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ABSTRACT

Neural combinatorial optimization (NCO) is a promising learning-based approach
to solve difficult combinatorial optimization problems. However, how to effi-
ciently train a powerful NCO solver remains challenging. The widely-used re-
inforcement learning method suffers from sparse rewards and low data efficiency,
while the supervised learning approach requires a large number of high-quality
solutions. In this work, we develop efficient methods to extract sufficient super-
vised information from limited labeled data, which can significantly overcome the
main shortcoming of supervised learning. For traveling salesman problem (TSP),
a representative combinatorial optimization problem, we propose a set of efficient
data augmentation methods and a novel bidirectional loss to better leverage the
equivalent properties of problem instances, which finally lead to a promising su-
pervised learning approach. The thorough experimental studies demonstrate our
proposed method can achieve state-of-the-art performance on TSP only with a
small set of 50, 000 labeled instances, while it also achieves promising general-
ization performances on tasks with different sizes or different distributions. We
believe this somewhat surprising finding could lead to valuable rethinking on the
value of efficient supervised learning for NCO.

1 INTRODUCTION
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Figure 1: The optimality gap of models trained
with different training strategies on the validation
set.

Many real-world applications involve chal-
lenging combinatorial optimization problems,
which could be NP-hard and cannot be exactly
solved in a reasonable time (Papadimitriou &
Steiglitz, 1998). The traditional approach needs
to design handcrafted heuristic rules for each
specific problem, and requires a long search
process to solve every problem instance even
when they are similar to each other (Korte et al.,
2011). In recent years, many learning-based al-
gorithms have been proposed to efficiently find
a good approximate solution for a given prob-
lem instance (Bengio et al., 2021). In this work,
we focus on the neural combinatorial optimiza-
tion (NCO) approach (Bello et al., 2016) since
it can directly generate an approximate solution
in real-time without any expert knowledge or predefined heuristic rules.

Although a combinatorial optimization problem could be NP-hard, a real-world application could
typically only care about a small subset of instances (Bengio et al., 2021). Therefore, it is possible
to leverage the similar patterns shared by these instances to learn an efficient neural combinatorial
solver (Vinyals et al., 2015). Supervised learning (SL) and reinforcement learning (RL) are the two
main methods for training the NCO solver, which learn the pattern directly from high-quality solu-
tions (Vinyals et al., 2015) or through extensive interaction with the environment (e.g., the problem
instances) (Bello et al., 2016).
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It is challenging to efficiently train a powerful NCO solver. The RL method suffers from the issues of
sparse rewards (Vecerik et al., 2017; Hare, 2019) and low data efficiency (Laskin et al., 2020), which
could require a huge computational budget and lead to extremely long training time (e.g., more than a
week) (Joshi et al., 2020; Kwon et al., 2020). By directly learning from high-quality solutions at each
step, the SL method has better sample efficiency and is a promising alternative for training an NCO
solver (Joshi et al., 2019; 2020). Nevertheless, SL suffers from the difficulty of collecting sufficient
labeled data (i.e., optimal or near-optimal solutions of combinatorial optimization instances). In
addition, there are also some concerns on the generalization performance of the NCO solver trained
by the SL method (Joshi et al., 2020).

In this work, we investigate how to overcome the shortcomings of SL-based NCO training. By lever-
aging the equivariance and symmetries of the problem instances and solutions, we develop novel
approaches to extract sufficient information from limited high-quality solutions for data-efficient su-
pervised learning, and we demonstrate that training POMO (Kwon et al., 2020) through our method
is better than reinforcement learning. Our main contributions can be summarized as follows:

• We design four simple yet efficient data augmentation approaches to significantly enlarge
the training set from limited high-quality solutions, and develop a novel bidirectional super-
vised loss to leverage the equivalence of solutions to further improve the training efficiency
for supervised learning. With these two powerful methods, we propose a novel Supervised
Learning with Data Augmentation and Bidirectional Loss (SL-DABL) algorithm for TSP.

• We conduct thorough experiments to study the efficiency of our proposed method. The
results confirm that SL-DABL can achieve state-of-the-art performance on TSP with only
50, 000 training instances, and also has promising generalization performance to real-
world instances with different sizes. These findings lead us to rethink some current beliefs
on NCO for TSP, such as (Joshi et al., 2020).

Our findings reported in this work could be somewhat surprising and opposite to some current beliefs
about the NCO method. We show that 1) the huge supervised data requirement (a major drawback)
is indeed not necessary for SL and 2) RL is not always the best choice for training a NCO model.
We hope they could be helpful for rethinking the role and value of efficient SL-based NCO training.

2 RELATED WORKS

In the past few years, many promising learning-based approaches have been proposed to tackle
different combinatorial optimization problems. We briefly review the neural combinatorial opti-
mization methods that are closely related to this work, and refer readers to Bengio et al. (2021) and
Cappart et al. (2021) for comprehensive surveys.

