
Risk-Aware Transfer in Reinforcement Learning
using Successor Features

Michael Gimelfarb∗

University of Toronto
mike.gimelfarb@mail.utoronto.ca

André Barreto
DeepMind

andrebarreto@google.com

Scott Sanner∗
University of Toronto

ssanner@mie.utoronto.ca

Chi-Guhn Lee
University of Toronto

cglee@mie.utoronto.ca

Abstract

Sample efficiency and risk-awareness are central to the development of practical
reinforcement learning (RL) for complex decision-making. The former can be
addressed by transfer learning and the latter by optimizing some utility function of
the return. However, the problem of transferring skills in a risk-aware manner is not
well-understood. In this paper, we address the problem of risk-aware policy transfer
between tasks in a common domain that differ only in their reward functions, in
which risk is measured by the variance of reward streams. Our approach begins
by extending the idea of generalized policy improvement to maximize entropic
utilities, thus extending policy improvement via dynamic programming to sets of
policies and levels of risk-aversion. Next, we extend the idea of successor features
(SF), a value function representation that decouples the environment dynamics
from the rewards, to capture the variance of returns. Our resulting risk-aware
successor features (RaSF) integrate seamlessly within the RL framework, inherit
the superior task generalization ability of SFs, and incorporate risk-awareness into
the decision-making. Experiments on a discrete navigation domain and control of
a simulated robotic arm demonstrate the ability of RaSFs to outperform alternative
methods including SFs, when taking the risk of the learned policies into account.

1 Introduction

Reinforcement learning (RL) is a general framework for solving sequential decision-making problems,
in which an agent interacts with an environment and receives continuous feedback in the form of
rewards. However, many classical algorithms in RL do not explicitly address the need for safety,
making them unreliable and difficult to deploy in some real-world applications [10]. One reason for
this is the relative sample inefficiency of model-free RL algorithms, which often require millions of
costly or dangerous interactions with the environment or fail to converge altogether [44, 46]. Transfer
learning addresses these problems by incorporating prior knowledge or skills [23, 41]. Despite this,
using the expected return as a measure of optimality could still lead to undesirable behavior such as
excessive risk-taking, since low-probability catastrophic outcomes with negative reward and high
variance could be underrepresented [29]. For this reason, risk-awareness is becoming an important
aspect in the design of practical RL [14]. Thus, an ultimate goal of developing reliable systems
should be to ensure that they are both sample efficient and risk-aware.

∗Affiliate to Vector Institute, Toronto, Canada.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Transfers Skills Exploits Task Structure Risk-Sensitive

RL [7, 11, 20, 27, 28, 30, 36, 39, 45] 7 7 3

Transfer [15, 17, 19, 25, 26, 38, 43] 3 7 3

Successor Features [2–4, 8] 3 3 7

RaSF (Ours) 3 3 3

Table 1: Comparison of RaSF with relevant work in transfer learning and risk-aware RL.

We take a step in this direction by studying the problem of risk-aware policy transfer between
tasks with different goals. A powerful way to tackle this problem in the risk-neutral setting is the
GPI/GPE framework, of which successor features (SF) are a notable example [2]. Here, generalized
policy improvement (GPI) provides a theoretical framework for transferring policies with monotone
improvement guarantees, while generalized policy evaluation (GPE) facilitates the efficient evaluation
of policies on novel tasks and is a key component in satisfying the assumptions of GPI in practice.
Together, GPI/GPE provide strong transfer benefits in novel task instances even before any direct
interaction with them has taken place, a phenomenon we call task generalization. The key to the
superb generalization of GPI/GPE lies in their ability to directly exploit the structure of the task
space, taking advantage of subtle differences and commonalities between task goals to transfer skills
seamlessly in a composable manner. This property could be an effective way of tackling problems
in offline RL [24], such as the transfer of skills learned in a simulator to a real-world environment.
However in many cases, such as helicopter flight control [16], making one wrong decision could lead
to catastrophic outcomes. Hence, being risk-aware could offer one way to avoid worst-case outcomes
when transferring skills in real-world settings.

Contributions. We contribute a novel successor feature framework for transferring policies with
the goal of maximizing the entropic utility of return in MDPs (Section 2.2). Intuitively, the entropic
utility encourages agents to follow policies with predictable and controllable returns characterized
by low variance, thus providing a natural way to incorporate risk-awareness. Furthermore, while
our theoretical framework could be extended to other classes of utility functions, the entropic utility
has many favorable mathematical properties [13, 22] that we exploit directly in this work to achieve
optimal transfer (Lemma 1, Theorem 1 and 2). We also derive a form of risk-aware GPE based
on the mean-variance approximation, in which the sufficient statistics of the return distribution can
be computed directly (Section 3.3) or by leveraging recent developments in distributional RL [6].
Our resulting approach, which we call Risk-Aware Successor Features (RaSF), is able to exploit the
task structure to achieve task generalization with respect to novel goal instances as well as levels
of risk aversion, where emphasis is placed on avoiding high volatility of returns. Our approach is
also complementary to other advances in successor features, including feature learning [3], universal
approximation [8], exploration [21], and non-stationary reward preferences [4]. Empirical evaluations
on discrete navigation and continuous robot control domains (Section 4) demonstrate the ability of
RaSFs to better manage the trade-off between return and risk and avoid catastrophic outcomes, while
providing excellent generalization on novel tasks in the same domain.

