returned
by a k-NN regressor.8

• LR(MLP) is the LR value computed with LMs returned
by a MLP9 instead of the GNN-based encoder-decoder.

• Ours, that is the LR value computed with LMs set
the output of our encoder-decoder. As written in the
previous section we sample 5 LM assignments per
instance and return the best LR value.

For all datasets, our method outperforms other approaches.
Our model can reach 2% difference with BM on MC-SML-
40, the easiest corpus with a small fixed network and a fixed
number of commodities. This means that one pass through
our network can save numerous iterations if we can accept
about 2% bound error on average. The margin with other
methods is quite large for MC datasets where the CR bound
is far from the optimum, with a gap reduction ranging from
77% (MC-BIG-VAR) to 84% (MC-SML-40) depending on the
dataset. For GA, where CR is closer to the optimum, our
model still manages to find better solutions. Even though the
gap absolute difference may seem small, the gap reduction
from the second-best model LR(CR) ranges from 30% (GA-
10-100) to 44% (GA-20-400), a significant error reduction.

Compared to simpler ML approaches, we see (i) that re-
trieving LM values from k-NN clustering is not a viable
solution, even when the validation instances are close to
the training instances (MC-SML-40), clustering cannot find
meaningful neighbors, and (ii) the graph feature extractor
(GNN) is paramount: the LR(MLP) architecture seems un-
able to deviate LMs consistently from CR solutions and can
even perform worse than CR or LR(CR) (GA-20-400).

Regarding speed, LR(0) is the fastest since it simply
amounts to solving the relaxed Lagrangian problem with
the original costs. Then CR and LR(CR) are second, the
difference being that for the latter after solving CR, the
dual solution λ is used to compute the LR(λ). Slowness
for LR(MLP) and LR(k-NN) is mainly caused by feature
extraction (cf . Appendix G).

8See Appendices F and G for more information about the im-
plemented k-NN method.

9Additional initial features that the ones used in our model are
used, see Appendix G for more details.

Table 1. Bound accuracies of different methods on test sets aver-
aged by instance.

Dataset Methods GAP % time (ms)

MC-SML-40

CR 12.99 90.63
LR(0) 100.00 0.35
LR(CR) 12.97 90.98
LR(k-NN) 38.80 219.42
LR(MLP) 10.70 142.48
ours 2.09 120.96

MC-SML-VAR

CR 22.29 283.63
LR(0) 100.00 1.32
LR(CR) 22.29 285.03
LR(k-NN) 44.12 371.51
LR(MLP) 16.71 369.61
ours 4.42 374.20

MC-BIG-40

CR 15.94 220.91
LR(0) 100.00 0.75
LR(CR) 15.85 229.57
LR(k-NN) 54.57 334.99
LR(MLP) 13.67 556.89
ours 4.20 283.40

MC-BIG-VAR

CR 20.66 287.20
LR(0) 100.00 1.37
LR(CR) 20.63 288.55
LR(k-NN) 49.74 886.91
LR(MLP) 16.14 515.60
ours 4.77 374.78

GA-10-100

CR 1.91 9.59
LR(0) 3.13 0.44
LR(CR) 0.79 10.15
LR(k-NN) 1.07 11.70
LR(MLP) 0.78 51.71
ours 0.55 16.19

GA-20-400

CR 0.44 71.40
LR(0) 2.70 7.51
LR(CR) 0.27 78.80
LR(k-NN) 0.43 89.68
LR(MLP) 0.28 114.41
ours 0.15 124.96

Warm-starting Iterative Solvers We want to test whether
the Lagrangian Multipliers predicted by our model can be
used as an informed starting point for an iterative solver
for the Lagrangian Dual LD, namely the bundle method as
implemented by SMS++ and the subgradient method. While
the latter is simple to implement and only requires solving
LR(π), it has a non-smooth objective and the subgradient
does not always give a descent direction, resulting in un-
stable updates. In contrast, the bundle method is stabilized
with a quadratic penalty assuring a smooth objective, at the
expense of longer computation times. We hope that our
model can produce good starting points for both methods
and thus avoid many early iterations.

In Table 2 we compare different initial LM vectors on the
validation set of MC-BIG-VAR for the bundle method. We
run our bundle solver until the difference between LR(π∗)
and the current bound is smaller than the threshold ϵ. We
average resolution times and numbers of iterations over
instances, and compute standard deviation. We compare
three initialization methods: zero, using CR dual solutions,
and our model’s predictions.

7

Predicting Lagrangian Multipliers for MILPs

Table 2. Impact of initialization for a Bundle solver on MC-BIG-VAR. We consider initializations from the null vector (zero), the
continuous relaxation duals (CR), and our model (Ours).

ϵ
zero CR Ours

time (s) # iter. time (s) # iter. time (s) # iter.

1e-1 34.34 (±81.22) 90.12 (±52.41) 31.67 (±75.12) 83.00 (±50.73) 16.09 (± 42.79) 60.39 (± 41.37)

1e-2 68.80 (±188.21) 141.43 (±112.72) 62.09 (±171.71) 133.26 (±109.60) 36.10 (± 106.22) 105.93(± 97.04)

1e-3 100.71 (±288.16) 188.14 (±167.33) 89.26 (±251.15) 179.40 (±170.15) 57.23 (± 177.24) 143.36 (± 142.58)

1e-4 105.03 (±298.53) 207.90 (±198.92) 101.14 (±283.52) 200.42 (±197.60) 63.25 (± 190.47) 159.42 (± 162.32)

We can see that CR is not competitive with the null initial-
ization, since the small gain in the number of iterations is
absorbed by the supplementary computation. However, our
model’s predictions give a significant improvement over
the other two initialization methods, despite the additional
prediction time. Resolution time is roughly halved for the
coarsest threshold, and above one-third faster for the finest
one. This is expected, as gradient-based methods naturally
slow down as they approach convergence. In appendix I
we perform the same experiments as in Table 2 for the sub-
gradient method.