2.1 SUPERVISED LEARNING FOR NCO

Vinyals et al. (2015) proposed the Pointer Network with RNN encoder-decoder structure and atten-
tion mechanism to solve TSP in an autoregressive manner. Milan et al. (2017) found that it is costly
to generate enough high-quality solutions to serve as a training dataset for supervised learning, and
proposed to update the initial dataset with superior solutions generated during the training process.
Joshi et al. (2019) trained a graph neural network to predict the heatmap for each instance with
non-autoregressive decoding. The heatmap measures the probability that each edge will belong to
the optimal solution, which can be converted to a valid solution with beam search, Monte Carlo tree
search (Fu et al., 2021), guided local search (Hudson et al., 2021), and dynamic programming (Kool
et al., 2021).

Joshi et al. (2020) systematically studied the performance of different learning methods on both
autoregressive and non-autoregressive models. This work focuses on the construction-based au-
toregressive model. According to the results in (Joshi et al., 2020), even with 1, 280, 000 training
instances, the SL approach will still be outperformed by the RL approach on the zero-shot greedy
prediction for both testing and generalization performance. In this work, we propose a novel data-
efficient SL method to achieve state-of-the-art performance with 50, 000 training instances, which
is only 4% of the training dataset in Joshi et al. (2020).
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2.2 REINFORCEMENT LEARNING FOR NCO

Many RL-based methods have been proposed to train NCO solvers (Bello et al., 2016; Khalil et al.,
2017; Nazari et al., 2018; Deudon et al., 2018; Ma et al., 2019). Kool et al. (2018) proposed the
Attention Model (AM) framework to solve different vehicle routing problems. Different follow-up
works have been developed to improve the AM performance with diverse solution generations (Xin
et al., 2021; Kim et al., 2021). Kwon et al. (2020) proposed the POMO method with multiple greedy
rollouts to leverage the multiple optima property, which is the current state-of-the-art RL algorithm
for NCO. In this work, with the same model and inference strategy, our proposed SL-DABL method
can outperform the RL counterpart in POMO for both testing and generalization performance.

Data augmentation is a widely-used approach to increase the amount of training data for supervised
learning (Shorten & Khoshgoftaar, 2019; Feng et al., 2021). Kwon et al. (2020) have discussed how
to use the data augmentation methods to improve the inference performance for NCO but not for
SL-based training. Recently, Geisler et al. (2022) have shown that augmenting adversarial examples
into training could improve the NCO solver’s robustness with small perturbations. In this work,
we show that data augmentation is crucial for data-efficient SL-based NCO, but has little effect
on RL-based training. A concurrent work (Kim et al., 2022) used contrastive learning to leverage
the symmetric property of CO problems and solutions for better instance representation, which can
improve the RL-based training. We believe these two methods are indeed orthogonal and could be
complementary to each other.

Equivariant neural networks (Thomas et al., 2018; Satorras et al., 2021), which can directly incor-
porate the equivariance properties into the model structure, is a strong alternative to data augmenta-
tion. In this work, instead of building more powerful models, we focus on improving the supervised
learning approach, and study whether it can outperform the reinforcement learning counterpart on
the same model. Therefore, we left the study of equivariant neural networks for NCO to future work.

3 DATA AUGMENTATION
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Figure 2: Supervised learning with/without effi-
cient data augmentation on TSP50. Both methods
only have 50, 000 training instances. The vanilla
SL method struggles to train the NCO solver,
while our proposed SL-DA method has much bet-
ter performance. The experimental setting for this
analysis can be found in Section 3.6.

In this section, we propose four simple yet ef-
ficient data augmentation (DA) approaches to
significantly enlarge the training set from lim-
ited high-quality solutions. By leveraging the
translation invariance property of the problem
instances, our proposed SL-DA method can
extract sufficient information from the small
dataset to train a powerful NCO solver as
shown in Figure 2.

3.1 PRELIMINARIES: TSP

TSP is the basic case of all the vehicle rout-
ing problems, which aims to find the shortest
trajectory τ from a fully connected graph S.
In this work, we focus on the 2D Euclidean
TSP, as it is a common benchmark for most
NCO algorithms. The fully connected graph
S = (s1, s2, . . . , sn) can be represented by a
set of n nodes in normalized 2D Cartesian co-
ordinate, i.e., si = (xi, yi)

⊺ with xi ∈ [0, 1] and yi ∈ [0, 1] for i = {1, 2, . . . , n}.
The outputted trajectory τ = (t1, t2, . . . , tn) is a permutation of node indices, i.e., ti, tj ∈
{1, 2, . . . , n} and ti ̸= tj for any two different indices i, j ∈ {1, 2, . . . , n}. The cost of τ is
calculated as

c(τ |S) =
n−1∑
i=1

∥sti+1
− sti∥2 + ∥stn − st1∥2.

In this work, we represent the graph S as [x;y], where x = [x1, x2, . . . , xn] and y =
[y1, y2, . . . , yn].
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Figure 3: Examples of generating a new instance via the (a) rotation operator, (b) symmetry operator,
(c) the shrink operator, and (d) the noise operator, respectively.

3.2 ROTATION

Each TSP instance is a fully connected graph whose optimal solution is invariant with the rotation
of the entire graph. Therefore, with a single optimal solution to a given instance, we can generate
multiple new instances by randomly rotating the original instance at different angles. The details of
this rotation operator are provided in Algorithm 1.

Algorithm 1 Rotation
Input: the original graph S.
Output: the augmented graph S′.