Related Work. The entropic and mean-variance objectives are popular ways of incorporating
risk-awareness in RL [7, 11, 20, 27, 28, 30, 36, 39, 45]. However, transferring learned skills between
tasks while taking risk into account is a difficult problem. One way to implement risk-aware transfer
is to learn a critic [38] or teacher [43] that can guide an agent toward safer behaviors on future tasks.
The risk-aware transfer of a policy from a simulator to a real-world setting has also been studied in the
area of robotics [17]. Another approach for reusing policies is the probabilistic policy reuse of García
and Fernández [15], but requires strong assumptions on the task space. Hierarchical RL (HRL) is
another related approach that relies on hierarchical abstractions, enabling an agent to decompose
tasks into a hierarchy of sub-tasks, and facilitating the transfer of temporally-extended skills from
sub-tasks to the parent task. The CISR approach of Mankowitz et al. [26] is the first to investigate
safety explicitly within HRL, followed up by work on safe options [18, 19, 25]. However, none of the
existing work takes advantage of the compositional structure of task rewards to transfer skills while
optimizing the variance-adjusted return, which is the problem we tackle in this paper (see Table 1).

2

2 Preliminaries

2.1 Markov Decision Process

Sequential decision-making in this paper follows the Markov decision process (MDP), defined as
a four-tuple 〈S,A, r, P 〉: S is a set of states; A is a finite set of actions; r : S × A × S → R is
a bounded reward function, where r(s, a, s′) is the immediate reward received upon transitioning
to state s′ after taking action a in state s; and P : S × A × S → [0,∞) is the transition function
for state dynamics, where P (s′|s, a) is the probability of transitioning to state s′ immediately after
taking action a in state s.

In the episodic MDP setting, decisions are made over a horizon T = {0, 1, . . . T} where T ∈ N.
We define a stochastic Markov policy as a mapping π : S × T → P(A), where P(A) denotes the
set of all probability distributions over A. Similarly, a deterministic Markov policy is a mapping
π : S × T → A. In the risk-neutral setting, the goal is to find a policy π that maximizes the expected
sum of future rewards after initially taking action a in state s,

Qπ
h(s, a) = Est+1∼P (·|st,at)

[
T∑

t=h

r(st, at, st+1)
∣∣∣ sh = s, ah = a, at ∼ πt(st)

]
.

In this case, it is possible to show that a deterministic Markov policy π∗ is optimal [33]. The
theoretical framework in this paper also allows for time-dependent reward or transition functions.

2.2 Entropic Utility Maximization

We incorporate risk-awareness into the decision-making by maximizing the entropic utility Uβ of the
cumulative reward, defined for a fixed β ∈ R as

Uβ [R] =
1

β
logE

[
eβR

]
, (1)

for real-valued random variables R on a bounded support Ω ⊂ R. An important property of the
entropic utility is the Taylor expansion Uβ [R] = E[R] + β

2Var[R] +O(β2). Interpreting the risk as
return variance, β can now be interpreted as the risk aversion of the agent: choosing β < 0 (β > 0)
leads to risk-averse (risk-seeking) behavior, while β = 0 is risk-neutral, e.g. U0[R] = E[R].

Specializing (1) to the MDP setting, the goal is to maximize

Qπ
h,β(s, a) = Uβ

[
T∑

t=h

r(st, πt(st), st+1)

]
(2)

over all policies starting from sh = s and ah = a. As in the risk-neutral setting, it is possible to show
that a deterministic Markov policy is optimal [5]. Furthermore, Qπ

h,β can be computed iteratively
through time using the Bellman equation [9, 32]:

Qπ
h,β(s, a) = Uβ

[
r(s, a, s′) +Qπ

h+1,β(s
′, πh+1(s

′))
]

=
1

β
logEs′∼P (·|s,a)

[
exp

{
β
(
r(s, a, s′) +Qπ

h+1,β(s
′, πh+1(s

′))
)}]

,
(3)

starting with Qπ
T+1,β(s, a) = 0. In fact, (1) is the only utility function that has this equivalence,

and other key properties (Lemma 1), while also satisfying time consistency that ensures the learned
risk-aware behaviors remain consistent across time [22]. In this paper, we use (3) to establish a
general GPI framework for risk-aware transfer learning with provable guarantees, and leverage
approximations of (2) to learn portable policy representations.

In reinforcement learning, the Bellman equation is not applied directly since it suffers from the curse
of dimensionality when S is high-dimensional or continuous, and since neither the dynamics nor the
reward function are often known. Instead, the agent interacts with the environment using a stochastic
exploration policy πe, collects trajectories {(st, at, st+1, rt+1)}T−1

t=0 , and updates Qh,β(st, at) via
sample approximations Ûβ ≈ Uβ [36]. Our goal is to ameliorate the relative sample-inefficiency of
RL through transfer learning that we aim to generalize to the risk-aware setting.

3

2.3 Transfer Learning

We now formalize the general transfer learning problem. Let M be the set of all MDPs with
shared transition function P but different (bounded) reward functions. A fixed set of source tasks
M1, . . .Mn ∈ M is instantiated, and their corresponding optimal policies π1, . . . πn are estimated.
Our main goal is to transfer these resulting source policies to a new target task Mn+1 ∈ M, to obtain
a policy π∗

n+1 whose utility is better than one learned from scratch using only a fixed number of
samples from Mn+1. We refer to this outcome as positive transfer.

As discussed earlier, a standard way to implement transfer learning is the GPI/GPE framework of
Barreto et al. [2]. The core mechanism that enables positive transfer in the risk-neutral setting is called
generalized policy improvement (GPI). Specifically, the set of source policies π1, . . . πn are evaluated
on the target task Mn+1 to obtain corresponding values Qπ1

n+1, . . . Q
πn
n+1. Given a mechanism that

can perform this policy evaluation step efficiently with some small error ε — namely successor
features discussed and extended in Section 3.3 — an agent then selects actions in a greedy manner by
following policy π(s) ∈ argmaxa maxj=1...n Q

πj

n+1(s, a) in state s. The policy π corresponds to a
strict policy improvement operator, and thus fulfills our requirements for positive transfer.

