A Semantic Parsing Framework for End-to-End Time

Normalization
Xin Su Sungduk Yu Phillip Howard
Intel Oracle Thoughtworks

xin.su@intel.com sungduk.yu@oracle.com phillip.howard@thoughtworks.com

Steven Bethard
University of Arizona
bethard@arizona.edu

Abstract

Time normalization is the task of converting natural language temporal expressions
into machine-readable representations. It underpins many downstream applications
in information retrieval, question answering, and clinical decision-making. Tradi-
tional systems based on the ISO-TimeML schema limit expressivity and struggle
with complex constructs such as compositional, event-relative, and multi-span
time expressions. In this work, we introduce a novel formulation of time nor-
malization as a code generation task grounded in the SCATE framework, which
defines temporal semantics through symbolic and compositional operators. We
implement a fully executable SCATE Python library and demonstrate that large
language models (LLMs) can generate executable SCATE code. Leveraging this
capability, we develop an automatic data augmentation pipeline using LLMs to
synthesize large-scale annotated data with code-level validation. Our experiments
show that small, locally deployable models trained on this augmented data can
achieve strong performance, outperforming even their LLM parents and enabling
practical, accurate, and interpretable time normalization.

1 Introduction

Time normalization refers to the task of converting temporal expressions in natural language into
machine-readable formats. For example, the phrase “three days ago” spoken on August 25, 2024,
should be normalized to 2024-08-22. Time normalization plays a crucial role in a variety of temporal
reasoning applications, including literature study [Fischer and Strotgen, |2015]], question answering
[Su et al., [2023]], event analysis [Vossen et al.,[2016], and clinical decision-making [Lin et al.;2015]].

Most existing time normalization systems [Kim et al., 2020, Shwartz, [2022} |Lange et al., 2023 are
based on the ISO-TimeML framework [Pustejovsky et al., 2010|]. These systems typically follow a
two-stage pipeline: first identifying temporal expressions in text, then classifying them into predefined
normalized representations (e.g., mapping “noon” to a specific time of day). While effective for
standard expressions, this approach is fundamentally limited by the rigidity and restricted expressivity
of the ISO-TimeML schema. As pointed out by |Bethard and Parker| [2016]], ISO-TimeML-based
systems cannot effectively handle several classes of temporal expressions:

1. Multi-span expressions that span across calendar units, such as “every Monday for the past
three weeks”;,

TWork done while at Intel.
*Code and models are available at https://github.com/clulab/normit

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/clulab/normit

DAY-OF-WEEK UNION DAY-OF-WEEK
TYPE=MONDAY @ REPEATING-INTERVALS ¢ TYPE=FRIDAY
Mondays and Fridays
Mondays
Fridays

won @ B B B B N

___|IIIIII|[\\III|IIIIII|__>

Figure 1: SCATE UNION operator example: “Mondays and Fridays” represented as the union of two
repeating intervals on the timeline.

2. Event-relative expressions, such as “three weeks postoperative”, where "three weeks" is
relative to "surgery";

3. Compositional expressions that involve multiple temporal constructs, as in “May 22, 1995
. and the following month”, where the latter phrase is semantically dependent on the
former.

To overcome these limitations, [Bethard and Parker|[2016] propose the Semantically Compositional
Annotation of Temporal Expressions (SCATE) framework. SCATE represents temporal expressions
through compositional and symbolic semantics using a rich set of temporal operators (e.g., Union,
Intersection, RepeatingInterval). For instance, the expression “Mondays and Fridays” is
represented as:

Union(RepeatingInterval (DayOfWeek (Type=Monday)),
RepeatingInterval (DayOfWeek (Type=Friday)))

As illustrated in Figure[T} this operation produces all occurrences of Mondays and Fridays along the
timeline. In this representation, both Mondays and Fridays are modeled as RepeatingInterval
objects, and the conjunction and is captured using the Union operator. This compositional design
allows SCATE to handle a broader range of temporal expressions and produce precisely defined,
timeline-anchored intervals. Despite its expressivity, existing SCATE-based systems [Laparra et al.,
2018l Xu et all 2019] rely on complex, multi-stage pipelines. These systems treat SCATE as
an annotation schema, training separate models to identify its atomic concepts and then applying
handcrafted rule systems to reconstruct full interpretations. This approach results in high runtime
costs, reduced maintainability, and limited deployability in real-world applications.

In this work, we propose a novel, end-to-end formulation of time normalization as a code gener-
ation task. Our key insight is to implement the full SCATE framework as an executable Python
library, where all core temporal concepts and operations are mapped to Python classes and func-
tions. This enables us to directly generate executable SCATE code from natural language inputs and
deterministically compute their normalized time intervals.

Our main contributions are as follows:

* We design and implement a complete Python library that faithfully captures all concepts in
SCATE, making the semantics of each time expression interpretable and executable.

* We construct detailed prompting strategies to leverage large language models (LLMs) for
data augmentation, generating 10x more labeled examples than existing annotated datasets,
with automatic validation through code execution.

* We demonstrate that small, locally deployable models (<1B parameters) can be trained on
the augmented dataset to generate SCATE code with competitive performance, enabling
practical deployment of expressive time normalization systems.

2 Related Works

2.1 Time Normalization

The vast majority of existing time normalization methods are built upon the ISO-TimeML framework.
Early systems, such as HeidelTime [Strotgen and Gertz,|2010] and SUTime [[Chang and Manning|
2012]], adopt rule-based approaches to convert recognized temporal expressions into the standardized
format defined by ISO-TimeML. More recently, transformer-based models have been introduced for
this task. For instance, Shwartz [2022]], Lange et al.| [2023]], and |Kim et al.| [2020] train transformer-
based classification models to map identified temporal expressions to predefined normalized time
categories. In contrast, |[Laparra et al.|[2018]] and Xu et al.|[2019] present the only complete time
normalization pipeline grounded in the SCATE framework. Their approach involves using neural
models, such as LSTMs, for temporal expression recognition, followed by a rule-based component
to link these expressions to their final normalized forms. Distinct from all prior work, our method
introduces a simple and practical end-to-end solution for time normalization formulated as a code
generation task. By generating executable Python code, our approach directly maps textual temporal
expressions to their normalized representations, offering a seamless and interpretable mechanism.

2.2 Information Extraction via Code Generation

Another related line of work gaining much recent attention is the representation of information
extraction (IE) tasks using programming code or code-like structures. Instead of producing free-form
text or sequences of labels, these approaches explicitly represent extracted information as structured
code. This paradigm is particularly appealing in the era of powerful pretrained LL.Ms, which can
effectively translate implicit semantic structures into explicit code-like or structured formats.

Recent studies demonstrated that code-based prompting allows efficient capturing of structured
information. Code4Struct [Wang et al., 2022] and CodelE [Li et al.l 2023] framed IE tasks explicitly
as code generation problems, showing that code-specialized LLMs outperform natural-language
LLMs in few-shot settings for IE tasks such as named entity recognition (NER) and relation extraction
(RE). Expanding this further, Code4UIE [Guo et al.| [2024]] introduced retrieval-augmented code
prompting, retrieving relevant few-shot examples, along with their universal IE approach.

An alternative inference-time strategy by |Geng et al.|[2023]] adapted grammar-constrained decoding,
explicitly enforcing output schema via formal grammars, thus achieving competitive IE performance
without any model fine-tuning.

Complementing inference-time methods, another approach focuses on training specialized IE models.
Doc2Dict [[Townsend et al.||2021] directly trained a generative TS model to produce structured JSON
outputs from documents, eliminating intermediate annotation steps unlike traditional pipeline-based
models. More recently, KnowCoder [Li et al.| |2024]] proposed a dedicated IE LLM, undergoing a two-
phase training (schema-based code pretraining and schema-guided instruction tuning), significantly
outperforming general-purpose LLMs. In subsequent work, KnowCoder-X [Zuo et al.,2025] further
extended this framework to multilingual IE tasks through cross-lingual alignment training, achieving
state-of-the-art multilingual IE performance.

3 Methodology

Overview In this paper, we focus on the task of identifying temporal expressions from a given text
and parsing them into the corresponding SCATE framework code. By deterministically executing
the parsed structured code, we obtain time intervals anchored to a timeline. To accomplish this
task, we first implement the concepts and operations defined in SCATE as fully executable Python
objects packaged as a Python library, converting existing SCATE annotations into corresponding
code representations. We then leverage our Python package to construct language model prompts for
large-scale annotation of unlabeled text, generating additional annotations with quality-enhancing
filtering mechanisms. Finally, we train small-scale language models on both the converted data and
the additional LLM-annotated data for end-to-end time normalization code generation. We present an
overview of our method in Figure

Pipeline

SCATE Annotation
Framework Augmented
\L Dataset

Python Implementation

» Basic Concept P Finetuned
Definition A
Small
+ Operator Definition ’ SCATE

Generator

« Data Conversion

!

PySCATE

(Text, T
Time Expression,

SCATE Prompt 6

SCATE code)
Example
Before (
Document Time: Sep 1, 2024 Last (
— Interval. of (2024, 9, 1),

Repeating (DAY, WEEK, 1),
Period (WEEK,1))
Execution Result: [2024-08-20, 2024-08-21

a week before last Tuesday

Figure 2: Overview of our approach. Top: System pipeline from Python implementation to fine-tuned
model. Bottom: Example of converting “a week before last Tuesday” into executable SCATE code
with normalized output.

3.1 Task Definition

Our proposed method is based on the SCATE temporal normalization framework. The fundamental
principle of the SCATE framework is to represent complex temporal expressions compositionally,
addressing the limitations of common temporal expression frameworks such as TimeML, which has
limited expressivity. For instance, TimeML cannot represent expressions that cannot be aligned to a
single calendar unit, such as "the past three summers."

The SCATE framework defines five key temporal concepts:
* Timeline: An infinite sequence of time points to which temporal expressions (or events) can

be anchored. Each time point is assumed to have second-level precision, e.g., 2015-08-03
09:35:47 represents a point on the timeline.

Interval: A segment that can be precisely anchored to the timeline, defined by a starting
point (inclusive) and an ending point (exclusive). For example, “1990” corresponds to
[1990-01-01 00:00:00, 1991-01-01 00:00:00).

Repeating interval: A sequence of intervals on the timeline. For example, “Friday” refers
to every Friday each week, representing a sequence of intervals that repeats infinitely.

e Period: An amount of time expressed as counts of standard time units. Periods are in-
dependent of the timeline. For example, “10 weeks” does not have specific start or end
points.

* Temporal operator: A higher-order function that operates over periods, intervals, and
repeating intervals to produce new temporal expressions. For example, the expression
“Saturdays in March” involves two repeating intervals—“Saturdays” and “March”—combined
via an INTERSECTION operator. The result is a set of Saturday intervals occurring within the
month of March, which can then be anchored to the timeline. For formal operator definitions,
we refer the reader to the original SCATE paper [Bethard and Parker, 2016].

In our work, we implement all SCATE temporal constructs as composable and executable Python
objects. Formally, given a text T' containing n time expressions {timexy, . .., timex,, }, our goal is to

train a parameterized model M that maps 7 to a corresponding set of SCATE code representations
{code,, ..., code,} such that:

Execute(code;) — Interval; fori=1,...,n

where each Interval; is a normalized, timeline-anchored temporal interval.