1: [xm;ym]← [x− 0.5;y − 0.5];
2: ρ,θ ← Cartesian2Polar(xm,ym);
3: ∆θ ∼ U(0, 2π);
4: θ′ ← θ +∆θ;
5: [xm;ym]← Polar2Cartesian(ρ,θ′);
6: S′ ← [xm + 0.5;ym + 0.5];

Algorithm 2 Symmetry
Input: the original graph S.
Output: the augmented graph S′.

1: [xm;ym]← [x− 0.5;y − 0.5];
2: ρ,θ ← Cartesian2Polar(xm,ym);
3: ∆θ ∼ U(0, 2π);
4: θ′ ← −(θ +∆θ);
5: [xm;ym]← Polar2Cartesian(ρ,θ′);
6: S′ ← [xm + 0.5;ym + 0.5];

As shown in lines 1-2 of Algorithm 1, we first move the graph by changing its center from (0.5, 0.5)⊺

to (0, 0)⊺ and express the nodes in terms of the polar coordinates as

ρ =
√

x2
m + y2

m, θ = arctan
ym

xm
.

Then, we randomly generate an angle ∆θ ∈ (0, 2π) then add it to the current θ to get a new
instance (i.e., lines 3-4 of Algorithm 1). After that, we transform the new instance into the Cartesian
coordinate system as

xm = ρ cosθ′, ym = ρ sinθ′.

Finally, we move the graph back to the location centered at (0.5, 0.5)⊺ and output the augmented
graph S′.

Figure 3(a) illustrates an example of generating a new instance via the rotation operator. It is clear
that the new instance has the same optimal solution with the original one.

3.3 SYMMETRY

Similar to rotation, the optimal solution is also invariant to the symmetry operator. Since all nodes
are located in [0, 1]2, for uniformity, we can set the axis of symmetry as any line that passes through
the midpoint (0.5, 0.5)⊺.

Algorithm 2 presents the symmetry operator in detail. Compared with the rotation operator, it ad-
ditionally flips the rotated graph along the horizontal axis of the polar coordinate system on line 4.
The symmetry axis between the new graph and the original graph can be expressed as

y = kx+
1

2
(1− k), where k = tan (−∆θ

2
).

An example of generating the new instance via the symmetry operator is depicted in Figure 3(b).
We can see that both the original instance and the new instance have the same optimal solution.
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3.4 SHRINK

Algorithm 3 Shrink
Input: original graph S, threshold parameter γ.
Output: augmented graph S′

1: [xm;ym]← [x− 0.5;y − 0.5];
2: ρ,θ ← Cartesian2Polar(xm,ym);
3: β ∼ U(1− γ, 1 + γ);
4: ρ′ ← βρ;
5: [xm;ym]← Polar2Cartesian(ρ′,θ);
6: S′ ← [xm + 0.5;ym + 0.5];

Algorithm 4 Noise
Input: original graph S.
Output: augmented graph S′.

1: d← NodesMinimumDistance(x,y);
2: rρ ∼ U(0, 1);
3: rθ ∼ U(0, 2π);
4: r′ρ ← d

2rρ;
5: rx, ry ← Polar2Cartesian(r′ρ, rθ);
6: S′ ← [x+ rx;y + ry];

The shrink operator linearly scales the original graph. Since the relative positions of all nodes are
not changed, the optimal solution of the new instance is the same as the original one. Similar to
the rotation and symmetry operators, we use the midpoint (0.5, 0.5)⊺ as the center for the shrink
operator. The detailed procedure is given in Algorithm 3.

We first move the given instance to the new location such that its midpoint is (0, 0)⊺ as in line 1, and
map all nodes into the polar coordinate system as shown in line 2 of Algorithm 3. Then a coefficient
β is randomly sampled from U(1− γ, 1 + γ) to control the zoom degree. The predefined threshold
parameter γ can prevent the graph from zooming to an extremely small or large scale. In this paper,
we set γ to 0.3. The final step of Algorithm 3 restores the scaled graph to the original Cartesian
coordinate.

In Figure 3(c), an example of generating a new instance via the shrink operator is provided, where
both the original and shrinking instance share the same optimal solution.

3.5 NOISE

Unlike the above three operators that perfectly preserve the relative positional relationship, the noise
operator generates new graphs by randomly perturbing each node in the original graph. In other
words, without any further restriction, the newly generated instances could have different optimal
solutions to the original instance. This property is undesirable for data augmentation.

However, the optimal solution could still keep the same if we only slightly change the node co-
ordinates while qualitatively maintaining the relative position. To be specific, we can add a small
enough noise to each node to perturb the graph such that the noise’s upper bound is half the mini-
mum distance between each pair of nodes d

2 . In this way, the nodes after perturbation will be in a
small region around their original location and not overlap with each other. This tight restriction can
also guarantee the newly generated instance will still have the same optimal solution as the original
instance.

Algorithm 4 describes the noise operator in detail. As shown in line 1, the minimal distance between
each pair of nodes is calculated first. In lines 2-3, two coefficient vectors rρ ∈ (0, 1)n and rθ ∈
(0, 2π)n are randomly sampled to determine the magnitude and direction of the noise, respectively.
Finally, we add the corresponding movements over the x and y axes as the noise for each node. This
noise operator can adaptively set the noise upper bound and generate new graphs without changing
the optimal solution. As the example illustrated in Figure 3(d), the optimality of the original label
solution is guaranteed.