3 Risk-Aware Transfer Learning

An obvious challenge of applying GPI in the risk-aware setting is that transferring optimal risk-
neutral source policies does not guarantee risk-aware optimality in the target task. A much stronger
observation is that, even if the source policies πj are risk-aware, performing the policy evaluation
step in a risk-neutral way can still break the risk-awareness of GPI. This makes the extension of GPI
to the risk-aware setting a non-trivial problem.

3.1 A Motivating Example

S

G
X
X Y

G
X
X Y

G
X
X Y

−30 −20 −10 0 10
episode return

0.0

0.1

0.2

0.3

de
ns

ity

risk-aware GPI
risk-neutral GPI

Figure 1: Comparing risk-aware and
risk-neutral GPI. The risk-aware (for
β = −0.1) GPI policy is shown in the
top-middle plot, while the risk-neutral
(for β = 0) GPI policy is shown in the
top-right plot.

To see this, consider the MDP shown in Figure 1, which
involves navigating from an initial state ‘S’ to a goal state
‘G’ in a grid with stochastic transitions. Traps of two types
(X, Y) are placed in fixed cells, which upon entry terminate
the episode with fixed costs, summarized compactly as pairs
(c1, c2). We define two source tasks with costs (20, 20)
and (0, 0) and a target task with costs (20, 0). The optimal
policies for β = −0.1 induce three different trajectories:
safe (blue) and hazardous routes (red) for the source tasks,
and a relatively safe route (green) for the target task. We
also note that risk-awareness is prerequisite for this problem,
since a risk-neutral agent prefers the hazardous path when
optimizing any of the tasks.

We compute the GPI policies π with risk-averse (β = −0.1)
and risk-neutral (β = 0) policy evaluation, as shown in
the middle and rightmost plots in the top row in Figure 1.
The bottom plot shows the distribution of returns collected
over 5,000 test runs by acting according to the two GPI
policies. Risk-averse policy evaluation results in an optimal
risk-averse GPI policy corresponding to the green trajectory,
whereas risk-neutral policy evaluation does not, even though
both source policies are optimal on their corresponding tasks. Interestingly, the risk-averse GPI policy
is a non-trivial stitching of the two source policies.

3.2 Risk-Aware Generalized Policy Improvement

Motivated by this example, we conjecture that the risk-awareness of the GPI policy π is primarily
dependent on the way in which the source policies are evaluated in target task instances. In this
section, we describe theoretical results that generalize the concept of generalized policy iteration to
the problem of maximizing the entropic utility of returns.

4

We begin by summarizing key properties necessary for establishing convergence of risk-aware GPI in
the following lemma.

Lemma 1. Let β ∈ R and X,Y be arbitrary random variables on Ω. Then:

(1) (monotonicity) if P(X ≥ Y) = 1 then Uβ [X] ≥ Uβ [Y]
(2) (cash invariance) Uβ [X + c] = Uβ [X] + c for every c ∈ R
(3) (convexity) if β < 0 (β > 0) then Uβ is a concave (convex) function
(4) (non-expansion) for f, g : Ω → Ω, it follows that

|Uβ [f(X)]− Uβ [g(X)]| ≤ sup
P∈PX(Ω)

EP |f(X)− g(X)|,

where PX(Ω) is the set of all probability distributions on Ω that are absolutely continuous
w.r.t. the true distribution of X .

A proof is provided in Appendix B.2. Properties (1)-(3) characterize concave utilities [13], which
intuitively can be seen as minimal requirements for rational decision-making: (1) a lottery that pays
off more than another in every possible state of the world should always be preferred; (2) adding cash
to a position should not increase its risk; and (3) the overall utility can be improved by diversifying
across different risks. Property (4) is a derivative of the first three, and thus the theoretical results in
this work could be extended to the broader class of iterated concave utilities [34].

We can now state the first main result of the paper.

Theorem 1 (GPI for Entropic Utility). Let π1, . . . πn be arbitrary deterministic Markov policies
with approximate entropic utilities Q̃π1

h,β , . . . Q̃
πn

h,β when evaluated in an arbitrary task M , with error
|Q̃πi

h,β(s, a)−Qπi

h,β(s, a)| ≤ ε for all s ∈ S , a ∈ A, i = 1 . . . n and h ∈ T . Define

πh(s) ∈ argmax
a∈A

max
i=1...n

Q̃πi

h,β(s, a), ∀s ∈ S. (4)

Then,
Qπ

h,β(s, a) ≥ max
i

Qπi

h,β(s, a)− 2(T − h+ 1)ε, h ≤ T.

Thus, evaluating the risk of source policies using Uβ provides monotone improvement guarantees for
GPI, and thus satisfies our definition of positive transfer. Another significant property of the bound
in Theorem 1, and the one in Theorem 2 below, is the linear separation between the optimal utility
and the approximation error ε. Knowing how the optimality of π explicitly depends on ε, and how
errors are propagated throughout the transfer learning process, is critical for developing reliable RL
with predictable behavior, and highlights a key advantage of making GPI risk-aware. The additive
relationship between the optimality and the approximation error in Theorem 1 further explains why
SFs are robust to approximation errors. This becomes particularly advantageous in our setting, since
estimating utilities Uβ accurately with GPE is more complicated than the risk-neutral setting.

A stronger result for GPI can be derived when the source policies π1, π2 . . . πn are ε-optimal, and
policy evaluation is once again performed using Uβ . In this case, the optimality of GPI is determined
by the similarity δr between the source and target task instances.

