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Figure 1: Visualization of predicted grasp poses for dexterous hands.

Abstract: Dexterous robotic hands enable versatile interactions due to the flex-
ibility and adaptability of multi-fingered designs, allowing for a wide range of
task-specific grasp configurations in diverse environments. However, to fully
exploit the capabilities of dexterous hands, access to diverse and high-quality
grasp data is essential- whether for developing grasp prediction models from point
clouds, training manipulation policies, or supporting high-level task planning with
broader action options. Existing approaches for dataset generation typically rely
on sampling-based algorithms or simplified force-closure analysis, which tend to
converge to power grasps and often exhibit limited diversity. In this work, we
propose a method to synthesize large-scale, diverse, and physically feasible grasps
that extend beyond simple power grasps to include refined manipulations, such
as pinches and tri-finger precision grasps. We introduce a rigorous, differentiable
energy formulation of force closure, implicitly defined through a Quadratic Pro-
gram (QP). Additionally, we present an adjusted optimization method (MALA*)
that improves performance by dynamically rejecting gradient steps based on the
distribution of energy values across all samples. We extensively evaluate our ap-
proach and demonstrate significant improvements in both grasp diversity and the
stability of final grasp predictions. Finally, we provide a new, large-scale grasp
dataset for 5,700 objects from DexGraspNet, comprising five different grippers and
three distinct grasp types.
Dataset and Code: https://graspqp.github.io/
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1 Introduction

Dexterous grasping is a fundamental capability in robotics, enabling a wide range of applications,
including industrial automation, service robotics, and human-robot collaboration. It is critical for
allowing robots to interact with and manipulate objects in complex, unstructured environments, and
remains a key focus of current research. Central to progress in dexterous grasping is the ability to
predict stable grasps for various morphologies and under partial observation. A task that heavily relies
on learning from large-scale datasets [1, 2, 3, 4, 5]. However, existing datasets are costly to generate
and often limited in their diversity of gripper morphologies, grasp types, and physical realism.

Traditional grasp synthesis methods for collecting these datasets rely either on sampling-based
algorithms [6, 7] or analytical techniques that evaluate force closure by solving (conic) optimization
problems [8, 9, 10]. While effective at a basic level, these approaches suffer from poor sample
efficiency, especially when accurate physical modeling is required, and tend to converge to simple
power grasps rather than diverse, task-appropriate configurations. More recent gradient-based
methods [11, 12, 1] improve efficiency by optimizing differentiable approximations of grasp quality
metrics, but often oversimplify critical physical properties, thereby limiting grasp realism and
diversity.

To overcome these limitations, we propose a new framework for synthesizing large-scale, diverse, and
physically grounded dexterous grasps. First, we develop a differentiable force closure energy term that
rigorously models grasp stability by considering frictional forces within an implicit Quadratic Program
(QP) formulation. In contrast to prior approaches [1, 13, 3, 11] that rely on simplified or relaxed
metrics, our formulation preserves the core physical properties of grasp stability while remaining fully
differentiable. This enables gradient-based optimization without compromising physical accuracy
and allows the synthesis of grasps that include refined manipulation strategies such as pinch and
tri-finger precision grasps. Second, we propose MALA*, an enhanced optimization and sampling
strategy inspired by the Metropolis-Adjusted Langevin Algorithm (MALA). MALA* dynamically
rejects gradient steps that would lead to poor sample diversity, using information about the global
distribution of existing samples. This adjustment mitigates mode collapse during optimization and
encourages exploration of a broader range of feasible and physically distinct grasps. We extensively
evaluate our approach and demonstrate significant improvements over existing techniques in terms of
grasp diversity and stability. Additionally, we release modular grasping environments for evaluation
and reinforcement learning, built on IsaacLab [14].

Together, these advancements enable the efficient synthesis of large-scale, high-diversity grasp
datasets. To validate our approach, we perform detailed evaluations and generate a new dataset
comprising grasps for 5,700 objects from DexGraspNet [1]. The dataset includes annotations for
five different grippers and spans three distinct grasp types, substantially expanding the diversity of
available data for dexterous manipulation.

In summary, our contributions are:

(i) We improve upon existing analytical grasp generation methods using a more analytically
rigorous force closure formulation.

(ii) We introduce an adjusted optimization method, MALA*, that improves convergence and
diversity.

(iii) We generate large-scale grasp predictions across various objects, grippers, and grasp taxonomies.

2 Related Work

2.1 Analytical Grasp Synthesis

Grasp synthesis aims to generate a diverse set of stable grasp predictions for known hand and object
pairs. Traditional approaches to grasp synthesis primarily rely on sampling-based methods or se-
quences of linear programs [6, 2, 15, 16], which explore the space of possible hand poses to optimize
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a given grasp quality metric. However, these methods can be computationally expensive, particularly
for high-degree-of-freedom (DoF) dexterous hands. To improve efficiency, recent methods have
shifted toward gradient-based optimization [11, 13, 12, 3, 17]. These approaches leverage differ-
entiable grasp quality metrics, enabling faster convergence compared to sampling-based methods.
However, this reliance on differentiability introduces limitations. Classical grasp quality metrics such
as Q1/ε [18, 19, 20], which involve solving min-max optimization problems, are not inherently dif-
ferentiable. To address this, recent works have proposed relaxed, differentiable formulations [21, 11],
bilevel optimization [22, 16, 23] and sampling-based wrench space analysis [24], which allow for
gradient-based optimization. Despite their computational advantages, these relaxed formulations of-
ten introduce implicit assumptions that can oversimplify grasp stability. Notably, some methods fully
neglect frictional forces [11, 1], which are critical for certain grasp configurations. BilevelOpt [16]
incorporates the force closure condition into the constraint formulation of an optimization problem
and relies on suboptimal initial solutions from IK solvers and contact points. FRoGGeR [22] employs
a differentiable force closure metric similar to ours but constrains the interaction wrench coefficients
to sum to one to prevent vanishing gradients. Similarly, concurrent work such as BoDEX [23]
enforces a bound on contact wrenches by requiring the sum of normal forces to exceed a predefined
hyperparameter γ. Alternative approaches mitigate this by incorporating differentiable physics simu-
lations, using velocity-based metrics to evaluate grasp quality [12, 3], but they depend on simplified
contact assumptions or relaxations, such as penalty-based contact modeling.

2.2 Dexterous Grasping Datasets

A wide range of datasets [2, 3, 1, 13, 25, 4, 26, 20, 27, 5] provide synthesized grasp poses for rigid
objects across different grippers. These datasets vary in scale, from sets with a few hundred thousand
grasps [21, 13] to large-scale datasets containing a million or more grasp annotations [4, 13, 1, 2].
In terms of gripper diversity, many focus on parallel jaw grippers [4, 28], while few incorporate
dexterous hands such as the Shadow and Allegro Hand [2, 3]. Our dataset extends the diversity of
grippers by providing annotations for the Psyonic Ability Hand, a commonly used research hand. We
additionally focus on increasing the diversity of generated grasps per object, both in joint entropy and
in taxonomy.

