
Under review as submission to TMLR

Not All Tasks are Equal - Task Attended Meta-learning for
Few-shot Learning

Anonymous authors
Paper under double-blind review

Abstract

Meta-learning (ML) has emerged as a promising direction in learning models under con-1

strained resource settings like few-shot learning. The popular approaches for ML either2

learn a generalizable initial model or a generic parametric optimizer through batch episodic3

training. In this work, we study the importance of tasks in a batch for ML. We hypothesize4

that the common assumption in batch episodic training where each task in a batch has an5

equal contribution to learning an optimal meta-model need not be true. We propose to6

weight the tasks in a batch according to their “importance” in improving the meta-model’s7

learning. To this end, we introduce a training curriculum called task attended meta-training8

to learn a meta-model from weighted tasks in a batch. The task attention module is a stan-9

dalone unit and can be integrated with any batch episodic training regimen. Comparison of10

task-attended ML models with their non-task-attended counterparts on complex datasets,11

performance improvement of proposed curriculum over state-of-the-art task scheduling algo-12

rithms on noisy datasets, and cross-domain few shot learning setup validate its effectiveness.13

1 Introduction14

The ability to infer knowledge and discover complex representations from data has made deep learning models15

widely popular in the machine learning community. However, these models are data-hungry, often requiring16

large volumes of labeled data for training. Collection and annotation of such large amounts of training data17

may not be feasible for many real life applications, especially in domains that are inherently data constrained,18

like medical and satellite image classification, drug toxicity estimation, etc. Meta-learning (ML) has emerged19

as a promising direction for learning models in such settings, where only a limited amount (few-shots) of20

labeled training data is available. A typical ML algorithm employs an episodic training regimen that differs21

from the training procedure of conventional learning tasks. This episodic meta-training regimen is backed22

by the assumption that a machine learning model quickly generalizes to novel unseen data with minimal23

fine-tuning when trained and tested under similar circumstances (Vinyals et al., 2016). To facilitate such24

a generalization capacity, a meta-training phase is undertaken, where the model is trained to optimize its25

performance on several homogeneous tasks/episodes randomly sampled from a dataset. Each episode or task26

is a learning problem in itself. In the few-shot setting each task is a classification problem, a collection of K27

support (train) and Q query (test) samples corresponding to each of the N classes. Task-specific knowledge28

is learned using the support data, and meta-knowledge across the tasks is learned using query samples,29

which essentially encodes “how to learn a new task effectively.” The learned meta-knowledge is generic and30

agnostic to tasks from the same distribution. It is typically characterized in two different forms - either as an31

optimal initialization for the machine learning model or a learned parametric optimizer. Under the optimal32

initialization view, the learned meta-knowledge represents an optimal prior over the model parameters, that33

is equidistant, but close to the optimal parameters for all individual tasks. This enables the model to rapidly34

adapt to unseen tasks from the same distribution (Finn et al., 2017; Li et al., 2017; Jamal & Qi, 2019).35

Under the parametric optimizer view, meta-knowledge pertaining to the traversal of the loss surface of tasks36

is learned by the meta-optimizer. Through learning task specific and task agnostic characteristics of the loss37

surface, a parametric optimizer can thus effectively guide the base model to traverse the loss surface and38

achieve superior performance on unseen tasks from the same distribution (Ravi & Larochelle, 2017).39
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Initialization based ML approaches accumulate the meta-knowledge by simultaneously optimizing over a40

batch of tasks. On the other hand, a parametric optimizer sequentially accumulates meta-knowledge across41

individual tasks. The sequential accumulation process leads to a long oscillatory optimization trajectory42

and a bias towards the last task, limiting the parametric optimizer’s task agnostic potential. However,43

recently meta-knowledge has been accumulated in a batch mode even for the parametric optimizer (Aimen44

et al., 2021). Further, under such batch episodic training (for both initialization and optimization views), a45

common assumption in ML that the randomly sampled episodes of a batch contribute equally to improving46

the learned meta-knowledge need not hold good. Due to the latent properties of the sampled tasks in a47

batch and the model configuration, some tasks may be better aligned with the optimal meta-knowledge48

than others. We hypothesize that proportioning the contribution of a task as per its alignment towards49

the optimal meta-knowledge can improve the meta-model’s learning. This is analogous to classical machine50

learning algorithms like sample re-weighting, which however, operate at sample granularity. In re-weighting,51

samples leading to false positives are prioritized and therefore replayed. Hence, the latent properties due to52

which a sample is prioritized are explicitly defined. For complex task distributions, explicitly handcrafting53

the notion of “importance” of a task would be hard. To this end, we propose a task attended meta-training54

curriculum that employs an attention module that learns to assign weights to the tasks of a batch with55

experience. The attention module is parametrized as a neural network that takes meta-information in terms56

of the model’s performance on the tasks in a batch as input and learns to associate weights to each of the tasks57

according to their contribution in improving the meta-model. Overall, we make the following contributions,58

• We propose a task attended meta-training strategy wherein different tasks of a batch are weighted59

according to their “importance” defined by the attention module. This attention module is a stan-60

dalone unit that can be integrated into any batch episodic training regimen.61

• We extend the empirical investigation of the batch-mode parametric optimizer (MetaLSTM++) to62

complex datasets like miniImagenet, FC100, and tieredImagenet and validate its efficiency over its63

sequential counter-part (MetaLSTM).64

• We conduct extensive experiments on miniImagenet, FC100, and tieredImagenet datasets and com-65

pare ML algorithms like MAML, MetaSGD, ANIL, and MetaLSTM++ with their task-attended66

counterparts to validate the effectiveness of the task attention module and its coupling with any67

batch episodic training regimen.68

• We compare the proposed training curriculum with task-disagreement resolving approaches like69

TAML (Jamal & Qi, 2019) and conflict-averse gradient descent (Liu et al., 2021a) and validate the70

goodness of the proposed hypothesis. We extend these task-disagreement based approaches to the71

meta-learning regimen for a fair comparison.72

• We further compare task-attended curriculum with state-of-the-art task scheduling approaches and73

also show the merit of the proposed approach on the miniImagenet-noisy dataset and cross-domain74

few shot learning (CDFSL) setup.75

• We perform exhaustive empirical analysis and visual inspections to decipher the working of the task76

attention module.77

2 Related Work78

Transfer learning and meta-learning are two approaches that are commonly used to address few-shot learning79

problems. Transfer learning involves learning generalizable representations from larger datasets and models,80

and then using simple algorithms like fine-tuning to adapt to the specific task at hand. On the other81

hand, meta-learning approaches aim to find an algorithmic solution to few-shot learning. Due to their82

simplicity, transfer learning approaches scale well with larger image sizes and deeper models. In contrast,83

meta-learning approaches are memory intensive, which has become a barrier in scaling them to larger image84

sizes and deeper backbones (Dumoulin et al., 2021). Addressing the computational issues of meta-learning85

approaches and scaling them to larger support sets, deeper backbones and larger image sizes is a concurrent86

2



Under review as submission to TMLR

area of research (Bronskill et al., 2021; Shin et al., 2021). We leave the integration of our approach with87

these techniques to enhance the scalability to the future. Equipped with deeper backbones and larger88

image sizes, transfer learning approaches achieved high performances, particularly in cross-domain settings89

(Bronskill et al., 2021; Guo et al., 2020; Dhillon et al., 2019; Dumoulin et al., 2021). However, a line of90

literature (Bronskill et al., 2021) suggests meta-learning approaches may be better suited for constrained91

test settings. This is because transfer learning relies on large pre-trained feature extractors and may require92

hundreds of optimization steps and careful hyperparameter tuning to perform well (Bronskill et al., 2021;93

Kolesnikov et al., 2020). For example, Meta-dataset Transfer approach (Triantafillou et al., 2019) finetunes94

all parameters of a ResNet18 feature backbone with a cosine classifier head for 200 optimization steps.95

Similarly, BiT (Kolesnikov et al., 2020) finetunes the feature backbone with a linear head, sometimes up96

to 20,000 optimization steps, to acquire state-of-the-art performance on VTAB dataset. Further, transfer97

learning approaches require significant hyper-parameter tuning on validation sets of each downstream task98

that also adds to the cost. On the other hand, meta-learning approaches can generalize to unseen meta-test99

tasks with just a few adaptation steps and often with little or no hyperparameter tuning (Bronskill et al.,100

2021). While transfer learning may be a better choice in some contexts, meta-learning can be a practical101

option in cases where computational resources are limited or when the task needs to be adapted on the fly.102

Overall, both approaches have their own strengths and can be useful in different settings. Our work focuses103

on a resource-constrained setting, where the number of support instances and the computing available for104

meta-test adaptation are limited. As a result, our study is confined to meta-learning setups.105

ML literature is profoundly diverse and may broadly be classified into initialization (Finn et al., 2017; Li et al.,106

2017; Jamal & Qi, 2019; Raghu et al., 2020; Rusu et al., 2019; Sun et al., 2019) and optimization approaches107

(Ravi & Larochelle, 2017) depending on the metaknowledge. However, these approaches assume uniform108

contribution of tasks in learning a meta-model. In supervised learning, assigning non-uniform priorities to109

the samples is not new (Kahn & Marshall, 1953; Shrivastava et al., 2016). Self-paced learning (Kumar et al.,110

2010) and hard example mining (Shrivastava et al., 2016) have popularly been used to reweight the samples111

and various attributes like losses, gradients, and uncertainty have been used to assign priorities to samples112

(Lin et al., 2017; Zhao & Zhang, 2015; Chang et al., 2017). Zhao & Zhang (2015) introduce importance113

sampling to reduce variance and improve the convergence rate of stochastic optimization algorithms over114

uniform sampling. They theoretically prove that the reduction in the variance is possible if the sampling115

distribution depends on the norm of the gradients of the loss function. Chang et al. (2017) conclude that116

mini-batch SGD for classification is improved by emphasizing the uncertain examples. Lin et al. (2017)117

propose reshaped cross-entropy loss (focal loss) that down-weights the loss of confidently classified samples.118