Theorem 2. Let Qπ∗
i

h,β be the utilities of optimal Markov policies π∗
i from task Mi but evaluated in task

M with reward function r(s, a, s′). Furthermore, let Q̃π∗
i

h,β be such that |Q̃π∗
i

h,β(s, a)−Qπ∗
i

h,β(s, a)| ≤ ε
for all s ∈ S, a ∈ A, h ∈ T and i = 1 . . . n, and let π be the corresponding policy in (4). Finally,
let δr = mini=1...n sups,a,s′ |r(s, a, s′)− ri(s, a, s

′)|. Then,∣∣Qπ
h,β(s, a)−Q∗

h,β(s, a)
∣∣ ≤ 2(T − h+ 1)(δr + ε), h ≤ T.

These results are proved in Appendix B.2 for the episodic setting and in Appendix B.3 for the
discounted setting. Also, please note that these bounds are tight (see, e.g. Nemecek and Parr [31] for
the risk-neutral setting). Finally, while not required in this work, the above results could be extended
to more general settings in risk-averse control [34], though practical implementation of GPE in these
settings remains an open problem.

5

3.3 Risk-Aware Generalized Policy Evaluation

Following Barreto et al. [2], let φ : S ×A× S ′ → Rd be a bounded and task-independent feature
map, and consider the following linear representation of rewards,

r(s, a, s′) = φ(s, a, s′)
ᵀ
w, ∀s, a, s′,

where w ∈ Rd is a task-dependent vector of reward parameters. The risk-neutral return becomes:

Qπ
h(s, a) = EP

[
T∑

t=h

φ(st, at, st+1)
ᵀ
w

∣∣∣ sh = s, ah = a, at ∼ πt(st)

]

= EP

[
T∑

t=h

φ(st, at, st+1)
∣∣∣ sh = s, ah = a, at ∼ πt(st)

]ᵀ

w = ψπ
h(s, a)

ᵀ
w, (5)

where ψπ
h(s, a) are the successor features (SFs) associated with the policy π. The linear dependence

of the return on w allows for instantaneous policy evaluation in novel tasks with arbitrary reward
preferences w, making it a particular — and perhaps the canonical — instantiation of GPE. More
critically, ψπ

h can be seen as a task-independent and highly portable linear feature representation of
policies, and it is the key to the generalization ability of SFs on novel task instances.

The concept of GPE can be generalized to incorporate entire distributions of the return. Repeating
the above derivation for the entropic utility (2), we have:

Qπ
h,β(s, a) = Uβ

[
T∑

t=h

r(st, πt(st), st+1)

]
= Uβ [Ψ

π
h(s, a)

ᵀ
w] , (6)

corresponding to the random vector Ψπ
h(s, a) =

∑T
t=h φt of unrealized feature returns at time h.

Thus, we have transformed the problem of estimating the utility of returns into the problem of
estimating the distribution of Ψπ

h(s, a)
ᵀ
w. The key question now is how to estimate this distribution

for fast GPE.

A natural way to do this is by applying a second-order Taylor expansion for Uβ , since it allows us to
precompute and cache the necessary moments of the return distribution:

Uβ [Ψ
π
h(s, a)

ᵀ
w] = EP [Ψ

π
h(s, a)

ᵀ
w] +

β

2
VarP [Ψ

π
h(s, a)

ᵀ
w] +O(β2)

≈ ψπ
h(s, a)

ᵀ
w +

β

2
wᵀVarP [Ψ

π
h(s, a)]w = Q̃π

h,β(s, a), (7)

in which VarP [Ψ
π
h(s, a)] = Σπ

h(s, a) is interpreted as a covariance matrix for SFs. In the context
of Theorems 1 and 2, the term ε encapsulates the errors in the approximation of ψπ

h and Σπ
h, plus

the terms contained in O(β2) above. However, the main advantage of (7) is that, like (5), it is also
analytic in w and allows for instantaneous policy evaluation with arbitrary reward preferences w.
Interestingly, (7) also allows instantaneous policy evaluation with respect to different choices of β,
making it possible to revise or adapt the level of risk aversion on-demand. In all these cases, ψπ

h
and Σπ

h provide task-independent and portable representations of policies while also accounting for
exogenous risk. This is the key to preserving the task generalization ability of SFs in the risk-aware
setting, and (7) can now be seen as a particular instantiation of GPE. We call this overall approach
Risk-aware Successor Features (RaSF).

The simplest approaches for estimating Σπ
h in the exact (e.g. tabular) Q-learning setting are based on

dynamic programming [37, 40], which would allow the overall approach to be easily integrated into
existing SF implementations. In particular, the covariance satisfies the Bellman equation

Σπ
h(s, a) = Es′∼P (·|s,a)

[
δhδh

ᵀ +Σπ
h+1(s

′, πh+1(s
′)) | sh = s, ah = a

]
, (8)

where δh are the Bellman residuals of ψπ
h(s, a). The approximation ψ̃π

h is known to converge to the
true value ψπ

h , and a similar result also holds for updating the covariance based on (8).

Theorem 3 (Convergence of Covariance). Let ‖ · ‖ be a matrix-compatible norm, and suppose
there exists ε : S ×A× T → [0,∞) such that:

6

1. ‖ψ̃π
h(s, a)−ψπ

h(s, a)‖2 ≤ εh(s, a)

2. ‖Es′∼P (·|s,a)[δ̃h(ψ̃
π
h(s

′, πh+1(s
′))−ψπ

h(s
′, πh+1(s

′)))
ᵀ
]‖ ≤ εh(s, a).