This formulation enables the task to be approached as a structured code generation problem, with
model outputs grounded in a formally defined temporal logic system.

3.2 SCATE Code Representation
3.2.1 Base Class Definitions

To faithfully represent the SCATE framework’s temporal concepts, we implement a comprehensive
object-oriented Python library. Our implementation centers around several base classes that directly
correspond to SCATE’s fundamental concepts. Our design adheres to two core principles: compo-
sitionality and executability. The compositional nature allows classes to be flexibly combined to
represent complex temporal expressions, mirroring how most natural language constructs temporal
references. Meanwhile, the executability principle ensures each object can be deterministically
executed to produce concrete intervals on the timeline, with all classes implementing necessary
addition and subtraction methods for direct interaction with Python datetime objects.

Interval Class. The Interval class serves as the cornerstone of our implementation, directly embody-
ing SCATE’s interval concept. It represents a specific time span on the timeline with well-defined start
and end points. Intervals can be created through various constructors, such as Interval.of (1990)
to represent the year 1990, Interval.of (1990, 1, 1) for more specific dates like January 1,
1990, or using standard ISO format through Interval.fromisoformat (‘1990-01-01T00:00:00
1994-01-01T00:00:00").

Unit Class. We implement a Python enumeration to represent standard time units (e.g., SECOND,
MINUTE, HOUR, DAY, WEEK, MONTH, YEAR, CENTURY). These units serve as building blocks for periods
and provide utilities for truncating dates and calculating relative deltas.

Shift Class. We introduce the Shift class as an abstract base class that captures the concept of
movement along the timeline. The Shift class defines the interface for objects that can be added to
or subtracted from time points to yield intervals, serving as the foundation for both SCATE’s periods
and repeating intervals.

Period Class. The Period class implements SCATE’s period concept, encapsulating an amount of
time expressed as counts of standard time units defined through the Unit class. For instance, “three
months” is represented as Period (MONTH, 3). Periods can be combined through the PeriodSum
class to express complex durations like "two years and a day" as PeriodSum([Period (YEAR, 2),
Period (DAY, 1)1).

Repeating Class. The Repeating class implements SCATE’s repeating interval concept to capture
calendar-anchored recurring time intervals. For example, "February" (all Februaries across the
timeline) is represented as Repeating(MONTH, YEAR, value=2), while "Thursday" would be
Repeating (DAY, WEEK, value=3) (where we follow the dateutil library in using value=0 to
represent Monday).We also extend the Repeating class to implement common temporal concepts
as specialized classes, such as Spring, Summer, Fall, Winter for seasons, and Morning, Noon,
Afternoon, Evening, Night for parts of the day.

3.2.2 Temporal Operators Class Definitions

A distinctive feature of SCATE is its rich set of temporal operators. We implement these operators
through a series of Python classes.

Positional Operator Classes. We implement a group of positional operators primarily used to move
intervals relative to reference points. Two key operator pairs are Last/Next and Before/After.
The Last and Next classes respectively find the closest intervals before or after a given Shift,
while Before and After move intervals backward or forward by specific time units or occurrences.
For example, "the previous summer" when spoken on February 14, 1912 can be represented as
Last(Interval.of (1912, 2, 14), Summer()), while "three Aprils after” written on January
23, 1993 can be expressed as After (Interval.of (1993, 1, 23), Repeating(MONTH, YEAR,
value=4), n=3). These seemingly similar but functionally distinct operators enable us to accurately
capture different types of temporal expressions in natural language.

Selection Operator Classes. Selection operators primarily select specific instances from time
sequences. The Nth class allows selection of the n-th shift from the beginning or end of an interval,
while the This class finds the current shift containing a given interval. These operators apply to
ordinal expressions (e.g., "the third Thursday") and deictic expressions (e.g., "this month"). For
example, "third-to-last Sunday of 2024" can be represented as Nth (Year (2024) , Repeating (DAY,
WEEK, value=6), index=3, from_end=True), while "this January" spoken on November 10,
1037 can be expressed as This(Interval.of (1037, 11, 10), Repeating(MONTH, YEAR,
value=1)).

Range Operator Classes. Range operators handle relationships between multiple intervals. The
Between class creates a span between two intervals, while the Intersection class finds the
overlap among multiple intervals. These operators are particularly useful for handling time
ranges and intersections of multiple temporal constraints. For example, "since 1994" writ-
ten on January 9, 2007 can be represented as Between(Year(1994), Interval.of (2007, 1,
9)), while "earlier that day" in the context of "We met at 6:00 on January 24, 1979. Earlier
that day..." would be interpreted as Intersection([Last(Interval.of (1979, 1, 24, 6),
None), Interval.of(1979, 1, 24)]1).

Collection Operator Classes. We implement multiple collection operators to handle sets of in-
tervals, such as These, LastN, and NextN. These operators extend the functionality of basic op-
erators, allowing us to process multiple related intervals. For example, "the next six Fridays"
when written on December 22, 1714 can be represented as NextN(Interval.of (1714, 12, 22),
Repeating (DAY, WEEK, value=4), n=6), while "Tuesdays in January 2025" can be expressed
as These(Interval.of (2025, 1), Repeating(DAY, WEEK, value=1))).

Union and Intersection Classes. We implement ShiftUnion and RepeatingIntersection
classes that allow us to combine multiple shifts or find intersections of repeating intervals. For
example, "Mondays and Fridays" can be represented as ShiftUnion([Repeating (DAY, WEEK,
value=0), Repeating(DAY, WEEK, value=4)]), while "Saturdays in March" can be expressed
as RepeatingIntersection([Repeating(DAY, WEEK, value=5), Repeating(MONTH,
YEAR, value=3)]).

3.3 Data Augmentation

The expressive power and flexible design of SCATE introduces a potential challenge: the scarcity of
large-scale annotated data. Under the original SCATE annotation framework, human annotators must
identify all temporal expressions in text and their corresponding operators, as illustrated in Figure|[I]
This precise annotation requires domain experts; otherwise, annotation quality may be insufficient for
model training. For instance, |Su et al.|[2021]] report that even when two PhD students from related
fields spent approximately 10 days on annotations, those annotations ultimately degraded model
performance in temporal expression recognition due to lack of annotator training on the complex
SCATE annotation guidelines.

Given our complete Python implementation of SCATE, a natural question arises: since LLMs like
Claude 3.7 [Anthropicl 2025]] and GPT-4.1 [OpenAlL [2025]] have demonstrated unprecedented code
generation capabilities, could we leverage them to identify temporal expressions in unlabeled text
and generate corresponding SCATE Python code at scale? This would yield (text, time expression,
python code) triplets for training smaller, more deployable language models.

To this end, we construct detailed LLM prompts (SCATE prompt) for data augmentation. We present
our data augmentation prompts in markdown format, with an example shown in the Appendix[B} These
prompts effectively serve as formal documentation for our Python library, thoroughly introducing
SCATE’s key temporal concepts, defining each implemented class, detailing possible usage patterns,
and providing examples to clarify potential confusion points (e.g., distinguishing between Next
and After operators). Our objective is to fully leverage LLMs’ code generation capabilities in a
code-generation framework, adapting them to generate code for Python libraries they may not have
encountered during pre-training. We iteratively develop these prompts through experimentation on
the training set, refining the SCATE operator descriptions and examples to maximize LLM code
generation quality.

An immediate post-generation constraint enforcement method emerges from our use of well-defined
Python code objects as targets: we simply execute the generated SCATE Python code and discard
samples that produce runtime errors, thus ensuring syntactically and semantically valid SCATE
Python code.

4 Experiments

4.1 Datasets

TempEval-2013 [UzZaman et al.,|2013]] data has been annotated with publicly available SCATE
annotations, including training, development, and test sets. Using our implemented SCATE Python
library, we convert the original XML-formatted SCATE annotations into (sentence, time expression,
SCATE code) triplets. The objective is to identify all potential time expressions in input sentences
and represent them using SCATE code. To obtain a larger test set for evaluating the generalization
capability of our proposed method, we merge the original development and test sets into a consolidated
test set for final model performance evaluation. The resulting dataset includes 557 annotated SCATE
code block in the training set and 313 in the test set. We use the training set to refine prompts and
select the optimal LLM for data augmentation.

Evaluation Metrics Our evaluation is based on gold-standard triplets, where each triplet consists
of (sentence, time expression span, SCATE code). For each triplet, we assess the time expression by
first determining whether it was successfully identified. If a time expression remains undetected, its
normalization accuracy is assigned a value of 0. For identified expressions, we execute the predicted
SCATE code to generate normalized time intervals and compare them with the gold-standard intervals.
We assign an accuracy of 1 for exact matches and 0 otherwise. Based on this approach, we calculate
standard evaluation metrics including average execution accuracy, precision, recall, and F1 score.

4.2 TImplementation Details

Models and Hyperparameters We access various LLMs through cloud-based APIs: GPT-4.1
via Azure OpenAl, Claude 3.7 via Amazon Bedrock, and Gemini [Google DeepMind, |2025bjal]
via Google Cloud Platform. For local model training, we train both Qwen/Qwen2.5-0.5B-
Instruct [[Teaml [2024] and T5-Large [Raftel et al., [2020] on a single NVIDIA 80GB A100 GPU
with 5 epochs and batch size 64. The learning rates are 2 x 10~° for Qwen and 5 x 105
for T5. We prompt or train models to generate JSON strings where each item represents a

time expression and SCATE code pair, for example: ["{time_text": '"recent years",
"scate": "Last(interval=Interval.of(1998, 2, 13), shift=Period(unit=YEAR,
n=None)) }"].

Data Augmentation Text We randomly sample 10k sentences from the CC-News [Mackenzie
et al.|, [2020]] dataset—widely used in large language model pretraining—as our source for data
augmentation. It comes from the same newswire domain as with TempEval SCATE-annotated data.
We then apply Claude 3.7 to these sentences using our designed SCATE prompt to generate temporal
annotations. After prompt-based generation, we apply a runtime filtering step to discard syntactically
invalid or semantically incoherent outputs. This process yields a total of 8,583 valid SCATE code
blocks.

Table 1: Performance of LLMs on Temporal Expression Recognition and SCATE Code Generation
on Training Set (557 examples).

Model Accuracy Precision Recall F1

Claude 3.5 0.62 0.64 0.62 0.63
Claude 3.7 0.69 0.63 0.69 0.66
Gemini 2.0 Flash 0.64 0.64 0.64 0.64
Gemini 2.5 Flash 0.61 0.63 0.61 0.62
Gemini 2.5 Pro 0.50 0.64 0.50 0.56
GPT-4.1 0.67 0.60 0.67 0.63
Average 0.62 0.63 0.62 0.62

Table 2: Performance comparison of different methods on the test set (313 examples).

