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Abstract
We investigate the performance of quantile meth-
ods for longitudinal data with missingness. In a
simulation study, we compare the performance
of the quantile regression using different alter-
natives for handling missing data and taking the
correlation into account. As expected, the non-
likelihood-based methods provide biased esti-
mates under the missing at random assumption.
On the other hand, an inverse probability weight-
ing approach corrects for biasedness.

1. Introduction
In longitudinal studies, the same characteristics of individ-
uals is repeatedly measured over time, allowing them to
analyze their changes over time. Quantile regression (QR;
Koenker & Bassett, 1978; Koenker, 2005) permits examin-
ing the effect of a set of covariates on different quantiles
of a response variable. Therefore, it is useful for analyzing
this type of data when the distribution of the responses is
skewed, the data contain outliers, or when flexibility to the
error distribution is relevant.

Motivated by the well-known equivalence in the univari-
ate QR estimator (minimization of the check function) and
the maximization of the likelihood based on an asymmet-
ric Laplace (AL) distribution, we consider to estimate the
quantiles with correlated data by maximizing the likelihood-
based on a multivariate extension of the AL distribution
(Kozubowski & Podgórski, 2000; Kotz et al., 2001). Note
that the multivariate distribution allows addressing the de-
pendence between the longitudinal observations into ac-
count, whereas the classical univariate QR ignores this
dependence. (Petrella & Raponi, 2019) showed via sim-
ulations that, despite the peaks and non-differentiability
problems inherent to the latter distribution, it is possible
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to estimate the model correctly. However, as (Kotz et al.,
2001) point out, there are some issues with the multivariate
asymmetric Laplace (MAL) distribution that require special
treatment and attention. We solve these issues and show
that the estimator is asymptotically normal and that stan-
dard errors can be computed via a minor modification in the
likelihood function.

Missing data occurs when not all scheduled measurements
of a subjects outcome are observed. The nature of the miss-
ingness mechanism highly influences the performance of
statistical techniques that deal with missing data. There-
fore, it is important to define the mechanism. There are
three main missing data mechanisms (Rubin, 1976). Un-
der missing completely at random (MCAR), missingness
does not depend on either the observed or unobserved vari-
ables, apart from perhaps covariates. When missingness is
independent of the unobserved measurements conditional
on the observed ones, the process is called missing at ran-
dom (MAR). Missing not at random (MNAR) occurs when
neither MAR nor MCAR holds.

Under the most common assumption MAR, the full like-
lihood methods provide valid estimates. On the contrary,
non-likelihood estimators, such as the classical QR, can
provide biased estimates (Molenberghs et al., 2011). There-
fore, in this paper, we compare under simulations different
approaches for estimating conditional quantiles for longitu-
dinal data in the presence of missing values. Particularly,
we focus on dropouts, where subjects drop out of the study
at a certain occasion, and there are no recordings afterward.

2. Model and methodology
We focus on estimating the τ -th quantile (with 0 < τ < 1)
of a response given the covariates. Suppose that Yi =
(Y1, . . . , Yn)

′ is an n-dimensional response vector for indi-
vidual i = 1, . . . , N . Consider the multivariate regression
model:

Yi = Xiβ + ε,

where Xi is a (n × p)-design matrix of covariates, β =
(β1, . . . , βp)

′ is a vector of regression coefficients, and ε =
(εi1, . . . , εin) is a vector of error terms. Note that the τ -th
conditional quantile of Yi is

Qτ (Yi|Xi) = X′iβ +Qτ (εi|Xi).
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2.1. Quantile regression

When estimating the τ -th conditional quantile of Yi, we
assume that Qτ (εi|Xi) = 0. This is commonly assumed in
quantile regression, when estimating one specific quantile.
With this assumption, the τ -th conditional quantile of Yi is
given by

Qτ (Yi|Xi) = X′iβ.