3.6 COMPARISON

These four DA operators can be applied independently or stacked together in a specific manner to
generate new problem instances to support SL-based training. They are also model-agnostic and can
be used to train any SL-based NCO solver. In this subsection, we investigate their effectiveness for
training the AM solver with the implementation in Kwon et al. (2020).

We compare the performance of the models trained by SL with different DA operators on the vali-
dation set, which consists of 1,000 randomly generated instances. Both training and validation are
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Figure 4: The average optimal gap on the val-
idation set generated by the Attention Model
trained with supervised learning using each in-
dividual DA operator.
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Figure 5: The average optimal gap on the val-
idation set generated by the Attention Model
trained with supervised learning using com-
bined DA operators.

50-node TSP instances (denoted as TSP50). The performance is evaluated by the average optimal
gap, and the optimal values are calculated by Concorde (Applegate et al., 2006).

As shown in Figure 4, each of the proposed DA operators can improve the performance compared
to using the original training dataset directly. Specifically, the rotation and symmetry operators can
remarkably alleviate the overfitting problem as well as reduce the optimal gap. In contrast, the
effectiveness of using the shrink operator or the noise operator separately is not significant.

In addition to the performance assessment of each individual DA operator, we also investigate the
efficiency of the combined DA operators. We stack all DA operators first and remove one of them
for enumeration. For instance, the All-Rotation represents we employ all DA operators except the
rotation operator. Since there is overlap in rotation and symmetry operators, we randomly employ
one of them when using them both.

As shown in Figure 5, all kinds of combinations can significantly reduce the optimal gap. The
symmetry operator appears to be the most effective one, but the other operators also contribute to
the performance improvement to varying degrees. In this paper, we adopt the combination of all
four DA operations as our DA strategy.

4 BIDIRECTIONAL LOSS

In this section, by leveraging the equivalence of optimal solutions, we propose a novel bidirectional
loss to further improve the data efficiency for SL-based training.

4.1 LOSS FUNCTIONS
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Figure 6: Equivalent optimal solutions for a TSP instance.

The construction-based NCO solver se-
quentially generates the solution in an
autoregressive manner, which selects
one node at each step. The node se-
lection can be viewed as a classification
problem, and the goal of the SL-based
method is to minimize the conditional
cross-entropy loss from the optimal so-
lution (Vinyals et al., 2015):

L(S,−→τ ) = −
n∑

t=1

log pϕ(
−→τt |S−→τ 0:t−1

)

where −→τ is the optimal solution for the corresponding instance S, S−→τ 0:t−1
is the partial tour up to

step t− 1, −→τ t is the selected node at step t, and ϕ is the parameters of the training model.

However, a CO problem instance could have multiple optimal solutions (Kwon et al., 2020; Kotary
et al., 2021). As shown in Figure 6, for a TSP instance with n nodes and a given optimal solution−→τ ,
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we can have n equivalent optimal solutions −→τ i with different starting node i. In addition, since the
solution (tour) can move along the reverse direction, we can also have the other n optimal solution←−τ i. Therefore, there are total 2n equivalent solutions to the single given optimal solution −→τ .

In this work, we propose a novel bidirectional loss function to leverage all the equivalent optimal
solutions for data-efficient SL-based training:

LB(S,
−→τ ) =

1

n

n∑
i=1

A(L(S,−→τ i),L(S,←−τ i)),

where A(·, ·) denotes the aggregation function over the two reverse directions from the same starting
node, which can be one of {min, mean, max}. The min aggregation greedily optimizes the solution
for the prefer direction, the mean aggregation considers solutions for both directions, an the max
aggregation optimizes the upper bound (e.g., the solutions with worse performance).

4.2 COMPARISON
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Figure 7: The average optimal gaps on the validation set
with different loss functions.

In this subsection, we compare the
performance of different aggrega-
tions for the bidirectional loss with
data augmentation. As shown in
Figure 7, all aggregated bidirec-
tional loss functions can outper-
form the original supervised learn-
ing function with the same amount
of provided optimal solutions (e.g.,
50, 000). Among the three differ-
ent aggregation functions, the min
aggregation achieves the best perfor-
mance, and we use it as the default
setting in the rest of this work. An ab-
lation study on the three aggregations
with different settings can be found in
Appendix.

4.3 SL-DABL
We combine the aforementioned data
augmentation approaches and the bidi-
rectional loss together to propose our
Supervised Learning with Data Aug-
mentation and Bidirectional Loss (SL-
DABL) method as shown in Algo-
rithm 5. SL-DABL is model-agnostic
and can be used to train different
construction-based NCO solvers. In this
work, we adopt the same model struc-
ture, hyperparameter settings, as well
as the inference strategy with multi-
ple starting nodes from POMO (Kwon
et al., 2020). In other words, the only
difference is our proposed SL-DABL
v.s. the RL-based training method with
multiple rollouts developed in Kwon
et al. (2020). Following POMO, we
also propose a variant (denoted as SL-
DABL ×8) that conducts additional ×8
instance augmentation in the inference
phase.