Methods Accuracy Precision Recall F1

Qwen2.5-0.5B + Training Set 0.01 1.00 0.01 0.01
Qwen2.5-0.5B + CC-News 0.37 0.46 037 041
Qwen2.5-0.5B + CC-News + Training Set 0.59 0.59 0.59 0.59
T5-Large + CC-News + Training Set 0.37 0.52 0.37 043
Claude 3.7 + SCATE Prompt 0.49 0.56 049 052
Claude 3.7 + Interval Few-shot Prompt 0.38 0.38 0.38 0.38
GPT 4.1 + SCATE Prompt 0.51 0.51 0.51 0.51

4.3 Main Results

Can LLMs identify time expressions and parse corresponding SCATE code? To answer
this question and identify the optimal state-of-the-art model for our designed data augmentation,
we test the most popular large language models on the training set, including Claude 3.5 Haiku,
Claude 3.7 Sonnet, Gemini 2.0 Flash, Gemini 2.5 Flash, Gemini 2.5 Pro, and GPT 4.1. We prompt
these models using the approach described in Section 3.3 to identify temporal expressions and
generate corresponding SCATE code. The results are presented in Table[T] These state-of-the-art
models achieve an average accuracy and F1 score of 0.62, indicating that while large models can
generate SCATE code through prompting to a reasonable degree, there remains significant room for
improvement. Among the evaluated models, Claude 3.7 demonstrates the best performance.

Is targeting SCATE code better than directly generating time intervals? One of our key hypothe-
ses for time normalization is that existing LLMs can more effectively generate code representations
of temporal operations than implicitly perform these operations to directly identify time expressions
and their corresponding intervals. Similar to recent work [[Wei et al.,[2022]] finding that generating
chain-of-thought reasoning before providing answers significantly improves performance in mathe-
matical reasoning, we posit that SCATE code acts as a form of chain-of-thought, with the additional
benefit that we need not rely on the model to produce the final answer since we can determine this
through code execution.

To validate this hypothesis, we employ conventional few-shot prompting (Interval Few-shot Prompt)
to direct Claude 3.7 in identifying temporal expressions and their corresponding time intervals in
input text (the specific Interval Few-shot Prompt is provided in Appendix [C). We contrast this with
prompting Claude 3.7 to generate SCATE code using our approach described in Section 3.3. As
shown in Table 2} the SCATE code generation approach significantly outperforms direct time interval
generation, surpassing it by more than 10 points in both average accuracy and F1 scores.

Can we train a smaller local model for SCATE generation? Temporal normalization typically
functions as one component within larger data processing or retrieval pipelines. Consequently, there
is a clear need for efficient solutions with low computational costs. Relying entirely on large models
like Claude 3.7 presents challenges for scaling temporal normalization deployments. Therefore, a

smaller model (< 1B parameters) capable of inference on a single consumer-grade GPU better aligns
with practical requirements.

We explore this possibility by fine-tuning Qwen2.5-0.5B on three different data combinations: on the
original TempEval 2013 training set (Training Set), on data augmentation-labeled data (CC-News),
and on a combination of both (CC-News + Training Set). We observe that small models struggle to
achieve reasonable performance on limited datasets, even with manually annotated training data from
TempEval, with average accuracy and F1 scores approaching zero. Fine-tuning on augmentation-
labeled data shows notable improvement, though still maintaining a considerable gap compared to its
parent data augmentation method (Claude 3.7 + SCATE Prompt).

However, when we combine our augmented data with the original training set, we observe significant
performance improvements, achieving 0.59 average accuracy on the test set—surpassing its parent
data augmentation method (Claude 3.7 + SCATE Prompt) by 10 points. This demonstrates the
complementary nature of augmented and original training data, and confirms that smaller, deployable
models can effectively perform temporal normalization when provided with sufficient and diverse
training examples.

How efficient is our method compared to existing systems? Beyond accuracy improvements, our
method offers significant computational advantages. On the test set, our fine-tuned Qwen2.5-0.5B
model achieves 31.7x faster inference than the previous LSTM-based system [Xu et al., [2019]],
processing the entire test set in 6 seconds compared to 190 seconds. Additional comparisons and
statistical significance analysis with 95% confidence intervals are provided in Appendix

How do encoder-decoder models compare to decoder-only architectures? To validate our choice
of decoder-only architecture, we also fine-tune T5-Large, a representative encoder-decoder model
widely used for sequence-to-sequence tasks. As shown in Table[2] T5-Large achieves an F1 score
of 0.43, comparable to our Qwen2.5-0.5B decoder-only model trained only on CC-News (F1: 0.41)
but significantly lower than the full Qwen model (F1: 0.59). This demonstrates that decoder-only
architectures are better suited for our SCATE code generation formulation, with Qwen2.5-0.5B
achieving superior performance despite having fewer parameters (500M vs. 770M).

What are the main errors in the best-performing fine-tuned model? We conducted an error
analysis on 20 errors from the Qwen2.5-0.5B + CC-News + Training Set model. The analysis reveals
that the most common issue is missed temporal expressions (70%), where the system fails to identify
time phrases annotated in the gold annotations. The second most frequent problem is boundary errors
(10%), where the system’s identified temporal expression has boundary differences from the gold
standard, despite the SCATE expression being logically similar. For example, the gold standard might
annotate “year,” while the system identifies “within a year.”

Some errors (10%) are structural, such as in “third-quarter net loss... year-earlier,” which involves
nested temporal comparisons (using Before(Nth(...)) structure), but the system only captures individ-
ual fragments rather than the complete structure. SCATE type errors (5%) manifest as inappropriate
operator selection, such as labeling “later” as Next(...) instead of the more semantically appropriate
After(...). Granularity errors (5%) occur when the system represents specific expressions with coarser
time units, such as simplifying “11/02/89” to Year(1989) instead of preserving the month and day
information.

Overall, the primary challenges lie not in the model’s ability to generate SCATE code but in span
recognition—a traditional NLP task. Improving the model’s identification of temporal expression
spans represents a promising research direction for enhancing overall performance, or alternatively,
introducing an additional small classification model specifically for span identification.

5 Limitations

We focus on TempEval-2013, the only publicly available dataset with full SCATE annotations, as
the primary benchmark for evaluation. While this dataset provides high-quality supervision, it
does not fully capture the diversity of temporal expressions found in open-domain or multilingual
scenarios. Our model fine-tuning experiments are limited to a single small-scale open-source model
(Qwen2.5-0.5B), without exploring alternative architectures or larger models. Additionally, our data

augmentation pipeline relies on a subset of proprietary LLMs, and we do not systematically compare
across the full range of commercial or open-source models.

6 Conclusion

We present a new end-to-end approach for time normalization by framing it as a code generation
problem based on the SCATE framework. Our method unifies symbolic temporal semantics with
executable representations, enabling deterministic and interpretable normalization of complex time
expressions. Through comprehensive Python implementation and carefully designed prompting
strategies, we show that LLMs can effectively identify temporal expressions and generate high-quality
SCATE code. More importantly, we demonstrate that fine-tuning small models on a combination of
LLM-augmented and human-annotated data achieves strong performance while remaining deployable
on standard hardware. Our findings suggest that compositional code generation offers a scalable and
semantically grounded solution for time normalization.

References

Anthropic. Claude 3.7 sonnet and claude code. |https://www.anthropic.com/news/
claude-3-7-sonnet, Feb 2025. Accessed: 2025-05-16.

Steven Bethard and Jonathan Parker. A semantically compositional annotation scheme for time
normalization. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi, Marko Gro-
belnik, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, and Stelios
Piperidis, editors, Proceedings of the Tenth International Conference on Language Resources and
Evaluation (LREC*16), pages 3779-3786, Portoroz, Slovenia, May 2016. European Language
Resources Association (ELRA). URL https://aclanthology.org/L16-1599/,

Angel X. Chang and Christopher Manning. SUTime: A library for recognizing and normaliz-
ing time expressions. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Ugur
Dogan, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis,
editors, Proceedings of the Eighth International Conference on Language Resources and Evalua-
tion (LREC‘12), pages 3735-3740, Istanbul, Turkey, May 2012. European Language Resources
Association (ELRA). URL https://aclanthology.org/L12-1122/\

Frank Fischer and Jannik Strotgen. When does (german) literature take place? on the analysis of
temporal expressions in large corpora. In Proceedings of DH 2015: Annual Conference of the
Alliance of Digital Humanities Organizations, volume 6, 2015.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-constrained decoding
for structured nlp tasks without finetuning. arXiv preprint arXiv:2305.13971, 2023.

Google DeepMind. Gemini pro. https://deepmind.google/technologies/gemini/pro/,
May 2025a. Accessed: 2025-05-16.

Google DeepMind. Gemini flash. https://deepmind.google/technologies/gemini/flash/,
Apr 2025b. Accessed: 2025-05-16.

Yucan Guo, Zixuan Li, Xiaolong Jin, Yantao Liu, Yutao Zeng, Wenxuan Liu, Xiang Li, Pan Yang,
Long Bai, Jiafeng Guo, et al. Retrieval-augmented code generation for universal information
extraction. In CCF International Conference on Natural Language Processing and Chinese
Computing, pages 30-42. Springer, 2024.

Allen Kim, Charuta Pethe, and Steve Skiena. What time is it? temporal analysis of novels. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 9076-9086, Online,
November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.
730. URL https://aclanthology.org/2020.emnlp-main.730/.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://aclanthology.org/L16-1599/
https://aclanthology.org/L12-1122/
https://deepmind.google/technologies/gemini/pro/
https://deepmind.google/technologies/gemini/flash/
https://aclanthology.org/2020.emnlp-main.730/

Lukas Lange, Jannik Strétgen, Heike Adel, and Dietrich Klakow. Multilingual normalization of
temporal expressions with masked language models. In Andreas Vlachos and Isabelle Augenstein,
editors, Proceedings of the 17th Conference of the European Chapter of the Association for
Computational Linguistics, pages 1174-1186, Dubrovnik, Croatia, May 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.84. URL https://aclanthology.
org/2023.eacl-main.84/.

Egoitz Laparra, Dongfang Xu, and Steven Bethard. From characters to time intervals: New paradigms
for evaluation and neural parsing of time normalizations. Transactions of the Association for
Computational Linguistics, 6:343-356, 2018. doi: 10.1162/tacl_a_00025. URL https://
aclanthology.org/Q18-1025/.

Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuanbin Wu, Xuanjing Huang, and Xipeng Qiu.
Codeie: Large code generation models are better few-shot information extractors. arXiv preprint
arXiv:2305.05711, 2023.

Zixuan Li, Yutao Zeng, Yuxin Zuo, Weicheng Ren, Wenxuan Liu, Miao Su, Yucan Guo, Yantao
Liu, Xiang Li, Zhilei Hu, et al. Knowcoder: Coding structured knowledge into llms for universal
information extraction. arXiv preprint arXiv:2403.07969, 2024.

Chen Lin, Elizabeth W Karlson, Dmitriy Dligach, Monica P Ramirez, Timothy A Miller, Huan Mo,
Natalie S Braggs, Andrew Cagan, Vivian Gainer, Joshua C Denny, et al. Automatic identification
of methotrexate-induced liver toxicity in patients with rheumatoid arthritis from the electronic
medical record. Journal of the American Medical Informatics Association, 22(el):e151-el61,
2015.