3 Preliminaries

Positive Spanning Sets: As formally defined in literature [29], positive spanning sets are character-
ized as follows:

Definition 3.1 (Positive span). The positive span of a finite set of vectors S = {v1, ..., vk}, denoted
pos(S), is given by: pos(S) := {λ1v1 + ...+ λkvk : λi ≥ 0 ∀i = 1, ..., k}.

Additionally, [29] introduce the following theorem about the range of positive spanning sets:

Theorem 3.1 (Range of positive spanning sets). Suppose S = {v1, ..., vk} ⊆ Rn, with vi ̸= 0,
linearly spans the subspace V of Rn. The following statements are equivalent:

(i) The set S positively spans V

(ii) ∃ α1, ..., αk > 0 such that
∑k

i=1 αivi = 0

(iii) ∃ γ1, ..., γk ≥ 0 such that
∑k

i=1 γivi = −
∑k

i=1 vi

Note that Theorem 3.1 - (ii) is well known and often referred to as “the origin must lie in the convex
hull of the spanning set” in the literature.

Form and Force Closure: Given a set of contact points {xi}Ni=1, where xi ∈ R3, a grasp is defined
to be in form closure if the static contact points, together with their associated frictionless interaction
forces {fi}Ni=1, fi ∈ R3, completely constrain all possible motions of the object. More formally,
this condition is satisfied if the set of contact wrenches W = {wi}Ni=1 with wi = [fi; (fi × xi)] ∈
R6×1, constructed from the contact points {xi}Ni=1 and the corresponding interaction forces {fi}Ni=1,
positively spans the entire wrench space R6: pos(W) = R6.
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Figure 2: Overview of our Grasp Generation Method: Starting from a coarse initialization, grasp candidates
are optimized by minimizing a composite energy function composed of distance, regularization, and force
closure terms. The force closure energy is computed via a differentiable quadratic program (QP) that ensures the
contact wrenches positively span R6. Gradients of the energy are used to iteratively refine grasp poses through
our modified Metropolis-adjusted Langevin (MALA∗) algorithm, which dynamically adapts updates and resets
based on the energy landscape. Grasp proposals that significantly underperform relative to the current energy
distribution are reset (Dynamic Resetting), and the acceptance probability of each gradient step is modulated
according to the proposal’s relative energy performance (Adaptive Temperature Scaling). After convergence, the
method produces diverse and physically stable grasp predictions.

Furthermore, force closure requires that the grasp can resist any arbitrary external wrench applied to
the object by additionally leveraging frictional properties at contact points, i.e. the set of wrenches
generated by the contact forces WFC = {ŵ|ŵ ∈

⋃N
i=1 WC (wi)} positively span the entire wrench

space R6: pos(WFC) = R6 (1).

Finally, we define the Wrench Matrix WFC = [ ŵ1, ŵ2, . . . , ŵN ] ∈ R6×N as the matrix whose
j-th column is the contact wrench ŵj ∈ WFC , where N is the total number of interaction wrenches.
Force closure is satisfied iff the positive span of the columns of WFC spans R6.

Grasp Representation: For a given robotic gripper with nq joints, we parameterize each grasp as
G = (χ, q,∆q), where χ ∈ SE(3) denotes the wrist pose, q ∈ Rnq the joint positions of the nq

joints of the robot and τq ∈ Rnq the desired joint torques. Furthermore, each grasp is associated with
a set of NC contact points C = {ci}Nc

i=1, given in the object frame, and their corresponding object
normals N = {ni}Nc

i=1. Given these contact points, we calculate the set of interaction wrenches as
W = {wi}nc

i=1, where wi = [ni, ci × ni] ∈ R6. Finally, when considering friction, we rely on the
four-sided pyramid under-approximation of the friction cone FC(fi, ci, ni) [30].

4 Method

Given an accurate 3D model of an object and a dexterous hand, we aim to synthesize a diverse set
of feasible grasp configurations G = {Gi}Ni=1 that satisfy the force closure property in Eq. (1). To
accomplish this, we first generate a diverse initial set of feasible grasps and then refine them through
an analytical optimization process that maximizes the span of the associated friction cones. An
overview of our method is depicted in Fig. 2, and final grasp predictions are shown in Fig. 1.

4.1 Analytical Grasp Generation

We build upon a grasp generation pipeline commonly employed in gradient-based grasp synthesis [3,
12, 11, 1], following an approach similar to DexGraspNet [1], which we briefly review below. Each
gripper is associated with a predefined set of potential contact points C, of which only a subset C′ is
active at a time (i.e., considered to be in contact with the object). Given a grasp-object configuration,
the energy of the grasp is computed as

E = EFC + wdisEdis + wregEreg, (2)

with EFC being a force closure metric, Edis denotes the distance of the active contact points (C′)
to the object surface, and Ereg consists of regularization energies (Epen, Ejoints, Espen) which are
used to prevent the grasp from penetrating the object, itself, or exceeding the joint limits, respectively.
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Force Closure Metric: DexGraspNet [1] assumes the grasp to be frictionless and that the force
applied at each contact point has equal magnitude, which does not accurately model real-world
hardware, where fingers can be actuated separately. Formally, under these assumptions, their force
closure metric becomes a form closure assumption and a simplification of Theorem 3.1 - (ii) where
αi = 1. This results in EFC = ||

∑
i≤|C′| wi||2 → 0, i.e., the sum of the column vectors of the

wrench space must sum up to zero.

A more general formulation of a force closure metric could be achieved by directly using Theorem 3.1
- (ii) to find the optimal coefficients αi for the current contact points C′, i.e.,

EFC = ||
∑
i≤|C′|

αiwi||2 s.t. αi > 0 ∀i = 1, ..., nc. (3)

While this approach would be more general, it is challenging to include as an optimization term,
since the error term EFC can become arbitrarily small for arbitrarily small choices of αi, leading to
vanishing gradients. Hence, we propose relying on the more robust formulation in Theorem 3.1 - (iii)
to ensure that the grasp is in force closure:

EFC = ||
∑
i≤|C′|

γiwi +
∑
i≤|C′|

wi||2 = ||
∑
i≤|C′|

γ̂iwi||2 s.t. u ≥ γ̂i ≥ 1 ∀i = 1, ..., nc, (4)

where u is an upper bound on the interaction force for each contact point. While this is not strictly
necessary for force closure, it ensures that the required interaction forces remain bounded, which is
necessary when using a real robot with torque limits. The resulting coefficients γ̂i directly reflect the
force applied at each contact point to keep the object stationary, as opposed to the more degenerate
formulation in Eq. (3), which incentivizes the fingers to apply a minimal amount of force. Note that
this formulation is equivalent to the force closure metric from Liu et al. [11] if γ̂i = 1 is chosen for
all i.

Furthermore, we note that the force closure metric is implicitly defined through an optimization
problem and has imposed hard constraints (introduced by the bounds on γ̂). This makes propagating
the gradient of the entire problem more challenging. We propose and evaluate two different approaches
to make the optimization problem differentiable:

1. Unconstrained Optimization: By introducing barrier functions, the energy term can be
converted into an unconstrained optimization problem. Hence, the energy term EFC is
replaced with EFC + barrier(γ̂) and the resulting unconstrained optimization problem
is solved using a trust region-based optimizer (Powell’s Hybrid Method) [31].