Ablation Study In Table 3 we compare three variants
of our original model, denoted ours, on MC-SML-40 and
MC-BIG-VAR. Results are averaged over 3 runs.

In the first variant -max, instead of sampling multiple LMs
for each dualized constraint and keeping the best, we take
one sample only per constraint. We can see that this has a
minor incidence on the quality of the returned solution. In
-sum, the dual solution values are passed as constraint node
features but are not added to the output of the decoder to
produce LMs, i.e. the network must transport these values
from its input layer to its output. This has a sensible nega-
tive impact of GAP scores. In the third variant, -cr the CR
solution is not given as input features to the network (nor
added to the network’s output). This is challenging because
the network does not have access to a good starting point,
this is equivalent to initializing LMs to zero. The last variant,
-sample, uses CR as ours but does not sample represen-
tations zc in the latent domain. We interpret the vector hc

associated with dualized constraint c after the GNN stack
directly as vector zc, making the encoder deterministic.

We can see that the performance of -sum just below ours,
while -cr cannot return competitive bounds. This indicates
that the CR solution passed as input features is essential
for our architecture to get good performance, whereas the
computation of the deviation instead of the full LM directly
is not an important trait. Still, we note that performances
of -cr should be compared with LR(0) in Table 1 rather
than LR(CR). In that case, we see that the GAP reduction
is around 80%, making it clear that our model is not simply
repeating CR solutions. This means that our model could be

Table 3. Ablation studies comparing the prediction of our model
with, predicting LMs on rather than deviation from CR (-sum),
not using CR features at all (-cr), or replacing the probabilistic
encoder by a deterministic one (-sample).

GAP %

model MC-SML-40 MC-BIG-VAR

ours 2.09 4.77

-max 2.10 4.79

-sum 2.63 6.77
-cr 20.26 23.78

-sample 2.18 5.86

Table 4. Generalization results over bigger instances.

GAP % time (s)

commodities Ours LR(CR) Ours LR(CR)

160 6.51 27.85 1.533 0.8915
200 7.62 30.18 1.4328 1.0889

used without the CR solution information as input, opening
our methods to a wider range of problems, and paving the
way for faster models.

Finally, -sample is a system trained without sampling at
training time, i.e. the encoder-decoder is deterministic. We
see that sampling gives a slight performance increase on
small and bigger instances.

In Appendix H we compare the architecture we introduce
in this work with the architecture proposed by Nair et al.
in (Nair et al., 2018) and the one presented in (Gasse et al.,
2019), for several layers from 1 to 10.

Generalization Properties We test the model trained on
MC-BIG-VAR on a dataset composed of 1000 bigger in-
stances. They are created using the biggest graph used
to generate the MC-BIG-VAR dataset but contain 160 or 200
commodities whereas the instances of MC-BIG-VAR with
the same graphs only contain up to 120 commodities. In
Table 4 we can see that our model still performs well in
these instances dividing by 4 the gap provided by LR(CR).

8

Predicting Lagrangian Multipliers for MILPs

5. Conclusion
We have presented a novel method to compute good La-
grangian dual solutions for MILPs sharing common at-
tributes, by predicting Lagrangian multipliers. We cast
this problem as an encoder-decoder prediction, where the
probabilistic encoder outputs one distribution per dualized
constraint from which we sample constraint vector represen-
tation. Then a decoder transforms these representations into
Lagrangian multipliers.

We experimentally showed that this method gives bounds
significantly better than the commonly used heuristics on
two standard combinatorial problems: it reduces the con-
tinuous relaxation gap to the optimal bound up to 85%,
and when used to warm-start an iterative solver, the points
predicted by our models reduce solving times by a large
margin.

Our predictions could be exploited in primal heuristics, pos-
sibly with auxiliary losses predicting values from variable
nodes, or to efficiently guide a Branch-and-Bound exact
search. Predictions could be stacked to act as an unrolled
iterative solver. Finally, we can see our model as performing
denoising from a previous solution and could be adapted to
fit in a diffusion model.

Acknowledgments
The authors acknowledge the support of the French Agence
Nationale de la Recherche (ANR), under grant ANR-23-
CE23-0005 (project SEMIAMOR).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abbas, A. and Swoboda, P. Fastdog: Fast discrete optimiza-

tion on gpu. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
439–449, June 2022.

Abbas, A. and Swoboda, P. Doge-train: Discrete optimiza-
tion on GPU with end-to-end training. In Wooldridge,
M. J., Dy, J. G., and Natarajan, S. (eds.), Thirty-Eighth
AAAI Conference on Artificial Intelligence, AAAI 2024,
Thirty-Sixth Conference on Innovative Applications of
Artificial Intelligence, IAAI 2024, Fourteenth Symposium
on Educational Advances in Artificial Intelligence, EAAI
2014, February 20-27, 2024, Vancouver, Canada, pp.
20623–20631. AAAI Press, 2024.

Afia, A. E. and Kabbaj, M. M. Supervised learning in
branch-and-cut strategies. In International Conference
on Big Data Cloud and Applications, 2017, Tetouan Mo-
rocco.