Joel Mackenzie, Rodger Benham, Matthias Petri, Johanne R Trippas, J Shane Culpepper, and Alistair
Moffat. Cc-news-en: A large english news corpus. In Proceedings of the 29th ACM international
conference on information & knowledge management, pages 3077-3084, 2020.

OpenAl. Introducing gpt-4.1 in the api. https://openai.com/index/gpt-4-1/, Apr 2025.
Accessed: 2025-05-16.

James Pustejovsky, Kiyong Lee, Harry Bunt, and Laurent Romary. ISO-TimeML: An international
standard for semantic annotation. In Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph
Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and Daniel Tapias, editors, Proceedings
of the Seventh International Conference on Language Resources and Evaluation (LREC‘10),
Valletta, Malta, May 2010. European Language Resources Association (ELRA). URL https:
//aclanthology.org/L10-1027/.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485-5551, 2020.

Vered Shwartz. Good night at 4 pm?! time expressions in different cultures. In Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio, editors, Findings of the Association for
Computational Linguistics: ACL 2022, pages 2842-2853, Dublin, Ireland, May 2022. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.224. URL https:
//aclanthology.org/2022.findings-acl.224/,

Jannik Strotgen and Michael Gertz. HeidelTime: High quality rule-based extraction and normalization
of temporal expressions. In Katrin Erk and Carlo Strapparava, editors, Proceedings of the 5th
International Workshop on Semantic Evaluation, pages 321-324, Uppsala, Sweden, July 2010.
Association for Computational Linguistics. URL https://aclanthology.org/S10-1071/.

Xin Su, Yiyun Zhao, and Steven Bethard. The University of Arizona at SemEval-2021 task 10:
Applying self-training, active learning and data augmentation to source-free domain adaptation. In
Alexis Palmer, Nathan Schneider, Natalie Schluter, Guy Emerson, Aurelie Herbelot, and Xiaodan
Zhu, editors, Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-
2021), pages 458-466, Online, August 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.semeval-1.56. URL https://aclanthology.org/2021.semeval-1.56/.

11

https://aclanthology.org/2023.eacl-main.84/
https://aclanthology.org/2023.eacl-main.84/
https://aclanthology.org/Q18-1025/
https://aclanthology.org/Q18-1025/
https://openai.com/index/gpt-4-1/
https://aclanthology.org/L10-1027/
https://aclanthology.org/L10-1027/
https://aclanthology.org/2022.findings-acl.224/
https://aclanthology.org/2022.findings-acl.224/
https://aclanthology.org/S10-1071/
https://aclanthology.org/2021.semeval-1.56/

Xin Su, Phillip Howard, Nagib Hakim, and Steven Bethard. Fusing temporal graphs into trans-
formers for time-sensitive question answering. In Houda Bouamor, Juan Pino, and Kalika Bali,
editors, Findings of the Association for Computational Linguistics: EMNLP 2023, pages 948-966,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
findings-emnlp.67. URL https://aclanthology.org/2023.findings-emnlp.67/.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm,
github.io/blog/qwen2.5/.

Benjamin Townsend, Eamon Ito-Fisher, Lily Zhang, and Madison May. Doc2dict: Information
extraction as text generation. arXiv preprint arXiv:2105.07510, 2021.

Naushad UzZaman, Hector Llorens, Leon Derczynski, James Allen, Marc Verhagen, and James
Pustejovsky. SemEval-2013 task 1: TempEval-3: Evaluating time expressions, events, and
temporal relations. In Suresh Manandhar and Deniz Yuret, editors, Second Joint Conference on
Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013), pages 1-9, Atlanta, Georgia, USA, June 2013.
Association for Computational Linguistics. URL https://aclanthology.org/S13-2001/\

Piek Vossen, Rodrigo Agerri, Itziar Aldabe, Agata Cybulska, Marieke van Erp, Antske Fokkens,
Egoitz Laparra, Anne-Lyse Minard, Alessio Palmero Aprosio, German Rigau, et al. Newsreader:
Using knowledge resources in a cross-lingual reading machine to generate more knowledge from
massive streams of news. Knowledge-Based Systems, 110:60-85, 2016.

Xingyao Wang, Sha Li, and Heng Ji. Code4struct: Code generation for few-shot structured prediction
from natural language. arXiv preprint arXiv:2210.12810, 3, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Dongfang Xu, Egoitz Laparra, and Steven Bethard. Pre-trained contextualized character embeddings
lead to major improvements in time normalization: a detailed analysis. In Rada Mihalcea, Ekaterina
Shutova, Lun-Wei Ku, Kilian Evang, and Soujanya Poria, editors, Proceedings of the Eighth Joint
Conference on Lexical and Computational Semantics (*SEM 2019), pages 68—74, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/S19-1008.
URL https://aclanthology.org/S19-1008/.

Yuxin Zuo, Wenxuan Jiang, Wenxuan Liu, Zixuan Li, Long Bai, Hanbin Wang, Yutao Zeng, Xiaolong
Jin, Jiafeng Guo, and Xueqi Cheng. Knowcoder-x: Boosting multilingual information extraction
via code, 2025. URL https://arxiv.org/abs/2411.04794.

12

https://aclanthology.org/2023.findings-emnlp.67/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://aclanthology.org/S13-2001/
https://aclanthology.org/S19-1008/
https://arxiv.org/abs/2411.04794

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We confirm the main claims made in the abstract and introduction accurately
reflect our paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section[3]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

13

Justification: Our paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Section
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

14

Answer: [Yes]
Justification: Abstract.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Appendix D
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: SectionH]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research presented in our paper conforms with the NeurI[PS COde of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Our research outcomes do not have a direct societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Sectiond] Appendix E
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17

paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Appendix [B]
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing nore research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No crowdsourcing nore research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

18

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: Appendix
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Al Use Declaration

Code was developed with support from GitHub Copilot. ChatGPT was used for editing for grammar
and clarity in some sections.

B SCATE Prompt

20

SCATE Time Normalization in Python

Introduction

Time normalization is the task of translating natural language expressions of time into a standardized
representation. The SCATE (Semantically Compositional Annotation of Time Expressions) framework
represents different time expressions in a compositional manner, formally defining the semantics of various
time expressions and representing the normalized time expressions as mathematical operations on
intervals on a timeline.

Key Time Concepts

Concept Description
Timeline The infinite sequence of time points to which time expressions should be anchored.
Each time point marks the start of a second (e.g., 2015-08-03 09:35:47).
Interval An interval on the timeline, defined by a starting point (inclusive) and an ending point
"

(exclusive). E.g., "1990" corresponds to [1990-01-01, 1991-01-01).

Repeating A sequence of intervals on the timeline. E.g., "Friday" refers to every Friday each week, a

interval sequence of intervals that repeats infinitely.

Period An amount of time, expressed as counts of standard time units. Periods are
independent of the timeline. E.g., "10 weeks" doesn't have specific start/end points.

Temporal A function that takes periods, intervals, and/or repeating intervals as arguments and

operator produces new periods, intervals, or repeating intervals.

Basic Usage

When using the SCATE library, the basic approach is to:

1. ldentify time expressions in text

2. Generate the corresponding SCATE Python code for those expressions

APl Reference

Interval Classes

class Interval(start:datetime, end:datetime) -> Interval

Implements the SCATE interval definition. Defined by a starting point (inclusive) and an ending point
(exclusive).

Example:

21

Representing the year 1990

Interval(
start=datetime.datetime.fromisoformat("1990-01-01T00:00:00"),
end=datetime.datetime.fromisoformat("1991-01-01T00:00:00")

Methods

@classmethod
Interval.fromisoformat(string:str) -> Interval
Creates an Interval from two dates in ISO 8601 format.
Example:
Representing May 1362
Interval.fromisoformat("1362-05-01T00:00:00 1362-06-01T00:00:00")

Or more concisely

Interval.fromisoformat("1362-05-01 1362-06-01")

@classmethod

Interval.of(*args:int) -> Interval
Creates an Interval that aligns to exactly one calendar unit.
Parameters:

e =rargs (int) - A starting point specified by any prefix of the list: year, month, day, hour, minute,
second, microsecond.

Examples:

Representing the year 1990
Interval.of(1990)

Representing April 1, 1918
Interval.of (1918, 4, 1)

Intervals Class
class Intervals(abc.Iterable[Interval])

A collection of intervals on the timeline. This class implements the Python Iterable interface to allow
iteration over a set of Interval objects.

Usage:
This class is typically returned by operations that produce multiple intervals, such as LastN, NextN, NthN,
and These.

22

Unit Classes

class Unit(enum.Enum)

A named unit of time.
Available units:

e MICROSECOND
e MILLISECOND

e SECOND

e MINUTE

e HOUR

o DAY

e WEEK

e MONTH

e QUARTER_YEAR
e YEAR

e DECADE

e QUARTER_CENTURY
e CENTURY

Methods
Unit.truncate(dt:datetime.datetime) -> datetime.datetime

Sets all units smaller than this one in the datetime to zero.
Unit.relativedelta(n) -> dateutil.relativedelta.relativedelta

Constructs a relativedelta object representing a number of repetitions of this unit.
Unit.expand(interval:Interval, n:int=1) -> Interval

Expands an interval to the width of a number of repetitions of this unit.

Shift Classes

class Shift

Base class for objects that can be added or subtracted from a time point yielding an Interval.

23

class Period(unit:Unit, n:int|None) -> Shift

Implements the SCATE Period definition. An amount of time, expressed as counts of standard time units.

Example:

Representing "three months"
Period (MONTH, 3)

class PeriodSum(periods:list[Period]) -> Shift

A period whose duration is the sum of two or more periods.

Example:

Representing "two years and a day"
PeriodSum([Period(YEAR, 2), Period(DAY, 1)])

Repeating Interval Classes
class Repeating(unit:Unit, range:Unit=None, value:int=None, n_units:int=1) -> Shift

Implements the SCATE repeating interval definition. A Repeating identifies intervals that are named by the
calendar system and repeat along the timeline.

Examples:

Representing all months of "February"

Repeating (MONTH, YEAR, value=2)

Representing all generic calendar "day"

Repeating(DAY)

Representing "Thursday" (Monday=0, so Thursday=3)
Repeating (DAY, WEEK, value=3)

Predefined Repeating Intervals

24

Class Description

Spring Meteorological springs in Northern Hemisphere (March-May)

Summer Meteorological summers in Northern Hemisphere (June-August)
Fall Meteorological falls in Northern Hemisphere (September-November)
Winter Meteorological winters in Northern Hemisphere (December-February)
Weekend Weekends (Saturdays and Sundays)

Morning Meteorological mornings, 06:00 until 12:00

Noon Noons, 12:00 until 12:01

Afternoon Meteorological afternoons, 12:00 until 18:00

Day Meteorological daytime, 06:00 until 06:00

Evening Meteorological evenings, 18:00 until 00:00

Night Meteorological nights, 00:00 until 06:00

Midnight Midnights, 00:00 until 00:01

Composite Interval Classes

EveryNth Class
class EveryNth(shift:Shift, n:int) -> Shift

Creates a repeating interval that selects only every nth occurrence of another shift pattern.
Parameters:

e shift - The base shift pattern

e n - How many occurrences to skip between each selected occurrence

Example:

Representing "every other Friday"
EveryNth(Repeating (DAY, WEEK, value=4), n=2)

ShiftUnion Class
class ShiftUnion(shifts:Iterable[Shift]) -> Shift

Creates a union of two or more shift patterns, including all occurrences from each pattern.