2. Differential QP: We formulate the optimization problem as a Quadratic Program (QP):

EFC = min
z

1

2
zTHz + gT z s.t. Az ≥ b,

H = WT
FCWFC , g = 0, b = [1nc

;unc
],

z = [γ̂1, ..., γ̂Nc
], A = diag(1nc×nc

,−1nc×nc
).

The gradients with respect to the input parameters z can be calculated by differentiating the
Karush–Kuhn–Tucker (KKT) conditions of the QP, as shown by Amos et al. [32].

Finally, Theorem 3.1 guarantees force closure only if the wrench space linearly spans R6. The
original metric by Liu et al. [11] ensures this by additionally optimizing over the smallest singular
value of the wrench matrix WFC . However, subsequent works [1, 13] do not include this in their
energy formulation and hence lose force-closure guarantees. To ensure the wrench matrix forms a
linear basis, we propose to scale the energy term by e−

∏
i σi(WFC), where σi are the singular values

of the wrench matrix. All σi > 0 ensures full rank, satisfying Theorem 3.1, while maximizing their
product maximizes the wrench space volume.

Therefore, we define the final energy term as:

EFC = ||
∑
i≤|C′|

γ̂iwi||2 · e−
∏

i σi(WFC) s.t. γ̂i ≥ 1 ∀i = 1, ..., nc. (5)
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Figure 3: Overview of the Five Robotic Grippers used for Evaluation: From left to right, Psyonic Ability
Hand, Shadow Hand, Allegro Hand, Robotiq2f140 and Robotiq3F. We show the standardized wrist frame
convention with axes indicating thumb (x-axis), fingers (y-axis), and palm normal (z-axis) directions. Randomly
sampled contact points from the manually defined contact meshes are shown in green.

Distribution-based MALA Optimizer: We often observe that certain grasp proposals get stuck in
local minima (i.e., bad grasp configurations) during optimization. Escaping these minima proves
challenging since the optimization is rolled out for each grasp independently without any knowledge
of the current loss landscape. However, such knowledge (and therefore the detection of local minima)
can be made available by incorporating additional information from the full grasp distribution used
for optimization at the current time step t. We therefore introduce the following changes to the
optimization subroutine1, which is applied to the grasp distribution at each iteration k: G(k) =

{G(k)
0 , ..., G

(k)
N } with energies E(t) = {E(k)

0 , ...., E
(k)
N }:

Dynamic Resetting: To prevent grasp starvation (i.e., grasp poses converging to local minima), we
reset the optimizer for grasps that are performing significantly worse compared to the overall grasp
distribution. After every nreset steps, we fit a normal distribution, parameterized by NE(µ, σ), over
the current set of energies E(k). We then re-initialize all grasp poses with ΦE(Ei;µ, σ) ≤ pth, i.e.,
the grasps that are within the lowest quantile of the fitted normal distribution, which is calculated based
on the cumulative distribution function ΦE and the upper probability threshold pth are re-initialized.

Adaptive Temperature Scaling: We update the Metropolis–Hastings acceptance criterion for
accepting gradient steps. In the original formulation, a gradient step that introduces an energy change
∆E is accepted with probability p ∼ e−∆E/T . We propose conditioning the temperature T on
the energy distribution, i.e., if a grasp performs significantly worse than the overall distribution,
we increase the temperature for that grasp. Hence, we change the acceptance criterion to p ∼
e−∆E/Ti , where Ti is the temperature for grasp i, and calculated using the following formula:
Ti = T · (1 + ΦE(Ei)). We refer the reader to Appendix 1 for the complete formulation and
pseudocode of the optimizer.

5 Results

Main Evaluation Metrics: To assess the performance of our method, we introduce the following
evaluation metrics:
Unique Grasp Rate (UGR) captures the number of distinct, stable grasps that the method can generate.
This metric is calculated by discretizing the successful grasp poses using three different resolutions
δr = 2 cm, δϕ = 4◦, and δq = 1.15◦ for the position, orientation (Euler angles), and joint states,
respectively. We then calculate the number of unique grasps and report the UGR as the ratio of unique
successful grasps over the total number of grasps for each object.
Entropy (H), a common measure for the diversity of grasp configurations is the mean entropy of
the finger joints. We extend this metric to also include the position and orientation of the grasp
configuration since, depending on the task at hand, different grasp positions and orientations might
be more suitable. Note that calculating the entropy of an SE(3) rotation is non-trivial. We refer the
reader to Appendix 8.1 for the full derivation.

Evaluation: We assess the stability of each grasp proposal using Isaac Lab [14] and an evaluation
method as introduced in [1]. Specifically, while grasping, forces are applied to the objects in the six
canonical world directions. We assess stability by checking that the center of mass (CoM) of the
objects stays within a sphere of radius 3 cm for at least one of the principal axis pairs (±x, ±y, ±z).

1The full algorithm is described in the Appendix - Alg.1
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Table 1: SYNTHESIZED GRASP POSES: We compare the influence of different analytical optimization schemes
on the final grasp quality and diversity metrics, for 4 and 12 contact points respectively, using our test set of 50
objects. We report the unique grasp rate (UGR) as the percentage of successful unique grasps over all generated
unique grasps, the joint entropy (H) of the successful grasp distribution, and the average max penetration depth
(D). All evaluations are performed in a no-gravity environment with 5N force.

Grasp Method Optimizer Allegro Shadow Hand Robotiq3f Robotiq2f Ability Hand Overall
Type UGR ↑ H ↑ UGR ↑ H ↑ UGR ↑ H ↑ UGR ↑ H ↑ UGR ↑ H↑ UGR ↑ H ↑ D ↓[mm]

4
C

tc
. DexGraspNet [1] MALA 67% 3.5 38% 2.9 26% 2.3 28% 3 15% 1.6 35% 2.7 1.0

DexGraspNet [1] MALA∗ 71% 3.5 36% 2.9 34% 2.5 32% 3.1 14% 1.5 38% 2.7 0.9
GraspQP(ours) MALA∗ 74% 3.6 49% 3.2 49% 2.9 34% 3.3 19% 1.8 45% 3.0 0.9

12
C

on
ta

ct
s

DexGraspNet [1] MALA 37% 2.7 14% 1.6 5% 0.6 – – 14% 1.5 18% 1.6 1.9
GenDexGrasp [13] MALA∗ 48% 3.1 23% 2.2 9% 1.1 – – 18% 1.8 25% 2.0 2.6
TDG [24] MALA∗ 49% 3.3 23% 2.3 8% 0.9 – – 16% 1.6 24% 2.0 2.7
GraspQP(ours) MALA∗ 55% 3.3 29% 2.5 9% 1.1 – – 26% 2.3 30% 2.3 2.3