Algorithm 5 SL-DABL
1: Input: the training dataset D, the number of train-

ing steps itermax, the batch size B, and the shrink
threshold parameter γ.

2: Output: the trained model with parameters ϕ∗.
3: Initialize the model with parameters ϕ;
4: for iter = 1, . . . ,itermax do
5: Si,−→τ i ∼ SampleInstance(D) ∀i ∈ {1, . . . , B};
6: a ∼ U(0, 1);
7: if a < 0.5 then
8: Si ← Rotation(Si);
9: else

10: Si ← Symmetry(Si);
11: end if
12: Si ← Shrink(Si, γ);
13: Si ← Noise(Si);
14: ∇L(θ)← 1

B

∑B
i=1∇LB(S

i,−→τ i
);

15: ϕ← ADAM(ϕ,∇L(ϕ));
16: end for
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5 EXPERIMENT

In this section, we first compare our SL-DABL method with other widely-used learning/non-learning
solvers on the uniform TSP instances. Then we conduct ablation studies to analyze each component
of SL-DABL. Finally, SL-DABL is compared against RL on the generalization ability to different
problem sizes and real-world TSPLib instances.

5.1 OVERALL COMPARISON

Method Type TSP20 TSP50 TSP100

Cost Gap Time Cost Gap Time Cost Gap Time

Concorde Solver 3.82473 0.000% 1.13m 5.69311 0.000% 6.66m 7.76541 0.000% 30.85m
Gurobi† Solver 3.8302 0.000% 2.33m 5.6905 0.000% 26.20m 7.7609 0.000% 3.57h
LKH3† Heuristic 3.8303 0.000% 20.96m 5.6905 0.001% 26.25m 7.7611 0.003% 49.96m

Wu {5000} RL, I 3.82551 0.020% 1.07h 5.70456 0.201% 1.42h 7.88117 1.491% 1.83h
Costa {2000} RL, I 3.82479 0.002% 28.45m 5.69957 0.114% 44.23m 7.82389 0.753% 1.06h

AM(Greedy) RL 3.83565 0.285% 0.35m 5.78875 1.680% 0.80m 8.10442 4.366% 1.80m
AM(Sampling) RL 3.83694 0.319% 0.42m 5.80361 1.941% 1.06m 8.15186 4.977% 2.05m
POMO RL 3.82557 0.022% 0.01m 5.70238 0.163% 0.03m 7.82817 0.808% 0.17m
POMO × 8 RL 3.82479 0.002% 0.08m 5.69507 0.035% 0.23m 7.78218 0.216% 1.08m
POMO-DA RL 3.82572 0.026% 0.01m 5.70270 0.168% 0.03m 7.84934 1.081% 0.17m
POMO-DA × 8 RL 3.82480 0.002% 0.08m 5.69521 0.037% 0.23m 7.78944 0.309% 1.08m

GCN† SL 3.86 0.600% 0.10m 5.87 3.100% 0.92m 8.41 8.380% 6m
GCN† SL, BS 3.84 0.100% 0.33m 5.71 0.260% 2m 7.92 2.110% 10m
GCN† SL, BS∗ 3.84 0.010% 12m 5.70 0.010% 18m 7.87 1.390% 40m

SL-DABL SL 3.82496 0.006% 0.01m 5.69562 0.044% 0.03m 7.78793 0.290% 0.17m
SL-DABL × 8 SL 3.82473 0.000% 0.08m 5.69318 0.001% 0.23m 7.76925 0.049% 1.08m

Table 1: Experiment results on various TSP instances. In the Type column, RL: Reinforcement
Learning, SL: Supervised Learning, I: Improvement, BS: Beam search with width 1280, and BS∗:
Beam search with width 1280 and shortest tour heuristic.

As shown in Table 1, our two SL-DABL variants are compared with fourteen representative algo-
rithms. At the top of the table, Concorde (Applegate et al., 2006) and Gurobi (Gurobi Optimization,
LLC, 2022) are two exact solvers and LKH3 (Helsgaun, 2017) is a powerful heuristic algorithm. The
second group consists of two learn-to-improve algorithms, which are proposed by Wu (Wu et al.,
2021) and Costa (d O Costa et al., 2020), respectively. The third group contains two RL-based NCO
algorithms, AM (Kool et al., 2018) and POMO (Kwon et al., 2020), each of which has two vari-
ants. We also evaluate the performance of POMO trained thought reinforcement learning with data
augmentation for clear ablation. The three GCN variants (Joshi et al., 2019) are SL-based two-stage
algorithms that generate solutions based on the predicted heatmap. As for Gurobi, LKH3 and the
three GCN variants, we directly use the results reported in Joshi et al. (2019) and Fu et al. (2021).
We run the other algorithms by ourselves with the codes and pretrained models from their official
implementations.

Following the common setting from other NCO work, we separately train three different models
for TSP instances with 20-, 50- and 100-node (called TSP20/50/100, respectively). All training
datasets are from (Hottung et al., 2020), where each one contains 50,000 TSP instances with optimal
solutions solved by Concorde (Applegate et al., 2006). We evaluate the performance and inference
time on the test set with 10,000 randomly generated instances for each problem size.