Nevertheless, assigning non-uniform priorities to tasks in meta-learning is under-explored and has recently119

drawn attention (Kaddour et al., 2020; Gutierrez & Leonetti, 2020; Liu et al., 2020; Yao et al., 2021; Arnold120

et al., 2021). Gutierrez & Leonetti (2020) propose Information-Theoretic Task Selection (ITTS) algorithm121

to filter training tasks that are distinct from each other and close to the tasks of the target distribution. This122

algorithm results in a smaller pool of training tasks. A model trained on the smaller subset learns better than123

the one trained on the original set. On the other hand, Kaddour et al. (2020) propose probabilistic active124

meta-learning (PAML) that learns probabilistic task embeddings. Scores are assigned to these embeddings125

to select the next task presented to the model. These algorithms are, however, specific to meta-reinforcement126

learning (meta-RL). On the contrary, our focus is on the few shot classification problem. Liu et al. (2020)127

propose a greedy class-pair potential-based adaptive task sampling strategy wherein task selection depends128

on the difficulty of all class-pairs in a task. This sampling technique is static and operates at a class129

granularity. On the other hand, our approach is dynamic and operates at a task granularity. Assigning130

non-uniform weights to samples prevents overfitting on corrupt data points (Ren et al., 2018b; Jiang et al.,131

2018). Ren et al. (2018b) used gradient directions to re-weight the data points, and Jiang et al. (2018)132

learned a curriculum on examples using a mentor network. However, these approaches assume availability133

of abundant labeled data. Yao et al. (2021) extend Jiang et al. (2018) to the few-shot learning setup. They134

propose an adaptive task scheduler (ATS) to predict the sampling probability of tasks from a candidate135

pool containing a subset of tasks sampled from the original (noisy or imbalanced) task distribution (similar136

to (Jiang et al., 2018). Thus, the sampling probabilities of the tasks are (approximately) global. Another137

global task sampling approach is Uniform Sampling (Arnold et al., 2021), built on the premise that task138

difficulty (defined as the negative log-likelihood of the model on the task) approximately follows a normal139
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distribution and is transferred across model parameters during training. They also find sampling uniformly140

over episode difficulty outperforms other sampling schemes like curriculum, easy and hard mining. Our141

work is different from these approaches (ATS and Uniform Sampling) as we do not propose a global task142

sampling strategy but a dynamic task-batch re-weighting mechanism for the current meta-model update.143

We hypothesize that the task’s importance depends on the data contained in it and the current meta-144

model’s configuration. For example, in the initial stage of the meta-models training, coarse-grained tasks145

(tasks composed of semantically distinct classes) may have higher importance than fine-grained tasks (tasks146

composed of comparable classes), while this behavior may reverse as the training progresses. Further,147

our approach differs from Uniform Sampling in the definition of task difficulty, i.e., we neither explicitly148

handcraft the notion of task difficulty nor assume a normal distribution over it. Instead, we let an attention149

network learn the suitable weights for the tasks in a batch. Although ATS also dynamically learns the task150

sampling priority, it maintains a candidate pool to satisfy the global task priority criteria, causing overhead.151

Further, it performs an additional warm start to the scheduler, utilizes more task batches in a run, and uses152

REINFORCE for reward estimation; therefore, it is more expensive than the proposed approach. Contrary153

to our idea is TAML (Jamal & Qi, 2019) - a meta-training curriculum that enforces equity across the tasks in154

a batch. We show that weighting the tasks according to their “importance” and hence utilizing the diversity155

present in a batch given the meta-model’s current configuration offers better performance than enforcing156

equity in a batch of tasks.157

3 Preliminary158

In a typical ML setting, the principal dataset D is divided into disjoint meta-sets M (meta-train set),159

Mv (meta-validation set) and Mt (meta-test set) for training the model, tuning its hyperparameters and160

evaluating its performance, respectively. Every meta-set is a collection of tasks T drawn from the joint161

task distribution P (T ) where each task Ti consists of support set Di = {(xc
k, yc

k)K
k=1}N

c=1 and query set162

D∗
i = {(x∗c

q , y∗c
q )Q

q=1}N
c=1. Here (x, y) represents a (sample, label) pair and N is the number of classes, K and163

Q are the number of samples belonging to each class in the support and query set, respectively. According164

to support-query characterization M, Mv and Mt could be represented as {(Di, D∗
i )}M

i=1, {(Di, D∗
i )}R

i=1,165

{(Di, D∗
i )}S

i=1 where M, R and S are the total number of tasks in M, Mv and Mt respectively. During166

meta-training, meta-model θ is adapted on Di of all tasks in a batch {Ti}B
i=1 of size B, T times to obtain ϕT

i .167

The adaptation occurs through gradient descent or parametric update on the train loss L using learning rate168

α. The adapted model ϕT
i is then evaluated on D∗

i to obtain test loss L∗, which along with learning rate β,169

is used to update θ. The output of this episodic training is either an optimal prior or a parametric optimizer,170

both aiming to facilitate the rapid adaptation of the model on unseen tasks from Mt. The detailed note on171

initialization and optimization approaches is deferred to the supplementary material.172

4 Task Attention in Meta-learning173

A common assumption under the batch-wise episodic training regimen adopted by ML is that each task in a174

batch has an equal contribution in improving the learned meta-knowledge. However, this need not always be175

true. It is likely that given the current configuration of the meta-model, some tasks may be more important176

for the meta-model’s learning. A contributing factor to this difference is that tasks sampled from complex177

data distributions can be profoundly diverse. The diversity and latent properties of the tasks coupled with178

the model configuration may induce some tasks to be better aligned with the optimal meta-knowledge than179

others. The challenging aspect in the meta-learning setting is to define the “importance” and associate180

weights to the tasks of a batch proportional to their contribution to improving the meta-knowledge. As181

human beings, we learn to associate importance to events subjective to meta-information about the events182

and prior experience. This motivates us to define a learnable module that can map the meta-information of183

tasks to their importance weights.184
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Figure 1: Computational Graph of the forward pass of the meta-model using task attended meta-training
curriculum. The output of this procedure is a meta-model θn. Gradients are propagated through solid lines
and restricted through dashed lines.

4.1 Characteristics of Meta-Information185

Given a task-batch {Ti}B
i=1, the task attention module takes as input meta-information about each task (Ti)186

in the batch, defined as the four tuple below:187

I =
{ (

||∇ϕT
i

L∗(ϕT
i )||, L∗(ϕT

i ), A∗(ϕT
i ), L∗(ϕT

i )
L∗(ϕ0

i )

) }B

i=1
(1)

where corresponding to each task i in the batch ||∇ϕT
i

L∗(ϕT
i )|| denotes the norm of gradient, L∗(ϕT

i ) and188

A∗(ϕT
i ) are the test loss and accuracy of the adapted model respectively, and L∗(ϕT

i )
L∗(ϕ0

i ) is the ratio of the189

model’s test loss post and prior adaptation.190

4.1.1 Gradient Norm191

Let P =
{

ϕT
i

}B

i=1 be the parameters of the models obtained after adapting the initial model (for192

T iterations) on the support data {Di}B
i=1 of tasks {Ti}B

i=1. Also, let G =
{
∇ϕT

i
L∗(ϕT

i )
}B

i=1
be193

the gradients of the adapted model parameters w.r.t the query losses {L∗(ϕT
i )}B

i=1. The gradient194

norm
{
||∇ϕT

i
L∗(ϕT

i )||
}B

i=1
is the L2 norm of the gradients and quantifies the magnitude of the con-195

solidated displacement of the adapted model parameters during a gradient descent update on query196

data. Larger gradient norm on query dataset could indicate that the model has either not learned197

the support set or has overfitted. Hence the model is not generalizable on query set compared to the198

models with low gradient norm. Gradient norm, therefore, carries information about the convergence199

and generalizability of the adapted models which has been theoretically studied in (Li et al., 2019).200
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Algorithm 1: Task Attended Meta-Training
Input:
Dataset: M = {Di, D∗

i }M
i=1

Models: Meta-model θ, Base-model ϕ, Att-module δ
Learning-rates: α, β, γ
Parameters: Iterations niter, Batch-size B,

Adaptation-steps T
Output: Meta-model θ

1 Initialization: θ, δ ← Random Initialization
2 for iteration in niter do
3 {Ti}B

i=1 = {Di, D∗
i }B

i=1 ← Sample task-batch(M)
4 for all Ti do
5 ϕ0

i ← θ

6 L∗(ϕ0
i ), _← evaluate(ϕ0

i , D∗
i ) ▷ Compute loss

and accuracy of input model on given dataset.
7 ϕT

i = adapt(ϕ0
i , Di)

8 L∗(ϕT
i ), A∗(ϕT

i )← evaluate(ϕT
i , D∗

i )
9 end

10 [wi]Bi=1 ← Att_module([
L∗(ϕT

i )
L∗(ϕ0

i ) , A∗(ϕT
i ), ||∇ϕT

i
L∗(ϕT

i )||, L∗(ϕT
i )
]B

i=1

)
11 θ ← θ − β∇θ

∑B
i=1 wiL

∗(ϕT
i )

12 {Dj , D∗
j }B

j=1 ← Sample task-batch(M)
13 for all Tj do
14 ϕ0

j ← θ

15 ϕT
j = adapt(ϕ0

j , Dj)
16 end
17 δ ← δ − γ∇δ

∑B
j=1 L∗(ϕT

j )
18 end
19 Return θ
20 Function adapt(ϕt

i, Di):
21 θ ← ϕt

i

22 if θ is optimal-initialization then
23 for t=1 to T do
24 ϕt+1

i ← ϕt
i − α∇ϕt

i
L(ϕt

i)
25 end
26 end
27 else if θ is parametric-optimizer then
28 for t=1 to T do
29 ϕt+1

i ← θ
(

L(ϕt
i),∇ϕt

i
L(ϕt

i)
)

▷ Parameter
updates given by cell state of θ.