DexGraspNet [1] MALA 31% 2.5 10% 1.3 4% 0.5 – – 11% 1.2 14% 1.4 1.8
GenDexGrasp [13] MALA∗ 44% 2.9 14% 1.6 4% 0.4 – – 17% 1.8 20% 1.7 2.6
TDG [24] MALA∗ 42% 3.0 13% 1.4 5% 0.6 – – 16% 1.7 19% 1.7 2.7
GraspQP(ours) MALA∗ 49% 3.1 17% 1.8 4% 0.5 – – 23% 2.1 23% 1.9 2.3

MultiGripper [2] GraspIt! [6] 62% 3.3 17% 1.6 35% 2.6 - - - - - - –
DexGraspNet [1] MALA 66% 3.5 35% 2.9 33% 2.6 30% 3.2 18% 1.8 37% 2.8 1.6
DexGraspNet [1] MALA∗ 68% 3.5 41% 3.0 40% 2.8 31% 3.2 18% 1.7 40% 2.9 1.6
GenDexGrasp [13] MALA∗ 74% 3.6 47% 3.2 51% 2.9 32% 3.4 23% 2.2 45% 3.0 1.7
TDG [24] MALA∗ 69% 3.5 47% 3.2 54% 2.9 28% 3.3 25% 2.2 45% 3.0 1.7
GraspQP(ours) MALA∗ 76% 3.6 63% 3.5 57% 3.0 29% 3.2 35% 2.6 52% 3.2 1.4

Dataset: We convert the dataset introduced by Wang et al. [1], comprising 5,700 objects, into the
Universal Scene Description (USD) format to enable direct use within Isaac Sim. To improve collision
handling, we recompute the collision meshes using Quad Remesher [33], and set the refined meshes
as the new collision geometry for GPU-accelerated signed distance field (SDF) collision checking.
For evaluation purposes, we randomly select a subset of 50 objects from the dataset to form our test
set. All reported results are based on this test set.

Main Results: We report our main results in Table 1, comparing grasp quality across different contact
points, gripper types, and baseline methods when exposed to a 5N disturbance force. We report
the Unique Successful Grasp Rate (UGR), entropy (H), and average maximum penetration depth
evaluated per gripper. We compare our method against four baselines, namely DexGraspNet [1],
GenDexGrasp [13], TDG [24], and MultiGripperDataset [2]. Implementation details for all methods
are provided in Appendix 8.3. Across all settings, our method (GraspQP) consistently outperforms
prior work both in grasp entropy (H) and unique grasp rate (UGR). We evaluate our approach under
two settings, restricting the number of active contact points |C′| to either 4 or 12, and observe that
our method scales better with a larger number of contact points, albeit at the cost of slightly larger
penetration depths. This trend is expected, as increasing the number of contact points not only
promotes greater contact area but also facilitates easier satisfaction of the force closure condition. We
further observe that the addition of our modified optimizer, MALA∗, improves the overall UGR as
well as the entropy. This effect is more pronounced in the 12 contact setting and discussed in Tab. 2.

The Robotiq2f gripper denotes the only case where our method does not significantly outperform
existing methods. We largely attribute this to the fact that the gripper only consists of two finger pads
that are always parallel, and the influence of the grasp metric becomes less important. Additionally,
the UGR for this gripper tends to collapse, as many grasps converge to similar gripper widths when
interacting with object parts that have uniform geometries. However, even though the unique grasp
rate is limited, the raw grasp success rate (reported in Appendix 8.4) remains high (above 80%),
demonstrating that the generated grasps are still physically plausible and stable despite reduced
diversity. Furthermore, when evaluating different grasp taxonomies, we observe a substantial decline
in the number of unique successful grasps, particularly for the Robotiq 3F gripper. In this case, fewer
than 10% of the optimized grasps remain both successful and unique, corresponding to approximately
three valid grasps per object. In general, we primarily attribute this degradation in performance to the
reduced stability of pinch and precision grasps, which inherently involve a limited number of contact
points. However, as shown in Appendix 8.4, when the external disturbance force is limited to 1N, the
unique grasp rate improves significantly, reaching 41% for pinch and 49% for precision grasps. For
completeness, we report all metrics across all disturbance forces in Appendix 8.4 and additionally list
the raw grasp success rates for all cases.
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Table 2: ABLATION STUDY: Impact of optimizer variants and design choices on grasp quality. We report
changes in entropy (H↑), unique grasp rate (UGR↑), and hand-object penetration (D↓). Improvements from
replacing MALA with our MALA∗ optimizer are shown across different methods, while subsequent rows analyze
the effect of changing parts of the optimizer, optimization problem and relaxing the form closure condition in
Theorem (3.1) from (iii) to (ii) or using the unconstrained softmax formulation αi =

exp βi∑
j exp(βj)

. All values are
calculated and averaged over all power grasps for all dexterous hands.

Method Optimizer Energy Formulation ∆ UGR ↑ [%] ∆H ↑ ∆ D ↓[mm]

GenDexGrasp
MALA → MALA∗

Liu et al. [11] +7.0 +0.3 -0.3
TDG Chen et al. [24] +5.0 +0.2 -0.3

GraspQP

ours
+5.4 +0.2 -0.4

MALA∗ → MALA∗w/o resets -4.8 -0.1 +0.1
MALA∗ → MALA∗w/o temp scaling -4.5 -0.1 +0.0

MALA∗

ours → ours w/o exp -0.3 +0.0 -0.1
Constrained (iii) → Unconstrained -10.0 -0.2 +0.1
Constrained (iii) → Unconstrained-Softmax -10.1 -0.3 -0.3

Constrained (iii) → Constrained (ii) -4.8 -0.1 -0.2

Our approach is slower than the baseline (3.4 s vs. 1.15 s per grasp on the 24-DoF Shadow Hand) but
is intended for offline dataset generation, where speed is less critical. The extra computation results
in significantly more diverse grasps. As shown in Figure 4, it may produce fewer grasps under tight
time limits but ultimately reaches far more unique grasps (about 80 with 128 seeds) compared to the
baseline’s saturation at 60 even with 512 seeded grasps.

Figure 4: Unique Successful Grasps (UGR) vs. Seed Size.
Average UGR per object w.r.t. the number of initialized grasps
(seeds). DexGraspNet yields more grasps under tight time con-
straints (Time Adjusted), but GraspQP scales more effectively,
reaching 80 unique grasps with only 128 seeds. DexGraspNet
saturates at 60 even with 512 seeds, indicating a diversity
bottleneck that more samples cannot overcome.

Ablation Studies: We conduct ablation
studies to assess the impact of our pro-
posed MALA* optimizer and alternative
optimization strategies on the UGR and en-
tropy. An overview is shown in Table 2.
For each design choice, we report both
the absolute and relative changes in en-
tropy (∆H), unique grasp rate (∆UGR),
and average max penetration depth (∆D),
which are evaluated for the power grasp
configuration and averaged across all hand
types. The results demonstrate that using
MALA* consistently improves entropy (H)
and unique grasp rate (UGR), and reduces
penetration depth (D). In order to motivate
our design choices, we further investigate the influence of our optimization formulation and solver.
We show that reformulating the optimization problem as a nonlinear constraint problem (Sec. 1 using
Theseus [34]) leads to a significant degradation in performance, highlighting the necessity for hard
constraints within the optimization formulation. A similar (but less strong) decline is observed when
reformulating the form closure condition from (iii) to (ii) (Theorem 3.1 and additionally including
the constraint

∑N
i αi = N , to prevent the convergence to αi → 0).