Akhavan Kazemzadeh, M. R., Bektaş, T., Crainic, T. G.,
Frangioni, A., Gendron, B., and Gorgone, E. Node-based
lagrangian relaxations for multicommodity capacitated
fixed-charge network design. Discrete Applied Mathemat-
ics, 308:pp. 255–275, 2022. Combinatorial Optimization
ISCO 2018.

Alvarez, A. M., Louveaux, Q., and Wehenkel, L. A ma-
chine learning-based approximation of strong branching.
INFORMS J. Comput., 29(1):185–195, 2017.

Andrychowicz, M., Denil, M., Gómez, S., Hoffman, M. W.,
Pfau, D., Schaul, T., Shillingford, B., and de Freitas,
N. Learning to learn by gradient descent by gradient
descent. In Lee, D., Sugiyama, M., Luxburg, U., Guyon,
I., and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc.,
2016.

Ba, J., Erdogdu, M. A., Suzuki, T., Wang, Z., Wu, D., and
Yang, G. High-dimensional asymptotics of feature learn-
ing: How one gradient step improves the representation.
In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,
Cho, K., and Oh, A. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 35, pp. 37932–37946.
Curran Associates, Inc., 2022.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization,
2016.

Balachandran, V. An Integer Generalized Transportation
Model for Optimal Job Assignment in Computer Net-
works. Operations Research, 24(4):742–759, August
1976.

Balcan, M.-F. F., Prasad, S., Sandholm, T., and Vitercik, E.
Sample complexity of tree search configuration: Cutting
planes and beyond. Advances in Neural Information
Processing Systems, 34:pp. 4015–4027, 2021.

Baltean-Lugojan, R., Bonami, P., Misener, R., and Tramon-
tani, A. Selecting cutting planes for quadratic semidefi-
nite outer-approximation via trained neural networks. In
optimization-online, 2018.

Basso, S., Ceselli, A., and Tettamanzi, A. Random sampling
and machine learning to understand good decompositions.
Annals of Operations Research, 284(2):pp. 501–526, Jan-
uary 2020.

Beasley, J. E. A lagrangian heuristic for set-covering prob-
lems. Naval Research Logistics (NRL), 37(1):pp. 151–
164, 1990.

9

Predicting Lagrangian Multipliers for MILPs

Belanger, D., Yang, B., and McCallum, A. End-to-end learn-
ing for structured prediction energy networks. In Precup,
D. and Teh, Y. W. (eds.), Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pp. 429–439.
PMLR, 2017.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
d’horizon. European Journal of Operational Research,
290(2):pp. 405–421, 2021.

Berthold, T., Francobaldi, M., and Hendel, G. Learning to
use local cuts. arXiv preprint arXiv:2206.11618, 2022.

Chen, M. X., Firat, O., Bapna, A., Johnson, M., Macherey,
W., Foster, G., Jones, L., Schuster, M., Shazeer, N., Par-
mar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Chen,
Z., Wu, Y., and Hughes, M. The best of both worlds:
Combining recent advances in neural machine translation.
In Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pp. 76–86, Melbourne, Australia, July 2018. As-
sociation for Computational Linguistics.

Chmiela, A., Khalil, E. B., Gleixner, A., Lodi, A., and
Pokutta, S. Learning to schedule heuristics in branch
and bound. Advances in Neural Information Processing
Systems, 34:pp. 24235–24246, 2021.

Conforti, M., Cornuéjols, G., and Zambelli, G. Integer
Programming. Springer, New York, 2014.

Crainic, T. G., Frangioni, A., and Gendron, B. Bundle-based
relaxation methods for multicommodity capacitated fixed
charge network design. Discrete Applied Mathematics,
112(1-3):pp. 73–99, 2001.

Dalle, G., Baty, L., Bouvier, L., and Parmentier, A. Learning
with combinatorial optimization layers: a probabilistic
approach. arXiv preprint arXiv:2207.13513, 2022.

Dey, S. S. and Molinaro, M. Theoretical challenges towards
cutting-plane selection. Mathematical Programming, 170
(1):pp. 237–266, July 2018. ISSN 0025-5610, 1436-4646.

Etheve, M., Alès, Z., Bissuel, C., Juan, O., and Kedad-
Sidhoum, S. Reinforcement learning for variable selec-
tion in a branch and bound algorithm. In Hebrard, E.
and Musliu, N. (eds.), Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research
- 17th International Conference, CPAIOR 2020, Vienna,
Austria, September 21-24, 2020, Proceedings, volume
12296 of Lecture Notes in Computer Science, pp. 176–
185. Springer, 2020.

Fleischer, L., Goemans, M. X., Mirrokni, V. S., and Sviri-
denko, M. Tight approximation algorithms for maxi-
mum separable assignment problems. Mathematics of
Operations Research, 36(3):pp. 416–431, 2011. ISSN
0364765X, 15265471.

Frangioni, A., Iardella, N., and Durbano Lobato, R.
SMS++, 2023. URL https://gitlab.com/
smspp/smspp-project.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi,
A. Exact Combinatorial Optimization with Graph Convo-
lutional Neural Networks. In Wallach, H., Larochelle, H.,
Beygelzimer, A., Alché-Buc, F. d., Fox, E., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

Gendron, B., Crainic, T. G., and Frangioni, A. Multicom-
modity Capacitated Network Design, pp. 1–19. Springer
US, Boston, MA, 1999.

Geoffrion, A. M. Lagrangean relaxation for integer pro-
gramming. In Balinski, M. L. (ed.), Approaches to Integer
Programming, pp. 82–114. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1974. ISBN 978-3-642-00740-8.