This conditional quantile can easily be estimated, given an
estimator for β. (Koenker & Bassett, 1978) proposed the
following quantile regression estimator for β:

β̂ = argmin
β

N∑
i=1

n∑
j=1

ρτ (Yij − x′ijβ), (1)

where xij is the jth row of Xi, ρτ (u) = u[τ − I(u < 0)]
is the check-loss function used in quantile regression.

The check function ρτ (·) is proportional to the negative log
density of the asymmetric Laplace distribution. This connec-
tion lets us assume that Y is distributed as an asymmetric
Laplace, denote as Y ∼ AL (µ, φ, τ), with probability den-
sity function given by:

f(y|µ, φ, τ) = τ(1− τ)
φ

exp

[
−ρτ

(
y − µ
φ

)]
, (2)

where µ is a location parameter, φ > 0 is a scale parameter,
and τ plays the role of skewness parameter.

Then, by assuming that yij ∼ AL
(
µij = x′ijβ, φ, τ

)
, β is

estimated by maximizing the log-likelihood, defined as:

` (β, φ) ∝ −n log(φ)−
N∑
i=1

n∑
j=1

ρτ

(
yij − xijβ

φ

)
,

which is equivalent to the minimization of the objective
function (1). For more details on univariate QR, we refer to
(Koenker, 2005).

2.2. Quantile regression for longitudinal data

Firstly, we consider the multivariate asymmetric Laplace
distribution (Kozubowski & Podgórski, 2000), Yi ∼
MALn

(
Xiβ,∆ξ,∆Σ∆

)
, with density:

fY(y;θ) =
2 exp

[
(y −Xiβ)

′∆−1Σ−1ξ
]

(2π)n/2|∆Σ∆|1/2
( mi

2 + d

)ν/2
×

×Kν

[√
(2 + d)mi

]
,

where ∆ξ is the scale (or skewness) parameter vector
and Σ = ΛΨΛ a positive definite matrix. Further-
more, ∆ = diag(δ1, . . . , δn), δj > 0 (for j = 1, . . . , n),
ξ = (ξ1, . . . , ξn)

′, ξj = 1−2τ
τ(1−τ) for j = 1, . . . , n,

Λ = diag(λ1, . . . , λn), λ2
j = 2

τ(1−τ) for j = 1, . . . , n,

and Ψ is a correlation matrix. Further mi = (y −
Xiβ)

′(∆Σ∆)−1(y − Xiβ), d = ξ′Σξ, and Kν is the
modified Bessel function of the third kind with index param-
eter ν = (2− n)/2.

We consider a maximum likelihood estimator (MLE). How-
ever, the log-likelihood function diverges to infinity when
y tends to Xiβ leading to serious computational issues.
This is because the Bessel function Kν(u) is propor-
tional to u−ν for u close to zero (see the Appendix of
(Kozubowski & Podgórski, 2000)). Therefore, the Bessel
function Kν(

√
(2 + d)mi) in (3) is slightly modified by

Kν(
√

(2 + d)mi + ε) for some small ε > 0.

Since the MLE can be computationally intensive for estimat-
ing high-dimensional data, we consider pseudo-likelihood
approaches (Molenberghs et al., 2011). Particularly, a pair-
wise estimator (PWE). Let S be the set of all n!/[2!(n−2)!]
vectors of length n consisting of zeros and ones, with
each vector having exactly two non-zero entries. Denote
by Y

(s)
i the subvector of Yi corresponding to the compo-

nents of s that are non-zero. The associated joint density
is fY(s)(y(s);θs). Then, the pairwise estimator maximizes
the pseudo-log-likelihood:

p`(θ) =

N∑
i=1

∑
s∈S

ϕs log fY(s)(y
(s)
i ;θ(s)),

where ϕ = {ϕs|s ∈ S}. Note that the classical log-
likelihood function is found setting ϕs = 1 if s is the vector
consisting solely of ones, and zero otherwise.