Parameters:

25

e shifts - A collection of shift patterns to combine

Example:

Representing "Mondays and Fridays"

ShiftUnion([
Repeating (DAY, WEEK, value=0), # Monday
Repeating (DAY, WEEK, value=4) # Friday

1
Repeatingintersection Class

class RepeatingIntersection(shifts:Iterable[Repeating]) -> Shift

Creates an intersection of two or more repeating intervals, including only times that satisfy all patterns.
Parameters:
e shifts - A collection of repeating intervals to intersect
Example:
Representing "Saturdays in March"
RepeatingIntersection([
Repeating (DAY, WEEK, value=5), # Saturday

Repeating(MONTH, YEAR, value=3) # March
1)

Year-specific Classes
class Year(digits:int, n_missing digits:int=0) -> Interval

The interval from the first second of a year to the first second of the next year. With n_missing digits
parameter, it can also represent longer intervals such as decades, centuries, or millennia.

Parameters:
e digits - The significant digits of the year or time period
® n missing digits - The number of trailing digits omitted, determining the granularity:

o 0:represents a single year (e.g., 2014), from the first second of the year to the first second of the
nextyear

o 1:represents a decade (e.g., 201X or the 2010s), spanning 10 years
o 2:represents a century (e.g., 20XX or the 2000s), spanning 100 years

o 3:represents a millennium (e.g., 2XXX or the 2000s millennium), spanning 1000 years

Examples:

26

Representing the year 2014
Year(2014) # [2014-01-01T00:00:00, 2015-01-01T00:00:00)

Representing the decade of the 1980s
Year (198, n_missing digits=1) # [1980-01-01T00:00:00, 1990-01-01T00:00:00)

Representing the 20th century
Year (19, n_missing digits=2) # [1900-01-01T00:00:00, 2000-01-01T00:00:00)

Representing the 2nd millennium CE
Year(1l, n_missing digits=3) # [1000-01-01T00:00:00, 2000-01-01T00:00:00)

class YearSuffix(interval:Interval, digits:int, n_missing digits:int=0) -> Interval

Avyear-long interval (or longer with n_missing_digits) created from the year of another interval and a
suffix of digits to replace in that year. Like the vear class, with n_missing digits it can represent
decades, centuries, etc.

Parameters:

e interval - The reference interval containing the base year

e digits - The digits to use as the suffix of the year

® n missing digits - The number of trailing digits omitted, determining the granularity:
o 0:represents a single year
o 1:represents a decade
o 2:represents a century

o etc.
Examples:

Representing the year "96" in the context of 1993 (becomes 1996)
YearSuffix(Year(1993), digits=96) # [1996-01-01T00:00:00, 1997-01-01T00:00:00)

Representing the decade "20s" in the context of 1993 (becomes 1920s)
YearSuffix(Year(1993), digits=2, n_missing digits=1) # [1920-01-01T00:00:00, 1930-01-
01T00:00:00)

Ordinal Centuries & Anniversaries

Text SCATE

Nth(interval=None, shift=Repeating(unit=CENTURY, range=CENTURY),
20th century
index=20)

100th

. Nth(interval=None, shift=Period(unit=YEAR, n=None), index=100)
anniversary

27

Use nth for ordinal references to long-span intervals. If no explicit anchor interval is present, set
interval=None and resolve contextually in a post-processing step.

Temporal Operators

Last Operators
class Last(interval:Interval, shift:Shift, interval included:bool=False) -> Interval

The closest preceding interval matching the specified Shift.

Example with Period:

Representing "over the past four days" (in the context of 1 Nov 2024)
Last(Interval.of (2024, 11, 1), Period(DAY, 4))

Example with Repeating:

Representing "Tuesday" (in the context of Tue 8 Nov 2016)
The speaker references the current day
Last(

Interval.of (2016, 11, 8),

Repeating (DAY, WEEK, value=1),

interval_included=True

class LastN(interval:Interval, shift:Shift, n:int, interval_included:bool=False) ->
Intervals

Repeats the Last operation n times.

Example:
Representing "the previous two summers" (in the context of 29 May 1264)
LastN(Interval.of (1264, 5, 29), Summer(), n=2)

Next Operators
class Next(interval:Interval, shift:Shift, interval_ included:bool=False) -> Interval

The closest following interval matching the specified Shift.

Example with Period:

Representing "the next three hours" (in the context of 1 Nov 2024)
Next(Interval.of (2024, 11, 1), Period(HOUR, 3))

Example with Repeating:

28

Representing "the coming week" (in the context of 14 Feb 1912)
Next(Interval.of (1912, 2, 14), Repeating(WEEK))

class NextN(interval:Interval, shift:Shift, n:int, interval_included:bool=False) ->
Intervals

Repeats the Next operation n times.

Example:

Representing "the next six Fridays" (in the context of Sat 22 Dec 1714)
NextN(Interval.of (1714, 12, 22), Repeating(DAY, WEEK, value=4), n=6)

After Operators

class After(interval:Interval, shift:Shift, n:int=1, interval_included:bool=False) ->

Interval
Moves the input Interval later by the specified Shift the specified number of times.
Example with Period:

Representing "a month later" (in the context of 13 Sep 1595)
After(Interval.of (1595, 9, 13), Period(MONTH, 1))

Example with Repeating:

Representing "three Aprils after" (in the context of Sat 23 Jan 1993)
After(

Interval.of (1993, 1, 23),

Repeating (MONTH, YEAR, value=4),

n=3

Important Differences Between Next and After

There are important behavioral differences between the Next and aAfter operators:

With Periods:
They behave very differently: after moves the reference interval by the specified amount, while nNext
takes the period following the interval:

>>> After(Interval.of (2024, 4, 12), Period(WEEK, 3)).isoformat()
'2024-05-03T00:00:00 2024-05-04T00:00:00"
>>> Next(Interval.of (2024, 4, 12), Period(WEEK, 3)).isoformat()
'2024-04-13T00:00:00 2024-05-04T00:00:00"

29

With Repeating Intervals and n=1 (default):
They produce identical results:

>>> After(Interval.of (2024, 4, 12), Repeating(WEEK)).isoformat()
'2024-04-16T00:00:00 2024-04-23T00:00:00"

>>> Next(Interval.of (2024, 4, 12), Repeating(WEEK)).isoformat()
'2024-04-16T00:00:00 2024-04-23T00:00:00"

With Repeating Intervals and n>1:

They diverge significantly: after returns a single interval (the nth one), while NextN returns n intervals:

>>> After(Interval.of (2024, 4, 12), Repeating(WEEK), n=3).isoformat()
'2024-04-30T00:00:00 2024-05-07T00:00:00"

>>> NextN(Interval.of(2024, 4, 12), Repeating(WEEK), n=3).isoformats()
['2024-04-16T00:00:00 2024-04-23T00:00:00",

'2024-04-23T00:00:00 2024-04-30T00:00:00",
'2024-04-30T00:00:00 2024-05-07T00:00:00"]

Note: In the pyscate/normit.time implementation, you need to use NextN instead of Next to access the n
argument functionality.

Before Operators

class Before(interval:Interval, shift:Shift, n:int=1, interval_included:bool=False) ->
Interval

Moves the input Interval earlier by the specified Shift the specified number of times.
Example with Period:

Representing "a year ago" (in the context of 13 Sep 1595)

Before(Interval.of (1595, 9, 13), Period(YEAR, 1))

Example with Repeating:

Representing "two Tuesdays before" (in the context of Sat 23 Jan 1993)
Before(

Interval.of (1993, 1, 23),

Repeating (DAY, WEEK, value=1l),
n=2

Nth Operators

class Nth(interval:Interval, shift:Shift, index:int, from_end:bool=False) -> Interval

Selects the nth repetition of a Shift starting from one end of the Interval.

Examples:

30

Representing "fiftieth day of 2016"
Nth(Year(2016), Repeating(DAY), index=50)

Representing "Third-to-last Sunday of 2024"
Nth(Year(2024), Repeating(DAY, WEEK, value=6), index=3, from_end=True)

class NthN(interval:Interval, shift:Shift, index:int, n:int, from end:bool=False) ->
Intervals

Selects a specified number of nth repetitions of a Shift starting from one end of the Interval.

Example:

Representing "the second six Mondays of 1997"

NthN(Year(1997), Repeating(DAY, WEEK, value=0), index=2, n=6)
This Operators
class This(interval:Interval, shift:Shift) -> Interval

Finds the interval containing the given interval based on the specified Shift.

Example with Period:

Representing "these six days" (in the context of 29 Apr 1176)
This(Interval.of (1176, 4, 29), Period(DAY, 6))

Example with Repeating:

Representing "this January" (in the context of 10 Nov 1037)
This(Interval.of (1037, 11, 10), Repeating(MONTH, YEAR, value=1l))

These Operator
class These(interval:Interval, shift:Shift) -> Intervals

Finds all instances of the specified shift pattern within the given interval. This operator first identifies the
containing range of the specified shift type, then finds all individual shift units within that range.

Parameters:

e interval - The containing interval to search within

e shift - The shift pattern to find instances of

Example:

31

Representing "Tuesdays and Thursdays in January 2025

These(
Interval.of (2025, 1),
ShiftUnion([
Repeating (DAY, WEEK, value=1), # Tuesday
Repeating (DAY, WEEK, value=3) # Thursday

1)

Between Operator

class Between(start_interval:Interval, end_interval:Interval, start_included:bool=False,

end_included:bool=False) -> Interval
Selects the interval between a start and an end interval. This creates a new interval that spans from the start
interval to the end interval.
Parameters:

e start_interval - The beginning interval
e end interval - The ending interval
® start included - Whether to include the start interval in the result

e end included - Whether to include the end interval in the result

Example:

Representing "since 1994" (in the context of 09 Jan 2007)
Between(Year(1994), Interval.of(2007, 1, 9))

Quick Templates

Pattern SCATE Template
since X Between(start_interval=X, end interval=DCT)
weeks before Last(interval=DCT, shift=Period(unit=WEEK, n=None))

Use these templates for constructions such as since 1985, since March, or weeks before the attack.

Intersection Operator

class Intersection(intervals:Iterable[Interval]) -> Interval

Selects the interval in which all given intervals overlap. This creates a new interval that represents the
common timespan where all input intervals coincide.