Golden, B., Raghavan, S., and Wasil, E. (eds.). The Vehicle
Routing Problem: Latest Advances and New Challenges,
volume 43 of Operations Research/Computer Science
Interfaces. Springer US, Boston, MA, 2008. ISBN 978-
0-387-77777-1 978-0-387-77778-8.

He, H., Daume III, H., and Eisner, J. M. Learning to search
in branch and bound algorithms. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N., and Weinberger,
K. (eds.), Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learn-
ing for Image Recognition. In Proceedings of 2016 IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR ’16, pp. 770–778. IEEE, June 2016.

Hiriart-Urruty, J.-B. and Lemaréchal, C. Convex analysis
and minimization algorithms II: Advance Theory and
Bundle Methods, volume 305. Springer science & busi-
ness media, 1996.

Hottung, A., Tanaka, S., and Tierney, K. Deep learn-
ing assisted heuristic tree search for the container pre-
marshalling problem. Computers & Operations Research,
113:104781, 2020.

Huang, Z., Wang, K., Liu, F., Zhen, H.-L., Zhang, W., Yuan,
M., Hao, J., Yu, Y., and Wang, J. Learning to select
cuts for efficient mixed-integer programming. Pattern
Recognition, 123:108353, 2022. ISSN 0031-3203.

10

https://gitlab.com/smspp/smspp-project
https://gitlab.com/smspp/smspp-project

Predicting Lagrangian Multipliers for MILPs

Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., and
Dilkina, B. Learning to branch in mixed integer program-
ming. Proceedings of the AAAI Conference on Artificial
Intelligence, 30(1), Feb. 2016.

Khalil, E. B., Dilkina, B., Nemhauser, G. L., Ahmed, S.,
and Shao, Y. Learning to run heuristics in tree search. In
Ijcai, pp. 659–666, 2017.

Kim, Y., Wiseman, S., Miller, A., Sontag, D., and Rush, A.
Semi-amortized variational autoencoders. In Dy, J. and
Krause, A. (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 2678–2687.
PMLR, 10–15 Jul 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In Bengio, Y. and LeCun, Y. (eds.), 2nd Interna-
tional Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings, 2014.

Kiperwasser, E. and Goldberg, Y. Simple and accurate
dependency parsing using bidirectional LSTM feature
representations. Transactions of the Association for Com-
putational Linguistics, 4:pp. 313–327, 2016.

Kipf, T. and Welling, M. Semi-supervised classification
with graph convolutional networks. In International Con-
ference on Learning Representations, 2017.

Komodakis, N., Xiang, B., and Paragios, N. A Framework
for Efficient Structured Max-Margin Learning of High-
Order MRF Models. Technical Report 7, 2014.

Kool, W., van Hoof, H., and Welling, M. Attention, learn to
solve routing problems! In International Conference on
Learning Representations, 2019.

Korte, B. H. and Vygen, J. Combinatorial Optimization:
Theory and Algorithms. Number v. 21 in Algorithms and
Combinatorics. Springer, Heidelberg ; New York, 5th ed
edition, 2012.

Kraul, S., Seizinger, M., and Brunner, J. O. Machine learn-
ing–supported prediction of dual variables for the cutting
stock problem with an application in stabilized column
generation. INFORMS Journal on Computing, 35(3):pp.
692–709, 2023.

Kruber, M., Lübbecke, M. E., and Parmentier, A. Learning
when to use a decomposition. In Salvagnin, D. and Lom-
bardi, M. (eds.), Integration of AI and OR Techniques in
Constraint Programming - 14th International Conference,
CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings,
volume 10335 of Lecture Notes in Computer Science, pp.
202–210. Springer, 2017.

Labassi, A. G., Chételat, D., and Lodi, A. Learning to
compare nodes in branch and bound with graph neural
networks. Advances in Neural Information Processing
Systems, 35:pp. 32000–32010, 2022.

Lange, J.-H. and Swoboda, P. Efficient message passing
for 0–1 ilps with binary decision diagrams. In Meila,
M. and Zhang, T. (eds.), Proceedings of the 38th Inter-
national Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pp. pp.
6000–6010. PMLR, 18–24 Jul 2021.

Le, Q., Smola, A., and Vishwanathan, S. Bundle methods
for machine learning. Advances in neural information
processing systems, 20, 2007.

Le Cun, Y., Chopra, S., Hadsell, R., Ranzato, M., and
Huang, F. A tutorial on energy-based learning. Predicting
structured data, 1(0), 2006.

Lodi, A. and Zarpellon, G. On learning and branching: a
survey. Top, 25:pp. 207–236, 2017.

Magnanti, T. L. and Wong, R. T. Network design and
transportation planning: Models and algorithms. Transp.
Sci., 18(1):pp. 1–55, 1984.

Meshi, O., Sontag, D., Jaakkola, T., and Globerson, A.
Learning efficiently with approximate inference via dual
losses. In Proceedings of the 27th International Confer-
ence on International Conference on Machine Learning,
ICML’10, pp. 783–790, Madison, WI, USA, 2010. Omni-
press. ISBN 9781605589077.

Mladenović, M., Delot, T., Laporte, G., and Wilbaut, C.
The parking allocation problem for connected vehicles.
Journal of Heuristics, 26(3):377–399, June 2020. ISSN
1381-1231, 1572-9397.

Morabit, M., Desaulniers, G., and Lodi, A. Machine-
Learning–Based Column Selection for Column Genera-
tion. Transportation Science, 55(4):815–831, July 2021.
ISSN 0041-1655, 1526-5447.

Nair, V., Dvijotham, D., Dunning, I., and Vinyals, O. Learn-
ing fast optimizers for contextual stochastic integer pro-
grams. In UAI, pp. 591–600, 2018.