30 end
31 end
32 Return ϕT

i

201 4.1.2 Test Loss202

{L∗(ϕT
i )}B

i=1 represents the empirical error (cross203

entropy loss) of the adapted base models on204

unseen query instances and hence characterizes205

their generalizability. Unlike gradient norm,206

which characterizes the generalizability in pa-207

rameter space, query loss quantifies generaliz-208

ability in the output space as the divergence be-209

tween the real and predicted probability distri-210

butions. As {L∗(ϕT
i )}B

i=1 is a key component in211

the meta-update equation, it is an important fac-212

tor influencing the meta-model’s learning. Fur-213

ther, test errors of classes have been widely used214

to determine their “easy or hardness” (Bengio215

et al., 2009; Liu et al., 2021b; Arnold et al.,216

2021). Thus {L∗(ϕT
i )}B

i=1 acquaints the atten-217

tion module with the generalizability aspect of218

task models and their influence in updating the219

meta-model.220

4.1.3 Test Accuracy221

{A∗(ϕT
i )}B

i=1 corresponds to the accuracies of222

{ϕT
i }B

i=1 on {D∗
i }B

i=1 scaled in the range [0,1].223

A∗(ϕT
i ) evaluates the thresholded predictions224

(predicted labels) unlike L∗(ϕT
i ), which evaluates225

the confidence of the model’s predictions on the226

true class labels. Two task models may predict227

the same class labels but differ in the confidence228

of the predictions. In such scenarios, neither loss229

nor accuracy is individually sufficient to compre-230

hend this relationship among the tasks. So, the231

combination of these two entities is more reflec-232

tive of the nature of the learned task models.233

4.1.4 Loss-ratio234

Let L∗(ϕ0
i ) be the loss of θ on the D∗

i , and L∗(ϕT
i )235

be the loss of the adapted model ϕT
i on D∗

i . The236

loss-ratio L∗(ϕT
i )

L∗(ϕ0
i ) is representative of the relative237

progress of a meta-model on each task. Higher238

values (> 1) of the loss-ratio suggests adapting θ239

to Di has an adverse effect on generalizing it to240

D∗
i (negative impact), while lower values (< 1)241

of the loss-ratio indicates the benefit of adapta-242

tion of θ on Di (positive impact). Loss-ratio of243

exactly one signifies adaptation attributes to no additional benefit (neutral impact). Therefore, loss-ratio244

provides information regarding the impact of adaptation on each task for a given meta-model.245

4.2 Task Attention Module246

We learn a task attention module parameterized by δ, which attends to the tasks that contribute more to247

the model’s learning i.e., the objective of the task attention module is to learn the relative importance of248
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each task in the batch for the meta-model’s learning. Thus the output of the module is a B−dimensional249

vector w = [w1, . . . , wB ], (
∑B

i=1 wi = 1 and ∀Ti, wi ≥ 0) quantifying the attention-score (weight - wi) for250

each task. The attention vector w is multiplied with the corresponding task losses of the adapted models251

L∗(ϕT
i ) on the held-out datasets D∗

i to update the meta-model θ:252

θt+1 ← θt − β∇θt

B∑
i=1

wiL
∗(ϕT

i ) (2)

After the meta-model is updated using the weighted task losses, we evaluate the goodness of the generated253

attention weights. We sample a new batch of tasks {Dj , D∗
j }B

j=1 and adapt a base-model ϕj using the254

updated meta-model θt+1 on the train data {Dj} of each task. The mean test-loss of the adapted models255

{ϕT
j }B

j=1 reflect the goodness of the weights assigned by the attention-module in the previous iteration. The256

attention module δ is thus updated using the gradients flowing back into it w.r.t to this mean test-loss. The257

attention network is trained simultaneously with the meta-model in an end to end fashion using the update258

rule:259

δt+1 ← δt − γ∇δt

B∑
j=1

L∗(ϕT
j ) (3)

where ϕT
j is adapted from θt+1 and γ is the learning rate.260

4.3 Task Attended Meta-Training Algorithm261

We demonstrate the meta-training curriculum using the proposed task attention in Figure 1 and formally262

summarize it in Algorithm 1. The detailed explanation is presented in Figure 7 in the appendix. As with263

the classical meta-training process, we first sample a batch of tasks from the task distribution. For each task264

Ti, we adapt the base-model ϕi using the train data Di for T time-steps (line 7 and lines 20-32 in Algorithm265

1). Specifically, for initialization approaches, adaptation is performed by gradient descent on train loss L266

(lines 22-26 in Algorithm 1). However, for optimization approaches, current loss and gradients are inputted267

to the meta-model θ, which outputs the updated base-model parameters (lines 27-31 in Algorithm 1). Then268

we compute the meta-information about the adapted model corresponding to each task. It comprises of269

the loss L∗(ϕT
i ), accuracy A∗(ϕT

i ), loss-ratio L∗(ϕT
i )

L∗(ϕ0
i ) and gradient norm ||∇ϕT

i
L∗(ϕT

i )|| on the test data D∗
i .270

This meta-information corresponding to each task in a batch is given as input to the task attention module271

(Figure 1 - Label: 2 ) which outputs the attention vector (line 10 in Algorithm 1). The attention vector272

and test losses {L∗(ϕT
i )}B

i=1 are used to update meta-model parameters θ according to equation 2 (line 11 in273

Algorithm 1, Figure 1 - Label: 4 ). We sample a new batch of tasks {Dj , D∗
j }B

j=1 and adapt the base-models274

{ϕT
j }B

j=1 using the updated meta-model (lines 12-16 in Algorithm 1, Figure 1 - Label: 5 ). We compute the275

mean test loss over the adapted base-models {L∗(ϕT
j )}B

j=1, which is then used to update the parameters of276

the task attention module δ according to equation 3 (line 17 in Algorithm 1, Figure 1 - Label: 6 ).277

The attention network is designed as a stand-alone module to learn the mapping from the meta-information
space to the importance of tasks in a batch. The meta-model is learned according to equation 2 and aims
to minimize the weighted loss. It is important to decouple the learning of the attention network from that
of the meta-model. If there is information flow from the task attention module to the meta-model, the
latter may reduce its weighted loss by learning an initialization that is suboptimal, but for which the task
attention network assigns lower weights. This would introduce an undesirable bias to the learning process.
To circumvent this bias, we restrict the flow of gradients to the meta-model θ through the task attention
module δ by enforcing ∇θwiL

∗(ϕT
i ) = wi∇θL∗(ϕT

i ) i.e., ∇θwi is not computed. Also, gradients flowing
through the attention network to the meta-model create additional computational overhead. Specifically,
the term ∇θ

∑
i

wiL
∗(ϕT

i ) from equation 2 can be expanded as follows -

∇θ

∑
i

wiL
∗(ϕT

i ) =
∑

i

∇θwiL
∗(ϕT

i ) =
∑

i

wi∇θL∗(ϕT
i )︸ ︷︷ ︸

Term 1

+
∑

i

L∗(ϕT
i )∇θwi︸ ︷︷ ︸

Term 2
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The ∇θwi in Term 2 is computationally expensive as ∇θwi = ∇δwi.∇Iδ.∇ϕI.∇θϕ. Restricting the gradient278

flow avoids these additional computations. We also note that the meta-model and attention network are279

updated only once during each training iteration, although on different batches of tasks.280

5 Experiments and Results281

We conduct experiments to demonstrate the merit of the task-attention across multiple datasets, training282

setups, and learning paradigms. We verify that the proposed regimen could be integrated with various283

ML approaches like MAML, MetaSGD, MetaLSTM++, and ANIL and further show its superiority over284

state-of-the-art task-scheduling and conflict-resolving approaches. We also analyze the attention network.285

5.1 Dataset and Implementation Details286

Figure 2: Architecture of Task-attention module.

In line with the state-of-the-art literature (Sun et al.,287

2020; Arnold et al., 2021), we use miniImagenet, FC100,288

and tieredImagenet for evaluating the effectiveness of the289

proposed attention module as they are more challenging290

datasets comprising of highly diverse tasks. We also test291

the efficacy of the proposed approach on noisy dataset292

(miniImagenet-noisy), and under cross-domain few shot293

learning (CDFSL) miniImagenet → CUB-200 and mini-294

Imagenet→ FGVC-Aircrafts datasets. The details of the295

datasets are presented in the supplementary material.296

We use a 4-layer CNN from (Finn et al., 2017) as a base297

model and a two-layer LSTM (Ravi & Larochelle, 2017)298

for the parametric optimizer. The architecture of the299

task-attention module is illustrated in Figure 2 and de-300

scribed as follows.The task attention module is implemented as a 4-layer neural network. The first layer301

performs a 1×1 convolution over the input (meta-information) of size B×4 where B denotes the meta-batch302

size, producing a vector of size B×1 as output. This vector is then passed through two fully connected303

layers with 32 hidden nodes, each followed by a ReLU activation. This output is then passed through a fully304

connected layer with B nodes, followed by a softmax activation to produce the normalized attention weights.305

Table 1: Comparison of few-shot classification performance of MAML and
TA-MAML on miniImagenet dataset with meta-batch size 4 and 6 and
8 for 5 and 10 way (1 and 5 shot) settings. The ± represents the 95%
confidence intervals over 300 tasks. Algorithms denoted by * are rerun
on their optimal hyper-parameters on our experimental setup. We observe
that TA-MAML consistently performs better than MAML, and an increase
in the tasks in a batch improves the performance of both MAML and TA-
MAML.