Parameters:

e intervals - A collection of intervals to find the intersection of

32

Example

Repr
(in

esenting "earlier that day"
the context of "We met at 6:00 on 24 Jan 1979")

Intersection([

La

st(Interval.of (1979, 1, 24, 6), None),

Interval.of (1979, 1, 24)

1

Time

Once you

Expression Annotation Examples

understand the SCATE framework, you can start annotating time expressions in text. The

annotation process involves:

1. Receiving the document creation time (DCT) and text as input

2. Iden

tifying time expressions in the text

3. Writing the corresponding SCATE code for each expression

Financial and Reporting Period Time Expressions

Financial

reports, earnings statements, and business news often contain specialized time expressions

related to fiscal periods:

1. Quarter references in financial contexts:

Expression Context Correct Representation Incorrect Representation
“third past Before(interval=Nth(interval=Year(digits=YEAR), This(interval=Year(digits=YEAR),
Ira- as
ter text shift=Repeating(unit=QUARTER YEAR, range=QUARTER_YEAR), shift=Repeating(unit=QUARTER_YEAR,
uarter contex — - -
q index=3), shift=Period(unit=YEAR, n=None)) range=YEAR, value=3))
"Q2 c " This(interval=Year(digits=YEAR),
urren
results" shift=Repeating(unit=QUARTER YEAR, range=YEAR, value=2))
"next Fut Next (interval=DCT, shift=Repeating(unit=QUARTER_YEAR,
uture
quarter" range=QUARTER_YEAR))

2. Interpreting contextual time cues:

o

o

3. Year

o

Pay attention to verb tense ("reported", "said", "announced") which may indicate the quarter
reference is to a past period

Look for comparative language ("year-ago quarter", "previous quarter") which specifies relative
time positioning

Check for explicit fiscal year indicators ("FY2023 Q3", "third quarter of fiscal 2022")
-ago comparisons:

Expressions like "year-ago quarter" or "same quarter last year" should use Before with a period
of a year

Exa mple: Before(interval=This(interval=DCT, shift=Repeating(unit=QUARTER_YEAR,

range=QUARTER_YEAR)), shift=Period(unit=YEAR, n=1))

4. Key principles for financial time expressions:

o

Financial quarters have specific calendar alignments (Q1: Jan-Mar, Q2: Apr-Jun, etc.)

33

o The fiscal year may differ from the calendar year depending on the company

o Always consider whether the reference is to the current reporting period or a comparison to a

previous period

o Use the appropriate operator (This, Before, Next) based on the temporal context of the

statement

Temporal Adverbs and Their Appropriate Operators

When annotating temporal adverbs, it's crucial to select the correct operator to accurately represent the

time relation:

Temporal Expression
Examples

34

Appropriate

Example Code

Category Operator
previously, formerly, earlier, before, in Last (interval=DCT,
Past References Last
the past, ago shift=None)
This(interval=DCT,
Present References now, currently, presently, at present This =
shift=None)
A Next (interval=DCT,
Future References soon, later, in the future Next
shift=None)
Examples of correct annotation for temporal adverbs:
For "previously" in a text with DCT of 2021-05-15
Last(interval=Interval.of (2021, 5, 15), shift=None)
For "currently" in a text with DCT of 2021-05-15
This(interval=Interval.of (2021, 5, 15), shift=None)
For "later" in a text with DCT of 2021-05-15
Next (interval=Interval.of (2021, 5, 15), shift=None)
Comparative Adverb + Named Day
Text
Correct SCATE
Span
earlier Intersection([Before(interval=DCT, shift=None), This(interval=DCT,
Sunday shift=Repeating(unit=DAY, range=WEEK, value=6))])
later Intersection([After(interval=DCT, shift=None), This(interval=DCT,
Monday shift=Repeating(unit=DAY, range=WEEK, value=0))])
prior
Before(interval=DCT, shift=Repeating(unit=YEAR, range=YEAR))
year

When a comparative adverb (earlier, later, prior, following, etc.) is immediately followed by a named
calendar unit (day, month, year), treat the whole phrase as one time expression and combine the
semantics with Intersection (Or Before / After). Never annotate the adverb and the named unit
separately.

Contextual Time Reasoning and Future Date Inference

When annotating time expressions, particularly in business, financial, and legal contexts, it's crucial to
correctly infer whether a date refers to the current year or a future year:

1. Future event indicators:

o Words and phrases that signal future events: "payable", "due", "scheduled", "will be", "upcoming"

1

o Look for modal verbs indicating future actions: "will", "shall", "is to be"

2. Date logic with Document Creation Time (DCT):

R Correct R
Expression Context DCT . Correct Representation
Interpretation

Next (interval=DCT,
"payable = November

"an. 2"
Jan. 2" 1989

January 2,1990 shift=RepeatingIntersection([Repeating(unit=MONTH, range=YEAR,
value=1), Repeating(unit=DAY, range=MONTH, value=2)]))

N Next (interval=DCT,

record November December 15,
Dec. 15" 1989 1989

"Dec. 15" shift=RepeatingIntersection([Repeating(unit=MONTH, range=YEAR,

value=12), Repeating(unit=DAY, range=MONTH, value=15)]))

o “last <Month>" — If Month = DCT.month, the reference is to that month in the previous year;
otherwise it is the most recent occurrence within the current year.

o “next <Month>" — If Month < DCT.month, the reference is to that month in the next year;
otherwise it is the upcoming occurrence within the current year.

o Example (DCT = 1998-03-01): “last February” — 1997-02 (previous year), “next February” —
1999-02 (nextyear)

3. Month sequence reasoning:

o If a month mentioned is earlier in the calendar than the DCT month, and context suggests a future
event, it typically refers to that month in the following year

o Example: If DCT is November 1989, then "Jan. 2" likely refers to January 2, 1990, not January 2,
1989

4. Common patterns in financial announcements:
o Dividend/payment announcements typically include:
= Adeclaration date (usually the DCT or before)
= Arecord date (usually in the near future)
= A payment date (usually after the record date)
o Example: "The dividend is payable [payment date] to shareholders of record on [record date]"
5. Incorrect annotation patterns to avoid:

o Never default to This(interval=Year(digits=YEAR), ...) for dates without explicitly
considering whether they refer to the current or future year

35

o Don't assume months mentioned in text always refer to the current year

o Pay attention to the logical sequence of events implied by the text

Handling Prepositions in Time Expressions

When annotating time expressions, pay careful attention to whether prepositions (like "over", "during",
"within", etc.) should be included as part of the time expression or treated separately:

1. Separate core temporal expressions from prepositions when appropriate:
o For expressions like "over the weekend", the core temporal expression is often just "weekend"
o The preposition "over" typically provides context but isn't part of the time expression itself

2. Examples of proper boundary detection with prepositions:

Text Correct Expression Incorrect Expression
"over the weekend" "weekend" "over the weekend"
"during the summer" "summer" "during the summer"
"on Tuesday" "Tuesday" "on Tuesday"

Note: The preposition may affect the interpretation (e.g., "over the weekend" implies the entire
weekend), but the expression itself is typically just the temporal noun phrase.

Handling Vague Duration Expressions

For vague expressions of duration or relative time, use the appropriate operators:

1. For expressions implying a non-specific duration:

Expression Correct Representation Incorrect Representation
"within a few Next (interval=DCT, shift=Period(unit=DAY, NextN(interval=DCT, shift=Period (DAY,
days" n=None)) 1), n=3)
"in several Next (interval=DCT, shift=Period(unit=WEEK, NextN(interval=DCT, shift=Period(WEEK,
weeks" n=None)) 1), n=X)
"for some Next (interval=DCT, shift=Period(unit=MONTH, ”
.\ Specific number of months
months n=None))

2. Key points about vague durations:
o Use n=None to indicate an unspecified quantity
o Prefer next with a vague period over NextN with a specific count for naturally vague expressions
o Don't try to quantify inherently vague expressions with specific numbers
3. Common vague time patterns:
o "afew X" — Period(unit=X, n=None)

o "several X" — Period(unit=X, n=None)

36

o "some X" — Period(unit=X, n=None)

o "many X" — Period(unit=X, n=None)

ISO and Standard Date Format Handling

When annotating standard date formats, it's crucial to correctly identify the level of specificity intended in
the expression:

1. 1SO format dates (YYYY-MM-DD):

o Full date formats like "1998-08-07" should be annotated with day-level specificity, not as an entire

year
)) Incorrect
Expression Correct Representation "
Representation
1998-08 This(interval=Year(digits=1998), shift=RepeatingIntersection(shifts=
07" [Repeating(unit=MONTH, range=YEAR, value=8), Repeating(unit=DAY, range=MONTH, Year(digits=1998)
value=7)1))
12020-12 This(interval=Year(digits=2020), shift=RepeatingIntersection(shifts=
310 [Repeating(unit=MONTH, range=YEAR, value=12), Repeating(unit=DAY, Year (digits=2020)

range=MONTH, value=31)]))
2. Common date format variants:
o American format (MM/DD/YYYY): "08/07/1998"
o European format (DD/MM/YYYY): "07/08/1998"
o All should be normalized to the same SCATE representation when they refer to the same date

3. Metadata dates:

o Dates appearing in document headers, bylines, or metadata sections should be treated with the
same precision they express

o A standalone date like "1998-08-07" in a document header still refers to that specific day

4. Key principle: Always preserve the temporal granularity expressed in the original time expression.

Never default to a broader time range (like a year) when a more specific one (like a day) is explicitly
stated.

Precise Annotation of Common Deictic Time Expressions

Common deictic time words require special attention to preserve their precise temporal meaning:

1. Day-specific expressions:

Expression Correct Representation Incorrect Representation

"today" This(interval=DCT, shift=Repeating(unit=DAY, range=DAY)) This(interval=DCT, shift=None)
"yesterday" Last (interval=DCT, shift=Repeating(unit=DAY, range=DAY)) Last (interval=DCT, shift=None)
"tomorrow" Next (interval=DCT, shift=Repeating(unit=DAY, range=DAY)) Next (interval=DCT, shift=None)

2. The importance of the shift parameter:

o Using shift=None loses the specific temporal granularity of the expression

37

o For words like "today", the shift=Repeating(unit=DAY, range=DAY) indicates it refers
specifically to a day-long period

n

o This preserves the precise 24-hour meaning rather than treating it as a generic "current time
reference

3. Other common deictic expressions and their correct representations:

Expression Correct Representation

"this month" This(interval=DCT, shift=Repeating(unit=MONTH, range=MONTH))
"this year" This(interval=DCT, shift=Repeating(unit=YEAR, range=YEAR))
"next week" Next (interval=DCT, shift=Repeating(unit=WEEK, range=WEEK))
"last night" Last(interval=DCT, shift=Night())

4. Calendar-Aligned “last / past N” Expressions:

o Whenever the intent is to include complete calendar units (year, quarter, month, week, night,
weekend ...), choose Repeating, NOt Period.

o Pperiod is limited to rolling or vague durations that do not align exactly to named calendar units.

Expression Correct Representation Why
"last vear” Last(interval=DCT, Use Repeating so that the interval aligns to Jan 1 - Jan 1 of
Y shift=Repeating(unit=YEAR, range=YEAR)) the previous calendar year, not a rolling 365-day window

LastN(interval=DCT,

"past three .)
. shift=Repeating(unit=YEAR, range=YEAR), Same alignment logic as above
ears
Y n=3)
" . LastN(interval=DCT,
last five
rers" shift=Repeating(unit=QUARTER YEAR, Quarter-level repeat
quarters

range=QUARTER YEAR), n=5)

5. Remember: The shift parameter in temporal operators provides crucial information about the
specific calendar unit being referenced, and should never be omitted for expressions with specific
granularity.