Then, ∥∥∥Σπ
h(s, a)− Es′∼P (·|s,a)

[
δ̃hδ̃

ᵀ
h + Σ̃π

h+1(s
′, πh+1(s

′))
]∥∥∥ ≤ 3εh(s, a).

A proof can be found in Appendix B.4. Appendix A.1 describes how ψ̃π
h and Σ̃π

h can be learned online
from environment interactions, while Appendix A.4 discusses further generalizations of (7). There
are, however, several limitations of estimating Σπ

h in this way. First, obtaining accurate estimates
of Σπ

h requires accurate estimates of ψπ
h (thus estimating one quantity on top of another), making

this approach difficult to apply with deep function approximation. This claim is further substantiated
by Theorem 3 and preliminary experiments. A second issue that occurs is double sampling, when
the same transitions are used to update the mean and covariance, resulting in accumulation of bias
in the latter [1, 47]. Our experiments on the reacher domain mitigate these issues by leveraging
distributional RL to approximate (7), while maintaining computational efficiency.

4 Experiments

To evaluate the performance of RaSF, we revisit the benchmark domains in Barreto et al. [2],
which have been slightly modified for learning and evaluating risk-aware behaviors. We defer all
experimental details to Appendix C.

4.1 Four-Room

X G
X

X X
X X

X X
X X

X
S X

Figure 2: Four-Room (Left): the
shapes of the objects represent their
classes, ‘S’ is the start state, ‘G’ is
the final goal state, and ‘X’ is a trap.
Reacher (Right): colored and gray
circles represent training and test tar-
gets, respectively, while shaded re-
gions represent areas of high risk.

Domain Description. The first domain consists of a fam-
ily of navigation tasks defined on a discrete 2-D space di-
vided into four rooms, as illustrated on the left in Figure 2.
The environment has additional objects that can be picked
up by the agent by occupying their cells. These objects
belong to one of three possible classes, drawn as different
shapes in Figure 2, which determine their reward. The po-
sition of the objects remains fixed, but the rewards of their
classes are reset every 20,000 transitions to random values
sampled uniformly in [−1,+1]. To incorporate risk, traps
are placed in fixed cells marked with X. For every time in-
stant during which the agent occupies a trap cell, the trap
activates spontaneously with a small probability, resulting
in an immediate penalty and termination of the episode (we
refer to this event as a failure). The goal is to maximize the
total reward accumulated over 128 random task instances
while minimizing the number of failures.

Baselines. In order to demonstrate the power of our ap-
proach in the absence of approximation errors, we define a simple instance of RaSFs in which ψπi

and Σπi are learned exactly using lookup tables and dynamic programming (equation (8)). We
also apply modest discounting of rewards to ensure that the Q-function converges, as is standard in
RL and discussed further in Appendix A.2. The vector w is also learned using immediate reward
feedback and exact, sparse state features φ provided to the agent. Due to its similarity to standard
Q-learning, we call this approach RaSFQL. To provide a challenging baseline for comparison, we
implemented another policy reuse algorithm (PRQL) [12]. Further replacing the risk-neutral action
selection mechanism of PRQL with smart exploration [16] allows PRQL to easily account for return
volatility, and we refer to this baseline as RaPRQL.

Main Results. The performance of these algorithms is shown in Figure 3. The cumulative reward
obtained by RaSFQL is generally lower than SFQL, as expected since a risk-averse agent should avoid
the objects in the bottom-left and top-right rooms and forgo their associated rewards. Interestingly,
the performance of RaSFQL far exceeds that of RaPRQL and even PRQL, suggesting that the benefits

7

0 1 2 3 4 5 6
−250

0

250

500

Av
er
ag

e
Re

tu
rn RaSFQL

SFQL
RaPRQL
PRQL

24 25 26 27 28 29 30 122 123 124 125 126 127 128
−250

0

250

500

0 1 2 3 4 5 6
0

500

1000

Re
tu
rn

pe
rT

as
k

24 25 26 27 28 29 30 122 123 124 125 126 127 128
0

500

1000

0 1 2 3 4 5 6
0

20

40

60

Fa
ilu

re
s
pe

rT
as
k

24 25 26 27 28 29 30
Task Instance

122 123 124 125 126 127 128
0

20

40

60

Figure 3: Average return, cumulative return and number of failures per task in the four-room domain,
for β = ω = −2. Shaded bands show one standard error over 30 independent runs.

0 1 2 3 4
Training Task Instance

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

No
rm

al
iz
ed

Re
tu
rn

Task 1
Task 2
Task 3
Task 4

0 1 2 3 4
Training Task Instance

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz
ed

Re
tu
rn

RaSFC51
SFC51

RaC51
C51

0 1 2 3 4
Training Task Instance

0

20

40

60

80

100

120

Fa
ilu

re
s

RaSFC51
SFC51

RaC51
C51

Figure 4: Performance on training and test tasks for the reacher domain, as a function of the number
of experiences collected from the training tasks. Left: Normalized return on training tasks. Faded
curves correspond to C51 performance. Middle: Normalized return averaged across all test tasks.
Right: Total failures across all test tasks. Shaded bands show one standard error over 10 independent
runs with different seeds.

of task generalization provided by GPI/GPE are quite strong. Furthermore, the number of failures
observed by RaSFQL gradually decreases over the task instances, while the number of failures of
SFQL slightly increases. This is consistent with Theorem 1 that guarantees monotone improvement
in the risk-adjusted return of RaSFQL. On the other hand, while RaPRQL also learns to avoid risk, it
fails slightly more often than RaSFQL. This suggests that the benefits of task generalization promised
by GPI/GPE even allow risk-aware behaviors to emerge sooner than by using generic policy reuse
methods that are unable to exploit the task structure, namely PRQL. This aspect becomes critical for
minimizing failures when deploying a trained policy library on novel task instances in a real-world
setting. Further analysis and ablation studies are provided in Appendix D.1.