6 Conclusion

In this work, we proposed a method to synthesize diverse and stable grasps for a wide range of
objects and robotic grippers. Our approach combines a differentiable force closure energy, defined
through a Quadratic Program (QP), with an adjusted optimization strategy (MALA*) that promotes
diversity during grasp synthesis. We showed that our method is capable of generating a broad set of
stable and unique grasps across different object geometries and gripper types, outperforming existing
approaches in terms of both grasp stability and entropy. Finally, we provide a detailed ablation study
and analysis, validating the effectiveness of each component of our method. As future work, we plan
to extend our framework to dynamic manipulation scenarios and aim to use the generated dataset to
train deep learning models for real-world grasp synthesis and robotic deployment.
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7 Limitations

While our method can generate a diverse set of stable grasps for a wide range of objects and
grippers, there are still some limitations to our approach. For the analytical optimization, our
results demonstrate that incorporating a rigorous force closure metric directly enhances grasp quality
and diversity. However, this comes at the cost of increased computational complexity, with our
optimization-based formulation requiring approximately 1.5–3 times more computation time than
baseline methods (worst case 3.4 s / grasp (ours) vs 1.15 s / grasp for the 24-DoF Shadow Hand).
While this is acceptable for offline grasp synthesis, it may pose limitations for real-time applications
or when used as a reward function in reinforcement learning. A potential solution could involve
implementing ADMM solvers [35] on GPU.

Another challenge is the occurrence of mode collapse, where multiple grasps converge to very similar
configurations, reducing the number of unique grasps. Introducing coupling between grasp proposals
to prevent them from occupying the same spatial region could help alleviate this issue. Although
preliminary experiments using density-based repulsion forces have not yielded promising results, we
intend to explore this direction further in future work. Finally, we observed some limitations within
the Isaac Sim physics engine, where fingertips sometimes penetrate the object surface, leading to
potential false positives in the grasp evaluation.
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8 Appendix

8.1 Metrics

Entropy Formulation: Directly calculating the entropy of the quaternion representation or the euler
angles introduces bias due to the non-uniformity and/or singularities of the representation. We
therefore calculate the entropy of grasp orientation by first converting it into axis-angle representation,
which ensures that each orientation lies within a sphere of radius π. By finally converting the
axis-angles into spherical coordinates, we can calculate the entropy of the orientation as the joint
entropy of the spherical coordinates. For each object, we calculate the joint entropy of the pose χ
(position χp, orientation χθ) and joint states q and report the mean over all objects. The final entropy
is calculated as

H =
1

2
H(q) +

1

2
H(χ) =

1

2
H(q) +

1

2
(H(χp) +H(χθ)) ,

where H(•) denotes the entropy of the respective discretized distribution •. We calculate the
entropy by using uniform discretizations with 32 evenly spaced bins per dimension and assume each
component to be independent.

Penetration Depth: The penetration metric captures the amount of penetration between the object
O and the gripper G. It is calculated as the sum of the maximal penetration depths of a discrete set
of points (ps(O) ∈ R3000×3) uniformly sampled from the object surface. For each of these points,
we calculate the max penetration depth with respect to all gripper links d(·, ·). The final penetration
depth is the mean over all worst case penetrations, i.e.

P =
1

Nobj ×Ngrasps

∑
(O,G)

max
p∈ps(O)

(d(p,G)),

where Nobj denotes the number of objects and Ngrasps the number of predicted grasps for each object
(i.e. 32).

Success Rate with regard to applied Force:
We employ two different success metrics
i) Succ1: As used in [13], this denotes the success rate for withstanding a force applied along at
least one of the main canonical axes (i.e., ±x, ±y, or ±z). To ensure consistency with prior work,
this metric is used by default to determine successful grasps (e.g., in calculating Unique Grasp Rate
(UGR) or Entropy (H)), unless specified otherwise:

Succ1 =
1

Nobj ×Ngrasps

∑
(O,G)

1

 ∨
a∈{±x,±y,±z}

Success(O,G, a)

 ,

where Success is true if the center of gravity of the object O grasped by the grasp G remains stationary
(within a radius of 3cm) during the application of the force along the axis a.
ii) Succ3: A more rigorous formulation of the success rate, reporting the proportion of cases where
the grasp can withstand forces applied along all three main canonical axes:

Succ3 =
1

Nobj ×Ngrasps

∑
(O,G)

1

 ∧
a∈{±x,±y,±z}

Success(O,G, a)

 .
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8.2 Metropolis-adjusted Langevin algorithm (MALA)

We base our implementation on the MALA optimizer used in [1] and highlight our key differences
(shown in blue) in the pseudo code 1. We refer the reader to [1] for the implementation of the full
algorithm.

Algorithm 1: Analytical Grasp Generation

Input: Initial grasp proposals G0 = {G(i)
0 }Ngrasps

i=0 , Number of iterations N , temperature T .
Output: Predicted Grasps GN

for t = 1 to N do
Ĉ′ = ... // Re-sample active contact points
(χ̂t, q̂t) = ... // Calculate next grasp using SGD, based on energy
Ĝt = (χ̂t, q̂t, Ĉ′)

∆E = E(Ĝt)− E(Gt−1)
// Update According to Metropolis-Hastings
µt, σt = mean(E(Ĝt)), std(E(Ĝt))
for i = 0 to Ngrasps do

T
(i)
t = Tt ·

(
1 + Φ(E(Ĝ(i)

t );µt, σt)
)

p ∼ U(0, 1)
if p < e−∆E(i)/T

(i)
t then

G(i)
t = Ĝ(i)

t // Accept Sample
end
else

G(i)
t = G(i)

t−1 // Reject Sample
end

end
end

8.3 Implementation Details

Simulation Environment: We use Isaac Lab [14] (along with Isaac Sim) as our simulation environ-
ment, which offers high-fidelity physics simulations and a broad selection of robotic grippers and
objects. The underlying physics time step is set to 200 Hz, and actuator commands are also applied at
200 Hz. We disable gravity for both the object and the gripper and configure the actuators torque
and velocity limits based on realistic, gripper-specific values taken from their respective datasheets.
A proportional-derivative (PD) controller with a high proportional gain (approximately 100) is em-
ployed, effectively mimicking a position controller for each gripper. The maximum simulation time
is set to 4.8 seconds, with the external force changing every 0.5 seconds. For the Shadow Hand, we
replace the tendon driven actuators with direct-drive actuators, as we observed instability when using
tendons during simulation.

Grasp Generation: To allow for a fair comparison, we use the same hyperparameters and optimiza-
tion setup as done in [1]. We modify the handcrafted set of contact points with contact meshes. We
then randomly sample a discrete set of contact points from these contact meshes using farthest point
sampling to ensure good coverage. These points are then used as potential contact points C for the
optimization process. For Pinch and Precision grasps, we select a subset of the contact meshes (i.e.
fingertips of thumb, index for pinch, index and middle for precision grasps).