Core Time Expression Extraction and Modifier Separation

When identifying time expressions, it's crucial to separate core temporal references from their modifiers
and determiners:

1. Core time expressions vs. extended phrases:

38

Full Phrase

"at the end of November"
"today's editions"

"by early December"
"throughout next week"

"in the past"

Core Time Expression
"November"

"today"

"December™"

"next week"

"past"

2. Principles for identifying core time expressions:

Modifiers (Not Part of Expression)
"at the end of"

"'s editions"
"by early"
"throughout"

"in the"

o The core expression contains the essential temporal reference (day, month, year, etc.)

[e]

Adjectival markers like "'s" (possessive) usually indicate the end of the core expression

o Prepositions ("at", "on", "by", "during") typically precede but aren't part of the core expression

o

3. Special cases and exceptions:

Modifiers like "beginning of", "middle of", "end of" should be excluded from the core expression

o Certain temporal phrases form inseparable units: "end of year", "beginning of month"

o Time-specific prepositions may be included when they change meaning: "in May" vs. "by May"

o Possessive forms can semantically modify the time reference: "yesterday's" vs. "yesterday"

o Comparative-adverb + named-day phrases (e.g., “earlier Sunday”, “later Monday") must not be

split;

4. Correct annotation examples:

Text

"The meeting is at the end of
November"

"It was reported in today's
newspaper"

"They'll arrive by early next week"

Correct
Annotation

time_text:
"November"

time_text: "today"

time_text: "next
week"

5. Common error patterns to avoid:

Incorrect Annotation

time_text: "at the end of
November"

time_text: "today's newspaper"

time_text: "by early next week"

o Including prepositions and qualifiers with the time expression

o Including possessive markers and the modified nouns with the time expression

o Splitting compound time expressions that should remain together (e.g., "next week", "last month")

Articles and Quantifiers in Time Expressions

39

When annotating time expressions, it's important to understand how articles (a, an, the) and quantifiers
interact with the core temporal expression:

1. Articles in time expressions:

Correct Time
Full Text A Notes
Expression

The indefinite article "a" is not part of the time

"a year earlier" "year earlier")
expression
"a week ago" "week ago" The indefinite article is excluded
"the previous .\ . B -~ .
previous month The definite article is excluded

month"

2. Core time expression identification:
o Focus on the minimal span that conveys the complete temporal meaning
o Articles ("a", "an", "the") typically fall outside the time expression boundary
o Exception: When the article is integral to the meaning (e.g., "the day before yesterday")

3. Relative time expressions with articles:

Expression Correct Representation Notes
"ayear Before(interval=DCT . .

y. . ' Use n=None for unspecified duration
earlier shift=Period(unit=YEAR, n=None))
"ayear Last (interval=DCT, Use specific n=1 because "a year"
ago" shift=Period(unit=YEAR, n=1)) specifies exactly one year
"a few Last (interval=DCT, Use n=None for vague durations like "a
weeks ago" shift=Period(unit=WEEK, n=None)) few"

4. Comparative time expressions:

o "earlier", "before", "prior", "previous" — Use Before operator
o "later", "after", "following", "subsequent" — Use after operator
o "ago" — Use Last operator

5. Key points to remember:

o Focus on annotating just the minimum temporal expression needed to convey the complete
meaning

o Be consistent in excluding articles across all annotations

o Pay attention to whether the time reference is specific (e.g., "a year" = exactly 1 year) or vague
(e.g., "some years" = unspecified number of years)

Example Annotations

40

When annotating time expressions, we need to output the time text and its corresponding SCATE
representation. The output should be in JSON format with a list of objects, each containing:

e time text:The text span containing the temporal expression
e scate: The SCATE code that represents this expression
Here's an example of the annotation process:
Input:

e DCT: 1998-05-01

e Text: The Internet, the global network of computers, is now far reaching into the country
- extending its embrace to include every nook and cranny of the nation - opening doors
to not only a diverse range of information sources but also an exhaustive list of

possibilities to create new applications which add value to people's lives.

Output:
[
{
"time_text": "now",
"scate": "This(interval=Interval.of(1998, 5, 1), shift=None)"
}

Here are more examples:
Input:

e DCT: 1998-05-01

e Text: APW19980501.0480\n\n05/01/1998 09:13:00\n\n\nAPW19980501.0480 NEWS STORY 05/01/1998
09:13:00\nw2844 Cx1lf wstmr w Cx1l3 Cxll SETTING-THE-STAGEsked 05-01 0665\nSETTING-THE-
STAGE sked\nMALAYSIA Setting the stage for Net convergence, NEW STRAITS TIMES-MANAGEMENT
TIMES QL xfdws SETTING-THE-STAGE sked Emerging Markets Datafile April 30, 1998 NEW
STRAITS TIMES-MANAGEMENT TIMES ENGLISH COPYRIGHT 1998 BY WORLDSOURCES, INC., A JOINT
VENTURE OF FDCH, INC.\nAND WORLD TIMES, INC.\nNO PORTION OF THE MATERIALS CONTAINED
HEREIN MAY BE USED IN ANY MEDIA WITHOUT ATTRIBUTION TO WORLDSOURCES,
INC.\n\n\n\nMALAYSIA's aggressive move into the information age could not come in a more

opportune time.

Output:

{

"time_text": "05/01/1998 09:13:00",

"scate": "This(interval=Year(digits=1998), shift=RepeatingIntersection(shifts=
[Repeating(unit=MONTH, range=YEAR, value=5), Repeating(unit=DAY, range=MONTH, value=1),
Repeating(unit=HOUR, range=DAY, value=9), Repeating(unit=MINUTE, range=HOUR, value=13),
Repeating(unit=SECOND, range=MINUTE, value=0)]))"

}

41

"time text": "1998",

"scate": "Year(digits=1998)"
e

{

"time_text": "April 30, 1998",

"scate": "This(interval=Year(digits=1998), shift=RepeatingIntersection(shifts=

[Repeating(unit=MONTH, range=YEAR, value=4), Repeating(unit=DAY, range=MONTH,
value=30)1))"

I
{

"time_text": "time",

"scate": "This(interval=Interval.of(1998, 5, 1), shift=None)"
I

More Important Notes for Annotation

o U A W N

. The document creation time (DCT) is provided as input along with the text

. Focus on identifying all time expressions in the text and writing the correct SCATE code for each
. Always output in JSON format with a list of objects containing time_text and scate fields

. Use the appropriate SCATE operators and classes based on the time expression semantics

. For deictic expressions (like "now", "today", "yesterday"), use the DCT as the reference point

. For relative expressions (like "next Friday", "last month"), anchor them to the DCT A collection of

intervals on the timeline. This class implements the Python Iterable interface to allow iteration over a
set of Interval objects.

Time expressions in the output JSON must be ordered according to their appearance in the original
text

Always consider the hierarchical nature of time expressions and their composition
Pay special attention to temporal adverbs and prepositions:

o Words indicating past time (previously, before, earlier, formerly, in the past, etc.)
should typically use the Last operator, not This

o Words indicating future time (soon, later, in the future, etc.)should typically use the Next
operator, not This

o Words indicating present time (currently, presently, at the moment, etc.) should use the
This operator

Common Annotation Pitfalls

1.

2.

Misinterpreting vague temporal adverbs: Words like "previously" or "formerly" indicate a time
before the reference time, so they should be annotated with Last(interval=DCT, shift=None)
rather than This(interval=DCT, shift=None) .

Confusing This vs. Last: The This operator refers to the current time interval, while Last referstoa
previous time interval. For example:

42

Incorrect (for "previously")
This(interval=Interval.of (1989, 11, 2), shift=None)

Correct (for "previously")
Last(interval=Interval.of (1989, 11, 2), shift=None)

3. Ignoring contextual cues: Sometimes temporal expressions must be interpreted based on
surrounding context in the text, not just the DCT.

4. Incorrect time expression boundary detection: Be careful when identifying the boundaries of time
expressions. Pay attention to:

o Time expressions that span multiple tokens (e.g., 08-07-98 0618 should be treated as a single
expression)

o Time zone indicators that are not part of the expression (e.g., EDT, GMT, UTC)
o Whitespace that may separate parts of a single time expression

5. Fragmentation of combined date-time expressions: Date and time components that appear
together (e.g., "08-07-98 0618") should be treated as a single time expression, not split into separate
expressions.

6. Missing implicit time references: Some texts imply a time reference without explicitly stating it (e.g.,
"previously" without stating when).

43

C

Interval Few-shot Prompt

44

Input:

e DCT: 1998-05-01

e Text: The Internet, the global network of computers, is now far reaching into the country - extending
its embrace to include every nook and cranny of the nation - opening doors to not only a diverse
range of information sources but also an exhaustive list of possibilities to create new applications
which add value to people's lives.

Output:

"time_text": "now",

"normalized": "... ... "

Input:

e DCT: 1998-05-01

e Text: APW19980501.0480\n\n05/01/1998 09:13:00\n\n\nAPW19980501.0480 NEWS STORY 05/01/1998
09:13:00\Nw2844 Cx1f wstmr w Cx13 Cx11 SETTING-THE-STAGEsked 05-01 0665\nSETTING-THE-STAGE
sked\nMALAYSIA Setting the stage for Net convergence, NEW STRAITS TIMES-MANAGEMENT TIMES QL
xfdws SETTING-THE-STAGE sked Emerging Markets Datafile April 30, 1998 NEW STRAITS TIMES-
MANAGEMENT TIMES ENGLISH COPYRIGHT 1998 BY WORLDSOURCES, INC., A JOINT VENTURE OF
FDCH, INCANAND WORLD TIMES, INCANNO PORTION OF THE MATERIALS CONTAINED HEREIN MAY BE
USED IN ANY MEDIA WITHOUT ATTRIBUTION TO WORLDSOURCES, INCAN\N\N\nMALAYSIA's
aggressive move into the information age could not come in a more opportune time.

Output:

{
"time_text": "05/01/1998 09:13:00",
"scate": "1998-05-01T09:13:00 1998-05-01T09:13:01"

}
{
"time_text": "1998",
"scate": "1998-01-01T00:00:00 1999-01-01T00:00:00"
s
{
"time_text": "April 30, 1998",
"scate": "This(interval=Year(digits=1998), shift=RepeatingIntersection(shifts=

[Repeating(unit=MONTH, range=YEAR, value=4), Repeating(unit=DAY, range=MONTH,
value=30)]))"
I
{
"time_text": "time",
"scate": "1998-04-30T00:00:00 1998-05-01T00:00:00"

45

Input:

e DCT: 1989-11-02

e Text: Integra-A Rights Offering 11/02/89 WALL STREET JOURNAL (J) ITGR HWG IRVING,
Texas\n\n\n\nintegra-A Hotel amp Restaurant Co. said its planned rights offering to raise about $9
million was declared effective and the company will begin mailing materials to shareholders at the
end of this week.

Output:

"time_text": "this week",
"normalized": "1989-10-30T00:00:00 1989-11-06T00:00:00"

s
"time_ text": "11/02/89",
"normalized": "1989-11-02T00:00:00 1989-11-03T00:00:00"
}
]
Input:

e DCT: 1989-11-02

e Text: Stephen Akerfeldt, currently vice president finance, will succeed Mr. McAlpine.