Test Accuracy (%) on miniImagenet

5 Way 10 Way

Model 1 Shot 5 Shot 1 Shot 5 Shot

Batch Size 4

MAML∗ 46.10 ± 0.19 60.16 ± 0.17 29.42 ± 0.11 41.98 ± 0.10
TA-MAML∗ 48.36 ± 0.23 62.48 ± 0.18 31.15± 0.11 43.70 ± 0.09

Batch Size 6

MAML∗ 47.72 ± 1.041 63.45 ± 1.083 31.55 ± 0.626 46.27 ± 0.64
TA-MAML∗ 49.14 ± 1.211 65.26 ± 0.956 32.62± 0.635 46.67 ± 0.63

Batch Size 8

MAML∗ 47.68±1.20 63.81±0.98 31.54±0.66 46.15±0.58
TA-MAML∗ 50.35±1.22 65.69±1.08 32.00±0.68 48.33±0.63

We perform a grid search over306

30 different configurations for307

5000 iterations to find the opti-308

mal hyper-parameters for each309

setting. The search space is310

shared across all meta-training311

algorithms and datasets. The312

meta, base and attention model313

learning rates are sampled314

from a log uniform distribu-315

tion in the ranges
[
1e−4, 1e−2],316 [

1e−2, 5e−1] and
[
1e−4, 1e−2]

317

respectively (see appendix for318

more details). The hyperpa-319

rameter λ for TAML (Theil)320

is sampled from a log uniform321

distribution over the range of322 [
1e−2, 1

]
. For CA-MAML, c is323

set as 0.5. The meta-batch size324

is set to 4 for all settings (Finn325

et al., 2017; Jamal & Qi, 2019).326
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However, we study its impact in Table 1. All models were trained for 55000 iterations (early stopping was327

employed for tieredImagenet) using the optimal set of hyper-parameters using an Adam optimizer (Kingma328

& Ba, 2015). All the experimental results and comparisons correspond to our re-implementation of the ML329

algorithms integrated into learn2learn library (Arnold et al., 2020) to ensure fairness and uniformity. We330

believe that integrating the proposed attention module and additional ML algorithms into the learn2learn331

library will benefit the ML community. We perform individual hyperparameter tuning for all the models332

over the same hyperparameter space to ensure a fair comparison. The source code is publicly available.1333

The literature reports significant variations in the meta-test performances of various ML approaches (Table334

7 in supplementary material). The reported average meta-test accuracies of MAML on the miniImagenet335

dataset range from 46.47 % to 48.70 % (55.16% to 64.39%) for 5 way 1 shot (5 shot) settings. A careful336

analysis reveals the different experimental setups resulting in the observed variation. Experimental setups337

(Finn et al., 2017; Oreshkin et al., 2018; Oh et al., 2020) differ in the number of examples per class in the338

query set, the number of gradient descent steps in the inner loop, meta-batch size, inductive or transductive339

batch normalization, etc. We conduct two sets of experiments to test the proposed task attention model’s340

efficacy in a fair manner. The first set of experiments use the train and test setups reported in the literature341

(denoted using #). The second set uses our setup (denoted using ∗) that has the same train and test342

conditions. Specifically, we set the query examples per class to 15 and gradient steps to 5 for both the meta-343

train and meta-test phases. However, for 10 way 5 shot setting, we use only 2 gradient steps to reduce the344

computational burden. More query examples per class (15) during the meta-test provide a robust estimate of345

the model’s generalizability. Further, setting gradient steps to 5 (or 2) better evaluates the quick adaptation346

capabilities of a learned prior.347

5.2 Influence of Task Attention on Meta-Training348

As task-attention (TA) is a standalone module, it can be integrated with any batch episodic training reg-349

imen. We, therefore, use MetaLSTM++ (batch mode of MetaLSTM) for our experiments. In (Aimen350

et al., 2021), authors demonstrated the merit of MetaLSTM++ on MetaLSTM only on Omniglot dataset.351

We extend upon this empirical investigation by comparing the performance of MetaLSTM and MetaL-352

STM++ on complex datasets like miniImagenet, FC100, and tieredImagenet (Table 2). It is evident353

from the results that batch-wise episodic training is more effective than sequential episodic training.354

MAML∗

m
in

iI
m

ag
en

et

MetaSGD∗ MetaLSTM++∗

ti
er

ed
Im

ag
en

et

Figure 3: Mean validation accuracies of MAML∗ (Col-1), MetaSGD∗ (Col-2) and
MetaLSTM++∗ (Col-3) across 300 tasks with/without attention on 5 way 1 shot
setting on miniImagenet (Row-1) and tieredImagenet (Row-2) datasets.

We also investigate the355

performance of models356

trained with the TA357

meta-training regimen358

with their non-TA coun-359

terparts on both (our360

and reported - wher-361

ever available) setups.362

Specifically, we compare363

MAML, MetaSGD,364

MetaLSTM++, and365

ANIL with their task-366

attended versions on 5367

and 10 way (1 and 5368

shot) settings on mini-369

Imagenet, FC100, and370

tieredImagenet datasets371

and report the results372

in Table 2. We consider373

300 meta-test tasks for374

all approaches unless375

specified otherwise. For376

1https://github.com/taskattention/task-attended-metalearning.git
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Table 2: Comparison of few-shot classification performance of vanilla ML algorithms with their task attended
versions on miniImagenet, FC100 and tieredImagenet datasets for 5 and 10 way (1 and 5 shot) settings. The
± represents the 95% confidence intervals over 300 tasks. Algorithms denoted by * and # are rerun on
using the optimal hyper-parameters on our and reported experimental setups, respectively. Attention-based
ML algorithms perform better than their corresponding vanilla approaches across all the settings. Further,
MetaLSTM++ and TA-MAML perform better than MetaLSTM and TAML (and CA-MAML) , respectively,
across all settings and datasets.

Test Accuracy (%)

5 Way 10 Way

Model 1 Shot 5 Shot 1 Shot 5 Shot

miniImagenet

MAML#(Finn et al., 2017) 48.07 ± 1.75 63.15 ± 0.91 - -
CA-MAML#(Liu et al., 2021a) 47.86 ± 2.50 64.27 ± 1.26 - -
TAML#(Jamal & Qi, 2019) 51.77 ± 1.86 65.6 ± 0.93 - -
TA-MAML# 53.80 ± 1.85 66.11 ± 0.11 - -

MAML∗ 46.10 ± 0.19 60.16 ± 0.17 29.42 ± 0.11 41.98 ± 0.10
TAML∗ 46.26 ± 0.21 53.40 ± 0.14 29.76 ± 0.11 36.88 ± 0.10
TA-MAML∗ 48.36 ± 0.23 62.48 ± 0.18 31.15± 0.11 43.70 ± 0.09

MetaSGD# (Li et al., 2017) 50.47 ± 1.87 64.03 ± 0.94 - -
TA-MetaSGD# 52.60 ± 0.25 67.54 ± 0.12 - -

MetaSGD∗ 47.65± 0.21 61.60 ± 0.17 30.09± 0.10 42.22 ± 0.11
TA-MetaSGD∗ 49.28 ± 0.20 63.37 ± 0.16 31.50± 0.11 44.06 ± 0.10

MetaLSTM∗ 41.48 ± 1.02 58.87 ± 0.94 28.62 ± 0.64 44.03 ± 0.69
MetaLSTM++∗ 48.00 ± 0.19 62.73 ± 0.17 31.16 ± 0.09 45.46 ± 0.10
TA-MetaLSTM++∗ 49.18 ± 0.17 64.89 ± 0.16 32.07± 0.11 46.66 ± 0.09

ANIL#(Raghu et al., 2020) 46.7 ± 0.4 61.5 ± 0.5 - -
TA-ANIL# 49.53 ± 0.41 63.73 ± 0.33 - -

ANIL∗ 46.92 ± 0.62 58.68 ± 0.54 28.84 ± 0.34 40.95 ± 0.32
TA-ANIL∗ 48.84 ± 0.62 60.80± 0.55 31.14± 0.34 42.52 ± 0.34

FC100

MAML∗ 36.40 ± 0.38 46.76±0.21 23.93±0.14 31.14 ± 0.07
TAML∗ 38.00 ± 0.26 48.05± 0.13 21.60± 0.14 33.19± 0.07
TA-MAML∗ 39.86± 0.25 49.56 ± 0.13 25.46± 0.15 36.06± 0.08

MetaSGD∗ 33.46 ± 0.23 43.96± 0.13 21.40±0.15 30.59± 0.07
TA-MetaSGD∗ 35.66±0.25 49.49± 0.12 23.80±0.15 32.08±0.07

MetaLSTM∗ 37.20 ± 0.26 47.89 ± 0.13 21.70 ± 0.14 32.11 ± 0.07
MetaLSTM++∗ 38.60 ±0.23 49.82 ± 0.12 22.80 ± 0.14 33.46 ± 0.08
TA-MetaLSTM++∗ 41.53 ±0.28 51.17 ±0.13 25.33 ±0.15 34.18 ±0.08

ANIL∗ 34.08 ± 1.29 44.74 ± 0.68 20.65 ± 0.77 27.93 ± 0.42
TA-ANIL∗ 38.06 ± 1.26 46.94± 0.69 23.27± 0.79 28.29 ± 0.40

tieredImagenet

MAML#(Oh et al., 2020) 47.44 ± 0.18 64.70 ± 0.14 - -
TA-MAML# 51.90 ± 0.19 69.43± 0.18 - -

MAML∗ 44.40 ± 0.49 57.07 ± 0.22 27.40 ± 0.25 34.30 ± 0.14
TAML∗ 46.40 ± 0.40 56.80 ± 0.23 26.40 ± 0.25 34.40 ± 0.15
TA-MAML∗ 48.40 ± 0.46 60.40 ± 0.25 31.00± 0.26 37.60± 0.15

MetaSGD∗ 52.80 ± 0.44 62.35 ± 0.26 31.90 ± 0.27 44.16 ± 0.15
TA-MetaSGD∗ 56.20 ± 0.45 64.56 ± 0.24 33.20± 0.29 47.12 ± 0.16