Nair, V., Bartunov, S., Gimeno, F., von Glehn, I., Lichocki,
P., Lobov, I., O’Donoghue, B., Sonnerat, N., Tjandraat-
madja, C., Wang, P., Addanki, R., Hapuarachchi, T., Keck,
T., Keeling, J., Kohli, P., Ktena, I., Li, Y., Vinyals, O., and
Zwols, Y. Solving mixed integer programs using neural
networks. CoRR, abs/2012.13349, 2020.

Parmentier, A. Learning to approximate industrial problems
by operations research classic problems. Oper. Res., 70
(1):606–623, 2022.

11

Predicting Lagrangian Multipliers for MILPs

Polyak, B. Introduction to Optimization. Optimization
Software, New York, 1987.

Rybkin, O., Daniilidis, K., and Levine, S. Simple and ef-
fective vae training with calibrated decoders. In Meila,
M. and Zhang, T. (eds.), Proceedings of the 38th Inter-
national Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pp. 9179–
9189. PMLR, 18–24 Jul 2021.

Sambharya, R., Hall, G., Amos, B., and Stellato, B. End-
to-end learning to warm-start for real-time quadratic op-
timization. In Conference on Learning for Dynamics &
Control, 2022.

Schulman, J., Heess, N., Weber, T., and Abbeel, P. Gra-
dient estimation using stochastic computation graphs.
In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 28. Curran Associates, Inc.,
2015.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):pp. 1929–1958, 2014.

Sugishita, N., Grothey, A., and McKinnon, K. Use of Ma-
chine Learning Models to Warmstart Column Generation
for Unit Commitment. INFORMS Journal on Computing,
January 2024. ISSN 1091-9856, 1526-5528.

Sun, Z. and Yang, Y. DIFUSCO: Graph-based diffusion
solvers for combinatorial optimization. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023.

Tang, Y., Agrawal, S., and Faenza, Y. Reinforcement learn-
ing for integer programming: Learning to cut. In III,
H. D. and Singh, A. (eds.), Proceedings of the 37th In-
ternational Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp.
9367–9376. PMLR, 13–18 Jul 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, Z., Li, X., Wang, J., Kuang, Y., Yuan, M., Zeng, J.,
Zhang, Y., and Wu, F. Learning cut selection for mixed-
integer linear programming via hierarchical sequence
model. In The Eleventh International Conference on
Learning Representations, 2023.

Wolsey, L. A. Integer Programming. Wiley, Hoboken, NJ,
second edition edition, 2021.

Yagiura, M., Yamaguchi, T., and Ibaraki, T. A Variable
Depth Search Algorithm for the Generalized Assignment
Problem, pp. 459–471. Springer US, Boston, MA, 1999.
ISBN 978-1-4615-5775-3.

Yang, Y., Sun, J., Li, H., and Xu, Z. Deep admm-net for
compressive sensing mri. In Lee, D., Sugiyama, M.,
Luxburg, U., Guyon, I., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016.

Yilmaz, K. and Yorke-Smith, N. A study of learning search
approximation in mixed integer branch and bound: Node
selection in scip. AI, 2(2):pp. 150–178, 2021. ISSN
2673-2688.

Zhang, J., Liu, C., Li, X., Zhen, H.-L., Yuan, M., Li, Y., and
Yan, J. A survey for solving mixed integer programming
via machine learning. Neurocomputing, 519:pp. 205–217,
2023.

12

Predicting Lagrangian Multipliers for MILPs

A. Initial Features
To extract useful features, we define a network based on
graph convolutions presented in Figure 1 in the line of the
work of (Gasse et al., 2019) on MILP encoding. We de-
tail the initial node features {en}n of the MILP-encoding
bipartite graph presented in Section 2.3.

Given an instance of the form:

(P) min
x

w⊤x (2a)

Ax

(
≥
=

)
b (2b)

x ∈ Rm
+ × Np (2c)

we consider the following initial features for a variable xj :

• its coefficient wj in the objective function;

• its value in the primal solution of CR;

• its reduced cost c̄j = wj − λTAj in CR where Aj is
the jth column of A and λ is the dual solution of CR;

• a binary value indicating whether xj is integral or con-
tinuous.

For constraint a⊤x

(
≥
=

)
b of (2b), we consider:

• the right-hand side b of the constraint;

• the value of the associated dual solution in CR;

• one binary value indicating whether the constraint is
an equality or an inequality;

• one binary value stating whether c is dualized in the
relaxed Lagrangian problem.

We use for each node n of the bipartite graph a feature vector
en ∈ R8. The first four components are used to encode the
initial features if n corresponds to a variable and are set to 0
otherwise, whereas the next four components are used only
if n is associated with a constraint and are set to 0 otherwise.

B. Multi Commodity Capacitated Network
Design Problem

A MC instance is given by a directed simple graph D =
(N,A), a set of commodities K, an arc-capacity vector c,
and two cost vectors r and f . Each commodity k ∈ K
corresponds to a triplet (ok, dk, qk) where ok ∈ N and
dk ∈ N are the nodes corresponding to the origin and the
destination of commodity k, and qk ∈ N∗ is its volume. For
each arc, (i, j) ∈ A, cij > 0 corresponds to the maximum

amount of flow that can be routed through (i, j) and fij > 0
corresponds to the fixed cost of using arc (i, j) to route
commodities. For each arc (i, j) ∈ A and each commodity
k ∈ K, rkij > 0 corresponds to the cost of routing one unit
of commodity k through arc (i, j).