3. Quantile regression with missing data
For non-fully-likelihood-based methods, we contemplate
inverse probability weighting (IPW) methods (Robins et al.,
1994; 1995). Here, the contributions are weighted by the
inverse probability of being observed. For instance, for
univariate QR, The IPW estimator of β is:

β̂= argmin
β

n∑
i=1

ni∑
j=1

Rij
πij

ρτ (Yij −X′ijβ),

where Rij = 1 if yij is observed, Rij = 0 otherwise, and
πij is the probability of yij being observed.

For the PWE, we maximize following weighted pseudo-
likelihood function:

p`(θ) =

N∑
i=1

∑
s∈S

R
(s)
i

π
(s)
i

log fY(s)(y
(s)
i ;θ(s)),

whereRsi = 1 if the pair ysi is observed,R(s)
i = 0 otherwise,

and πsi is the probability of the pair ysi being observed.

The probabilities πij (j = 2, . . . , ni) are obtained as follows
(assuming that the first time point is always observed):
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• if the subject drops out at occasion j: πij =

pij
∏j−1
l=2 (1− pil)

• if the subject does not drop out at occasion j: πij =∏j
l=2 (1− pil) ,

with pil = P (Di = l|Di ≥ l,Yil̄,Xi) (the probability of
dropping out at occasion l given the subject is still in the
study) where Yil̄ = (Yi1, . . . , Yi(l−1))

′ is the outcome his-
tory. In practice, the probabilities pil are unknown and need
to be estimated, for example by assuming a logistic regres-
sion model using the outcome Yil̄ = (Yi1, . . . , Yi(l−1))

′

and covariates Xi as regressors.

4. Simulation study
4.1. Settings

The setting resembles longitudinal data with three measure-
ments per subjects with missing observations at the third
time. The data-generating model is:

Yij = β0 + xjβ1 + xjziβ2 + (γ0 + xjγ1 + xjziγ2)εij ,

for i = 1, . . . , N , j = 1, 2, 3, and with xj = (j − 1)/3
indicating the measurement time, and zi representing a
Bernoulli variable with sucess probability 0.5. We assume
that εi = (εi1, εi2, εi3)

′ ∼ N(0,Σ), with:

Σ =

 1 0.2 0.5
0.2 1 0.7
0.5 0.7 1

 .

We contemplate missing observations on j = 3, in which
the probability of missingness is determined by

P (Ri3 = 0) =
exp(α0 + α1Yi2 + α2zi)

1 + exp(α0 + α1Yi2 + α2zi)
,

where Rij = 0 if yij is missing, and Rij = 1 otherwise.

For the simulations, we set β = (β0, β1, β2)
′ = (4, 2, 1)′,

γ = (1, 0.414, 0), and a sample size of N = 200.

4.2. Estimators

For estimating the quantiles, we implement the following
estimators:

• UQR: the univariate quantile regression estimator. In
case of missing data, we consider the available cases
(AC), and inverse probability weighting (IPW).

• MLE: the maximum likelihood estimator based on the
MAL distribution. In case of missigness, we contem-
plate the available cases (AC).

• PWE: the pairwise estimator based on the MAL dis-
tribution. In case of missing data, we consider the
complete pairs (CP), and inverse probability weighting
(IPW).

Note that the MLE is likelihood-based. Consequently, a
bias-correction method is not required.

4.3. Results

Each scenario is simulated M = 500 datasets. Furthermore,
we analyze the estimators for estimating quantiles τ =
{0.25, 0.5, 0.9}. On each regression coefficient separately,
we compute the relative bias (RB) and the squared root of
the mean square error (SQMSE). The former is defined as:

RB(β̂j
τ
) =

1

M

M∑
k=1

β̂τjk − βj
βj

,

and the latter as:

RMSE(β̂j
τ
) =

√√√√ 1

M

M∑
k=1

(β̂τjk − βj)2

Table 1 displays the RE and SQMSE of the estimators for
each parameter and different values of τ . Considering the
full data, MLE and PWE are unbiased and more efficient
than UQR. This result is expected because these two estima-
tors take into account the association of the data. Regarding
missing data, the UQR and PWE require an IPW approach
for bias-correction. However, although there is a notice-
able reduction of the bias, the variability is large. On the
other hand, the MLE still provides unbiased estimates under
MAR.