From these results, we can see that SL-DABL outperforms the other nine learning-based algorithms
and achieve state-of-the-art results on all three kinds of TSP instances. Especially, SL-DABL × 8
gains the same performance as Concorde on TSP20. Furthermore, our SL-DABL models inherit
the real-time inference capability, which is significantly faster than exact and heuristic solvers as
well as improvement-based algorithms. It is worth noting that SL-DABL outperforms POMO even
though they have the same model structure and inference strategy. These results fully confirm that
SL-DABL is a data-efficient and powerful training method for NCO solvers.

5.2 ABLATION EXPERIMENT

To investigate the effectiveness of the DA approach and the bidirectional loss, we conduct ablation
experiments on each component of SL-DABL. We train the model with four different SL strategies
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(i.e., original SL, SL-BL, SL-DA, and SL-DABL) using the dataset of 50,000 labeled TSP instances
of size 50. For comparison, we also train the model via RL using 51,000,000 random TSP50 in-
stances. The five trained models are compared on the validation set of 1,000 random instances.

As shown in Figure 1, the original SL is overfitting after about 50 epochs due to the lack of sufficient
supervised data. In contrast, the SL-DA optimizes smoothly throughout the training stage without
overfitting, and the only difference is that the training dataset is expanded by our proposed DA
approach. The bidirectional loss also illustrates its effectiveness, especially when training data is
insufficient. In the comparison of original SL and SL-BL, the bidirectional loss helps the latter
moderately alleviate overfitting and extract more information from the limited tiny dataset in the
early training stage. In the case of the training data containing tremendous labeled data, like SL-
DA and SL-DABL, the bidirectional loss can still further improve the data efficiency. SL-DABL is
more efficient than SL-DA in getting information from the same amount of training data. SL-DABL
and SL-DA have similar performance at the end of training since they are very close to the optimal
solutions (e.g., with 0.001% optimal gap). According to the results in Figure 1, the SL-DA and
SL-DABL methods have better efficiency than RL throughout the whole training process.

In summary, the original SL approach is inferior to RL mainly due to the overfitting issue with lim-
ited training data. Our proposed data augmentation approach can significantly help SL to extract
sufficient supervised information from only 50, 000 training instances and thereby address the over-
fitting issues with negligible cost. Meanwhile, the bidirectional loss can further improve the data
efficiency, especially when the training set is relatively small.

5.3 GENERALIZATION

The generalization ability is an important concern for the learning-based NCO solver. In real-world
applications, the problem instances could typically have different sizes and might come from dif-
ferent distributions. It is crucial that the learning-based solver should still be able to generate good
approximate solutions for those unseen instances.

TSP150 TSP200 TSP250 TSP300

POMO 9.49834 11.00882 12.46317 13.89798
SL-DABL 9.43656 10.93318 12.39314 13.84875

POMO × 8 9.43073 10.91277 12.33501 13.73801
SL-DABL × 8 9.39082 10.84699 12.26284 13.67492

Table 2: Generalization of models trained on TSP100

In this section, we compare the generaliza-
tion ability of SL-DABL and its RL coun-
terpart with the POMO model and differ-
ent inference strategies. We train two mod-
els on TSP100 with SL-DABL and the RL
approach in POMO respectively, and then
compare their performance on TSP instances
with up to 300 nodes. As shown in Table 2, the model trained by SL-DABL always has the better
generalization performance.

Size Num SL-DABL × 8 POMO × 8

Num Avg. Gap Num Avg. Gap

100-150 17 13 1.462% 4 1.910%
151-200 6 5 4.571% 1 6.723%
201-250 3 2 3.663% 2 4.353%
251-300 4 3 8.204% 2 10.697%

100-300 30 23 3.203% 7 4.286%

Table 3: Statistical results on TSPlib

We also test our model on the widely-used
TSPlib benchmark (Reinelt, 1991) that contains
real-world instances from dramatically differ-
ent distributions. The statistical results on 30
2-D Euclidean instances with 100 to 300 nodes
are shown in Table 3. SL-DABL outperforms
its RL counterpart on 23 out of 30 instances and
has a better average optimal gap. The detailed
results for each instance can be found in Appendix.

6 CONCLUSION

In this paper, we have proposed a powerful SL-DABL method for learning traveling salesman prob-
lem. It integrates data augmentation to efficiently extract sufficient supervised information from
limited training data, and bidirectional loss to better exploit the equivalent properties of optimal so-
lutions. The experiments have validated that SL-DABL can achieve state-of-the-art performance on
TSP with only a small set of 50,000 labeled training instances, while also having a better general-
ization ability to its RL counterpart on real-world instances with various sizes. These findings could
be helpful in rethinking the value of efficient SL methods for NCO training.
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A APPENDIX

Method Type TSP20 TSP50 TSP100

Cost Gap Time Cost Gap Time Cost Gap Time

Concorde Solver 3.82473 0.000% 1.13m 5.69311 0.000% 6.66m 7.76541 0.000% 30.85m
Gurobi† Solver 3.8302 0.000% 2.33m 5.6905 0.000% 26.20m 7.7609 0.000% 3.57h
LKH3† Heuristic 3.8303 0.000% 20.96m 5.6905 0.001% 26.25m 7.7611 0.003% 49.96m