A MC solution consists of an arc subset A′ ⊆ A and, for
each commodity k ∈ K, in a flow of value qk from its origin
ok to its destination dk with the following requirements: all
commodities are only routed through arcs of A′, and the
total amount of flow routed through each arc (i, j) ∈ A′

does not exceed its capacity cij . The solution cost is the sum
of the fixed costs over the arcs of A′ plus the routing cost,
the latter being the sum over all arcs (i, j) ∈ A and all com-
modities k ∈ K of the unitary routing cost rkij multiplied
by the amount of flow of k routed through (i, j).

B.1. MILP formulation

A standard model for the MC problem (Gendron et al.,
1999) introduces two sets of variables: the continuous flow
variables xk

ij representing the amount of commodity k that
is routed through arc (i, j) and the binary design variables
yij representing whether or not arc (i, j) is used to route
commodities. Denoting respectively by N+

i = {j ∈ N |
(i, j) ∈ A} and N−

i = {j ∈ N | (j, i) ∈ A} the sets of
forward and backward neighbors of a vertex i ∈ N , the MC
problem can be modeled as follows:

min
x,y

∑
(i,j)∈A

(
fijyij +

∑
k∈K

rkijx
k
ij

)
(3a)

∑
j∈N+

i

xk
ij −

∑
j∈N−

i

xk
ji = bki ∀i ∈ N, ∀k ∈ K (3b)

∑
k∈K

xk
ij ≤ cijyij , ∀(i, j) ∈ A (3c)

xk
ij = 0

∀k ∈ K, ∀(i, j) ∈ A
s.t. i = dk or j = ok

(3d)

0 ≤ xk
ij ≤ qk ∀(i, j) ∈ A,∀k ∈ K (3e)

yij ∈ {0, 1}, ∀(i, j) ∈ A (3f)

where

bki =

 qk if i = ok,
−qk if i = dk,
0 otherwise.

The objective function (3a) minimizes the sum of the rout-
ing and fixed costs. Equations (3b) are the flow conservation
constraints that properly define the flow of each commod-
ity through the graph. Constraints (3c) are the capacity
constraints ensuring that the total amount of flow routed
through each arc does not exceed its capacity or is zero if
the arc is not used to route commodities. Equations (3d)
ensure that a commodity is not routed on an arc entering

13

Predicting Lagrangian Multipliers for MILPs

its origin or leaving its destination. Finally inequalities (3e)
are the bounds for the x variables and inequalities (3f) are
the integer constraints for the design variables.

B.2. Lagrangian Knapsack Relaxation

A standard way to obtain good bounds for the MC problem
is to solve the Lagrangian relaxation obtained by dualiz-
ing the flow conservation constraints (3b) in formulation
(3a)-(3f). Let πk

i be the Lagrangian multiplier associated
with node i ∈ N and commodity k ∈ K. Dualizing the
flow conservation constraints gives the following relaxed
Lagrangian problem LR(π)10:

min
(x,y) satisfies (3c)−(3f)

∑
(i,j)∈A

(
fijyij +

∑
k∈K

rkijx
k
ij

)

+
∑
k∈K

∑
i∈N

πk
i

bki −
∑

j∈N+
i

xk
ij +

∑
j∈N−

i

xk
ji

Rearranging the terms in the objective function and observ-
ing that the relaxed Lagrangian problem is decomposed by
arcs, we obtain a subproblem for each arc (i, j) ∈ A of the
form:

(LRij(π)) min
x,y

fijyij +
∑

k∈Kij

wk
ijx

k
ij (4a)

∑
k∈Kij

xk
ij ≤ cijyij (4b)

0 ≤ xk
ij ≤ qk ∀k ∈ Kij (4c)

yij ∈ {0, 1} (4d)

where wk
ij = rkij − πk

i + πk
j and Kij = {k ∈ K | j ̸=

ok and i ̸= dk} is the set of commodities that may be routed
through arc (i, j).

For each (i, j) ∈ A, LRij(π) is a MILP with only one
binary variable. If yij = 0, then, by (4b) and (4c), xk

ij =
0 for all k ∈ Kij . If yij = 1, the problem reduces to
a continuous knapsack problem. An optimal solution is
obtained by ordering the commodities of Kij with respect
to decreasing values wk

ij and setting for each variable xk
ij

the value max{min{qk, cij−
∑

k∈K(k) q
k}, 0} where K(k)

denotes the set of commodities that preceded k in the order.
This step can be done in O(|Kij |) if one computes xk

ij

following the computed order. Hence, the complexity of the
continuous knapsack problem is O(|Kij | log(|Kij |)). The
solution of LRij(π) is the minimum between the cost of
the continuous knapsack problem and 0.

10Since the dualized constraints are equations, π have no sign
constraints.

Lagrangian duality implies that

LR(π) =
∑

(i,j)∈A

LRij(π) +
∑
i∈N

∑
k∈K

πk
i b

k
i

is a lower bound for the MC problem and the best one is
obtained by solving the following Lagrangian dual problem:

(LD) max
π∈RN×K

LR(π)

C. Generalized Assignment Problem
A GA instance is defined by a set I of items and a set J
of bins. Each bin j is associated with a certain capacity cj .
For each item i ∈ I and each bin j ∈ J , pij is the profit
of assigning item i to bin j, and wij is the weight of item i
inside bin j.