MetaLSTM∗ 37.00 ± 0.44 59.83 ± 0.25 29.80 ± 0.28 39.28 ± 0.13
MetaLSTM++∗ 47.60 ± 0.49 63.24 ± 0.25 30.70 ± 0.27 47.97 ± 0.16
TA-MetaLSTM++∗ 49.00 ± 0.44 66.15 ± 0.23 32.10± 0.27 51.35 ± 0.17

ANIL∗ 45.08 ± 1.37 59.71 ±0.77 29.32 ± 0.83 42.76 ± 0.50
TA-ANIL∗ 45.96 ± 1.32 60.96± 0.72 32.68± 0.92 47.56 ± 0.51
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ANIL and its task-attended counterpart, we consider 1000 testing tasks. From Table 2, we observe that377

models trained with TA regimen generalize better to the unseen meta-test tasks than their non-task-attended378

versions across all the settings in all datasets. Note that the proposed task attention mechanism aims not379

to surpass the state-of-the-art meta-learning algorithms but provides new insight into the batch episodic380

meta-training regimen, which as per our knowledge, is common to all meta-learning algorithms.381

We also compare the performance of TA-MAML against TAML - a meta-training regimen that forces the382

meta-model to be equally close to all the tasks. The results, as presented in Table 2, suggest that TA-MAML383

performs better than TAML on all benchmarks across all settings. Note that both TAML and TA-MAML384

are approaches that built upon MAML to address the inequality/diversity of tasks in a batch. Our aim is385

thus to compare TAML and TA-MAML and not to assess the efficacy of TAML when meta-trained using386

task attention. Liu et al. (2021a) proposed an optimization method to neutralize conflicts of an average387

model with individual tasks in a multi-task learning setup. Specifically, they find an optimal update vector388

that lies in the proximity of the average gradient across the batch of the tasks without conflicting with any389

task gradient. This method is similar to (Jamal & Qi, 2019) in a meta-learning setup, which constrains390

the losses of tasks towards the average loss on a task batch. As the update vector is constrained to be391

close to the average gradient vector on a task batch, information flow from certain useful tasks to the meta-392

model may decrease. We note that we extend (Liu et al., 2021a) to a meta-learning setup by computing393

the average and weighted average gradients on query loss of the adapted models instead of a model from394

the previous iteration (as in a multi-task setup). Table 2 demonstrates that the proposed attention mech-395

anism has better generalizability to unseen tasks than conflict-averse gradient descent adapted for a meta-396

learning setup (CA-MAML). Our approach utilizes a non-linear model to extract knowledge from multiple397

meta-information components to learn the weights, which helps it to outperform TAML and CA-MAML.398

Table 3: Comparison (Test Accuracy (%)) of task at-
tention with GCP, ATS and Uniform Sampling for
MAML and MetaSGD (or ANIL) on miniImagenet
dataset and various sampling techniques for ANIL on
the miniImagenet-noisy dataset for 5 way 1 and 5 shot
settings. For miniImagenet, algorithms denoted by *
and # are rerun on the optimal hyper-parameters on
our and reported experimental setups, respectively.

5 Way
Model 1 Shot 5 Shot

miniImagenet

MAML with GCP# 46.92 ± 0.83 63.28 ± 0.66
MAML with ATS# 47.89 ± 0.77 64.07 ± 0.70
MAML+UNIFORM (Offline)# 46.67 ± 0.63 62.09 ± 0.55
MAML+UNIFORM (Online)# 46.70 ± 0.61 61.62 ± 0.54
TA-MAML∗ (Ours) 48.36 ± 0.23 62.48 ± 0.18
TA-MAML# (Ours) 53.80 ± 1.85 66.11 ± 0.11

MetaSGD with GCP# 47.77 ± 0.75 63.50 ± 0.71
MetaSGD with ATS# 48.59 ± 0.79 64.79 ± 0.74
TA-MetaSGD∗ (Ours) 49.28 ± 0.20 63.37± 0.16
TA-MetaSGD# (Ours) 52.60 ± 0.25 67.54 ± 0.12

ANIL+UNIFORM (Offline)# 46.93 ± 0.62 62.75 ± 0.60
ANIL+UNIFORM (Online)# 46.82 ± 0.63 62.63 ± 0.59
TA-ANIL∗ (Ours) 48.84 ± 0.62 60.80± 0.55
TA-ANIL#(Ours) 49.53 ± 0.41 63.73 ± 0.33

miniImagenet-noisy

Uniform 41.67 ± 0.80 55.80 ± 0.71
SPL 42.13 ± 0.79 56.19 ± 0.70
Focal Loss 41.91 ± 0.78 53.58 ± 0.75
GCP 41.86 ± 0.75 54.63 ± 0.72
PAML 41.49 ± 0.74 52.45 ± 0.69
DAML 41.26 ± 0.73 55.46 ± 0.70
ATS 44.21 ± 0.76 59.50 ± 0.71
TA-ANIL∗ (Ours) 45.17 ± 0.23 62.15 ± 1.01

399

We investigate the influence of the TA meta-400

training regimen on the model’s convergence by401

analyzing the trend of the model’s validation ac-402

curacy over iterations. Figure 3 depicts the mean403

validation accuracy over 300 tasks on miniImagenet404

and tieredImagenet datasets for a 5 way 1 shot set-405

ting across training iterations. We observe that406

the models meta-trained with TA regimen tend to407

achieve higher/at-par performance in fewer itera-408

tions than the corresponding models meta-trained409

with the non-TA regimen.410

5.3 Comparison with Sampling Approaches411

We compare our proposed approach with ATS (Yao412

et al., 2021) and uniform sampling (Arnold et al.,413

2021) and demonstrate that our weighting mecha-414

nism imparts better generalizability to the meta-415

model than the global weighting of the tasks.416

Yao et al. (2021) ascertained the merit of ATS417

over Greedy class-pair (GCP) technique (Liu et al.,418

2020) on miniImagenet dataset. We extend this419

comparison and show in Table 3 that the pro-420

posed approach performs better than state-of-the-421

art ATS and GCP in both 1 and 5 shot settings.422

We also observe that the TA mechanism performs423

better than uniform sampling on the miniImagenet424

dataset on 1 and 5 shot settings for MAML and425

ANIL. ATS has been designed for noisy and im-426

balanced task distributions. So, we compare the427
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proposed approach with GCP, ATS, and other sampling techniques on the miniImagenet-noisy dataset (Yao428

et al., 2021) and report the results in Table 3. We observe that task attention outperforms all scheduling429

algorithms on the miniImagenet-noisy dataset. As ATS is the most competitive baseline for the proposed430

method on the miniImagenet-noisy dataset, we compare the TA-ANIL and ATS on varying noise ratios for431

the miniImagenet dataset on 5 way 1 shot setting (Table 4). We observe that the proposed method outper-432

forms ATS on all noise ratios except 0.8. Note that the algorithm used for all sampling approaches is ANIL.433

5.4 Effectiveness of Task Attention in CDFSL setup434

Table 4: Comparative analysis of ANIL integrated with ATS and proposed
method on miniImagenet dataset with varying noise ratios for 5 way 1 shot
setting. BNS is the best non-adaptive scheduler.

Test Accuracy (%) on miniImagenet-noisy

Noise ratio 0.2 0.4 0.6 0.8

ANIL with Uniform 43.46 ± 0.82 42.92 ± 0.78 41.67 ± 0.80 36.53 ± 0.73
ANIL with BNS 44.04 ± 0.81 43.36 ± 0.75 42.13 ± 0.79 38.21 ± 0.75
ANIL with ATS 45.55 ± 0.80 44.50 ± 0.86 44.21 ± 0.76 42.18 ± 0.73
TA-ANIL∗ (Ours) 47.98 ± 0.26 46.69 ± 0.22 45.17 ± 0.23 40.35 ± 1.14

Classical meta-learning ap-435

proaches assume meta-train436

and meta-test data belong to437

the same distribution such438

that the meta-trained model439

extends its knowledge to the440

meta-test set. This is, how-441

ever, not always the case. The442

difference in the data acquisi-443

tion techniques, or evolution444

of data with time, may cause a discrepancy between the meta-train and meta-test distributions. This445

realistic setting is popularly termed as cross-domain few-shot learning (CDFSL) (Guo et al., 2020).446

We conducted experiments to show the merit of the proposed approach in CDFSL setup. Specifically,447

we train a model using a TA meta-training regimen on the miniImagenet dataset and meta-test it on448

CUB-200, FGVC-Aircraft, Describable Textures, and Omniglot datasets from Metadataset (Triantafil-449

lou et al., 2019). The results reported for 5 way 1 and 5 shot settings in Table 5 indicate that the450

proposed approach outperforms the state-of-the-art task scheduling approach (Uniform Sampling - wher-451

ever applicable) or non-task-attended counterparts (for Omniglot) on CDFSL setup by a large margin.452

Table 5: Comparative analysis of proposed approach (TA-MAML) and uniform
sampling (Arnold et al., 2021) (or non-task attended counterpart (MAML)) in a
CDFSL setting after training on miniImagenet dataset and tested on Metadataset
and VTAB datasets for 5 way 1 and 5 shot settings.