We reset all environments after nreset steps if the energy Et is below one standard deviation of the
overall distribution (i.e., pth = 0.8413). Finally, we optimize over a total of 7000 steps and evaluate
the final grasp proposals using our simulation environment.
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In case of the unconstrained optimization problem, we use the implementation of Theseus [34] and
unroll the last four optimization steps to compute the gradient. We implement the barrier functions as

barrier(γ̂) = −h[h<0] − (1/τ · log(h+ ε))[h≥0],

with τ = 100, ϵ = 10−6 and h = [γ̂ − 1, u− γ̂].

Dataset Processing: We postprocess the data set introduced in [1]. Besides re-meshing for better
collision detection in Isaac Sim, we also re-scale the assets (which by default are normalized to
the unit cube). To this end, we first scale each mesh by a factor of 0.08, which should make the
assets roughly fit within an 8cm bounding box. However, we observe that not all meshes follow the
unit-cube convention, meaning that a few become disproportionately small or large after this initial
scaling. To address these issues, we compute the bounding box dimensions for each rescaled mesh
and apply a corrective rescaling step: if the smallest axis exceeds 8cm, we downscale the mesh to
ensure that the smallest axis is at most 8cm wide. If the largest axis falls below 7cm, we upscale it to
ensure the the largest axis is at least 7cm large. This ensures that all assets remain within a consistent
and physically meaningful size range.

Baseline Methods:

• DexGraspNet [1]: We use the official DexGraspNet implementation as the basis for our
experiments. To improve performance, we adjust the relative weighting between force and
torque by a factor of 5, as we found this leads to higher success rates. Specifically, we
compute the energy as:

EFC = ∥Gc∥W with W =

[
1 0
0 5

]
.

• GenDexGrasp [13]: We implement GenDexGrasp by adding their normal based distance
weighting. Hence, the final energy formulation becomes:

EGenDex
dis =

∑
c∈C

e(1−⟨nc,no⟩)∥d(c,O)∥2

where nc is the normal vector at the fingertip, no is the surface normal of the closest point
on the object, and d(c,O) denotes the closest distance from the contact point c to the object
surface O.

• MultiGripperDataset [2]: We follow the same procedures as the authors and use the code
provided by the authors for the supported grippers. More specifically, we use GraspIt! to
sample an initial set of grasps using a maximal amount of 100000 steps. Similarly to [2],we
sample the final (in our case 32) grasps using farthest point sampling. These grasps are then
evaluated using our evaluation environment.

• TDG [24]: We use the implementation provided by the authors. We modify the relative
force/torque weighting to 1/5 and scale the energy term by a factor of 100 to make sure that
the energy term has a comparable magnitude with the other baseline methods. Furthermore,
we additionally add the normal weighting term from GenDexGrasp, as this has lead to
improved performance.

• GraspQP (ours): We use a friction coefficient of 0.2 and upper limit on λ̂ of 50. We again,
use a relative force/torque weighting of 1/5 and use the normal based distance weighting
from [13].
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8.4 Full Results

Numerical Results and Success Rates: For completeness, we report the unique grasp rate and
entropy (Tab. 3) and grasp success rate (Tab. 4) for all force thresholds, baselines and grasp types.

Table 3: extscUnique Grasp Rate (UGR) and Entropy for Various Interaction Forces: We list the UGR and
entropy (H) for various interaction forces, ranging from 1 to 10 N. Succ3 denotes the success rate to withstand
all interaction forces along all three main directions (±x, ±y, ±z), and Succ1 denotes the success rate along
either one of the main directions.

Grasp Method Optimizer Allegro Shadow Hand Robotiq3f Robotiq2f Ability Hand Overall
Type UGR ↑ H ↑ UGR ↑ H ↑ UGR ↑ H ↑ UGR ↑ H ↑ UGR ↑ H↑ UGR ↑ H ↑
1N

power

DexGraspNet MALA 68% 3.54 43% 3.12 50% 3.08 32% 3.28 20% 1.99 43% 3.00
MALA∗ 69% 3.51 49% 3.23 61% 3.27 33% 3.28 20% 1.86 46% 3.03

GenDexGrasp MALA∗ 74% 3.56 53% 3.34 73% 3.36 32% 3.40 24% 2.22 51% 3.18
TDG MALA∗ 69% 3.51 53% 3.34 77% 3.31 29% 3.30 27% 2.36 51% 3.16
GraspQP (ours) MALA∗ 77% 3.61 67% 3.56 78% 3.39 29% 3.23 37% 2.73 58% 3.30

pinch

DexGraspNet MALA 32% 2.52 29% 2.50 17% 1.93 – 15% 1.73 23% 2.17
MALA∗ 36% 2.69 26% 2.27 22% 2.10 – 13% 1.51 24% 2.14

GenDexGrasp MALA∗ 44% 2.96 37% 2.77 40% 2.90 – 23% 2.18 36% 2.70
TDG MALA∗ 43% 2.99 33% 2.61 38% 2.79 – 21% 1.99 34% 2.59
GraspQP (ours) MALA∗ 50% 3.11 40% 2.87 41% 2.89 – 29% 2.35 40% 2.81

precision

DexGraspNet MALA 39% 2.82 35% 2.60 23% 2.26 – 17% 1.82 29% 2.38
MALA∗ 43% 2.94 32% 2.48 31% 2.54 – 16% 1.63 30% 2.40

GenDexGrasp MALA∗ 48% 3.11 42% 2.94 45% 3.08 – 21% 1.98 39% 2.78
TDG MALA∗ 49% 3.27 43% 3.01 47% 3.07 – 19% 1.85 39% 2.80
GraspQP (ours) MALA∗ 57% 3.36 48% 3.07 49% 3.11 – 32% 2.53 46% 3.02

2N

power

DexGraspNet MALA 67% 3.52 42% 3.09 45% 2.97 32% 3.27 20% 1.90 41% 2.95
MALA∗ 68% 3.51 47% 3.22 55% 3.13 33% 3.27 19% 1.84 44% 2.99

GenDexGrasp MALA∗ 75% 3.56 52% 3.31 69% 3.30 32% 3.40 24% 2.29 50% 3.17
TDG MALA∗ 68% 3.51 52% 3.33 72% 3.25 29% 3.29 27% 2.33 49% 3.14
GraspQP (ours) MALA∗ 76% 3.60 67% 3.55 71% 3.26 29% 3.23 37% 2.70 56% 3.27

pinch

DexGraspNet MALA 32% 2.52 23% 2.23 9% 1.08 – 13% 1.56 19% 1.85
MALA∗ 36% 2.67 19% 1.95 11% 1.27 – 12% 1.34 20% 1.81

GenDexGrasp MALA∗ 44% 2.94 30% 2.54 17% 1.77 – 21% 2.06 28% 2.33
TDG MALA∗ 43% 2.99 28% 2.41 20% 1.96 – 19% 1.87 27% 2.31
GraspQP (ours) MALA∗ 50% 3.11 34% 2.65 19% 1.96 – 27% 2.24 32% 2.49

precision

DexGraspNet MALA 39% 2.80 31% 2.49 14% 1.59 – 17% 1.75 25% 2.15
MALA∗ 42% 2.91 28% 2.35 18% 1.84 – 14% 1.52 26% 2.15