Wu {5000} RL, I 3.82551 0.020% 1.07h 5.70456 0.201% 1.42h 7.88117 1.491% 1.83h
Costa {2000} RL, I 3.82479 0.002% 28.45m 5.69957 0.114% 44.23m 7.82389 0.753% 1.06h

AM(Greedy) RL 3.83565 0.285% 0.35m 5.78875 1.680% 0.80m 8.10442 4.366% 1.80m
AM(Sampling) RL 3.83694 0.319% 0.42m 5.80361 1.941% 1.06m 8.15186 4.977% 2.05m
POMO RL 3.82557 0.022% 0.01m 5.70238 0.163% 0.03m 7.82817 0.808% 0.17m
POMO × 8 RL 3.82479 0.002% 0.08m 5.69507 0.035% 0.23m 7.78218 0.216% 1.08m
POMO-DA RL 3.82572 0.026% 0.01m 5.70270 0.168% 0.03m 7.84934 1.081% 0.17m
POMO-DA × 8 RL 3.82480 0.002% 0.08m 5.69521 0.037% 0.23m 7.78944 0.309% 1.08m

GCN† SL 3.86 0.600% 0.10m 5.87 3.100% 0.92m 8.41 8.380% 6m
GCN† SL, BS 3.84 0.100% 0.33m 5.71 0.260% 2m 7.92 2.110% 10m
GCN† SL, BS∗ 3.84 0.010% 12m 5.70 0.010% 18m 7.87 1.390% 40m

SL-DABL(Max) SL 3.82502 0.008% 0.01m 5.69584 0.048% 0.03m 7.80461 0.505% 0.17m
SL-DABL(Max) × 8 SL 3.82473 0% 0.08m 5.69333 0.004% 0.23m 7.77544 0.129% 1.08m
SL-DABL(Mean) SL 3.82493 0.005% 0.01m 5.69525 0.038% 0.03m 7.7977 0.416% 0.17m
SL-DABL(Mean) × 8 SL 3.82473 0% 0.08m 5.69323 0.002% 0.23m 7.77352 0.104% 1.08m
SL-DABL(Min) SL 3.82496 0.006% 0.01m 5.69562 0.044% 0.03m 7.78793 0.290% 0.17m
SL-DABL(Min) × 8 SL 3.82473 0.000% 0.08m 5.69318 0.001% 0.23m 7.76925 0.049% 1.08m

Table 4: Experiment results on various TSP instances. In the Type column, RL: Reinforcement
Learning, SL: Supervised Learning, I: Improvement, BS: Beam search with width 1280, and BS∗:
Beam search with width 1280 and shortest tour heuristic.

TSP150 TSP200 TSP250 TSP300 TSP400 TSP500

RL 9.49834 11.00882 12.46317 13.89798 16.6887 19.29866
SL-DABL(Max) 9.47444 10.99099 12.44456 13.8601 16.5457 19.0202
SL-DABL(Mean) 9.46462 10.99342 12.48445 13.96524 16.84227 19.5274
SL-DABL(Min) 9.43656 10.93318 12.39314 13.84875 16.708 19.36179

RL × 8 9.43073 10.91277 12.33501 13.73801 16.48253 19.0658
SL-DABL(Max) × 8 9.4142 10.89508 12.31888 13.70788 16.36537 18.8228
SL-DABL(Mean) × 8 9.41023 10.89797 12.35213 13.80193 16.64035 19.30552
SL-DABL(Min) × 8 9.39082 10.84699 12.26284 13.67492 16.45711 19.06886

Table 5: Generalization of models trained on TSP100

A.1 EXPERIMENTS SETTING

In this work, we plug our SL-DABL into POMO (Kwon et al., 2020), and the details of the model
can be found in the corresponding literature. We only describe the hyperparameter settings here,
even though all of them are also identical to POMO: there are 100,000 data per epoch and the batch
size is 64. The models are optimized by the Adam optimizer in 510 epochs. In the first 500 epochs,
the learning rate η = 1e−4 with a weight decay w = 1e−6, while the last 10 epochs fine-tuning the
model with η = 1e− 5. The only difference between the training datasets of our SL-DABL and RL
is that the former is augmented from a tiny dataset consisting of 50,000 labeled data, while the latter
is randomly generated. Both of them use 51,000,000 data to optimize the models. All experiments
are implemented on a single Tesla V100 GPU.

A.2 BIDIRECTIONAL LOSS ABLATION

In this part, we extend the overall comparison with the models trained through the other two ag-
gregated bidirectional loss functions Max and Min. As shown in Tabel 4, all variants of SL-DABL
outperform all other learning-based baselines.