Regarding computation time, the MLE required, on aver-
age, 15 seconds fitting the model. On the other hand, the
PWE took roughly 2 seconds. For higher dimensions, we
expect that the MLE is computationally too intensive or
even untreatable.

5. Final remarks
We considered a quantile regression model for longitudinal
data with missingness in the response. Using simulations,
we investigated the impact of correlation and missing data
on estimating the regression coefficient using different esti-
mators. The MLE based on the MAL distribution takes into
account the dependence structured of the data, and therefore,
is more efficient. However, it is computationally more inten-
sive. For this reason, a pairwise estimator is also proposed.
Since this is a non-likelihood-based method, an inverse prob-
ability weighting approach is required for bias-correction
under missingness.
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Table 1. Relative bias (in percentage) and the squared root of the
mean square error of the univariate quantile regression (UQR),
maximum likelihood estimator (MLE), pairwise estimator (PWE)
with full and missing data and different values of τ .

Relative bias (%)
UQR MLE PWE

τ parm full AC IPW full AC full CP IPW
0.25 β0 0.04 1.76 -0.19 -0.61 -0.48 -0.80 -2.87 -0.72

β1 0.00 -21.38 1.55 -1.08 -3.05 -0.24 -15.19 -0.44
β2 -1.50 -8.03 3.43 -0.58 0.46 -1.24 -8.91 0.11

0.5 β0 -0.03 1.60 -0.30 -0.09 -0.07 -0.08 -1.83 0.13
β1 0.04 -21.25 2.05 0.26 -0.09 0.16 -15.54 -0.20
β2 -1.35 -6.50 6.30 -0.91 -0.04 -1.06 -7.92 1.13

0.9 β0 -0.12 1.52 0.40 1.48 1.46 1.43 0.36 2.14
β1 0.23 -21.00 -3.96 4.63 2.68 1.18 -16.81 -4.44
β2 -0.57 -3.98 0.18 -1.31 -0.58 -0.69 -4.08 -3.02

Sqrt. mean square error
UQR MLE PWE

τ parm full AC IPW full AC full CP IPW
0.25 β0 0.08 0.10 0.09 0.08 0.08 0.08 0.13 0.10

β1 0.19 0.44 0.38 0.15 0.19 0.16 0.33 0.22
β2 0.27 0.32 0.61 0.19 0.25 0.21 0.28 0.33

0.5 β0 0.07 0.10 0.08 0.07 0.07 0.06 0.10 0.10
β1 0.17 0.47 0.43 0.13 0.17 0.13 0.35 0.24
β2 0.25 0.29 0.74 0.20 0.24 0.20 0.25 0.41

0.9 β0 0.11 0.14 0.12 0.12 0.14 0.12 0.11 0.28
β1 0.27 0.60 0.63 0.22 0.27 0.21 0.50 0.60
β2 0.35 0.40 0.92 0.20 0.26 0.25 0.28 0.72

full: full data, AC: available cases, CP: complete pairs, IPW: inverse probability weighting

Although the IPW approach corrects for biasedness, it can
be inefficient. Therefore, an augmented inverse probability
weighting (AIPW) can be considered. Here, IPW is ex-
panded by a term with contributions from individuals with
missing data into the estimating equation (Robins et al.,
1994; 1995). We expect that his class of estimators improve
efficiency. Furthermore, the statistical and computational
performance of these estimators for high-dimensional data
with a wide range of dependence structures should be evalu-
ated.
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