4.2 Reacher

Domain Description. The second domain consists of a set of tasks based on the MuJoCo physics
engine [42] that involve the maneuver of a robotic arm toward a fixed target location. As illustrated in
the rightmost plot in Figure 2, the agent is only allowed to train on 4 tasks, whose target locations are
indicated by colored circles, and must be able to perform well on 8 test tasks whose target locations
are indicated by the grey circles. Furthermore, we incorporate two sources of reward volatility: (1)
actions are perturbed by additive Gaussian noise; and (2) fixed regions around some of the target
locations randomly incur negative rewards (failures), illustrated by faded circles in Figure 2. Please
note that most of these high-volatility regions are centered on target locations of test tasks from which

8

0 1 2 3 4
Training Task Instance

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz
ed

Re
tu
rn

SFC51(4)
SFC51(3)
SFC51(2)
SFC51(1)
SFC51(0)

C51(4)
C51(3)
C51(2)
C51(1)
C51(0)

0 1 2 3 4
Training Task Instance

0

20

40

60

80

100

120

Fa
ilu

re
s

SFC51(4)
SFC51(3)
SFC51(2)
SFC51(1)
SFC51(0)

C51(4)
C51(3)
C51(2)
C51(1)
C51(0)

train task 1 test task 1 test task 2

RaSFC51
SFC51

Figure 6: Left: Normalized average test return for the reacher domain, for different values of β
(legend values indicate the negative values of β). Middle: Total failures across all test tasks for
various values of β (legend values indicate the negative values of β). Right: Evolutions of the arm tip
position during three successful rollouts of the reacher domain according to the GPI policy obtained
after training with β = −3 (yellow pentagons indicate the initial states in each rollout). Only one
training task and two test tasks are shown. The risk-averse agent learns to hover close to the goal
while avoiding the high-volatility shaded regions.

the agent never learns directly. This stresses the agent’s ability to avoid unforeseen dangers in the
environment, in additional to performing well on previously unseen task instances.

s Ψπ

a1 a2 a|A|

… Ψπ
1 (s, ·)

… Ψπ
2 (s, ·)

...
… Ψπ

d (s, ·)

•

w

return

Figure 5: Architecture for Ψπ(s, a).

Baselines. As discussed earlier, it is difficult to compute
Σπi directly using (8). A computationally tractable way
to avoid these issues is to first approximate the density of
Ψπi(s, a), and then extract the moments needed to com-
pute (8). Specifically, we apply C51 [6] by modeling
Ψπi

1 (s, a), . . .Ψπi

d (s, a) using histograms for each (s, a).
However, Ψπi are high-dimensional, so we avoid the curse
of dimensionality by modeling the marginals Ψπi

j rather
than their full joint distribution. This still turns out to be
an effective way of detecting high-variance scenarios in the
environment. The final architecture is illustrated in Figure 5,
where the marginal distributions of Ψπi are modeled as separate output "heads" with a shared state
encoder. The rest of the training protocol is identical to the SFDQN of Barreto et al. [2], except that
DQN is replaced by the C51 architecture above, as further detailed in Appendix A.3. The risk-averse
and risk-neutral instances of this approach for modeling successor features are referred to as RaSFC51
and SFC51, respectively, while RaC51 and C51 replace successor features with universal value
functions [35] for generalization across target locations.

Main Results. The performance of the algorithms on the reacher domain is illustrated in Figure
4. We first observe that the performance of all four training policies for RaSFC51 improves almost
immediately, obtaining returns that exceed 75% of the performance of a fully trained C51 agent, an
observation that correlates highly with the original SFDQN. Interestingly, RaC51 is unable to achieve
satisfactory performance on two out of the four training tasks, even after fully trained on all 4 tasks.
Furthermore, the performance of RaSFC51 on the testing tasks far exceeds that of both RaC51 and
C51, demonstrating the superior generalization ability of SFs in the risk-aware setting. Finally, the
total number of failures across the test task instances is also considerably lower for RaSFC51 than it
is for SFC51, and remains low during the entire training horizon. RaC51 and C51 fail frequently at
the beginning of training, but less often later in training. While this may suggest that C51 is learning
adequate risk-sensitive policies, it is mainly due to the fact that C51 is not able to generalize nearly as
well as SFC51 for some of the test target locations, as elaborated in Appendix D.2.

Additional Analysis. We also conducted a sensitivity analysis for the risk-aversion parameter β
for each of the algorithms, summarized in Figure 6. The performance of RaSFC51 and RaC51 decays
gracefully as the level of risk-aversion β is increased in magnitude, but the performance of RaSFC51
uniformly outperforms RaC51 for every value of β tested. The middle plot demonstrates that the
number of failures also decreases drastically as β is increased in magnitude, which stabilizies around
β = −4. Furthermore, while C51 and RaC51 generally fail less often than SFC51 and RaSFC51, this

9

0 1 2 3 4 5 6 7 8 9 10 11
Task Instance

0

10

20

30

40

Si
gn

al
to

No
is
e

RaSFC51(4)
RaSFC51(3)
RaSFC51(2)
RaSFC51(1)
SFC51

RaC51(4)
RaC51(3)
RaC51(2)
RaC51(1)
C51

Figure 7: Left: Empirical signal-to-noise ratios of the GPI policies at the end of training. Right:
Examples of worst-case behavior observed by RaSFC51 with β = −3, which depict the most likely
sources of high return variability. While the agent learns to successfully avoid the risky regions of
the domain, high return variance between rollouts can sometimes still be accumulated in other ways,
such as failure to find a globally optimal policy (top left), inability to generalize the utility precisely
on an unseen task for all states (bottom left), policy instability (top right) and divergence in the most
extreme cases (bottom right) due to compounding of numerical errors.

is due to their inability to generalize their learned behavior to all novel target instances, as mentioned
above. The final plot on the right shows that RaSFC51 indeed learns safer policies than SFC51 on
both training and test instances. Specifically, RaSFC51 learns to hover as close to the goal as possible
in most cases, while still avoiding the high-volatility shaded regions.