5 Way 5 Way
Model 1 Shot 5 Shot 1 Shot 5 Shot

Metadataset

CUB-200 FGVC-Aircraft
MAML+ UNIFORM (Online)# 35.84 ± 0.54 46.67 ± 0.55 26.62 ± 0.39 34.41 ± 0.44
TA-MAML# (Ours) 42.87 ± 1.18 57.49 ± 0.99 29.42 ± 0.78 36.34 ± 0.86

Describable Textures
MAML+ UNIFORM (Online)# 31.84 ± 0.49 40.81 ± 0.44
TA-MAML# (Ours) 31.98 ± 0.98 44.39 ± 0.79

Omniglot
MAML# 72.40 ± 1.43 86.81 ± 0.99
TA-MAML#(Ours) 78.73 ± 1.08 88.92 ± 0.76

VTAB Dataset

FC100 Flowers102
MAML# 35.49 ± 1.95 44.42 ± 0.83 51.93 ± 1.59 75.22 ± 0.48
TA-MAML# (Ours) 38.87 ± 1.90 46.57 ± 0.85 61.86 ± 1.72 77.49 ± 0.16

SVHN
MAML# 20.93 ± 1.01 22.42 ± 0.88
TA-MAML# (Ours) 21.73 ± 1.09 24.20 ± 0.78

EuroSAT Resisc45
MAML# 45.80 ± 1.49 62.0 ± 0.71 33.60 ± 1.49 42.07 ± 0.37
TA-MAML# (Ours) 51.67 ± 1.62 66.69 ± 0.70 35.20 ± 1.21 46.27 ± 0.39

DSprites_location DSprites_orientation
MAML# 36.67 ± 1.55 48.91 ± 0.84 20.86 ± 1.81 22.89 ± 0.95
TA-MAML# (Ours) 39.93 ± 1.33 56.48 ± 0.95 24.27 ± 1.18 22.92 ± 0.93

As some classes of453

Imagenet overlap with454

Metadataset, we also455

conduct experiments456

on the diverse VTAB457

dataset (Zhai et al.,458

2019), which does not459

share classes with the460

Imagenet (consequently461

miniImagenet) dataset.462

We note that some463

VTAB sub-datasets like464

Sun397 are quite mem-465

ory intensive and others466

like Patch Camelyon,467

Retinopathy, etc., have468

fewer classes. In the469

interest of time and470

resources, we meta-471

train a conv4 model472

on the miniImagenet473

dataset and evaluate474

it on a few of feasible475

sub-datasets covering476

all three domains -477

Natural, Specialized,478

and Structured. Specif-479
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ically, we investigate the merit of the proposed approach on Natural sub-datasets like DTD, CIFAR FC 100,480

Flowers102, and SVHN, specialized sub-datasets like EuroSAT and Resisc45, and structured sub-datasets like481

dSprites_location and dSprites_orientation. We have kept Describable Textures as a part of Metadataset482

and Flowers102 as a component of VTAB dataset according to (Dumoulin et al., 2021). We convert the se-483

lected VTAB sub-datasets to a few-shot setup (5-way 1 and 5 shot tasks) and evaluate task-attended MAML484

(TA-MAML) and its vanilla version (MAML) on 300 tasks. Our experiments (Table 5) demonstrate that task485

attention allows MAML to better generalize to unseen, diverse out-of-distribution VTAB meta-test sets.486

5.5 Ablation Studies487

Table 6: Effect of ablating components of meta-information in
TA-MAML∗ for 5 way 1 and 5 shot settings on miniImagenet
dataset.

Ablation on inputs

Grad norm Loss Loss-ratio Accuracy Test Accuracy

5 way 1 shot 5 way 5 shot

× × × × 46.10±0.19 60.16±0.17
× 47.30±0.16 60.48±0.16

× 47.62±0.17 62.17±0.17
× 48.10±0.18 60.90±0.20

× 47.30±0.18 61.52±0.16
48.36±0.23 62.48±0.18

To examine the significance of each input488

given to the task attention model, we con-489

duct an ablation study on 5 way 1 and 5 shot490

TA-MAML on miniImagenet dataset and491

report the results in Table 6. We observe492

that all the components of meta-information493

contribute to the learning of a more general-494

izable meta-model. To further support this495

observation, we investigate the relationship496

between the meta-information and weights497

assigned by the task attention module by498

analyzing the mean Pearson correlation of499

each of the components (four tuple) of the meta-information with the attention vector across the training500

iterations. This is depicted in Figure 4 for TA-MAML on 5 way 1 and 5 shot settings for miniImagenet501

dataset. We observe that the loss ratio and loss are positively correlated with the attention vector, while502

accuracy and gradient norm are negatively correlated.503

In 5 way 5 shot setting, we observe that the correlation pattern is comparable to 5 way 1 shot setting, but504

the mean correlation value of grad norm across iterations is less than that of the 5 way 1 shot setting. This505

could be because the 5 way 5 shot setting is richer in data than the 5 way 1 shot setting, which allows better506

learning and therefore has low average values of grad norm (Section 4.1.1). The critical observation, however,507

is that the meta-information components have a weak correlation with the attention weights, indicating that508

the TA module does not trivially follow any single component of meta-information. We also analyze the509

ranks of the tasks for maximum and minimum values of : loss, loss ratio, accuracy, and grad norm in a510

batch, as per the weights across training iterations, and describe results in the supplementary material. The511

rank analysis also reinforces the same observation. We ascertain the decreasing trend of mean weighted loss512

across iterations in the supplementary material.513

5.6 Analysis of Attention Network514

Figure 4: Mean Pearson correlation of TA-MAML∗ on 5 way 1
shot (left) and 5 shot (right) setting on miniImagenet.

To gain further insights into the op-515

eration of the attention module, we516

also examine the trend of the attention-517

vector (Figure 5) while meta-training518

TA-MAML for 5 way 1 and 5 shot set-519

tings on the miniImagenet dataset. We520

plot the maximum and the minimum at-521

tention score assigned to the tasks of a522

batch across iterations together with a523

few weighted task batches in 5 way 1 shot524

setting for illustration. We note that the525

weighted task batches are only intended526

to demonstrate the change in the tasks’ attention scores across iterations. The next experiment presents527

a more rigorous analysis studying the relationship among classes in a task and attention scores assigned.528
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We note that the mean attention score is always 0.25 as we follow a meta-batch size of 4. We observe529

that the TA module’s output follows an interesting trend. Initially, the TA module assigns almost uniform530

weights to all the tasks of a batch; however, as the iterations increase, it assigns unequal scores to the tasks531

in a batch, preferring some over the other. This suggests that during the initial phases of the meta-model’s532

training, all tasks have equal contribution towards learning a generic structure of the meta-knowledge.533

As the meta-model’s learning proceeds, learning the further fine-grained meta-knowledge structure requires534

prioritizing some tasks in a batch over the others, which are potentially better aligned with learning the535

optimal meta-knowledge. We study the computational burden imposed by TA regimen in the appendix.536

Figure 5: Trend of an attention vector in 5 way 1 shot (left) and
5 shot (right) settings on miniImagenet dataset for TA-MAML∗.

We further decipher the functioning of537

the black box attention network by an-538

alyzing the qualitative relation among539

weights and the classes of task batches540

(Figure 6). In Figure 6 left column (col-541

1) corresponds to the cases where the as-542

signment of attention scores to the tasks543

is human interpretable. In contrast, the544

right column (col-2) refers to the uninter-545

pretable attention scores. From the hu-546

man perspective, tasks containing images547

from similar classes are hard to distin-548

guish and are assigned higher attention549

scores indicated by red bounding boxes550

(Figure 6 col-1). Specifically, (col-1, row-551

1) task 2 is regarded as most important,552

possibly because it includes three breeds of dogs followed by task 4, which comprises two species of fish.553

However, the aforementioned is not a hard constraint, as there are some task batches (Figure 6 col-2) in554

which the distribution of weights cannot be explained qualitatively.555

6 Conclusion556

In this work we have shown that the batch wise episodic training regimen adopted by ML strategies can557

benefit from leveraging knowledge about the importance of tasks within a batch. Unlike prior approaches that558

assume uniform importance for each task in a batch, we propose task attention as a way to learn the relevance559

of each task according to its alignment with the optimal meta-knowledge. We have validated the effectiveness560

of task attention by augmenting it to popular initialization and optimization based ML strategies. We have561

demonstrated through experiments on miniImagenet, FC100 and tieredImagenet datasets that augmenting562

task attention helps attain better generalization to unseen tasks from the same distribution while requiring563

fewer iterations to converge. We also show that the task attention is meritorious over existing task scheduling564

algorithms, even on noisy and CDFSL setups. We also conduct an exhaustive empirical analysis on the565

distribution of attention weights to study the nature of the meta-knowledge and task attention module.566

We leave the theoretical motivation of the meta-information components and the proof of convergence of567

the proposed curriculum as part of our future work. We believe that this end-to-end attention-based meta568

training paves the way towards efficient and automated meta-training.569

7 Broader Impact570

We acknowledge that transfer and metric approaches like (Kolesnikov et al., 2020; Triantafillou et al., 2019;571

Bronskill et al., 2021; Dvornik et al., 2020) use more advanced backbones and our approach is limited to a572

basic architecture (Conv4) and gradient-based methods. We clarify that though our approach is extendable to573

any episodic curriculum (including metric approaches with minor design changes), we choose gradient-based574

approaches like MAML and ANIL approaches as they are domain-agnostic in contrast to metric learning.575

However, we leave the investigation of attention mechanisms for metric approaches and domains, such as576

reinforcement learning or regression problems for gradient approaches for future work. Unfortunately, due577
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Figure 6: Explanations of TA module in TA-MAML∗ on miniImagenet. Left Col) Higher weights accredited
to tasks with comparable classes marked by red bounding boxes. Right Col) Association of weights and
task data is qualitatively uninterpretable. Rows correspond to the batches.

to computational and storage restrictions, we are unable to experiment with deeper backbones and large578

image sizes for gradient-based methods. We, therefore, limit the scope of our study only to algorithms,579
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datasets, and conditions and leave the scalability aspect to the future. We, however, point out the existing580

literature (Chen et al., 2018) that compares vanilla transfer learning (with no Imaganet pretraining or data581

augmentation) for conv4 backbone with episodic training (MAML) under fair conditions. Chen et al. have582

demonstrated that MAML performs better than vanilla transfer learning under fair conditions for conv4583

architecture. However, transfer learning scales much better with the architectures than MAML (or other584

episodic methods) (Chen et al., 2018). Nevertheless, transfer learning (TL) is a good solution for few-shot585

learning (especially with Imagenet pretraining and larger backbones), and translating attention to TL for586

a few-shot setup is a promising direction for further research. An attention module, in this case, could be587

used to reweigh the examples instead of tasks, and it could be trained using a smaller validation data pool.588