Considering a binary variable xij for each item and each
bin that is equal to one if and only if item i is assigned to
bin j, the GA problem can be formulated as:

max
x

∑
i∈I

∑
j∈J

pijxij (5a)

∑
j∈J

xij ≤ 1 ∀i ∈ I (5b)

∑
i∈I

wijxij ≤ cj ∀j ∈ J (5c)

xij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J. (5d)

The objective function (5a) maximizes the total profit. In-
equalities (5b) assert that each item is contained in no more
than one bin. Inequalities (5c) ensure that the sum of the
weights of the items assigned to a bin does not exceed its
capacity. Finally, constraints (5d) assure the integrality of
the variables.

C.1. Lagrangian Relaxation

A Lagrangian relaxation of the GA problem is obtained by
dualizing (5b). For i ∈ I , let πi ≥ 0 be the Lagrangian
multiplier of inequality (5b) associated with item i. For
each bin j the subproblem becomes:

(LRj(π)) max
x

∑
i∈I

∑
j∈J

(pij − πi)xij∑
i∈I

wijxij ≤ cj

xij ∈ {0, 1} ∀i ∈ I

It corresponds to an integer knapsack with |I| binary vari-
ables. For π ≥ 0, the Lagrangian bound LR(π) is:

LR(π) =
∑
j∈J

LRj(π) +
∑
i∈I

πi.

14

Predicting Lagrangian Multipliers for MILPs

The Lagrangian dual can be then written as:

min
π∈R|I|

≥0

LR(π)

D. Dataset collection details
In this appendix, we provide further details on the dataset
construction.

Multi-Commodity Fixed-Charge Network Design We
generate four datasets of 2000 instances each (1600 for
training, 200 for validation and 200 for test) based on Canad
instances (Crainic et al., 2001). These canad instances have
been chosen such that the Lagrangian dual bound can be
solved in nearly one second for the easiest instances and in
approximately one hour for the hardest ones.

The first two datasets MC-SML-40 and MC-SML-VAR con-
sider the same graph with 20 nodes and 230 edges, and the
same capacity and fixed cost vectors. The first dataset has
only instances with 40 commodities whereas the second one
has instances with 40, 80, 120, 160 or 200 commodities.

Origins and destinations are randomly chosen using a uni-
form distribution. Volumes and routing costs are randomly
sampled using a Gaussian distribution. Sampling uses four
different means µ and variances σ2 which are determined
from the four canad instances p33, p34, p35 and p36 (having
the same graph and fixed costs as the datasets) in order to
generate four different types of instances: whether the fixed
costs are high with respect to routing costs, and whether
capacities are high with respect to commodity volumes.

The third dataset MC-BIG-40 is generated similarly as the
first one except that it is based on a graph with 30 nodes
and 520 edges. The means and variances used to sample
the fixed costs and the volumes are determined from the
four canad instances p49, p50, p51 and p52. The number of
commodities is equal to 40 in each instance.

Finally, the last dataset MC-BIG-VAR contains instances with
either the graph, capacities and fixed costs of the first two
datasets or the ones of the third dataset. Sampling uses
either the canad instances p33, p34, p35 and p36 or the
canad instances p49, p50, p51 and p52 for determining the
mean and variance, depending on the size of the graph. The
number of commodities varies from 40 to 200 if the graph
is the one of the first two datasets, and from 40 to 120
otherwise.

Generalized Assignment We create two datasets of GA
instances containing 2000 instances each (1600 for training,
200 for validation and 200 for test). The first one contains
instances with 10 bins and 100 items whereas the second
one contains instances with 20 bins and 400 items. For each
dataset, all instances are generated by randomly sampling

capacities, weights and profits using a Gaussian distribution
of mean µ and variance σ2 and the values are clipped to
an interval [a, b]. The values µ, σ2, a and b are determined
from the instance e10100 for the first dataset, and from the
instance e20400 for the second one 11. More specifically,
for each type of data (capacities, weights and profits), µ and
σ2 are given by the average and variance of the values of
the instance, and a and b are fixed to 0.8 times the minimum
value and 1.2 times the maximum value, respectively.

E. Hyperparameters
Model Architecture For all datasets, the MLP F from
initial features to high-dimensional is implemented as a
linear transformation (8 to 250) followed by a non-linear
activation. Then, we consider a linear transformation to the
size of the internal representation of nodes for the GNN.

For MC we use 5 blocks, while for GA we use only 3. The
fact that for GA are sufficient fewer layers can be explained
by looking at the bipartite-graph representation of the in-
stance that is denser for GA than for MC. For instance, in
MC, a variable xk

ij appears in three constraints involving
several variables while in GA, each variable xij appears in
|I|+ |J | constraints so the propagation needs fewer convo-
lutions for the information to be propagated.

The hidden layer of the MLP in the second sub-layer of each
block has a size of 1000.

The decoder is an MLP with one hidden layer of 250 nodes.

All non-linear activations are implemented as ReLU. Only
the one for the output of the GA is a softplus.

The dropout rate is set to 0.25.

Optimiser Specifications We use as optimizer RAdam,
with learning rate 0.0001 for MC and 0.00001 for GA,
a Clip Norm (to 5) and exponential decay 0.9, step size
100000 and minimum learning rate 10−10.

GPU specifics For the training on the datasets MC-SML-
40, MC-BIG-40, GA-10-100 and GA-20-400 we use GPUs
Nvidia Quadro RTX 5000 with 16 GB of RAM. To train the
datasets MC-SML-VAR and MC-BIG-VAR we use Nvidia A40
GPUs accelerators with 48Gb of RAM. To test the perfor-
mance we use Nvidia A40 GPUs accelerators with 48Gb of
RAM for all models and all the datasets on validation and
test.

CPU specifics The warm starting of the proximal Bundle
in SMS++ needs only CPU, the experiments are done on

11Instances e10100 and e20400 are GA instances generated
by (Yagiura et al., 1999) and available at http://www.al.cm.
is.nagoya-u.ac.jp/˜yagiura/gap/.