Failure Modes and Limitations. Finally, we compared the empirical signal-to-noise ratios2

achieved by each baseline on each task using the returns of sampled trajectories at the end of training,
and the results are summarized in Figure 7. RaSFC51 and SFC51 soundly outperform RaC51 and
C51, and RaSFC51 generally obtains the highest ratios for medium values of β ∈ {−3,−2,−1}.
However, RaSFC51 does not consistently outperform SFC51 on all domains, despite RaSFC51
avoiding the high-risk regions of the domain. We suspect that return variance is accumulated in
other ways, some of which can be identified by examining the worst-case behaviors exhibited by
the risk-aware GPI policy illustrated in the rightmost plots of Figure 7. However, we believe that
these results are expected. Firstly, estimation of only the expected return in an off-policy setting with
bootstrapping and deep function approximation is already a difficult problem [44], and addressing
it is outside the scope of this work. Secondly, generalizing the empirical distribution learned on
one set of tasks to a completely new set of unseen tasks – even within the same domain – is an
even more challenging problem. We believe that advances in distributional RL that can learn more
accurate distributions will strongly benefit our approach, as will methods suited for estimating the
joint distributions of correlated returns efficiently.

5 Conclusion

We presented Risk-aware Successor Features (RaSFs) for realizing policy transfer between tasks
with shared dynamics, with the goal of maximizing the entropic utility of return. We extended GPI
to the risk-aware setting, providing monotone convergence and optimality guarantees, assuming
that the utility of source policies can be evaluated. To facilitate policy evaluation, we also extended
the notion of GPE to the risk-aware setting. Together, risk-aware GPI and GPE inherit the superior
task generalization abilities of successor features, while learning to avoid dangerous high-volatility
regions. More generally, incorporating risk and safety in sequential decision-making is a complex
problem. The entropic utility objective does not capture tail risk nor other properties of the return
distribution, which could be a challenging but powerful extension of successor features.

2This is computed as µ̂/σ̂, where µ̂ is the estimated return and σ̂ is the estimated standard deviation of the
return accumulated across multiple rollouts. We use the signal-to-noise ratio because it is independent of β and
allows consistent comparison across baselines.

10

Acknowledgements

We would like to thank the anonymous reviewers for their thoughtful comments on the draft version
of this paper. We would also like to thank Daniel Mankowitz for suggesting relevant research in the
area of robust and risk-aware reinforcement learning and for providing insightful comments during
the development of the paper.

Funding Transparency Statement

Michael Gimelfarb was funded by an Ontario Graduate Scholarship, a DiDi Graduate Student Award
and a Vector Institute Postgraduate Affiliate Award, Scott Sanner was funded by an Ontario Early
Researcher Award Grant, and Chi-Guhn Lee was funded by an NSERC Discovery Grant.

References
[1] Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In Machine

Learning Proceedings 1995, pages 30–37. Elsevier, 1995.

[2] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, David Silver, and Hado P van
Hasselt. Successor features for transfer in reinforcement learning. In NeurIPS, 2017.

[3] Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel Mankowitz,
Augustin Zidek, and Remi Munos. Transfer in deep reinforcement learning using successor features and
generalised policy improvement. In ICML, pages 501–510, 2018.

[4] André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast reinforcement learning
with generalized policy updates. PNAS, 117(48):30079–30087, 2020.

[5] Nicole Bäuerle and Ulrich Rieder. More risk-sensitive markov decision processes. Mathematics of
Operations Research, 39(1):105–120, 2014.

[6] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning.
In ICML, pages 449–458, 2017.

[7] L Bisi, L Sabbioni, E Vittori, M Papini, and M Restelli. Risk-averse trust region optimization for
reward-volatility reduction. In IJCAI, pages 4583–4589, 2020.

[8] Diana Borsa, Andre Barreto, John Quan, Daniel J Mankowitz, Hado van Hasselt, Remi Munos, David
Silver, and Tom Schaul. Universal successor features approximators. In ICLR, 2018.

[9] Oscar Dowson, David P Morton, and Bernardo K Pagnoncelli. Multistage stochastic programs with the
entropic risk measure, 2020.

[10] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement
learning. ICML Workshop RL4RealLife, 2019.

[11] Yingjie Fei, Zhuoran Yang, Yudong Chen, Zhaoran Wang, and Qiaomin Xie. Risk-sensitive reinforcement
learning: Near-optimal risk-sample tradeoff in regret. In NeurIPS, volume 33, 2020.

[12] Fernando Fernández and Manuela Veloso. Probabilistic policy reuse in a reinforcement learning agent. In
AAMAS, pages 720–727, 2006.

[13] Hans Föllmer and Alexander Schied. Convex measures of risk and trading constraints. Finance and
stochastics, 6(4):429–447, 2002.

[14] Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning. Journal
of Machine Learning Research, 16(1):1437–1480, 2015.

[15] Javier García and Fernando Fernández. Probabilistic policy reuse for safe reinforcement learning. ACM
Trans. Auton. Adapt. Syst., 13(3), March 2019. ISSN 1556-4665. doi: 10.1145/3310090.