Also, sampling a validation pool from a combination of distributions (transduction) is worth exploring. We589

leave these extensions for future work. We, acknowledge, that similar to (Yao et al., 2021; Wu et al., 2022;590

Raghu et al., 2020), our study is limited to understanding the fundamentals of episodic training rather than591

developing an algorithm that surpasses the state-of-the-art approach for few shot learning.592
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8 Appendix722

8.1 Preliminary723

8.1.1 Meta-knowledge as an Optimal Initialization724

When meta-knowledge is a generic initialization on the model parameters learned through the experience725

over various tasks, it is enforced to be close to each individual training tasks’ optimal parameters. A model726

initialized with such an optimal prior quickly adapts to unseen tasks from the same distribution during727

meta-testing. MAML (Finn et al., 2017) employs a nested iterative process to learn the task-agnostic728

optimal prior θ. In the inner iterations representing the task adaptation steps, θ is separately fine-tuned for729

each meta-training task Ti of a batch using Di to obtain ϕi through gradient descent on the train loss L730

using learning rate α. Specifically, ϕi is initialized as θ and updated using ϕi ← ϕi − α∇ϕiL(ϕi), T times731

resulting in the adapted model ϕT
i . In the outer loop, meta-knowledge is gathered by optimizing θ over732

loss L∗ computed with the task adapted model parameters ϕT
i on query dataset D∗

i . Specifically, during733

meta-optimization θ ← θ − β∇θ

∑B
i=1 L∗(ϕT

i ) using a task batch of size B and learning rate β. MetaSGD734

(Li et al., 2017) improves upon MAML by learning parameter-specific learning rates α in addition to the735

optimal initialization in a similar nested iterative procedure. Meta-knowledge is gathered by optimizing θ736

and α in the outer loop using the loss L∗ computed on query set D∗
i . Specifically, during meta-optimization737

(θ, α) ← (θ, α) − β∇(θ,α)
∑B

i=1 L∗(ϕT
i ). Learning dynamic learning rates for each parameter of a model738

makes MetaSGD faster and more generalizable than MAML. A single adaptation step is sufficient to adjust739

the model towards a new task. The performance of MAML is attributed to the reuse of the features740

across tasks rather than the rapid learning of new tasks (Raghu et al., 2020). Exploiting this characteristic,741

ANIL freezes the feature backbone layers (1, . . . , l − 1) and only adapts classifier layer (l) in the inner742

loop T times. Specifically during adaptation ϕl
i ← ϕl

i − α∇ϕl
i
L(ϕl

i). During meta-optimization θ1,...,l ←743

θ1,...,l − β∇θ1,...,l

∑B
i=1 L∗(ϕlT

i ) i.e., all layers are learned in the outer loop. Freezing the feature backbone744

during adaptation reduces the overhead of computing gradient through the gradient (differentiating through745

the inner loop), and thereby heavier backbones could be used for the feature extraction. TAML (Jamal746

& Qi, 2019) suggests that the optimal prior learned by MAML may still be biased towards some tasks.747

They propose to reduce this bias and enforce equity among the tasks by explicitly minimizing the inequality748

among the performances of tasks in a batch. The inequality defined using statistical measures such as Theil749

Index, Atkinson Index, Generalized Entropy Index, and Gini Coefficient among the performances of tasks750

in a batch is used as a regularizer while gathering the meta-knowledge. For the baseline comparison, in751

our experiments, we use the Theil index for TAML owing to its average best results. Specifically during752

meta-optimization θ ← θ − β∇θ

[∑B
i=1 L∗(ϕT

i ) + λ

{
L∗(ϕ0

i )
L̄∗(ϕ0

i )
ln L∗(ϕ0

i )
L̄∗(ϕ0

i )

}]
(for TAML-Theil Index) where B753

is the number of tasks in a batch, L∗(ϕ0
i ) is the loss incurred by initial model ϕ0

i on the query set D∗
i of754

task Ti and L̄∗(ϕ0
i ) is the average query loss of initial model on a batch of tasks. As TAML enforces equity755

of the optimal prior towards meta-train tasks, it counters the adaptation, which leads to slow and unstable756

training largely dependent on λ.757

8.1.2 Meta-knowledge as a Parametric Optimizer758

A regulated gradient-based optimizer gathers the task-specific and task-agnostic meta-knowledge to traverse759

the loss surfaces of tasks in the meta-train set during meta-training. A base model guided by such a760

learned parametric optimizer quickly finds the way to minima even for unseen tasks sampled from the761

same distribution during meta-testing. MetaLSTM (Ravi & Larochelle, 2017) is a recurrent parametric762

optimizer θ that mimics the gradient-based optimization of a base model ϕ. This recurrent optimizer is an763

LSTM (Hochreiter & Schmidhuber, 1997) and is inherently capable of performing two-level learning due to its764

architecture. During adaptation of ϕi on Di, θ takes meta information of ϕi characterized by its current loss765

L and gradients ∇ϕi
(L) as input and outputs the next set of parameters for ϕi. This adaptation procedure766

is repeated T times resulting in the adapted base-model ϕT
i . Internally, the cell state of θ corresponds to ϕi,767

and the cell state update for θ resembles a learned and controlled gradient update. The emphasis on previous768

parameters and the current update is regulated by the learned forget and input gates respectively. While769
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adapting ϕi to Di, information about the trajectory on the loss surface across the adaptation steps is captured770

in the hidden states of θ, representing the task-specific knowledge. During meta-optimization, θ is updated771

based on the loss of the adapted model L∗(ϕT
i ) computed on the query set D∗

i to garner the meta-knowledge772

across tasks. Specifically, during meta-optimization, θ ← θ − β∇θL∗(ϕT
i ). MetaLSTM updates parametric773

optimizer θ after adapting the base model ϕ to each task. This causes θ to follow optima’s of all adapted774

base models leading to its elongated and fluctuating optimization trajectory, which is biased towards the last775

task. MetaLSTM++ (Aimen et al., 2021) circumvents these issues as θ is updated by an aggregate query776

loss of the adapted models on a batch of tasks. Batch updates smoothen the optimization trajectory of θ and777

eliminate its bias towards the last task. Specifically, during meta-optimization θ ← θ − β∇θ

∑B
i=1 L∗(ϕT

i ).778

8.2 Detailed Explanation of the Proposed approach779

Figure 7: [Best viewed in color] Workflow of proposed training curriculum.

We explain the proposed approach through Figure 1, Figure 7, Algorithm 1, and equations. We first sample780

a batch of tasks (B) from a random pool of data (Figure 7 - Label 1 ). For each task, the base-model ϕi781

is adapted using the support data Di for T time-steps (line 7 and lines 20-32 in Algorithm 1, Figure 7 -782

Label 3 ). Specifically, the adaptation is done using gradient descent on the train loss L for initialization783

approaches (lines 22-26 in Algorithm 1, Figure 7 - GD), or the current loss and gradients are inputted to the784

meta-model θ for optimization approaches, which then outputs the updated base-model parameters (lines785

27-31 in Algorithm 1, Figure 7 - PO). The meta-information (I) corresponding to each task in the batch786

is then calculated (Figure 7 - Label 4 ), which includes the loss, accuracy, loss-ratio, and gradient norm of787

adapted models on the query data. This is given as input to the task attention module (Figure 1 - Label 2 ,788

Figure 7 - Label 5 ), which outputs the attention vector (line 10 in Algorithm 1, Figure 7- Label 6 ). The789

attention vector and test losses are used to update the meta-model parameters θ according to equation 2790

(line 11 in Algorithm 1, Figure 1 - Label 4 , Figure 7 - Label 7 ). A new batch of tasks is then sampled and791

the base-models are adapted using the updated meta-model (Lines 12-16 in Algorithm 1, Figure 1 - Label792

5 ). The mean test loss over the adapted base-models is calculated and used to update the parameters of793

the task attention module δ according to equation 3.794
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8.3 Experiments795

8.3.1 Datasets Details796

miniImagenet dataset (Vinyals et al., 2016) comprises 600 color images of size 84 × 84 from each of797

100 classes sampled from the Imagenet dataset. The 100 classes are split into 64, 16 and 20 classes for798

meta-training, meta-validation and meta-testing respectively. miniImagenet-noisy (Yao et al., 2021) is799

constructed from the miniImagenet dataset with the additional constraint that tasks have noisy support la-800

bels and clean query labels. The noise in support labels is introduced by symmetry flipping, and the default801

noise ratio is 0.6. Fewshot Cifar 100 (FC100) dataset (Oreshkin et al., 2018) has been created from Cifar802

100 object classification dataset. It contains 600 color images of size 32 × 32 corresponding to each of 100803

classes grouped into 20 super-classes. Among 100 classes, 60 classes belonging to 12 super-classes correspond804

to the meta-train set, 20 classes from 4 super-classes to the meta-validation set, and the rest to the meta-test805

set. tieredImagenet (Ren et al., 2018a) is a more challenging benchmark for few-shot image classification.806

It contains 779,165 color images sampled from 608 classes of Imagenet and are grouped into 34 super-807

classes. These super-classes are divided into 20, 6, and 8 disjoint sets for meta-training, meta-validation,808

and meta-testing. Metadataset (Triantafillou et al., 2019) comprises of 10 freely available diverse datasets809

- Aircraft, CUB-200-2011, Describable Textures, Fungi, ILSVRC-2012, MSCOCO, Omniglot, Quick Draw,810