GenDexGrasp MALA∗ 49% 3.12 38% 2.81 26% 2.38 – 21% 1.98 34% 2.57
TDG MALA∗ 50% 3.27 39% 2.90 28% 2.41 – 18% 1.78 34% 2.59
GraspQP (ours) MALA∗ 56% 3.35 44% 2.99 28% 2.39 – 30% 2.39 40% 2.78

5N

power

DexGraspNet MALA 66% 3.51 35% 2.86 33% 2.56 30% 3.21 18% 1.77 37% 2.78
MALA∗ 68% 3.51 41% 3.04 40% 2.76 31% 3.23 18% 1.72 40% 2.85

GenDexGrasp MALA∗ 74% 3.56 47% 3.16 51% 2.93 32% 3.38 23% 2.19 45% 3.04
TDG MALA∗ 69% 3.51 47% 3.19 54% 2.93 28% 3.28 25% 2.16 45% 3.01
GraspQP (ours) MALA∗ 76% 3.60 63% 3.46 57% 3.02 29% 3.22 35% 2.63 52% 3.19

pinch

DexGraspNet MALA 31% 2.47 10% 1.28 4% 0.49 – 11% 1.25 14% 1.37
MALA∗ 35% 2.64 7% 0.92 3% 0.35 – 10% 1.09 14% 1.25

GenDexGrasp MALA∗ 44% 2.92 14% 1.57 4% 0.39 – 17% 1.78 20% 1.66
TDG MALA∗ 42% 2.96 13% 1.43 5% 0.58 – 16% 1.72 19% 1.67
GraspQP (ours) MALA∗ 49% 3.11 17% 1.84 4% 0.45 – 23% 2.09 23% 1.87

precision

DexGraspNet MALA 37% 2.73 14% 1.64 5% 0.55 – 14% 1.53 18% 1.61
MALA∗ 43% 2.94 14% 1.52 6% 0.65 – 11% 1.32 18% 1.61

GenDexGrasp MALA∗ 48% 3.06 23% 2.18 9% 1.07 – 18% 1.80 25% 2.02
TDG MALA∗ 49% 3.26 23% 2.30 8% 0.87 – 16% 1.59 24% 2.00
GraspQP (ours) MALA∗ 55% 3.32 29% 2.45 9% 1.14 – 26% 2.28 30% 2.30

10N

power

DexGraspNet MALA 65% 3.49 23% 2.31 22% 2.01 29% 3.16 17% 1.65 31% 2.53
MALA∗ 67% 3.50 28% 2.55 28% 2.31 31% 3.20 17% 1.66 34% 2.64

GenDexGrasp MALA∗ 72% 3.53 35% 2.83 37% 2.60 31% 3.34 21% 2.01 39% 2.86
TDG MALA∗ 67% 3.49 36% 2.79 42% 2.58 28% 3.24 23% 2.07 39% 2.83
GraspQP (ours) MALA∗ 76% 3.59 48% 3.12 45% 2.75 28% 3.21 33% 2.56 46% 3.05

pinch

DexGraspNet MALA 30% 2.45 2% 0.16 2% 0.22 – 8% 0.92 11% 0.94
MALA∗ 34% 2.58 1% 0.02 1% 0.05 – 7% 0.80 11% 0.86

GenDexGrasp MALA∗ 42% 2.89 2% 0.25 1% 0.14 – 14% 1.61 15% 1.22
TDG MALA∗ 42% 2.94 3% 0.35 2% 0.18 – 12% 1.25 15% 1.18
GraspQP (ours) MALA∗ 48% 3.08 2% 0.23 2% 0.14 – 19% 1.80 18% 1.31

precision

DexGraspNet MALA 37% 2.72 3% 0.24 2% 0.20 – 11% 1.27 13% 1.11
MALA∗ 41% 2.91 2% 0.15 2% 0.19 – 10% 1.12 14% 1.09

GenDexGrasp MALA∗ 46% 3.05 5% 0.72 3% 0.33 – 15% 1.49 17% 1.40
TDG MALA∗ 48% 3.21 6% 0.73 2% 0.19 – 12% 1.37 17% 1.38
GraspQP (ours) MALA∗ 54% 3.30 8% 0.91 3% 0.27 – 22% 2.02 22% 1.63
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Table 4: GRASP SUCCESS RATES FOR VARIOUS INTERACTION FORCES: We list the raw success rates for
various interaction forces, ranging from 1 to 10 N. Succ3 denotes the success rate to withstand all interaction
forces along all three main directions (±x, ±y, ±z), and Succ1 denotes the success rate along either one of the
main directions.

Grasp Method Optimizer Allegro Shadow Hand Robotiq3f Robotiq2f Ability Hand Overall
Type Succ1 ↑ Succ3 ↑ Succ1 ↑ Succ3 ↑ Succ1 ↑ Succ3 ↑ Succ1 ↑ Succ3 ↑ Succ1 ↑ Succ3 ↑ Succ1 ↑ Succ3 ↑
1N

power

DexGraspNet MALA 71% 50% 45% 37% 53% 34% 64% 58% 21% 12% 51% 38%
MALA∗ 71% 48% 50% 41% 64% 42% 70% 66% 20% 10% 55% 41%

GenDexGrasp MALA∗ 77% 55% 55% 47% 76% 54% 83% 76% 25% 14% 63% 49%
TDG MALA∗ 71% 48% 55% 49% 79% 55% 86% 79% 28% 15% 64% 49%
GraspQP (ours) MALA∗ 80% 57% 70% 63% 80% 56% 88% 82% 39% 24% 71% 56%

pinch

DexGraspNet MALA 33% 27% 31% 19% 19% 5% 16% 10% 25% 15%
MALA∗ 38% 31% 28% 16% 23% 6% 14% 9% 26% 16%

GenDexGrasp MALA∗ 46% 41% 39% 26% 43% 10% 24% 16% 38% 23%
TDG MALA∗ 45% 40% 35% 23% 41% 12% 22% 15% 36% 22%
GraspQP (ours) MALA∗ 52% 47% 42% 29% 44% 10% 30% 21% 42% 27%

precision

DexGraspNet MALA 41% 32% 37% 26% 24% 9% 18% 11% 30% 20%
MALA∗ 44% 36% 34% 24% 33% 10% 16% 11% 32% 20%

GenDexGrasp MALA∗ 50% 41% 45% 34% 46% 15% 23% 15% 41% 26%
TDG MALA∗ 51% 42% 45% 34% 49% 20% 20% 13% 41% 27%
GraspQP (ours) MALA∗ 59% 49% 50% 39% 51% 19% 33% 22% 48% 32%

2N

power

DexGraspNet MALA 69% 50% 44% 33% 47% 22% 63% 57% 21% 11% 49% 35%
MALA∗ 71% 50% 49% 37% 57% 28% 71% 64% 20% 10% 54% 38%