[16] Clement Gehring and Doina Precup. Smart exploration in reinforcement learning using absolute temporal
difference errors. In AAMAS, pages 1037–1044, 2013.

[17] David Held, Zoe McCarthy, Michael Zhang, Fred Shentu, and Pieter Abbeel. Probabilistically safe policy
transfer. In ICRA, pages 5798–5805. IEEE, 2017.

11

[18] Takuya Hiraoka, Takahisa Imagawa, Tatsuya Mori, Takashi Onishi, and Yoshimasa Tsuruoka. Learning
robust options by conditional value at risk optimization. In NeurIPS, pages 2619–2629, 2019.

[19] Arushi Jain, Khimya Khetarpal, and Doina Precup. Safe option-critic: learning safety in the option-critic
architecture. The Knowledge Engineering Review, 36, 2021.

[20] Arushi Jain, Gandharv Patil, Ayush Jain, Khimya Khetarpal, and Doina Precup. Variance penalized
on-policy and off-policy actor-critic. arXiv preprint arXiv:2102.01985, 2021.

[21] David Janz, Jiri Hron, Przemysław Mazur, Katja Hofmann, José Miguel Hernández-Lobato, and Sebastian
Tschiatschek. Successor uncertainties: exploration and uncertainty in temporal difference learning. In
NeurIPS, 2019.

[22] Michael Kupper and Walter Schachermayer. Representation results for law invariant time consistent
functions. Mathematics and Financial Economics, 2(3):189–210, 2009.

[23] Alessandro Lazaric. Transfer in reinforcement learning: a framework and a survey. In Reinforcement
Learning, pages 143–173. Springer, 2012.

[24] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review. and Perspectives on Open Problems, 2020.

[25] Daniel Mankowitz, Timothy Mann, Pierre-Luc Bacon, Doina Precup, and Shie Mannor. Learning robust
options. In AAAI, volume 32, 2018.

[26] Daniel J Mankowitz, Aviv Tamar, and Shie Mannor. Situational awareness by risk-conscious skills. arXiv
preprint arXiv:1610.02847, 2016.

[27] Shie Mannor and John N Tsitsiklis. Algorithmic aspects of mean–variance optimization in markov decision
processes. European Journal of Operational Research, 231(3):645–653, 2013.

[28] Hongzi Mao, Shaileshh Bojja Venkatakrishnan, Malte Schwarzkopf, and Mohammad Alizadeh. Variance
reduction for reinforcement learning in input-driven environments. In ICLR, 2019.

[29] Teodor Mihai Moldovan and Pieter Abbeel. Risk aversion in markov decision processes via near optimal
chernoff bounds. In NeurIPS, pages 3140–3148, 2012.

[30] David Nass, Boris Belousov, and Jan Peters. Entropic risk measure in policy search. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1101–1106. IEEE, 2019.

[31] Mark Nemecek and Ronald Parr. Policy caches with successor features. In ICML, volume 139 of
Proceedings of Machine Learning Research, pages 8025–8033. PMLR, 18–24 Jul 2021.

[32] Takayuki Osogami. Robustness and risk-sensitivity in markov decision processes. In NeurIPS, volume 25,
pages 233–241, 2012.

[33] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2014.

[34] Andrzej Ruszczyński. Risk-averse dynamic programming for markov decision processes. Mathematical
programming, 125(2):235–261, 2010.

[35] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators. In
ICML, pages 1312–1320. PMLR, 2015.

[36] Yun Shen, Michael J Tobia, Tobias Sommer, and Klaus Obermayer. Risk-sensitive reinforcement learning.
Neural computation, 26(7):1298–1328, 2014.

[37] Craig Sherstan, Dylan R Ashley, Brendan Bennett, Kenny Young, Adam White, Martha White, and
Richard S Sutton. Comparing direct and indirect temporal-difference methods for estimating the variance
of the return. In UAI, 2018.

[38] Krishnan Srinivasan, Benjamin Eysenbach, Sehoon Ha, Jie Tan, and Chelsea Finn. Learning to be safe:
Deep rl with a safety critic. arXiv preprint arXiv:2010.14603, 2020.

[39] Aviv Tamar, Dotan Di Castro, and Shie Mannor. Policy gradients with variance related risk criteria. In
ICML, pages 1651–1658, 2012.

[40] Aviv Tamar, Dotan Di Castro, and Shie Mannor. Learning the variance of the reward-to-go. The Journal of
Machine Learning Research, 17(1):361–396, 2016.

12

[41] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(7), 2009.

[42] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,
2012.

[43] Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, and Alekh Agarwal. Safe reinforcement
learning via curriculum induction. In NeurIPS, volume 33, 2020.

[44] Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Modayil.
Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648, 2018.

[45] S Whiteson, S Zhang, and B Liu. Mean- variance policy iteration for risk- averse reinforcement learning.
In AAAI. Association for the Advancement of Artificial Intelligence, 2021.

[46] Yang Yu. Towards sample efficient reinforcement learning. In IJCAI, pages 5739–5743, 2018.

[47] Yuhua Zhu and Lexing Ying. Borrowing from the future: An attempt to address double sampling. In
Mathematical and scientific machine learning, pages 246–268. PMLR, 2020.

13

	Introduction
	Preliminaries
	Markov Decision Process
	Entropic Utility Maximization
	Transfer Learning

	Risk-Aware Transfer Learning
	A Motivating Example
	Risk-Aware Generalized Policy Improvement
	Risk-Aware Generalized Policy Evaluation

	Experiments
	Four-Room
	Reacher

	Conclusion