Output:
[
{
"time_text": "currently",
"normalized": "... ... "
¥

46

D Additional Comparisons and Statistical Significance

D.1 Comparison with Existing Systems

We compare our method against both SCATE-based and ISO-TimeML-based time normalization
systems.

SCATE-based baseline We compare against the Neural Parser by | Xu et al.| [2019], which represents
the only publicly available SCATE-based implementation and the previous state-of-the-art. On the
test set, the Neural Parser achieves an F1 score of 0.43 (Precision: 0.57, Recall: 0.35). Our method
improves upon this by 37% in F1 score (from 0.43 to 0.59), demonstrating the effectiveness of our
code generation approach over the previous multi-stage LSTM pipeline.

ISO-TimeML baseline We also compare against SUTime [Chang and Manning| [2012]], a widely-
used rule-based time normalization system. SUTime achieves an F1 score of 0.45 (Precision: 0.58,
Recall: 0.37) on our test set, while our method achieves 0.59, demonstrating the advantages of the
more expressive SCATE framework.

Runtime comparison We conduct runtime measurements on the test set using an NVIDIA RTX
3090 GPU with vLLM [Kwon et al.,[2023]] for efficient inference. Our Qwen2.5-0.5B model processes
the entire test set in 6 seconds, compared to 190 seconds for the Neural Parser’s LSTM-based pipeline,
achieving a 31.7x speedup. This significant improvement stems from: (1) end-to-end generation
eliminating multi-stage pipeline overhead, (2) efficient transformer-based inference, and (3) smaller
model size (0.5B parameters) enabling faster forward passes.

D.2 Confidence Intervals

We calculate 95% confidence intervals using bootstrap sampling, where we randomly resample 80%
of the evaluation data 100 times and compute evaluation metrics on each sample to estimate the
statistical uncertainty of our model’s performance. We present the results in Table|S1|and Table

Table S1: Performance of LLMs on Temporal Expression Recognition and SCATE Code Generation
on Training Set with 95% confidence intervals. Values shown as mean + std, confidence intervals
(CD: (lower, upper).

Model Accuracy Precision Recall F1
Claude 3.5 0.62 £ 0.02 0.64 £ 0.02 0.62 £ 0.02 0.63 £0.02
CI: (0.62,0.63) CI: (0.64,0.65) CI: (0.62,0.63) CI: (0.63, 0.64)
Claude 3.7 0.69 + 0.02 0.63 £0.02 0.69 + 0.02 0.66 + 0.02
CI: (0.69,0.70) CI: (0.63,0.64) CI: (0.69, 0.70) CI: (0.66, 0.67)
Gemini 2.0 Flash 0.65 £ 0.03 0.64 £ 0.02 0.65 £ 0.03 0.64 £ 0.03
CI: (0.64,0.65) CI: (0.63,0.64) CIL: (0.64,0.65) CI: (0.64, 0.65)
Gemini 2.5 Flash 0.61 £0.02 0.63 £0.02 0.61 £0.02 0.62 £ 0.02
CI: (0.61,0.62) CI: (0.63,0.64) CI: (0.61,0.62) CI: (0.62, 0.63)
Gemini 2.5 Pro 0.50 £ 0.02 0.65 + 0.02 0.50 £ 0.02 0.56 £ 0.02
CI: (0.50,0.51) CI: (0.64,0.65) CI: (0.50,0.51) CI: (0.56, 0.57)
GPT-4.1 0.66 £ 0.02 0.60 £ 0.02 0.66 £ 0.02 0.63 £0.02

CI: (0.66, 0.67)

CI: (0.60, 0.60)

CI: (0.66, 0.67)

CI: (0.63, 0.63)

E License information

We respect the license and intended use of all models and datasets employed in this study. Detailed
license information is provided below.

47

Table S2: Performance comparison of different methods on the test set with 95% confidence intervals.
Values shown as mean =+ std, confidence intervals (CI): (lower, upper).

Methods Accuracy Precision Recall F1
Qwen2.5-0.5B + Training Set 0.01 £0.01 0.49 £0.50 0.01 £0.01 0.01 £0.01
CI: (0.00,0.01) CI: (0.39,0.59) CI: (0.00,0.01) CI: (0.01, 0.01)
Qwen2.5-0.5B + CC-News 0.37 £0.03 0.46 £ 0.04 0.37 £0.03 0.41 +£0.03
CL: (0.36,0.37) CI: (0.45,0.46) CI: (0.36,0.37) CI: (0.40,0.41)
Qwen2.5-0.5B + CC-News + Training Set 0.59 + 0.04 0.59 + 0.04 0.59 +0.04 0.59 +0.04
CI: (0.58, 0.60) CI: (0.59, 0.60) CI: (0.58, 0.60) CI: (0.58, 0.60)
Claude 3.7 + SCATE Prompt 0.49 £0.03 0.56 £ 0.04 0.49 £0.03 0.52+£0.03
CI: (0.49,0.50) CI: (0.55,0.57) CI: (0.49,0.50) CI: (0.52, 0.53)
Claude 3.7 + Interval Few-shot Prompt 0.38 +£0.03 0.39 £ 0.03 0.38 £0.03 0.38£0.03
CI: (0.38,0.39) CI: (0.38,0.39) CI: (0.38,0.39) CI:(0.38,0.39)
GPT 4.1 + SCATE Prompt 0.51+0.03 0.51+0.03 0.51+0.03 0.51+0.03

CI: (0.51, 0.52)

CI: (0.50, 0.52)

CI: (0.51, 0.52)

CI: (0.50, 0.52)

Models. The Claude family models utilized in our study are licensed under the (Commercial Terms
of Service. The Gemini family models are licensed under the Google APIs Terms of Servicel The
GPT-4.1 model is licensed under the Business terms. The Qwen 2.5 models are licensed under the
Apache License 2.0.

Datasets.
Use.

The CC-News dataset used in our study is available under the Common Crawl Terms of

F Detailed Error Analysis

To better understand the limitations of our best-performing model (Qwen2.5-0.5B + CC-News +
Training Set), we conduct a detailed error analysis on the test set predictions. We categorize incorrect
predictions into five main types based on their root causes and provide representative examples for
each category.

F.1 Error Distribution
We identify the following error distribution:

* Missed expressions (70%): The model fails to identify temporal expressions that are
annotated in the gold standard.

* Boundary errors (10%): The model identifies a temporal expression but with incorrect
span boundaries.

* Structural errors (10%): The model fails to capture the correct compositional structure of
complex temporal expressions.

* Operator confusion (5%): The model selects an inappropriate SCATE operator despite
correct span identification.

* Granularity errors (5%): The model represents temporal expressions at incorrect levels of
granularity.

F.2 Missed Expressions

The most critical failure mode occurs when the model completely fails to identify annotated temporal
expressions. These account for 70% of all errors.

Example

* Context: “We estimated we could do it in 100 days, and we got across on the 99th day.”
* Gold expression: “99th day”

48

https://www.anthropic.com/legal/commercial-terms
https://www.anthropic.com/legal/commercial-terms
https://developers.google.com/terms
https://openai.com/policies/business-terms/?utm_source=chatgpt.com
https://choosealicense.com/licenses/apache-2.0/
https://commoncrawl.org/terms-of-use
https://commoncrawl.org/terms-of-use

* Gold SCATE: Nth(shift=Repeating(unit=DAY), index=99)
* Predicted: Missing

* Analysis: The model struggles with ordinal expressions embedded in narrative contexts,
possibly because they are less explicit than standard date formats.

F.3 Boundary Errors

Boundary errors occur when the model identifies the general location of a temporal expression but
fails to capture the exact span. These represent 10% of errors.

Example
* Context: “He said: ‘Lowe was a brilliant, kind fellow who never sought the limelight... and
60 years on from Everest his achievements deserve wider recognition.”
* Gold annotation: “60 years on from”
* Model prediction: “60 years on” (missing “from”)

* Analysis: Both generate similar SCATE code, but the boundary difference affects evaluation.
This suggests the model understands the temporal semantics but struggles with precise span
detection, particularly for multi-word prepositions.

F.4 Structural Errors

Structural errors involve complex nested temporal expressions requiring compositional operators.
These account for 10% of errors.

Example
* Context: “The season started about a month earlier than usual, sparking concerns it might
turn into the worst in a decade”

* Gold expression: “month earlier than usual, sparking concerns it might turn into the worst
in a decade”

e Gold SCATE: Last (interval=Before(interval=Interval(...),
shift=Period(unit=MONTH)), shift=Period(unit=DECADE))

* Predicted: Only captures fragments (“‘a month earlier”, “decade”) separately

* Analysis: The model cannot recognize that these fragments form a single complex compara-
tive temporal expression requiring nested operators.

F.5 Operator Confusion

Operator confusion occurs when the span is correctly identified but the wrong SCATE operator is
selected. These represent 5% of errors.

Example

¢ Context: “Mr. Obama said later at a news conference in Amman...”

¢ Gold expression: “later”

Gold SCATE: After(interval=Interval(...), shift=None)
Predicted SCATE: Next (interval=Interval(...), shift=None)

* Analysis: Both After and Next operators indicate future time, but Af ter is more appropri-
ate for indefinite future references while Next implies the immediate next occurrence. This
reflects the subtle semantic distinctions between SCATE operators.

F.6 Granularity Errors

Granularity errors occur when the model represents temporal expressions at incorrect levels of detail.
These account for 5% of errors.

49

Example

¢ Context: “One exception was the swine flu pandemic of 2009-2010, when 348 children

died.”
* Gold expression: “2009-2010”
* Gold SCATE: Between(start_interval=Year(digits=2009),

end_interval=Year(digits=2010), start_included=True,
end_included=True)

* Predicted SCATE: Year (digits=2009)

* Analysis: The model loses the year range information and represents only the first year. The
gold annotation requires both 2009 and 2010 to be fully included (spanning to 2011-01-01),
but the model only captures 2009, demonstrating a granularity error where critical temporal
scope is lost.

F.7 TImplications and Future Directions

Our error analysis reveals that the primary challenge lies in span recognition rather than SCATE
code generation. Once a temporal expression is correctly identified, the model generally produces
appropriate SCATE code. The high proportion of missed expressions (70%) suggests that improving
temporal expression recognition represents the most promising direction for future work, either
through better training data, architectural improvements, or specialized span detection modules. The
remaining 30% of errors related to boundaries, structure, and operator selection could potentially be
addressed through more comprehensive training examples covering edge cases and rare compositional
patterns.

50

	Introduction
	Related Works
	Time Normalization
	Information Extraction via Code Generation

	Methodology
	Task Definition
	SCATE Code Representation
	Base Class Definitions
	Temporal Operators Class Definitions

	Data Augmentation

	Experiments
	Datasets
	Implementation Details
	Main Results

	Limitations
	Conclusion
	AI Use Declaration
	SCATE Prompt
	Interval Few-shot Prompt
	Additional Comparisons and Statistical Significance
	Comparison with Existing Systems
	Confidence Intervals

	License information
	Detailed Error Analysis
	Error Distribution
	Missed Expressions
	Boundary Errors
	Structural Errors
	Operator Confusion
	Granularity Errors
	Implications and Future Directions