GenDexGrasp MALA∗ 77% 54% 54% 43% 71% 37% 83% 76% 25% 14% 62% 45%
TDG MALA∗ 70% 49% 54% 44% 74% 39% 85% 78% 28% 14% 62% 45%
GraspQP (ours) MALA∗ 78% 56% 69% 59% 73% 41% 88% 82% 38% 23% 69% 52%

pinch

DexGraspNet MALA 33% 27% 25% 10% 9% 2% 14% 8% 20% 12%
MALA∗ 37% 30% 21% 7% 11% 1% 13% 7% 20% 11%

GenDexGrasp MALA∗ 46% 40% 32% 13% 18% 1% 22% 13% 30% 17%
TDG MALA∗ 44% 39% 30% 12% 21% 2% 20% 13% 29% 16%
GraspQP (ours) MALA∗ 52% 47% 36% 16% 20% 2% 28% 18% 34% 21%

precision

DexGraspNet MALA 40% 32% 32% 15% 15% 3% 18% 10% 26% 15%
MALA∗ 44% 36% 30% 14% 18% 3% 15% 10% 27% 16%

GenDexGrasp MALA∗ 51% 40% 40% 23% 27% 3% 23% 13% 35% 20%
TDG MALA∗ 52% 42% 41% 25% 29% 4% 20% 12% 36% 21%
GraspQP (ours) MALA∗ 58% 48% 47% 28% 30% 3% 31% 20% 42% 25%

5N

power

DexGraspNet MALA 68% 49% 37% 18% 35% 8% 61% 54% 19% 9% 44% 28%
MALA∗ 71% 48% 42% 22% 42% 10% 69% 62% 19% 9% 49% 30%

GenDexGrasp MALA∗ 76% 53% 48% 28% 52% 13% 83% 73% 24% 12% 57% 36%
TDG MALA∗ 71% 49% 49% 30% 55% 14% 85% 77% 25% 14% 57% 37%
GraspQP (ours) MALA∗ 79% 55% 65% 40% 59% 16% 88% 81% 36% 22% 65% 43%

pinch

DexGraspNet MALA 32% 24% 11% 2% 4% 0% 11% 6% 14% 8%
MALA∗ 37% 30% 8% 1% 3% 0% 11% 5% 15% 9%

GenDexGrasp MALA∗ 46% 39% 15% 2% 4% 0% 18% 7% 21% 12%
TDG MALA∗ 44% 38% 14% 3% 5% 0% 17% 8% 20% 12%
GraspQP (ours) MALA∗ 51% 45% 19% 3% 4% 0% 24% 12% 24% 15%

precision

DexGraspNet MALA 39% 30% 15% 3% 5% 0% 15% 7% 19% 10%
MALA∗ 44% 35% 14% 2% 6% 1% 12% 6% 19% 11%

GenDexGrasp MALA∗ 50% 39% 24% 4% 9% 0% 20% 10% 26% 13%
TDG MALA∗ 51% 41% 24% 6% 8% 1% 17% 9% 25% 14%
GraspQP (ours) MALA∗ 57% 47% 31% 8% 10% 0% 28% 15% 32% 18%

10N

power

DexGraspNet MALA 67% 47% 24% 7% 22% 2% 60% 49% 17% 8% 38% 23%
MALA∗ 70% 46% 29% 9% 29% 2% 68% 57% 18% 8% 43% 24%

GenDexGrasp MALA∗ 75% 51% 35% 12% 38% 4% 81% 69% 22% 10% 50% 29%
TDG MALA∗ 69% 47% 37% 13% 43% 3% 84% 72% 24% 13% 51% 30%
GraspQP (ours) MALA∗ 78% 54% 50% 20% 47% 5% 87% 76% 34% 21% 59% 35%

pinch

DexGraspNet MALA 31% 22% 2% 0% 2% 0% 8% 3% 11% 6%
MALA∗ 36% 27% 1% 0% 1% 0% 8% 2% 12% 7%

GenDexGrasp MALA∗ 44% 37% 2% 0% 2% 0% 15% 5% 16% 10%
TDG MALA∗ 43% 34% 3% 0% 2% 0% 12% 6% 15% 10%
GraspQP (ours) MALA∗ 50% 41% 3% 0% 2% 0% 19% 6% 18% 12%

precision

DexGraspNet MALA 39% 30% 3% 0% 2% 0% 12% 4% 14% 8%
MALA∗ 43% 33% 2% 0% 2% 0% 10% 4% 14% 9%

GenDexGrasp MALA∗ 48% 37% 6% 0% 3% 0% 16% 7% 18% 11%
TDG MALA∗ 50% 39% 6% 0% 2% 0% 14% 6% 18% 11%
GraspQP (ours) MALA∗ 57% 45% 8% 1% 3% 0% 24% 11% 23% 14%
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8.4.1 Contact Maps

We additionally provide heatmaps that visualize the contact regions for each gripper and grasp
type. To generate these maps, we compute the distance from each object vertex v ∈ V (O) to
the gripper surface for every grasp pose G ∈ G. The color intensity c(v) at each vertex is then
calculated as the normalized sum of the exponentiated negative distances across all grasp poses:
c(v) = 1

|G|
∑

G∈G

(
exp(−10·d(v,G))∑

ϑ∈V (O) exp(−10·d(ϑ,G))

)
. Finally, the resulting intensities are visualized using

the viridis colormap, where high-intensity regions appear yellow and low-intensity regions appear
blue.

(a) Ability Hand - default

(b) Ability Hand - precision (c) Ability Hand - pinch
Figure 5: Contact heatmaps for various objects using the Ability Hand. The color intensity (mapped with the
viridis colormap) indicates regions of frequent contact across all grasp poses: yellow represents high-contact
areas, while blue indicates low-contact regions. Notably, many objects show concentrated contact regions near
their center of gravity.
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(a) Roboti 3F - default

(b) Roboti 3F - precision (c) Roboti 3F - pinch

Figure 6: Contact heatmaps for various objects using the Robotiq 3F. The color intensity (mapped with the
viridis colormap) indicates regions of frequent contact across all grasp poses: yellow represents high-contact
areas, while blue indicates low-contact regions.
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(a) Shadow Hand- default

(b) Shadow Hand- precision (c) Shadow Hand- pinch
Figure 7: Contact heatmaps for various objects using the Shadow Hand. The color intensity (mapped with the
viridis colormap) indicates regions of frequent contact across all grasp poses: yellow represents high-contact
areas, while blue indicates low-contact regions. Notably, many objects show concentrated contact regions near
their center of gravity.

Figure 8: Robotiq 2f140
Figure 9: Contact heatmaps for various objects using the Robotiq 2f140 Gripper. The color intensity (mapped
with the viridis colormap) indicates regions of frequent contact across all grasp poses: yellow represents high-
contact areas, while blue indicates low-contact regions. Notably, many objects show concentrated contact regions
near their center of gravity.
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(a) Allegro - default

(b) Allegro - precision (c) Allegro - pinch
Figure 10: Contact heatmaps for various objects using the Allegro hand. The color intensity (mapped with the
viridis colormap) indicates regions of frequent contact across all grasp poses: yellow represents high-contact
areas, while blue indicates low-contact regions. Notably, many objects show concentrated contact regions near
their center of gravity.
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