15

http://www.al.cm.is.nagoya-u.ac.jp/~yagiura/gap/
http://www.al.cm.is.nagoya-u.ac.jp/~yagiura/gap/

Predicting Lagrangian Multipliers for MILPs

Intel Core i7-8565U CPU @ 1.80GHz × 8.

F. k-NN
We consider the same features as for MLP (see Appendix G)
and independently select for each dualized constraint c the
20 nearest neighbors with respect to the Euclidean distance.
The LM predicted for c is the mean of the LMs associated
with its neighbors. It is important to note that it is a super-
vised learning method while ours is an unsupervised one.
We tried different values of k from 1 to 20 and we find that
the best choice is 20. For the implementation we use the
julia package NearestNeighbors.jl 12.

G. Features used for MLP and k-NN
Since MLP and k-NN do not use a mechanism such as
convolution to propagate the information between the repre-
sentations of the dualized constraints, we consider for initial
features of each dualized constraint all the information pro-
vided to our model (see Appendix A for details), as well as
a weighted linear combination of variable feature vectors.
The weights are the variable coefficients in that constraint
and each feature vector contains the initial features provided
to our model for the variable and the following additional
information:

• the mean values and deviations of the coefficients of
that variable on the dualized constraints, and on the
non dualized ones,

• its lower and upper bounds.

H. Ablation Study - Number of Layers
In Tables 5 and 6, we present the gaps of three different
architectures with varying numbers of layers. The columns
represent three different architectures: ”Ours,” the archi-
tecture we introduce in this work; ”Nair,” the architecture
proposed by Nair et al. in (Nair et al., 2020); and ”Gasse,”
the one presented in (Gasse et al., 2019). The rows indicate
an incremental number of layers from one to ten.

From Table 6, we observe that for GA, using more than
four layers seems to be counterproductive. This can be
explained by examining the bipartite graph representation
of the instance. In the Generalized Assignment problem, the
shortest path between two different nodes associated with
the relaxed constraints always consists of four edges. For
the Multi-commodity problem, there is no similar bound,
as the shortest path between two relaxed nodes depends on
the specific structure of the instance. From Table 5, we
see that adding more than six layers leads to diminishing

12https://juliapackages.com/p/
nearestneighbors

Table 5. Test set 1 sample - MC-SML-40 - GAP

Layers Ours Nair Gasse

1 7.56 7.63 9.59
2 5.27 5.23 10.11
3 3.18 3.30 9.47
4 2.62 3.06 2.72
5 2.29 2.47 2.59
6 1.90 2.23 2.76
7 1.80 1.91 2.80
8 1.69 1.76 2.68
9 1.64 1.70 2.84

10 1.56 1.56 3.16

Table 6. Test set 1 sample - GA-10-100 - GAP (s)

Layers Ours Nair Gasse

1 0.553 0.557 0.70
2 0.543 0.546 0.699
3 0.533 0.524 0.695
4 0.509 0.524 0.690
5 0.512 0.517 0.682
6 0.513 0.518 0.720
7 0.510 0.511 0.785
8 0.512 0.517 0.752
9 0.511 0.515 0.785

10 0.512 0.516 0.722

improvements, though we can still enhance solution quality
by increasing the number of layers.

Gasse’s architecture is also more unstable, which could re-
sult in significantly higher gaps with some layers compared
to fewer layers. This instability may be due to the absence of
Layer Normalization, leading to very high gradient values.

Notice that the results in Table 5 and Table 6 show small
differences compared to the ones on the main part for 5
layers, as they correspond to other runs of the training.

I. Subgradient Method Initialization
In Table 7 we perform the same experiments as Table 2
with a solver implementing the subgradient method. We see
that subgradient method requires much more time than the
bundle method, even for low precision levels. The initializa-
tion yields more or less the same results. This is likely due
to the step size scheduler, which always starts with a step
size of one. Then, at a given iteration i, the learning rate
is 1

1+m , where m is the total number of iterations where
the predicted value is worse than the previous iteration. An
accurate choice of step size can lead to better results, par-

16

https://juliapackages.com/p/nearestneighbors
https://juliapackages.com/p/nearestneighbors

Predicting Lagrangian Multipliers for MILPs

Table 7. Impact of initialization for a Sub-Gradient solver on MC-BIG-VAR. We consider initialization from the null vector (zero), the
continuous relaxation duals (CR), and our model (Ours). We set the maximum iterations to 100000.

ϵ
zero CR Ours

time (s) # iter. time (s) # iter. time (s) # iter.

1e-1 275.09 (± 166.59) 86755.53 (± 28222.26) 284.74 (± 184.58) 85899.10 (± 29126.65) 271.73 (± 168.97) 84882.55 (± 29704.22)

1e-2 281.00 (± 168.63) 88175.07 (± 27438.57) 291.40 (± 186.65) 87513.27 (± 28093.75) 278.55 (± 171.83) 86526.59 (± 29003.66)

1e-3 281.00 (± 168.64) 88176.12 (± 27439.02) 291.66 (± 186.67) 87605.24 (± 28110.87) 278.58 (± 171.82) 86540.76 (± 29003.68)

1e-4 281.00 (± 168.64) 88176.12 (± 27439.02) 291.66 (± 186.67) 87605.24 (± 28110.87) 278.58 (± 171.82) 86540.76 (± 29003.68)

ticularly for non-zero initialization. However, this should
be done specifically for each initialization (and possibly for
each instance), which is beyond the scope of this work.

17