Traffic Signs, and VGG Flower. We utilized CUB-200, FGVC-Aircraft, Describable Textures, and Omniglot811

datasets from Metadataset. VTAB dataset (Zhai et al., 2019) is a more diverse dataset than Metadataset812

that was proposed to avoid overlapping classes of sub-datasets with the Imagenet dataset. VTAB comprises813

of 19 datasets divided into three domains - Natural, Specialized, and Structured, depending on the type of814

images. The natural group contains Caltech101, CIFAR100, DTD, Flowers102, Pets, Sun397, and SVHN815

sub-datasets, while the specialized group consists of remote sensing datasets like EuroSAT and Resisic 45816

and medical datasets like Retinopathy and Patch Camelyon. Structured contains object counting or 3D817

depth prediction datasets like Clevr/count, Clevr/distance, dSprites/location, dSprites/orientation, Small-818

NORB/azimuth, SmallNORB/elevation, DMLab, and KITTI/distance. We considered Natural sub-datasets819

like DTD, CIFAR FC 100, Flowers102, and SVHN, specialized sub-datasets like EuroSAT and Resisc45, and820

structured sub-datasets like dSprites_location and dSprites_orientation for cross-domain experimentation.821

According to (Dumoulin et al., 2021), we have kept Describable Textures as a part of Metadataset and822

Flowers102 as a component of the VTAB dataset.823

8.3.2 Ablation Studies824

We analyze the ranks of the tasks for maximum and minimum values of : loss, loss ratio, accuracy, and grad825

norm in a batch wrt attention weights throughout meta-training of TA-MAML on a 5 way 1 and 5 shot826

settings on miniImagenet dataset (Figures 8 and 9). Specifically, the highest weighted task is given rank827

one, and the least weighted task in a batch is given the last rank. We observe that the TA module does not828

assign maximum weight to the tasks with maximum or minimum values of : test loss, loss ratio, grad norm829

or accuracy throughout meta-training. Thus, the TA module does not trivially learn to assign weights to830

the tasks based on some component of meta-information but learns useful latent information from all the831

components to assign importance for the tasks in a batch.832

8.3.3 Relation of Weights with Meta-Information833

In Figure 10, we illustrate the trend of mean weighted loss across iterations for TA-MAML on 5 way 1 and834

5 shot settings on miniImagenet dataset. The trend indicates that the average weighted loss decreases over835

the meta-training iterations. The shaded region represents a 95% confidence interval over 100 tasks.836

8.3.4 Computational Overhead837

The training time for all scheduling/sampling approaches is expected to be higher than their non-838

scheduling/sampling counterparts. We observe a three-fold increase in the training time from the vanilla839

setting for a model trained with our strategy and a two-fold increase in the training time if a non-neural840

scheduling approach (Liu et al., 2021a) is employed. However, our approach significantly outperforms vanilla841
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5 way 1 shot setting

Figure 8: Rank Analysis of tasks for maximum and minimum values of : loss, loss-ratio, accuracy and grad
norm throughout the training of TA-MAML∗ for 5 way 1 shot setting on miniImagenet dataset.

Table 7: Comparison of few-shot classification performance of MAML and ANIL reported in the original
papers (denoted by #) and the re-implementation by others on miniImagenet dataset for 5 way 1 and 5 shot
settings. The highest and lowest accuracies for an approach are represented in blue and red, respectively.

Test Accuracy (%)

5 Way

Model 1 Shot 5 Shot

miniImagenet

MAML#(Finn et al., 2017) 48.07 ± 1.75 63.15 ± 0.91 -
MAML (Antoniou et al., 2019) 48.25 ± 0.62 64.39 ± 0.31
MAML (Raghu et al., 2020) 46.9 ± 0.2 63.1 ± 0.4-
MAML (Chen et al., 2018) 46.47 ± 0.82 62.71 ± 0.71
MAML(Oh et al., 2020) 47.44 ± 0.23 61.75 ± 0.42
MAML (Agarwal et al., 2021) 47.13 ± 8.78 57.69 ± 7.92
MAML (Arnold et al., 2021) 46.88 ± 0.60 55.16 ± 0.55

ANIL#(Raghu et al., 2020) 46.7 ± 0.4 61.5 ± 0.5
ANIL(Oh et al., 2020) 47.82 ± 0.20 63.04 ± 0.42
ANIL(Arnold et al., 2021) 46.59±0.60 63.47±0.55
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5 way 5 shot setting

Figure 9: Rank Analysis of tasks for maximum and minimum values of : loss, loss-ratio, accuracy and grad
norm throughout the training of TA-MAML∗ for 5 way 5 shot setting on miniImagenet dataset.

Figure 10: Trend analysis of weighted loss across meta-training iterations for TA-MAML∗ on 5 way 1 shot
(left) and 5 shot (right) settings on miniImagenet dataset. Iterations are in thousands.
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ML approaches and all state-of-the-art scheduling strategies on various datasets, training setups, and learn-842

ing paradigms (Tables 2, 3, 4 and 5). As training is typically performed offline, the increased computational843

overhead is expected to be permissible. Further, ours, as well as other approaches, perform vanilla finetuning844

during meta-testing (i.e., task attention, neural scheduling or conflict resolving mechanism is not employed845

during meta-testing), resulting in comparable test time (15-20 seconds on 300 tasks for MAML 5-way 1-846

and 5-shot setups). We also note that we do not pre-train the attention network, unlike state-of-the-art847

schedulers like ATS.848
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8.3.5 Hyperparameter Details849

Setting Model base lr meta lr attention lr lambda
miniImagenet

5.1 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.0748

TA-MAML∗ 0.0763 0.0005 0.0004 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD∗ 0.0529 0.0011 0.0004 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0012 - -
TA-MetaLSTM++∗ - 0.0012 0.0031 -

ANIL 0.3000 0.0006 - -
TA-ANIL∗ 0.0763 0.0005 0.0004 -

5.5 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.7916

TA-MAML∗ 0.0763 0.0005 0.0004 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD∗ 0.0529 0.0011 0.0004 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0012 - -
TA-MetaLSTM++∗ - 0.0004 0.0001 -

ANIL 0.3000 0.0006 - -
TA-ANIL∗ 0.0763 0.0005 0.0004 -

10.1 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.2631

TA-MAML∗ 0.2551 0.0015 0.0001 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD∗ 0.0627 0.0008 0.0013 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0015 - -
TA-MetaLSTM++∗ - 0.0009 0.0015 -

ANIL 0.5000 0.0030 - -
TA-ANIL∗ 0.2551 0.0015 0.0001 -

10.5 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.0741

TA-MAML∗ 0.2551 0.0015 0.0001 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD∗ 0.0627 0.0008 0.0013 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0036 - -
TA-MetaLSTM++∗ - 0.0024 0.0002 -

ANIL 0.5000 0.0030 - -
TA-ANIL∗ 0.2551 0.0015 0.0001 -
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Setting Model base lr meta lr attention lr lambda
FC100

5.1 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.0164

TA-MAML∗ 0.2826 0.0003 0.0024 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD∗ 0.0349 0.0008 0.0001 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0010 - -
TA-MetaLSTM++∗ - 0.0002 0.0074 -

ANIL 0.5000 0.0030 - -
TA-ANIL∗ 0.2826 0.0003 0.0024 -

5.5 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.0153

TA-MAML∗ 0.2826 0.0003 0.0024 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD∗ 0.0349 0.0008 0.0001 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0002 - -
TA-MetaLSTM++∗ - 0.0007 0.0003 -

ANIL 0.5000 0.0030 - -
TA-ANIL∗ 0.2826 0.0003 0.0024 -

10.1 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.0794

TA-MAML∗ 0.2353 0.0002 0.0001 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD∗ 0.2583 0.0029 0.0007 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0021 - -
TA-MetaLSTM++∗ - 0.0005 0.0014 -

ANIL 0.5000 0.0030 - -
TA-ANIL∗ 0.2826 0.0003 0.0024 -

10.5 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.0193

TA-MAML∗ 0.2353 0.0002 0.0001 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD∗ 0.2583 0.0029 0.0007 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0004 - -
TA-MetaLSTM++∗ - 0.0004 0.0090 -

ANIL 0.5000 0.0030 - -
TA-ANIL∗ 0.2826 0.0003 0.0024 -
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Setting Model base lr meta lr attention lr lambda
tieredImagenet

5.1 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.3978

TA-MAML∗ 0.0261 0.0005 0.0015 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD∗ 0.0944 0.0003 0.0002 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0002 - -
TA-MetaLSTM++∗ - 0.0010 0.0006 -

ANIL 0.5000 0.0030 - -
TA-ANIL∗ 0.0261 0.0005 0.0015 -

5.5 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.7733

TA-MAML∗ 0.0261 0.0005 0.0015 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD∗ 0.0944 0.0003 0.0002 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0009 - -
TA-MetaLSTM++∗ - 0.0012 0.0001 -

ANIL 0.5000 0.0030 - -
TA-ANIL∗ 0.0261 0.0005 0.0015 -

10.1 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.4752

TA-MAML∗ 0.0821 0.0002 0.0006 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD∗ 0.0512 0.0007 0.0018 -
MetaLSTM - 0.005 - -

MetaLSTM++ - 0.0011 - -
TA-MetaLSTM++∗ - 0.0018 0.0002 -

ANIL 0.5000 0.0030 - -
TA-ANIL∗ 0.0821 0.0002 0.0006 -

10.5 MAML 0.5000 0.0030 - -
TAML 0.5000 0.0030 - 0.2501

TA-MAML∗ 0.0821 0.0002 0.0006 -
MetaSGD 0.5000 0.0030 - -

TA-MetaSGD∗ 0.0512 0.0007 0.0018 -
MetaLSTM - 0.0050 - -

MetaLSTM++ - 0.0024 - -
TA-MetaLSTM++∗ - 0.0015 0.0019 -

ANIL 0.5000 0.0030 - -
TA-ANIL∗ 0.0821 0.0002 0.0006 -
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