A.3 ABLATION OF TRAINING DATASET SIZES
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Size SL-DABL(Min) × 8 SL-DABL(Mean) × 8 SL-DABL(Max) × 8 RL × 8

kroA100 0.475% 0.296% 0.700% 1.001%
kroB100 0.528% 0.628% 0.944% 0.917%
kroC100 0.280% 0.294% 0.699% 0.540%
kroD100 0.329% 1.437% 0.498% 2.268%
kroE100 0.924% 1.156% 0.952% 0.430%
rd100 0.607% 0.670% 0.607% 0.721%
eil101 11.447% 11.288% 11.447% 12.083%
lin105 0.814% 1.454% 1.092% 1.523%
pr107 0.553% 1.205% 0.851% 0.973%
pr124 0.349% 0.833% 1.022% 0.337%
bier127 1.828% 1.501% 5.391% 3.049%
ch130 1.277% 1.538% 1.489% 1.358%
pr136 1.296% 1.296% 0.933% 1.217%
pr144 0.530% 1.286% 1.505% 0.516%
ch150 1.762% 2.436% 2.252% 2.068%
kroA150 1.090% 1.327% 1.244% 1.904%
kroB150 0.765% 0.383% 1.649% 1.508%
pr152 1.160% 2.600% 1.900% 1.952%
u159 0.302% 0.326% 0.368% 1.236%
rat195 8.653% 10.891% 11.580% 13.173%
d198 13.219% 26.857% 23.169% 19.195%
kroA200 2.023% 3.780% 2.390% 1.829%
kroB200 2.072% 3.526% 3.849% 2.952%
ts225 1.725% 4.005% 2.883% 4.469%
tsp225 5.720% 5.669% 7.380% 6.691%
pr226 3.544% 7.709% 4.109% 1.899%
gil262 9.504% 10.050% 9.546% 9.420%
pr264 6.112% 9.979% 8.175% 8.133%
a280 7.988% 11.245% 10.741% 13.455%
pr299 9.213% 12.199% 13.328% 11.780%

Avg. Gap for 100-150 1.462% 1.708% 1.957% 1.907%
Avg. Gap for 151-200 4.571% 7.997% 7.209% 6.723%
Avg. Gap for 201-250 3.663% 5.794% 4.790% 4.353%
Avg. Gap for 251-300 8.204% 10.868% 10.448% 10.697%

Avg. Gap for all instances 3.203% 4.595% 4.423% 4.286%

Table 6: Results on TSPlib
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Figure 8: Ablation of training dataset sizes

In this subsection, we study the ef-
fect of different numbers of labeled
instances (e.g., 10K and 100K) for
our proposed SL-DABL method. As
shown in Figure 8, the proposed ef-
ficient SL-DABL method with only
10k instances will suffer from over-
fitting, yet which is significantly al-
leviated compared to the original SL
method. In addition, its performance
is still better than the reinforcement
learning counterpart. In practice, the
overfitting issue might be properly
handled by early stopping. On the
other hand, the improvement on in-
creasing the labeled instances from 50K to 100K is not significant.

A.4 GENERALIZATION

We firstly discuss the generalization of the models trained on TSP100 up to TSP500. As shown in
Tabel 5, the SL-DABL with max aggregate function superior to RL in all test sets. In addition, the
min one has better performance on TSP100-TSP300.

The details of the performance on TSBlib are depicted in Tabel 6.

A.5 CAPACITATED VEHICLE ROUTING PROBLEMS
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Figure 9: The cost of models trained with different training
strategies on the validation set.

In this subsection, we investigate
the effect of our proposed SL-DABL
method on the capacitated vehicle
routing problems(CVRP). Most ex-
perimental setting is the same with
the TSP experiment, and we have 10k
labeled training instances where the
solutions are achieved by the pow-
erful LKH solver (Helsgaun, 2017).
We also slightly modified the data
augmentation and loss function to ac-
commodate CVRP. For data augmen-
tation, to guarantee the optimality of
original solutions, the noise approach
is removed since the additional depot
hampers the design of the noise up-
per bound. For the loss function, the
sub-tours of given (near-)optimal so-
lutions are reordered to find the most similar one based on the current model. The purpose of this
operation is to alleviate the influence of the equivalent solutions. Therefore, different from the 2n
equivalent solutions in TSP instances, there are m!2m equivalent solutions for each CVRP instance,
where m is the number of sub-tour.

CVRP20

POMO 6.20833
SL-DABL 6.18204

POMO × 8 6.16887
SL-DABL × 8 6.15466

Table 7: Experiment results
on various CVRP instances

As shown in Figure 9, for CVRP20, our SL-DABL significantly
mitigates the overfitting compared to the original SL, and the per-
formance is stably superior to POMO. And the numerical result can
be checked out in Table 7.

A.6 GCN

0 200 400 600 800 1000 1200 1400
Epochs

0.003%

0.005%

0.010%

0.020%

0.040%

O
pt

im
al

 G
ap

TSP20

GCN
GCN-DA

Figure 10: The optimality gap of GCN trained with different
training strategies on the validation set.

In this subsection, we investigate
the performance of our proposed
data augmentation approaches on the
GCN model (Joshi et al., 2019).
Since the GCN model directly pre-
dicts the solution heatmap as an ad-
jacency matrix, the bidirectional loss
functions is not capable in this set-
ting. We follow the same experi-
ment settings as reported in the main
paper.As shown in Figure 10, for
TSP20, our data augmentation still
modestly improve the performance
for the GCN model, even if both of
them employ the beam search ap-
proach with 1280 width.
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